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Abstract

Let (X, µ) be a probability measure space and T1, . . . , Tn be a fam-
ily of commuting, measure preserving invertible transformations on
X. Let Q(m1, . . . , mn) be a homogeneous, positive polynomial with
integer coefficients, and consider the averages:

Aλf(x) =
1

rQ(λ)

∑

Q(m)=λ

f(Tm1
1 , . . . , Tmn

n x)

where rQ(λ) denotes the number of integer solutions m = (m1, . . . , mn)
of the diophantine equation Q(m) = λ.

We prove that under a certain non-degeneracy condition on the
polynomial Q(m) and an ergodic condition on the family of transfor-
mations T = (T1, . . . , Tn) the pontwise ergodic theorem holds, that
is:

lim
λ→∞

Aλf(x) =
∫

X

f dµ

for µ a.e. x ∈ X. This means that the solutions sets of the diophantine
equation Q(m) = λ become uniformly distributed when mapped to the
space X via the transformations T1, . . . , Tn.

The proof uses a variant of the Hardy-Littlewood method of expo-
nential sums developed by Birch and Davenport and techniques from
harmonic analysis. A key point is the corresponding maximal theorem,
which is a discrete analogue of a maximal theorem on <n corresponding
to the level surfaces of the polynomial Q(x).
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0. Introduction

A fundamental problem in number theory is to determine asymptoti-
cally the number of integer solutions m = (m1, . . . , mn) of a diophantine
equation Q(m1, . . . , mn) = λ as λ → ∞ through the integers, and Q(m) is
a positive polynomial with integer coefficients. A general result of this type
follows from a variant of the Hardy-Littlewood method of exponential sums
developed by Birch [2] and Davenport [4], which is as follows.

Let Q(m1, . . . , mn) be a positive homogeneous polynomial of degree d
with integral coefficients, and suppose that it satisfies the non-degeneracy
condition

(0.1) n− dim VQ > (d− 1)2d

Here VQ = {z ∈ Cn : ∂1Q(z) = . . . ∂nQ(z) = 0} is the complex singu-
lar variety of the polynomial Q. For simplicity we’ll refer to polynomials
satisfying all the above conditions as non-degenerate forms.

Then the following asymptotic formula holds for the number of integer
solutions rQ(λ) = |{m ∈ Zn : Q(m) = λ}|

(0.2) rQ(λ) = cQλ
n
d
−1

∞∑

q=1

K(q, 0, λ) + Oδ(λ
n
d
−1−δ)

for some ε > 0. The expression K(λ) =
∑∞

q=1 K(q, 0, λ) is called the singular
series, the terms are special cases of (l = 0) the exponential sums

(0.3) K(q, l, λ) = q−n
∑

(a,q)=1

∑

s∈Zn/qZ

e
2πi

a(Q(s)−λ)+s·l
q

that is a goes through the reduced residue classes (mod q) and sj goes
through all residue classes (mod q) for each j. We remark that K(q, 0, λ) is
a Kloostermann sum if Q(m) is a quadratic form.

The asymptotic formula (0.2) can be valid just under a condition of
type (0.1). Indeed consider the polynomial Q(m) = (m2

1 + . . . + m2
n)d/2

(d > 2 even). Then rQ(λ) = 0 unless λ = µd/2, µ ∈ N, and in that case
rQ(λ) = µn/2−1 = λn/d−2/d. Hence formula (0.2) is never valid. The reason
is that the complex singular variety: VQ = {z ∈ Cn : z2

1 + . . . + z2
n = 0}

has dimension n− 1.
It is meaningful only if the singular series is nonzero. It can be shown,

that if Q is a non-degenerate form, then there exists an arithmetic progres-
sion Γ ⊆ N and a constant 0 < AQ such that

(0.4) AQ ≤ K(λ) , for every λ ∈ Γ
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we’ll refer to such sets Γ as sets of regular values of the polynomial Q. In-
equality (0.4) is true for all large λ, just under additional assumptions mod-
ulo primes. Indeed consider the polynomial Q(m) = md

1 + pQ1(m2, . . . mn).
For λ = pλ1 + s s being a quadratic non-residue, the equation Q(m) = λ
has no solution, since d is even. Such conditions will be discussed later.

A crucial observation of the paper is, that a similar approximation for-
mula to (0.2) holds for the Fourier transform of the solution set:

σ̂Q,λ(ξ) =
∑

m∈Zn,Q(m)=λ

e2πim·ξ , ξ ∈ Πn

Here Πn = <n/Zn is the flat torus.

Lemma 1 Let Q(m) be a non-degenerate form, then there exists δ > 0, s.t.

(0.5) σ̂Q,λ(ξ) = cQλ
n
d
−1

∞∑

q=1

K(q, l, λ)
∑

l∈Zn

ψ(qξ − l)dσ̃Q(λ
1
d (ξ − s/q))) +

+Eλ(ξ) , and sup
ξ
|Eλ(ξ)| ≤ cδλ

n
d
−1−δ

Here ψ(ξ) is a smooth cut-off, ψ(ξ) = 1 for supj |ξj | ≤ 1/8 and ψ(ξ) = 0
for supj |ξj | ≥ 1/4 . Moreover

(0.6) dσ̃Q(ξ) =
∫

{x∈<n : Q(x)=1}
e2πix·ξ dσQ(x)

here dσQ(x) = dSQ(x)
|Q′(x)| , where dSQ(x) denotes the Euclidean surface area

measure of the level surface Q(x) = 1, and |Q′(x)| is the magnitude of the
gradient of the form Q.

The approximation formula (0.5) means, that the Fourier transform of
the indicator function of the solution set Q(m) = λ is asymptotically a sum
over all rational points, of pieces of the Fourier transform of a surface mea-
sure of Q(x) = λ, multiplied by arithmetic factors and shifted by rationals.
This formula in the special case Q(m) =

∑
j m2

j was proved earlier in [6].
Our main purpose is to study the distribution of the solution sets

{m ∈ Zn : Q(m) = λ}.
Theorem 1 Let Q(m) be a non-degenerate polynomial and Λ is correspond-
ing set of regular values. Then for a test function φ(x) ∈ S(<n) one has

(0.7) lim
λ∈Λ,λ→∞

1
rQ(λ)

∑

Q(m)=λ

φ(λ−1/dm) =
∫

Q(x)=1
φ(x) dσQ(x)
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That is when the solution sets Q(m) = λ are projected to the unit surface
Q(x) = 1 via the dilations m → λ−1/dm, they weakly converge to the surface
measure dSQ(x)

|Q′(x)| . This is well-known in case Q(x) is a quadratic form.
The main results of the paper concerns the uniform distribution of the

images of the solution sets, when mapped to a measure space via an ergodic
family of transformations.

Let (X, µ) be a probability measure space, and T = (T1, . . . , Tn) be a
family of commuting, measure preserving and invertible transformations.
Suppose for every positive integer q the family T q = (T q

1 , . . . , T q
n) is ergodic.

We recall this means, that for every f ∈ L2(X, µ)

T q
1 f = . . . T q

nf = f

implies f = constant. We’ll refer to a family of transformations satisfying
all the above conditions as a strongly ergodic family.

Theorem 2 Let Q(m) be a non-degenerate form, Γ be a corresponding set
of regular values and T = (T1, . . . , Tn) a strongly ergodic family of transfor-
mations of a measure space (X, µ).

For f ∈ L2(X, µ) consider the averages

Aλf(x) =
1

rQ(λ)

∑

Q(m1,...mn)=λ

f(Tm1
1 Tm2

2 · · ·Tmn
n x)

Then one has

(0.7) ‖ lim
λ∈Γ,λ→∞

(Aλf −
∫

X
fdµ)‖L2(X,µ) = 0

This is an L2 ergodic theorem, it follows from a non-trivial estimate on
the exponential sums σ̂Q,λ(ξ) at irrational points ξ /∈ Qn. More precisely
one needs the following

Lemma 2 Let Q(m) be a non-degenerate form, Γ be a corresponding set of
regular values. Then for ξ /∈ Qn one has

(0.8) lim
λ∈Λ,λ→∞

1
rQ(λ)

|σ̂Q,λ(ξ)| = 0

To see the correspondence, suppose that f ∈ L2(x, µ), f 6= constant is
a joint eigenfunction of the shifts: Tjf = e2πiξjf (Tjf(x) = f(Tjx)). Then
Aλf = 1

rQ(λ) σ̂Q,λ(ξ)f , and the strong ergodicity of the family T implies
that ξ /∈ Qn.

The main result of the paper is the corresponding pointwise ergodic
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Theorem 3 Let Q(m) be a non-degenerate form, Γ be a corresponding set
of regular values and T = (T1, . . . , Tn) a strongly ergodic family of transfor-
mations of a measure space (X, µ). Let f ∈ L2(X, µ), Then for µ-almost
every x ∈ X one has

(0.9) lim
λ∈Γ,λ→∞

Aλf(x) =
∫

X
f dµ

Theorem 3. means, that the images of the solution sets

(0.10) Uλ = {m ∈ Zn : Q(m) = λ}

under the transformations T = (T1, . . . , Tn) :

(0.11) Ωx,λ = {(Tm1
1 Tm2

2 · · ·Tmn
n x) : m ∈ Uλ}

become uniformly distributed on X w.r.t. µ for a.e. x ∈ X. Let us mention
a special case

Corollary 1 Let α1, . . . , αn be a set of irrational numbers (αj /∈ Q ∀j).
If Q(m) is a non-degenerate form, and Γ is a corresponding set of regular
values, then the sets

(0.12) Ωλ,α = {(m1α1, . . . ,mnαn) ∈ Πn : Q(m1, . . . , mn) = λ}

become uniformly distributed on the torus Πn w.r.t. the Lebesgue measure.

Indeed, if X = Πn and Tj(x1, . . . , xj , . . . xn) → (x1, . . . , xj + αj , . . . xn)
and αj /∈ Q, then the family T = (T1, . . . , Tn) is strongly ergodic.

The proof of the pointwise ergodic theorem is based on the L2 bound-
edness of a corresponding maximal function

Theorem 4 Let Q(m) be a non-degenerate form, Γ be a corresponding set
of regular values. For φ ∈ l2(Zn) we define the maximal function

(0.13) N∗φ(m) = sup
λ∈Γ

1
rQ(λ)

|
∑

Q(l)=λ

φ(m− l) |

Then one has

(0.14) ‖N∗φ‖l2(Zn) ≤ C‖φ‖l2(Zn)
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Theorem 4. is a discrete analogue of a maximal theorem on <n, corre-
sponding to the level surfaces of the form Q(x).

Theorem 5 Let Q(x) be a non-degenerate form and f ∈ L2(<n). Then for
the maximal function

(0.15) M∗f(x) = sup
λ>0

λ−
n
d
+1|

∫

Q(y)=λ
f(x− y)

dSQ,λ(y)
|Q′(y)| |

one has

(0.16) ‖M∗f‖L2(<n) ≤ C‖f‖L2(<n)

For the polynomial Q(x) =
∑n

j=1 x2
j this is the spherical maximal theo-

rem of E.M.Stein [10]. In general, we haven’t found this result stated in the
literature, nor does it seem to follow easily from the known generalizations
of the spherical maximal theorem, see [8], [9]. In fact the proof will use
estimates for exponential sums.

Theorem 4. was proved earlier by Magyar, Stein and Wainger [6], in the
special case Q(m) =

∑n
j=1 m2

j , moreover there the lp → lp boundedness of
the discrete maximal operator was shown, for the sharp range of exponents
p > n

n−2 . The non-degeneracy condition (0.1) is also, sharp in the sense, that
for the form Q(m) = m2

1 +m2
2 +m2

3 +m2
4 (where codim VQ = 4 = (d−1)2d),

Theorem 4. is not true, taking averages on any arithmetic progression Γ, see
section 5. below. Hence the present work is the continuation of that paper
to some extent.

Also we were motivated by Bourgain’s proof of an ergodic theorem, see
[3] corresponding to arithmetic subsets of the natural numbers (such as the
set of squares), where the Hardy-Littelwood method was used to reduce
discrete maximal operators to the corresponding continuous ones.

However in the present case, the averages are over disjoint sets, the
strong ergodicity condition is also necessary, and is actually a condition on
the joint spectrum of the transformations (T1, . . . , Tn). Thus we will need
the Spectral Theorem even in case of the point-wise convergence, i.e. in the
proof of Theorem 3.

1. Exponential sums and oscillatory integrals

We recall some results of Birch [2] on exponential sums, and prove the
estimates and properties of oscillatory integrals, needed later. In particular
we give a proof of Theorem 5.
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Let Q(m) be a non-degenerate form of degree d, that is a positive homo-
geneous polynomial with integer coefficients, satisfying the non-degeneracy
condition (0.1). Let P > 1, 0 < θ ≤ 1 be fixed.

Definition 1 For 1 ≤ q ≤ P (d−1)θ, 1 ≤ a < q, (a, q) = 1 we define the
major arcs

(1.1) La,q(θ) = {α : 2|α− a/q| < q−1P−d+(d−1)θ}

L(θ) =
⋃

q≤P (d−1)θ, (a,q)=1

La,q(θ)

If α /∈ L(θ) then α belongs to the minor arcs.

The following properties of the major arcs are immediate from the defi-
nition, see [2, Sec.4] for the proof.

Proposition 1 If
(i) θ1 < θ2 then L(θ1) ⊆ L(θ2)

(ii) θ < d
3(d−1) then the intervals La,q(θ) are disjoint for different values

of a and q.

(iii) θ < d
3(d−1) then |L(θ)| ≤ P−d+3(d−1)θ.

Let Q1(m) be a polynomial of degree d, such that its d-degree homoge-
neous part Q(m) is a non-degenerate form.

Throughout the paper we’ll use the notation κ = codim VQ

2d−1 , and it is
understood that κ

d−1 > 2 which follows from condition (0.1). For a real α ,
and smooth cut-off function φ(x), consider the exponential sum

(1.2) S(α) =
∑

m∈Zn

e2πiα Q1(m) φ(m/P )

This is a Weyl type sum, the trivial estimate is S(α) ≤ Pn. The following
estimates due to Birch [2, Sec.4] are of basic importance

Lemma 3 Suppose α /∈ L(θ), then for any ε > 0, one has

(1.3.1) |S(α)| ≤ CεP
n−κθ+ε
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If δ < κ−2(d−1)
12d(d−1) and 2δκ

d−1 − 2 < θ < 1
6d then one has for the average over

the minor arcs

(1.3.2)
∫

α/∈L(θ)
|S(α)| dα ≤ CδP

n−d−δ

The constants Cε, and Cδ depend just on the homogeneous part Q(m),
on the cut-off φ, on ε and δ.

Remark. Estimate (1.3.1) is proved in [4, Lemma 4.3] when the cut-off
φ is replaced by the characteristic function χ of a cube of side length ≈ 1.
Choose χ s.t. χφ = φ and by Plancherel

∑

m∈Zn

e2πiαQ1(m) φ(m/P )χ(m/P ) =

=
∫

Πn
(

∑

m∈Zn

e2πiαQ1(m)−m·ξχ(m/P )) (Pnφ̂(Pξ)) dξ

Here Πn is the flat torus and can be identified with [−1/2, 1/2]n. Esti-
mate (1.3) holds for the first term of the integral uniformly in ξ and it is
easy to see that ‖Pnφ̂(Pξ)‖1 ≤ cφ.

To see (1.3.2), one uses (1.3.1) for most most α /∈ L(θ′), with θ < θ′,
when it is not valid is a set of small measure by (1.1), giving an improvement
in average, see [2, Lemma 4.4]. 2

Corollary 2 Let Q(m) be a non-degenerate form, and 1 ≤ a < q be natural
numbers s.t. (a, q) = 1. Consider the Weyl sum

(1.4) S(a, q) =
∑

m∈Zn,mj (mod q)

e
2πi a

q
Q(m)

One has

(1.5) |S(a, q)| ≤ cQ,εq
n− κ

d−1
+ε

Proof. Choose α = a/q, P = q and notice α /∈ L(θ) for θ < 1
d−1 . Indeed

for q1 ≤ q(d−1)θ < q: |a/q−a1/q1| ≥ (qq1)−1 ≥ q−1
1 q−d+(d−1)θ. The estimate

follows from (1.3). 2

Corollary 3 If |α| < P−2d/3 then |S(α)| ≤ CQ,εP
n+ε(P d|α|)− κ

d−1
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Proof. Choose θ s.t. |α| = P−d+(d−1)θ, that is (P d|α|) 1
d−1 = P θ. The

major arcs La,q(θ) are disjoint since (d−1)θ < d/3, moreover α is an endpoint
of the interval L0,1(θ) hence α /∈ La,q(θ − ε) for every ε > 0. By (1.3)

|S(α)| ≤ CQ,εP
n−κθ+ε = CQ,εP

n+ε(P d|α|)− κ
d−1 2

The above corollaries can be found in [2, Sec.4-5], however they quickly
follow from Lemma 3., hence we’ve included their proofs.

Let Q(x) be a non-degenerate form of degree d, κ = codim VQ

2d−1 , L > 0, and
η ∈ <n.

Lemma 4 Consider the oscillatory integral

(1.6) IQ(L, η) =
∫

e2πi(LQ(x)+x·η)φ(x) dx

One has for every ε > 0

(1.7) IQ(L, η) ≤ CQ,ε(1 + L)−
κ

d−1
+ε

where the constant Cε is independent of L and η.

Proof. The estimate is obvious for L < 1. Let L ≥ 1, the gradient of
the phase: |LQ′(x) + η| ≥ L if |η| ≥ CL on the support of φ(x) for large
enough constant C > 0, and (1.7) follows by partial integration.

Suppose |η| ≤ CL and introduce the parameters P, θ, α s.t. α = P−dL,
L = P (d−1)θ and P > L

3κ
d−1 . Changing variables y = Px one has

IQ(L, η) = P−n
∫

e2πiα (Q(y)+P d−1y·η)φ(y/P ) dy

We compare the integral to a corresponding exponential sum

P−nS(α) = P−n
∑

m∈Zn

e2πiα (Q(m)+P d−1m·η)φ(m/P )

If y = m + z where m ∈ Zn and z ∈ [0, 1]n, then

|e2πiα (Q(y)+P d−1y·η) − e2πiα (Q(m)+P d−1m·η)| ≤

≤ C|α|(|Q(m + z)−Q(m)|+ P d−1|η|) ≤ CP−1+(d−1)θ

since |α| = P−d+(d−1)θ and |η| ≤ P (d−1)θ.
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Thus |IQ(L, η) − P−nS(α)| ≤ CQP−1+2(d−1)θ ≤ CQP− 1
3 . Corollary 3.

implies that

|P−nS(α)| ≤ Cε(P dα)−
κ

d−1
+εCεL

− κ
d−1

+ε

and (1.7) follows using P− 1
3 ≤ L−

κ
d−1 . 2

Remarks.
i) It is proved in [2, Sec.4] in case η = 0, we used a modification of the

argument given there.
ii) The proof is based on estimate (1.3), which uses the fact that the

polynomial Q(x) has integer coefficients. Does (1.7) remain true assuming
the coefficients are real ?

iii) In case VQ = {0}, and η = 0 the integral decays as (1+L)−
n
d . What

is the true decay which holds uniformly in η, in this case ?

The level surfaces of a non-degenerate form SQ,λ = {x ∈ <n : Q(x) = λ}
are compact smooth hypersurfaces (for λ > 0). Indeed Q(x) = λ implies
that |x| ≈ λ1/d, moreover Q′(x) 6= 0 for every x 6= 0.

There is a unique n− 1-form dσQ(x) on <n − 0 for which

(1.8) dQ ∧ dσQ = dx1 ∧ . . . ∧ dxn

called the Gelfand-Leray form, see [1, Sec.7.1]. To see this, suppose that
∂1Q(x) 6= 0 on some open set U . By a change of coordinates: y1 =
∂1Q(x), yj = xj for j ≥ 2, equation (1.8) takes the form

(1.9) dy1 ∧ dσQ(y) = ∂1H(y) dy1 ∧ . . . ∧ dyn

where x1 = H(y), xj = yj is the inverse map. Thus the form: dσQ(y) =
∂1H(y) dy2

∧
. . .

∧
dyn satisfies equation (1.8).

We define the measure dσQ,λ as the restriction of the n − 1 form dσQ

to the level surface SQ,λ. This measure is absolutely continuous w.r.t. the
Euclidean surface are measure dSQ,λ, more precisely one has

Proposition 2 .

(1.10) dσQ,λ(x) =
dSQ,λ(x)
|Q′(x)|
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Proof. Choose local coordinates y as before, in coordinates y level
surface and surface area measure takes the form:

SQ,λ = {x1 = H(λ, y2, . . . , yn) : xj = yj}
and

dSQ,λ(y) = (1 +
n∑

j=2

∂2
j H(λ, y))1/2 dy2 ∧ . . . ∧ dyn

Using the identity F (H(y), y2, . . . , yn) = y1 one has

∂1F (x)∂1H(y) = 1 , ∂1F (x)∂jH(y) + ∂jF (x) = 0

This implies that ∂1H(y) = (1 +
∑n

j=2 ∂2
j H(y))1/2 · |F ′(x)|−1. Then (1.10)

follows by taking y1 = λ. 2

A key observation of the paper is that the measure dσQ,λ, considered as
a distribution on <n, has a simple oscillatory integral representation

Lemma 5 Let Q(x) be a non-degenerate form and λ > 0. Then in the
sense of distributions

(1.11) dσQ,λ(x) =
∫

<
e2πi(Q(x)−λ)t dt

This means that for any smooth cut-off function χ(t) and test function φ(x)
one has

(1.12) lim
ε→0

∫ ∫
e2πi(Q(x)−λ)tχ(εt)φ(x) dxdt =

∫
φ(x)dσQ,λ(x)

Proof. Let U be an open set on which ∂1Q 6= 0, and by a partition of
unity we can suppose, that supp φ ⊆ U . Changing variables y1 = Q(x), yj =
xj the left side of (1.12) becomes

lim
ε→0

∫ ∫
e2πi(y1−λ)tχ(εt)φ̃(y)|∂1H(y)| dydt =

∫
φ̃(λ, y′)|∂1H(λ, y′)|dy′

where y′ = (y2, . . . yn).
The last equality can be seen by integrating in t and in y1 first, and using

the Fourier inversion formula:

lim
ε→0

∫ ∫
e2πi(y1−λ)tχ(εt)g(y1) dy1dt = g(λ)

On the other hand SQ,λ ∩ U = {x1 = H(λ, y2, . . . yn) : xj = yj} and
dσQ,λ(y) = |∂1H(λ, y′)| dy′ in parameters y′. 2.
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Lemma 6 Let Q(x) be a non-degenerate form of degree d, κ = codim VQ

2d−1 .
Then one has for the Fourier transform of the measure dσQ,1 = dσQ

(1.13) |dσ̃Q(ξ)| ≤ CQ,ε(1 + |ξ|)− κ
d−1

+1+ε

Proof. Suppose |ξ| > 1. Using the fact that φdσQ = dσQ if φ = 1 on a
neighborhood of 0 and formula (1.12), we have

(1.14) dσ̃Q(ξ) =
∫

e−2πi x·ξφ(x) dx =

= lim
δ→0

∫ ∫
e−2πi x·ξe2πi(Q(x)−1)tφ(x)χ(δt) dxdt

We decompose the range of integration into two parts

d̃σQ(ξ) =
∫

|t|≥C|ξ|

∫

<n
+

∫

|t|≤C|ξ|

∫

<n
= I1 + I2

Since for fixed |t| ≤ C|ξ| the gradient of the phase: |tQ′(x)− ξ| ≥ |ξ|/2
if C > 0 is small enough, integration by parts gives |I2| ≤ CN (1 + |ξ|)−N+1

for every N > 0.
For |t| ≥ C|ξ| Lemma 3. implies

|
∫

e2πi(tQ(x)−x·ξ)φ(x) dx| ≤ Cε| |t|−
κ

d−1
+ε hence

I1 ≤ Cε

∫

|t|≥C|ξ|
|t|− K

d−1
+ε dt ≤ Cε|ξ|−

K
d−1

+1+ε

2

First we prove a dyadic version of Theorem 5., together with a refinement
which will be needed in the proof of Theorem 3.

Lemma 7 Let Λ > 0 be fixed, ω(ξ) be a smooth function with supported on
the set {Λ− 1

2d ≤ ‖ξ‖ ≤ 1
4}, where ‖ξ‖ = maxj |ξj |.

Let Mλ and Mω,λ be the multipliers acting on L2(<n) defined by

M̃λf(ξ) = dσ̃(λ1/dξ) and M̃ω,λf(ξ) = ω(ξ)dσ̃(λ1/dξ

Then one has for the maximal operators

(1.15) ‖ sup
Λ≤λ<2Λ

|Mλf | ‖L2 ≤ C‖f‖L2

(1.16) ‖ sup
Λ≤λ<2Λ

|Mω,λf | ‖L2 ≤ CΛ−
1
2d ‖f‖L2
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Note that Mλf = λ−
n
d
+1 (f ∗ dσλ).

Proof. Using the integral representation (1.11) one has

dσ̃(λ1/dξ) = λ−
n
d
+1[dσ̃λ(ξ) =

= λ−
n
d
+1

∫

<

∫

<n
e2πi(Q(x)−λ)t+m·ξφ(x/Λ

1
d ) dx dt

This means

Mλf = λ−
n
d
+1

∫
e−2πiλtHΛ,tf dt

where HΛ,t is the multiplier corresponding to

hΛ,t(ξ) =
∫

e2πi(Q(x)t+m·ξ)φ(x/Λ
1
d ) dx

Then taking the absolute values, and using Minkowski’s integral inequal-
ity

(1.16) ‖ sup
Λ≤λ<2Λ

|Mλf | ‖L2 ≤ CΛ−
n
d
+1

∫
‖HΛ,tf‖L2 dt

Using again the estimates (see Lemma 6.)

|hΛ,t(ξ)| ≤ CΛ
n
d min{(1 + Λ|ξ|)−N , (1 + Λ|t|)−2}

, (where we used that − κ
d−1 + ε < −2 ), (1.14) follows from (1.16) because

Λ
∫
(1 + Λt)−2 dt ≤ C.
To prove (1.15) we have to replace hΛ,t(ξ) by ω(ξ)hΛ,t(ξ). Then one can

give better uniform estimates in ξ, indeed for Λt ≤ Λ
1
2d it follows

|ω(ξ)hΛ,t(ξ)| ≤ C(1 + Λ|ξ|)−N ≤ (1 + Λ
1
2d )−N hence

Λ
∫

sup
ξ
|ω(ξ)hΛ,t(ξ)| dt ≤ CΛ

∫

Λt≤Λ
1
2d

Λ−
N
2d dt+

CΛ
∫

Λt≥Λ
1
2d

(Λt)−2dt ≤ CΛ−
1
2d

This proves (1.15). 2

13



Proof of Theorem 5. If Q(x) is a non-degenerate form of degree d,
then the maximal function: M̄f(x) = supλ>0 λ−n/d|Āλf(x)|, where

Āλf(x) =
∫

Q(y)≤λ
f(x− y) dy

is majorized by the standard Hardy-Littlewood maximal function, hence is
bounded from L2(<n) to itself.

Formula (1.8) means, that for a test function g(y)
∫

Q(y)≤λ
g(y) dy =

∫ λ

0

∫

Q(y)=s
g(y) dσQ,s(y)ds

hence

Āλf(x) = λ−1
∫ λ

0
Af(x) ds

Then the theorem follows by the standard argument of the spherical maximal
theorem, see [10]. 2

2. The approximation formula

First we rewrite formula (0.5) in the form

(2.1) σ̂Q,λ(ξ) = cQ

∞∑

q=1

∑

(a,q)=1

m
a/q
λ (ξ) + Eλ(ξ)

where

(2.2) m
a/q
λ (ξ) =

∑

l∈Zn

e−2πiλa/qG(a/q, l) ψ(qξ − l)dσ̃Q,λ(ξ − l/q)

and G(a/q, l) = q−n
∑

s∈Zn/qZn

e
2πi

a(Q(s)−λ)+s·l
q

Here we used the fact, that dσ̃Q,λ(η) = λn/d−1dσ̃Q(λ1/dη), which follows by
scaling, since |Q′(x)| is homogeneous of degree d− 1.

Note that in the right side of (2.1) there is at most one nonzero term,
since the cut-off factor ψ(qξ − l), and then (1.4) implies

(2.3) |ma/q
λ (ξ)| ≤ Cελ

n/d−1q−
κ

d−1
+ε ≤ Cελ

n/d−1q−2−ε

by (0.1) if ε is small enough, hence the sum in (2.1) is absolutely convergent.
Let Nλ and Mλ denote the convolution operators on Zn corresponding

to the multipliers σ̂Q,λ(ξ) and mλ(ξ) =
∑

q

∑
(a,q)=1 m

a/q
λ (ξ) . The main

approximation property we need is the following

14



Lemma 8 Let Λ > 0, δ > 0 be amall, fixed and f ∈ l2(Zn) then

(2.4) ‖ sup
Λ≤λ<2Λ

|(Nλ −Mλ)f | ‖l2 ≤ CδΛ
n
d
−1−δ‖f‖l2

Lemma 5. in the special case Q(m) =
∑

j m2
j is proved in [6, Prop. 4.1],

and the same argument works in the present case, after the preparations
made in Section 1.

Also Lemma 1. follows immediately from Lemma 5., since for fixed λ
(Λ ≤ λ < 2Λ)

‖(Nλ −Mλ)f ‖l2 ≤ CΛ
n
d
−1−δ‖f‖l2 ∀f ∈ l2(Zn)

is equivalent to

sup
ξ
|σ̂Q,λ(ξ)−mλ(ξ)| ≤ Cλ

n
d
−1−δ

which is the content of (0.5).

Let P = Λ1/d, and let φ(x) be smooth cut-off function on <n s.t. φ(x) =
1 for Q(x) ≤ 2. Then

σ̂Q,λ(ξ) =
∑

m∈Zn

e2πim·ξφ(m/P )
∫ 1

0
e2παi(Q(m)−λ) dα =

=
∫ 1

0
S(α, ξ)e−2πiλα dα

where S(α, ξ) =
∑

m e2πi(αQ(m)+m·ξ)φ(m/P ).
Let δ and θ be chosen as in Lemma 3. and integrate separately on the

major and minor arcs:

(2.5) σ̂Q,λ(ξ) =
∫

α∈L(θ)
S(α, ξ)e−2πiλα dα +

∫

α/∈L(θ)
S(α, ξ)e−2πiλα dα

= aλ(ξ) + E1
λ(ξ)

The following proposition is a prototype of the error estimates in this
section

Proposition 3 Let E1
λ be the multiplier corresponding to E1

λ(ξ) that is: Ê1
λf =

E1
λ(ξ)f̂(ξ). Then one has

(2.6) ‖ sup
Λ≤λ<2Λ

|E1
λf |‖l2 ≤ CQ,δΛ

n
d
−1−δ‖f‖l2
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Proof. Let Sα be defined by Ŝαf = S(α, ξ)f̂(ξ), then

sup
Λ≤λ<2Λ

|E1
λf | ≤

∫

α/∈L(θ)
|Sαf | dα

Taking the l2 norm one gets (2.6) from the minor arc estimate (1.3.2)
∫

α/∈L(θ)
|Sα(x, ξ)| ≤ CδΛn/d−1−δ 2

Suppose α ∈ La,q(θ) for some (a, q) = 1, q ≤ P (d−1)θ, and write α =
a/q + β, |β| ≤ P−d+(d−1)θ, m = qm1 + s. We have

S(α, ξ) =
∑

s∈Zn/qZn

e
2πi

aQ(s)
q

∑

m1∈Zn

e2πi(βQ(qm1+s)+(qm1+s)·ξ)φ(
qm1 + s

P
)

Let H(x, β) = e2πiβQ(m)φ(m/P ), applying Poisson summation for the
inner sum

∑
m1

H(qm1 + s)e2πi(qm1+s)·ξ = q−n
∑

l

e
2πi l·s

q H̃(ξ − l/q, β)

Integrating in β and summing in a, q, one has

(2.7) aλ(ξ) =
∑

q≤P (d−1)θ

∑

(a,q)=1

a
a/q
λ (ξ)

where

(2.8) a
a/q
λ (ξ) =

∑

l∈Zn

G(a, l, q)Jλ(ξ − l/q)

and

(2.9) Jλ(ξ − l/q) =
∫

|β|≤P−d+(d−1)θ
H̃(ξ − l/q, β)e−2πiλβ dβ

We shall approximate the multipliers a
a/q
λ (ξ) by multipliers b

a/q
λ (ξ) where

the cut-off function ψ(qξ − l)have been inserted in (2.8), that is let

(2.10) b
a/q
λ (ξ) =

∑

l∈Zn

G(a, l, q)ψ(qξ − l)Jλ(ξ − l/q)

16



Next we extend the integration in β in (2.9) and define

(2.11) c
a/q
λ (ξ) =

∑

l∈Zn

G(a, l, q)ψ(qξ − l)Iλ(ξ − l/q)

with

(2.12) Iλ(ξ − l/q) =
∫

<
H̃(ξ − l/q, β)e−2πiλβ dβ

Note that the integral in (2.12) is absolute convergent. Indeed by (1.7)
and (0.1)

(2.13) |Ĥ(η, β)| ≤ CQ,εP
n(1 + P d|β|)− K

d−1
+ε

A crucial point is to identify the the integrals Iλ(η):

(2.14) Iλ(η) =
∫

<n

∫

<
e−2πi(Q(x)−λ)βe2πix·ηφ(x/P ) dβ dη =

=
∫

<n
dσQ,λ(x)e2πix·ηφ(x/P ) dη = dσ̃Q,λ(η)

by (1.11). This means that c
a/q
λ (ξ) = m

a/q
λ (ξ).

Let A
a/q
λ , B

a/q
λ , M

a/q
λ denote the multipliers, corresponding to a

a/q
λ (ξ),

b
a/q
λ (ξ), and m

a/q
λ (ξ).

Proposition 4 .

(2.15)
∑

q≤P (d−1)θ

∑

(a,q)=1

‖ sup
Λ≤λ<2Λ

|(Aa/q
λ −B

a/q
λ )f | ‖l2 ≤ CδΛ

n
d
−1−δ‖f‖l2

(2.16)
∑

q≤P (d−1)θ

∑

(a,q)=1

‖ sup
Λ≤λ<2Λ

|(Ba/q
λ −M

a/q
λ )f | ‖l2 ≤ CδΛ

n
d
−1−δ‖f‖l2

(2.17)
∑

q≥P (d−1)θ

∑

(a,q)=1

‖ sup
Λ≤λ<2Λ

|Ma/q
λ )f | ‖l2 ≤ CδΛ

n
d
−1−δ‖f‖l2

Proof. Note that each of the operators A
a/q
λ , B

a/q
λ , M

a/q
λ are of the form

Tλf =
∫

I
e−2πiλβ Uβf dβ

17



where Uβ is some convolution operator acting on functions on Zn: Ûβf =
µβ(ξ)f̂(ξ), and I is some interval. Then one has the point-wise estimate

sup
Λ≤λ<2Λ

|Tλf | ≤
∫

I
|Uβf | dβ

and taking the l2 norm

‖ sup
Λ≤λ<2Λ

|Tλf | ‖l2 ≤
∫

I
| sup

ξ
| (µβ(ξ)|) dβ · ‖f‖l2

For the operator A
a/q
λ −B

a/q
λ , we have

µβ(ξ) =
∑

l∈Zn

G(a, l, q)(1− ψ(qξ − l))Ĥ(ξ − l/q, β) = µ(ξ)f̂(ξ)

and I = {|β| ≤ P−d+(d−1)θ

Let η = ξ − l/q and estimate Ĥ(η, β) by partial integration:

|Ĥ(η, β)| = Pn|
∫

(e2πiP dβQ(x)φ(x))e2πiPx·η dx| ≤

CNPn|Pη|−N
∫
|(d/dη)N (e2πiP dβQ(x)φ(x))| dx ≤

≤ CNPn|Pη|−N (1 + P d|β|)N

Using the facts that |Pη| = P/q|(qξ − l)| ≥ cP 1−(d−1)θ(1 + |(qξ − l)|)
on the support of 1 − ψ(qξ − l) (for small c > 0), (d − 1)θ ≤ 1/3 and
|G(a, l, q)| ≤ 1, one has for |β| ≤ P−d+(d−1)θ

| sup
ξ

µβ(ξ)| ≤ CNPnP−N(1−2(d−1)θ)
∑

l∈Zn

(1 + |qξ − l|)−N ≤ CNPn−N/3

Then choosing N large enough, (2.15) follows since the total length of inte-
gration for different values of a a and q is at most 1.

For the operator B
a/q
λ −M

a/q
λ , we have

µβ(ξ) =
∑

l∈Zn

G(a, l, q)ψ(qξ − l)Ĥ(ξ − l/q, β) = µ(ξ)f̂(ξ)

18



but we are integrating now on |β| ≥ P−d+(d−1)θ. Note that ψ(qξ− l) 6= 0 for
at most one values of l, estimate (2.13) and (1.11) : |G(a, l, q)| ≤ Cq−2−ε.
Then

| sup
ξ

µβ(ξ)| ≤ CNPn(1 + P d|β|)− K
d−1

+ε

hence by changing variables β1 = P dβ one has

‖ sup
Λ≤λ<2Λ

|(Ba/q
λ −M

a/q
λ )f | ‖l2 ≤ CεP

n−dq
K

d−1

∫

|β1

|geqP (d−1)θ|β1|−2dβ·‖f‖l2 ≤

≤ Cεq
−K/2Pn−d−δ

Summing in a ≤ q and in q = 1 to ∞ proves (2.16).
For M

a/q
λ the multiplier µβ(ξ) is the same, but now the range of integra-

tion is the whole real line. Thus

‖ sup
Λ≤λ<2Λ

|Ma/q
λ f | ‖l2 ≤ Cεq

−2
∫

β∈<
(1 + P d|β|)−2dβ · ‖f‖l2 ≤

≤ Cεq
−2Pn−d · ‖f‖l2

Summing for a ≤ q and q ≥ P (d−1)θ one gets the estimate Pn−d−(d−1)θ ≤
Pn−d−δ. 2

Lemma 8. immediately follows from the above said, indeed for fixed λ

|(Nλ −Mλ)f | ≤
∑

q≤P (d−1)θ

∑

(a,q)=1

|(Aa/q
λ −M

a/q
λ )f |+

+
∑

q≥P (d−1)θ

|Ma/q
λ f |+ |E1

λf |

We will need the following ”dyadic” discrete maximal theorem, (proved
in [4] in case Q(m) =

∑
j m2

j )

Proposition 5 Let Λ > 0 be fixed, then for the operator:

Nλf(m) =
∑

Q(l)=λ

f(m− l)

one has

(2.18) ‖ sup
Λ≤λ<2Λ

|Nλf | ‖l2 ≤ CΛ
n
d
−1‖f‖l2

where the constant C is independent of Λ.
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Proof. Note that N̂λf(ξ) = σ̂Q,λ(ξ)f̂(ξ) hence

Nλf =
∑
q,a

M
a/q
λ f +

∑
q,a

(Aa/q
λ −M

a/q
λ )f + E1

λf

By Proposition 4. it is enough to show

∑
q,a

‖ sup
Λ≤λ<2Λ

|Ma/q
λ f | ‖l2 ≤ C‖f‖l2

In proving (2.17) we showed

‖ sup
Λ≤λ<2Λ

|Ma/q
λ f | ‖l2 ≤ Cq−

κ
d−1 Pn−d‖f‖l2 = Cq−

κ
d−1 Λ

n
d
−1‖f‖l2

The sum in a, q is convergent and the proposition is proved. 2.

3. The singular series

First we show the existence of a regular set of values Γ corresponding to
a non-degenerate form Q.

Taking ξ = 0 formula (0.5) means that

rQ(λ) = cQλ
n
d
−1

∞∑

q=1

K(q, 0, λ) + O(λ
n
d
−1−δ)

By the well-known multiplicative property :
K(q1, 0, λ)K(q2, 0, λ) = K(q1q2, 0, λ) for q1 and q2 being relative primes,

we have

K(λ) =
∞∑

q=1

K(q, 0, λ) =
∏

p prime

(
∞∑

r=0

K(pr, 0, λ)) =
∏

p prime

Kp(λ)

. Note that K(1, 0, λ) = 1, then by estimate (1.5) it follows that Kp(λ) =
1 + O(p−

κ
d−1

+1+ε)κ =

(3.1) 1/2 ≤
∏

p>R prime

|Kp(λ)| ≤ 2

We recall that Kp(λ) is the density of solutions of the equation Q(m) = λ
among the p-adic integers, see [2]. More precisely,
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Proposition 6 Let rQ(pN , λ) = |{m ∈ Zn/pNZn : Q(m) = λ (mod pN )}|,
that is the number of solutions of the equation Q(m) = λ (mod pN ). Then
one has

(3.2)
N∑

r=0

K(pr, 0, λ) = p−n(N−1)rQ(pN , λ)

Proof. First

rQ(pN , λ) =
∑

m (mod pN )

p−N
pN∑

b=1

e
2πi(Q(m)−λ) b

pN

since the inner sum is equal to pN or 0 according to Q(m) = λ (mod pN ) or
not. Next one writes b = apN−r, where (a, p) = 1, a < pr and r = 0, . . . , N ,
and collects the terms corresponding to a fixed r which turn out to be
K(pr, 0, λ). 2

We remark that this implies: limn→∞p−n(N−1)rQ(pN , λ) = Kp(λ).
To count the number of solutions (mod pN ), one uses the p-adic version

of Newton’s method, see [7].

Lemma 9 Let p be a prime, λ and k, l be natural numbers s.t. l > 2k.
Suppose there is an m0 ∈ Zn for which

(3.3) Q(m0) ≡ λ (mod pl)

moreover suppose, that pk is the highest power of p which divides all the
partial derivatives ∂jQ(m0).

Then for N ≥ l, one has p−N(n−1)rQ(pN , λ) ≥ p−l(n−1)

Proof. For N = l this is obvious. Suppose it is true for N , and con-
sider all the solutions m1 (mod pN+1) of the form m1 = m + pN−ks where
s (mod p). Then

Q(m + pN−ks)− λ = Q(m)− λ + pn−kQ′(m) · s = 0 (mod pN+1)

,that is a+ b ·s = 0 (mod p) where apN = Q(m)−λ and bpk = Q′(m). Then
bj 6= 0 (mod p) for some j hence there are pn−1 solutions of this form. All
obtained solutions are different mod (pN+1), and m1 satisfy the hypothesis
of the lemma. 2

We remark that in case of m = 1, k = 0 the above argument shows that
there are exactly p(N−1)(n−1) solutions m for which m = m0 (mod p) and
q(m) = λ(mod pN ).
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Lemma 10 let Q(m) be a non-degenerate form, then there exists a set of
regular values in the sense of (0.4).

Proof. Let λ0 = Q(m0) 6= 0 for some fixed m0 6= 0. Let p1, . . . , pJ be
the set of primes less then R (R is defined in (3.1)). Let k be an integer s.t.
pk

j does not divide dλ0 , for all j ≤ J , where d is degree of Q(m). By the
homogeneity relation Q′(m0) · m = dλ0 it follows that pk

j does not divide
some partial derivative ∂iQ(m0). Fix l s.t. l > 2k and define the arithmetic
progression

Γ = {λ0 + k
∏J

j=1 pl
j : k ≥ kQ}. Then we claim that Γ is a set of regular

values. Indeed by Lemma 9. one has for λ ∈ Γ

Kpj (λ) = lim
N→∞

p
−n(N−1)
j rQ(pN

j , λ) ≥ p
−l(N−1)
j

This together with (3.1) ensures that the singular series K(λ) remains
bounded from below, and the error term becomes negligible by choosing kQ

large enough. 2

Let us remark that along the same lines it can be shown, that all large
numbers are regular values of Q(m), if for each prime p < R and each residue
class s (mod p), there is a solution of the equations Q(m) = s (mod p) s.t.
Q′(m) 6= 0 (mod p). This is the case for example for Q(m) =

∑
j md

j .

Let us fix a set of regular values Γ, and a rational point k/p 6= 0 in
Πn , where k = (k1, . . . , kn) ∈ Zn. Define the measure space X to be the
set of residue classes (mod p), with each element having measure 1/p. Let
Tj(x) = x + kj (mod p), then the family of transformations T = (T1 . . . Tn)
is commuting, measure preserving and ergodic. Indeed for some j, kj 6=
0 (mod p) and then Tj is ergodic. The function f(x) = e2πix/p is a joint
eigenfunction : Tjf = e2πikj/pf hence

(3.5) Aλf =
1

rQ(λ)
σ̂Q,λ(k/p)f

where Aλf are the averages defined in (0.7). We’ll show below that the mean
ergodic theorem (0.7) is not valid in this setting, and hence the condition
strong ergodicity is necessary (note that T p

1 = . . . = T p
n = Id).

Lemma 11 Let Γ be a set of regular values. Let p be a large enough prime:
p > d, p > R, p > λ0 (where λ0 is the smallest element of Γ), and k ∈ Zn.
Then for λ ∈ Γ, λ = λ0 (mod p) one has

(3.6)
1

rQ(λ)
σ̂Q,λ(k/p) =

1
rQ(p, λ)

∑

m∈Zn/pZn

e
2πi m·k

p + O(λ−δ)
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Taking the Lemma granted for a moment, note that the expression:

Sk =
∑

m∈Zn/pZn

e
2πi m·k

p 6= 0

for at least one k 6= 0, since otherwise the equation Q(m) = λ = λ0 (mod p)
would have pn or no solution, both cases are impossible (p being large
enough). This follows from Plancherel’s formula:

∑
k |Sk|2 = pn|rQ(p, λ0)|

on the group Zn/pZn. Thus (0.7) is not true, assuming only that the family
of transformations is ergodic.

Proof. For a regular value rQ(λ) = cQK(λ)λn/d−1+O(λn/d−1−δ) where
|K(λ)| À 1, hence by (0.5), it is enough to show

(3.7) c−1
Q

1
K(λ)

∞∑

q=1

∑

l∈Zn

K(q, l, λ)ψ(qk/p− l)dσ̃Q(λ1/d(k/p− l/q)) =

=
1

rQ(p, λ)

∑

m∈Zn/pZn

e
2πi m·k

p + O(λ−δ)

For q not divisible by p, |kp − l
q | ≥ 1

pq , hence each term in the sum is

bounded by q−
κ

d−1
+ελ−κ/(d−1)+1+ε by (1.5) and (1.13). There is at most

one nonzero term in the l sum for fixed q, and thus the total sum for q not
divisible by p is of O(λ−δ).

For q = bp , in (3.7) only those terms for which k/p = l/q are nonzero,
hence the sum becomes

1
K(λ)

∞∑

b=1

K(bp, bk, λ)

We write q = cpr where (c, p) = 1 and use the multiplicative property

K(cpr+1, ckpr, λ) = K(c, 0, λ)K(pr+1, kpr, λ)

It is a straightforward computation using the chinese remainder theorem.
At this point it is enough to show

(3.8)
1

K(λ)
(

∑

(c,p)=1

K(c, 0, λ))(
∞∑

r=1

K(pr+1, kpr, λ)) =

=
1

rQ(p, λ)

∑

m (mod p)

e
2πi m·k

p
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Again by multiplicativity

(3.9)
∑

(c,p)=1

K(c, 0, λ) ·
∞∑

r=1

K(pr, 0, λ) =
∞∑

q=1

K(q, 0, λ)

For the other factor in (3.8) one has

(3.10)
∞∑

r=1

K(pr+1, kpr, λ) = p−(n−1)
∑

m (mod p)

e
2πi m·k

p

Similarly as in (3.2)

∑

m (mod pN )

p−N
pN∑

b=1

e
2πi(Q(m)−λ) b

pN e
2πi m·k

pN

and writes b = apN−r, where (a, p) = 1, a < pr and r = 0, . . . , N . Each
term corresponding to a fixed r is K(pr, kpr−1, λ) for r ≥ 1, while the term
corresponding to r = 0 is zero.

Next, let m0 be a solution of Q(m) = λ (mod p). Then by homogeneity
Q′(m0) · m0 = dλ = dλ0 6= 0 it follows by the remark after Lemma 9.
that the number of solutions: m (mod pN ) for which m = m0 (mod p) and
Q(m) = λ (mod pN ) is exactly p(n−1)(N−1). Thus

∑

m (mod pN )

p−N
pN∑

b=1

e
2πi(Q(m)−λ) b

pN e
2πi m·k

pN = p−(n−1)
∑

m (modp)

e
2πi m·k

p

and this proves (3.10).
By the same argument

(3.11) Kp(λ) = p−(n−1)rQ(p, λ)

and (3.8) follows immediately from (3.9), (3.10) and (3.11). 2

4. The L2 ergodic theorem

In this section, we prove Theorems 1-2. and Lemma 2. First we give the

Proof of Theorem 1. Let φλ(x) = φ(x/λ1/d), the one has

∑

Q(m)=λ

φλ(m) =
∫

Πn
σ̂Q,λ(ξ)φ̂λ(ξ) dξ
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where

φ̂λ(ξ) dξ =
∑

m∈Zn

φλ(m)e−2πim·ξ =
∑

m∈Zn

φ̃λ(ξ + m)

by Poisson summation (here φ̃λ(ξ) denotes the Fourier transform on <n.
Since the exponential sum σ̂Q,λ(ξ) is a smooth periodic function on <n it
follows

(4.1)
∑

Q(m)=λ

φλ(m) =
∫

<n
σ̂Q,λ(ξ)φ̃λ(ξ) dξ

Write σ̂Q,λ(ξ) = mλ(ξ) + Eλ(ξ) and estimate the contribution of the error
term

(4.2)
∫

<n
|Eλ(ξ)φ̃λ(ξ)| dξ ≤ Cδλ

n/d−1−δ‖φ̃λ‖1 ≤ Cδλ
n/d−1−δ

We used the error estimate in (0.5) and the fact that ‖φ̃λ‖1 = ‖φ̃‖1 ≤ C.
Recall that

mλ(ξ) =
∞∑

q=1

∑

l

K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q)

Next we estimate the contribution of the terms corresponding to l 6= 0.
For q ≥ λ

1
2d we use

(4.3)
∑

q≥λ
1
2d

∑

l 6=0

|K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q)| ≤

≤ Cλn/d−1
∑

q≥λ
1
2d

q−2 ≤ Cδλ
n/d−1−δ

and after integrating we get the same estimate as in (4.2) ( κ
d−1 > 2). For

q ≤ λ
1
2d we give the estimate

(4.4)
∑

q≤λ1/2d

∑

l 6=0

∫

<n
|K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q) φ̃λ(ξ)| dξ ≤ cNλ−N
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for any N > 0 integer. For fixed l 6= 0, on the support of the cut-off factor
ψ(qξ − l), one has ‖ξ − l/q‖ ≤ 1/(4q), which implies ‖ξ‖ ≥ 1/(2q), and also
‖ξ‖ ≥ ‖l‖/(2q) (here ‖η‖ = supj |ηj | denotes the sup-norm on <n). Thus

(4.5) |φ̃λ(ξ)| ≤ CNλn/d(1 + λ1/d|ξ|)−2N ≤

Nλn/d(1 + λ1/d/2q)−N (1 + c|l|/2q)−N

Integrating in ξ over the region ‖ξ − l/q‖ ≤ 1/(4q), and then summing in l

and in q ≤ λ
1
2d one obtains (4.4).

Estimates (4.3) and (4.4) imply together that the total contribution of
the terms corresponding to l 6= 0 in (4.1), is O(λn/d−1−δ.

Finally, we note that

(4.7)
∞∑

q=1

∫
|K(q, 0, λ)(1− ψ(qξ))dσ̃λ(ξ)φ̃λ(ξ)| dξ ≤ Cδλ

n
d
−1−δ

by the same argument as used in proving (4.3) and (4.4). Indeed the range
of integration is |ξ| ≥ c/q where both for q ≥ λ1/2d and for q ≤ λ1/2d, one
has a gain, using the decay of the the factor K(q, 0, λ) for small, and the
decay of φ̃λ for large values of q.

Using (4.3), (4.4) and (4.7) one has

(4.8)
∫

<n
σ̂Q,λ(ξ)φ̃λ(ξ) dξ = cQK(λ)

∫

<n
σ̃Q,λ(ξ)φ̃λ(ξ) dξ + O(λ

n
d
−1−δ) =

= rQ(λ)
∫

Q(y)=1
φ(y) dσQ(y) + O(λ

n
d
−1−δ)

Indeed one replaces the singular series cQK(λ) by λ−n/d+1rQ(λ) , use
Plancherel’s formula, and a change of variables x = λ1/dy.

This proves the Theorem, since rQ(λ) ≥ CQλn/d−1 for regular values λ.
2

Proof of Lemma 2. One writes

(4.9)
1

rQ(λ)
|σ̂Q,λ(ξ)| ≤ Cδλ

−n/d +1|mλ(ξ)|+ O(λ−δ)

For q fixed and ξ /∈ Qn (i.e. when ξj is irrational for some j)

(4.10) λ−n/d +1|mq,λ(ξ)| = cQ

∑

l

|K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q)| ≤
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≤ CQq−
κ

d−1
+ε|dσ̃Q,λ(λ1/d{qξ}/q)|

where {ξ} = min |ξ − l|. Indeed in the l sum only term corresponding to
the closest lattice point to qξ is nonzero.

Note that {qξ} 6= 0 for every q, since otherwise ξ ∈ Qn. Then by
(1.13) and (4.10) for q ≤ λ1/2d we have the estimate λ−n/d +1|mq,λ(ξ)| ≤
Cq−1−ελ−δ, while for q ≥ λ1/2d one uses the bound q−1−ε. The lemma
follows by summing in q. 2

In both the mean and pointwise ergodic theorem the Spectral theorem
will play an essential role. Also, strong ergodidity is a condition on joint
spectrum of the shifts Tj (Tjf(x) = f(Tjx)). To see that let (X,µ) be
a probability measure space, T = (T1 . . . Tn) be a family of commuting,
measure preserving and invertible transformations. By the Spectral theorem
there exists a positive Borel measure νf on the torus Πn, s.t.

(4.11) 〈P (T1, . . . , Tn)f, f〉 =
∫

Πn
p(ξ)dνf (ξ)

for every polynomial P (z1, . . . , zn), where

p(ξ) = p(ξ1, . . . , ξn) = P (e2πiξ1 , . . . , e2πiξn)

and 〈, 〉 denotes the inner product on L2(X,µ). We recall two basic facts

i) For r ∈ Πn, νf (r) > 0 if and only if r is a joint eigenvalue of the shifts
Tj , (i.e. there exists g ∈ L2(X) s.t. Tjg = e2πirjg for each j.

ii) If the family T = (T1, . . . , Tn) is ergodic, then
νf (0) = |〈f,1〉|2 = | ∫X fdµ|2.

Proposition 7 Suppose the family T = (T1, . . . , Tn) is ergodic. Then it is
strongly ergodic if and only if νf (r) = 0 for every r ∈ Qn, r 6= 0.

Proof. Suppose νf (l/q) > 0 for some l 6= 0, then there exists g ∈
L2(X, µ) s.t. Tjg = e2πilj/qg ∀j. But then T q

j g = g ∀j but g 6= constant
since l 6= 0.

On the other hand suppose that T q
j g = g, ∀j for some g 6= constant.

Then the functions gs1...sn for s ∈ Zn/qZn defined by

gs1...sn =
∑

m∈Zn/qZn

e
−2πi m·s

q Tm1
1 . . . Tmn

n g
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are joint eigenfunctions of with eigenvalues sj/q. They cannot vanish for all
s 6= 0 (mod q), because then one would have Tjg = g ∀j, as can be seen
easily by expressing Tjg in terms of the functions gs1...sn . 2

Proof of Theorem 2. We start by

‖Aλf − 〈f,1〉1‖2
2 = ‖Aλf‖2

2 − |〈f,1〉|2 =
∫

Πn/{0}
|σ̂Q,λ(ξ)|2
rQ(λ)2

dνf (ξ)

The point is that νf (Qn/{0}) = 0 by the strong ergodicity condition,
moreover the integrand pointwise tends to zero on the irrationals by Lemma
2, and is majorized by 1. It follows from the Lebesgue dominant convergence
theorem, that the integral also tends to 0 as λ → ∞. This proves the
theorem. 2

5. The discrete spherical maximal theorem

We prove Theorem 4. now. It plays a crucial role in the proof of the
pointwise ergodic theorem.

Let φ ∈ l2Zn, the averages we are interested in: 1
rQ(λ)

∑
Q(l)=λ φ(m − l)

will be replaced by

(5.1) Nλφ(m) =
1

λn/d−1

∑

Q(l)=λ

φ(m− l)

Indeed it is enough to prove the maximal theorem for the averages Nλ, since
for regular values: rQ(λ) ≥ cQλn/d−1. We write

(5.2) Nλφ = Mλφ + Eλφ =
∞∑

q=1

∑

(a,q)=1

M
a/q
λ φ + Eλφ

where Mλ, M
a/q
λ , Eλ denote the mulitpliers corresponding to the functions

λ−n/d +1mλ(ξ), m
a/q
λ (ξ), Eλ(ξ). We denote by M∗, M

a/q
∗ , E∗ the correspond-

ing maximal operators.
By Lemma 8.,

(5.2) ‖E∗φ‖l2 ≤
∞∑

k=0

‖ sup
2k≤λ<2k+1

|Eλφ| ‖l2 ≤ Cδ

∞∑

k=0

2−kδ‖φ‖l2 ≤ Cδ‖φ‖l2

The same shows, that

(5.3) ‖ sup
Λ≤λ

|Eλφ| ‖l2 ≤ CδΛ−δ‖φ‖l2

Thus to prove Theorem 4. it is enough to show
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Lemma 12 Let q ≥ 1, and a s.t. (a, q) = 1 be given. The one has

(5.2) ‖Ma/q
∗ ‖l2 ≤ Cεq

− κ
d−1

+ε‖φ‖l2

It is understood that Q(m) is a non-degenerate form, hence κ = 1
2(d−1)

VQ >

2 and ε > 0 can be taken arbitrary small. Hence in the right side of (5.3)
we can take the bound Cq−2−ε, but we’d like to emphasize the explicit
dependence on κ.

Assuming the Lemma for a moment, by sub-additivity it follows:

‖M∗φ‖l2 ≤ C
∞∑

q=1

q · q−2−ε‖φ‖l2 ≤ C‖φ‖l2

Together with estimate (5.2) this proves Theorem 4.
The proof of the lemma is based on a general result, proved in [6]

Lemma 13 Let q ≥ 1 be a fixed integer and B be a finite dimensional
Banach space. Let m(ξ) be a bounded measurable function on <n, taking
values in B, and supported in the cube [− 1

2q ,− 1
2q ]n.

Define the periodic extension by

mq
per(ξ) =

∑

l∈Zn

m(ξ − l/q)

Let T : L2(<n) → L2
B(<n) (where L2

B(<n) is the space of square in-
tegrable functions taking values in the space B), be the multiplier operator
corresponding to the function mλ(ξ).

Similarly let T q
dis : L2(Zn) → L2

B(Zn) be the multiplier operator corre-
sponding to the periodic function mq

per(ξ).
Then one has

(5.4) ‖T q
dis‖L2(Zn)→L2

B(Zn) ≤ C‖T‖L2(<n)→L2
B(<n)

where the constant C does not depend on the Banach space B, and is also
independent of q.

Proof of Lemma 12. Choose a smooth function ψ′ supported in
[−1/2, 1/2]n for which ψ = ψ′ψ. Then m

a/q
λ (ξ) can be written as the product

of the functions

(5.5) ma/q(ξ) =
∑

l∈Zn

G(a, l, q)ψ′(ξ − l/q)
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and

(5.6) mq
λ(ξ) =

∑

l∈Zn

ψ(ξ − l/q)dσ̃λ(ξ − l/q)

For the first multiplier operator Ma/q it is bounded from l2 to itself with
norm: supξ |ma/q(ξ)| ≤ Cεq

− κ
d−1

+ε.
The sequence of functions mq

λ(ξ) defined by (5.6) can be considered as
a function mapping from <n to the banach space BΛ which is the l∞ space
of functions of 1 ≤ λ ≤ Λ for some fixed Λ.

The multiplier corresponding to ψ(qξ)dσ̃λ(ξ) is a bounded operator from
L2(<n) to L2

B(<n) (B being the l∞ space of functions of λ > 0), which is
the content of Theorem 5. Then one applies Lemma 13. to see that the
multiplier mq

λ(ξ) is bounded from l2Zn to l2BΛ
Zn with norm independent of

Λ. This implies (5.2). 2

6. The pointwise ergodic theorem

The proof of Theorem 3. consists of a number of reductions, the argu-
ment was motivated by that of Bourgain’s ergodic theorem corresponding to
arithmetic subsets of integers (see [3]). However in our case the averages are
taken over disjoint sets, a condition on the joint spectrum must be imposed,
and the Spectral theorem will play an essential role.

Let f ∈ L2(X, µ), we can suppose
∫
X f dµ = 0, and then we have to

show that |Aλf(x)| → 0 for µ almost every x, as λ → ∞ and λ ∈ Γ. Then
again we can replace the factor rQ(λ) by λn/d−1 in the averages.

i) We start with a standard reduction to shifts on Zn. Let (X, µ) be
a probability measure space, T = (T1, . . . , Tn). For x ∈ X and L > 0
and define: φL,x(m) = f(Tmx) if ‖m‖ ≤ L and to be 0 otherwise. Here
m = (m1, . . . mn) ∈ Zn, ‖m‖ = supj |mj | and Tmx = Tm1

1 · . . . · Tmn
n x.

Notice that for fixed Λ < L

(6.1) A∗λf(T lx) = sup
λ≤Λ

|Aλf(T lx)| =

= sup
λ≤Λ

|NλφL,x(l) = |N∗
λφL,x(l)

for ‖l‖ ≤ c(L−Λ) Thus taking the square, summing in l (for ‖l‖ ≤ c(L−Λ)),
and integrating over the space X one obtains

(6.2) c(L− Λ)n‖A∗λf‖L2(X) ≤
∫

X
‖N∗

λφL,x‖l2 dµ
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using the fact that the transformations T l are measure preserving. Also

(6.3)
∫

X
‖φL,x‖2

l2 dµ = cnLn‖f‖2
L2(x)

Then letting Λ → ∞, it follows that the L2(X) → L2(X) norm of the
maximal operator A∗ is majorized by the l2 → l2 norm of the discrete
maximal operator N∗. Then it is enough to prove the pointwise ergodic
theorem for a dense subset of L2(X), p.e. for L∞(X).

ii) Following [5], one reduces pointwise convergence to L2 bounds for
”truncated” maximal operators. Suppose indirect, that

µ{x : lim sup |Aλf(x)| > 0} > 0

then the same is true with a small constant α > 0 inserted:

µ{x : lim sup |Aλf(x)| > 2α} > 2α

and using the definition of the upper limit it is easy to see, that to each λk

if λk+1 is chosen large enough then

µ{x : A∗kf(x) = supλk≤λ≤λk+1
|Aλf(x)| > α} > α

which implies ‖Ak∗f‖2
2 > α3, ∀ k . Lets fix such a sequence λk which is

quickly increasing: λk+1 > 4λk
4d. Then it is enough to prove

(6.4)
1
K

∑

k≤K

‖Ak
∗f‖2

2 < α3

for K > K(α). This means that the Cesaro averages converges in (6.4) tends
to 0 (the terms themselves may not converge to 0).

Now fix K and choose L > λK+1. The reasoning in i) leads to

(6.5) c(L− Λ)n 1
K

∑

k≤K

‖A∗kf‖2 ≤
∫

X

1
K

∑

k≤K

‖N∗
kφL,x‖l2 dµ

where Nk∗ is defined analogously to Ak∗. Thus it is enough to prove

(6.6)
∫

X
(

1
K

∑

k≤K

‖N∗
kφL,x‖2

l2) dµ ≤ cnα3Ln‖f‖2
2

for K > K(α) and L > L(K,α).
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By (6.3), inequality (6.6) would follow, if the same would be true point-
wise, that is 1/K

∑
k≤K ‖N∗

kφL,x‖2
l2 → 0 for every x, however this seems to

be true just in average, and has to do with the fact that nearby averages
cannot be compared.

i3) We use the approximations to Nλ introduced in Section 2., and the
transfer principle (5.4) to reduce the estimates to that of L2 → L2 norms
of the corresponding maximal operators acting on <n.

We often use the following notations; if γλ(ξ) are continuous functions on
Πn, then denote by Γλ the corresponding multipliers and by Γ∗k the maximal
operator: Γ∗kφ=supλk≤λ<λk+1|Γλφ|.

Since

λ−n/d +1σ̂λ(ξ) =
∞∑

q=1

λ−n/d +1mq,λ(ξ) + λ−n/d +1Eλ(ξ)

then by estimates (2.6) and (5.2)

(6.7) ‖E∗k‖l2→l2 ≤ Cδλ
−δ
k

and

(6.8) ‖
∑

q≥qα

M∗
q,k‖l2→l2 ≤ Cq−ε

α

If we apply (6.7) and (6.8) to the function φL,x integrate the square over
X and average for k ≤ K, the total contribution to the L2 norm is less then:

(q−ε
α + cδK

−1)
∫

X
‖φL,x‖2

l2 dµ(x) ≤ α3Ln‖f‖L2(X)

by choosing K and qα large enough w.r.t. α and ε .
Thus enough to deal with the finitely many maximal operators attached

to the functions m
a/q
λ (ξ), for q ≤ qα and a ≤ q, (a, q) = 1. Then we can fix

a and q, and write

(6.9) λ−n/d +1m
a/q
λ (ξ) =

∑

l∈Zn

G(a, l, q)ψ(qξ − l)dσ̃(λ1/d(ξ − l/q)) =

=
∑

s∈Zn/qZn

G(a, s, q)ψ(qξ − s)dσ̃Q(λ1/d(ξ − s/q))per
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where γper(ξ) =
∑

l1∈Zn γ(ξ − l1) denotes the periodization of γ. Indeed
write l = ql1 + s and use the fact that G(a, l, q) = G(a, s, q). Again we can
fix s (there are at most qn ≤ qn

α choice for each q).
We remark that for φ ∈ l2 and φs/q(m) = e−2πims/qφ(m) i.e. φ̂s/q(ξ) =

φ̂(ξ + s/q), one has

M∗
s/q,kφ = M∗

kφs/q

where M∗
s/q,k is the maximal operator which corresponds to the function

ψ(qξ−s)dσ̃(λ1/d(ξ−s/q))per , while M∗
k corresponds to ψ(qξ)dσ̃(λ1/d(ξ))per.

Indeed one changes variables (ξ−s/q) → ξ in evaluating the multipliers (the
factors e2/piims/q vanish when taking absolute values).

We are in a position to apply the continuous spherical maximal theo-
rem, and further decompose the functions ψ(qξ)dσ̃(λ1/d(ξ)) to get decay
estimates. Let

1 = ωk,0 + ωk,1 + ωk,2 be smooth partition of unity on ‖ξ‖ = supj |ξ|j ≤
1/2 such that

ωk,0(ξ) = 0 unless ‖ξ‖ ≥ 1
2λ−2

k+1,

ωk,1(ξ) = 0 unless 1
2λ−2

k+1‖ξ‖ ≤ λ
− 1

2d
k and

ωk,2(ξ) = 0 unless λ
− 1

2d
k ≤ ‖ξ‖

Accordingly we have the decomposition: M∗
k ≤ M∗

k,0 + M∗
k,1 + M∗

k,2 and
estimate each term separately.

For fixed λ, using the fact that |dσ̃(λ1/dξ)− cQ| ≤ λ1/d|ξ| ( cQ = dσ̃(0)),
one has

(6.10) |ωk,0(ξ)ψ(qξ)dσ̃(λ1/dξ)− cQωk,0(ξ)ψ(qξ)| ≤ Cλ1/dλ−2
k+1

Thus by the standard square function estimate the l2 → l2 norm of the
maximal operator (taking the sup over λk ≤ λ < λk+1) corresponding to
the functions in (6.9) is bounded by:∑

λ<λk+1
λ2/dλ−4

k+1)
1/2 ≤ λ−1

k+1 (d ≥ 2).
To estimate the maximal operator M∗

k,1 corresponding to the functions
ωk,1(ξ)ψ(qξ)dσ̃(λ1/d(ξ))per , we first use the transfer principle to see that it
is bounded by the L2(<n) → L2(<n) norm of the maximal operator corre-
sponding to the functions ωk,1(ξ)ψ(qξ)dσ̃(λ1/d(ξ)). Notice that the maxi-
mal operator (the sup taken over all λ > 0) corresponding to the functions
dσ̃(λ1/d(ξ)) is bounded from L2 → L2 by Theorem 5.
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Thus for φs/q = φL,x,s/q one has

(6.11) ‖M∗
k,1φs/q‖l2 ≤ CQ

∫

Πn
|ωk,1(ξ)|2|φ̂(ξ + s/q)|2 dξ

The point is that since the sequence λk is quickly increasing λk+1 > 4λ4d

each point can belong to at most 3 intervals Ik on which ωk,1 supported.
Hence averaging over k ≤ K the right side of (6.10), gives a contribution of
3/K‖φ‖2

l2 .
Finally, the family of functions ωk,2(ξ)ψ(qξ)dσ̃(λ1/d(ξ)) satisfy the con-

ditions of Lemma 7. Then (1.16) and (5.4) imply the bound

(6.10) ‖M∗
k,2φs/q‖l2 ≤ CQλ

− 1
2d

k ‖φ‖l2

Note that (6.9)-(6.11) mean, that the maximal function

1/K
∑

k≤K

‖M∗
kφs/q‖2

l2 ≤ C

∫

Πn
|ψ(qξ)ωk,1(ξ)|2|φ̂(ξ + s/q)|2 dξ+

+O(K−1)‖φs/q‖l2

i4) It is enough to prove now for fixed r = s/q, that

(6.11) L−n
∫

X

∫

Πn
ωk,1(ξ)|φ̂(ξ + s/q)|2 dξ dµ(x)) < |α|3‖f‖2

2

if k > k(α) and L > L(k, α), where we wrote ωk(ξ) = |ωk,1(ξ)|2 for simplicity
of notation.

By applying Plancherel for the inner integral in (6.11), one obtains

L−n
∫

X

∑

m,m′
φL,x(m) ¯φL,x(m′)ω̂k(m−m′)e2πi(m−m′)s/q dξ dµ(x) =

= L−n
∑

‖m‖≤L, ‖m′‖≤L

〈Tm−m′
f, f〉ω̂k(m−m′)e2πi(m−m′)s/q =

= L−n
∫

Πn

∑

‖m‖≤L, ‖m′‖≤L

ω̂k(m−m′)e2πi(m−m′)(θ+s/q) dνf (θ) =

= L−n
∫

Πn

∑

l∈Zn

aL(l)ω̂k(l)e2πi(θ+s/q) dνf (θ)
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by the spectral theorem, where aL(l) = |{(m, m′); ‖m‖ ≤ L, ‖m′‖ ≤ L, m−
m′ = l}|. Finally one gets

(6.12)
∫

Πn
(L−nâL ∗ ωk) (θ + s/q) dνf

where ∗ denotes the convolution on Πn (w.r.t. Lebesgue measure).
Note that

L−nâL(θ) = L−n|
L∑

m=−L

e2πimθ|2n ≤ Ln min(1,
1

L{θ})2n

This means that L−nâL is a δ-sequence (i.e. weakly converges to a Dirac
delta) as L → ∞. Indeed it is easy to see that: L−nâL ∗ ωk ≤ cωk + ε for
every ε > 0 if L is large enough w.r.t. to λk and ε.

Finally if we substitute this estimate into (6.12), then using the fact that
ωk(θ) = 0 unless ‖θ‖ ≤ λ

−1/2d
k , one has

∫

Πn
(L−nâL ∗ ωk) (θ + s/q) dνf ≤ cdνf{θ : ‖θ + s/q‖ < λ

−1/2d
k }+

+ε dνf (Πn) ≤ α3‖f‖2
L2(X)

if k is large enough w.r.t. α and L is large enough w.r.t. k and α.
Indeed dνf (Πn) = ‖f‖2

L2(X), and only here we use the condition strong
ergodicity, that is the condition that dνf{s/q} = 0 for every rational point
s/q 6= 0 (note that by our assumption dνf{0} =

∫
X fdµ = 0 also), which

implies dνf{θ : ‖θ + s/q‖ < λ
−1/2d
k } → 0 as k →∞.

This proves Theorem 4. 2.

35



References

[1] Arnold, V., Varchenko, A.,: Singularities of differentiable mappings
I-II, Monographs in Math., Birkhauser, Boston (1988)

[2] Birch, B.J.,: Forms in many variable, Proc. Roy. Soc. Ser. A, 265.
245-263 (1961)

[3] Bourgain, J.,: On the maximal ergodic theorem for certain subsets of
integers Israeli J. Math., 61, 39-72 (1988)

[4] Davenport, H.,: Cubic forms in 32 variables Phil. Trans. A, 251,
193-232

[5] Magyar, A.,: Lp-bounds for spherical maximal operators on Zn Rev.
Mat. Iberoam., 13, 307-317 (1997)

[6] Magyar, A., Stein, E.M., Wainger S.,: Discerete analogues in har-
monic analysis: spherical averages, submitted to Annals. of Math.

[7] Serre, J.P.: A course in arithmetic, Graduate texts in Math., Springer
Verlag, (0

[8] Sogge, C. : Fourier integrals in classical analysis, Cambridge Univer-
sity Press, (1993)

[9] Sogge, C., Stein, E.M.: Averages of functions over hypersurfaces in
<n, Invent. Math. 82, 543-556, (1985).

[10] Stein, E.M., Maximal functions: Spherical means, Proc. Nat. Acad.
Sci., U.S.A., 73, 2174-2175 (1976)

[11] Stein, E.M., Wainger, S: Discerete analogues in harmonic analysis
II: fractional integration, Jour. d’Analyse, 80, 335-354 (2000)

36


