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Discrete analogues in harmonic analysis:
Spherical averages

By A. Magyar, E. M. Stein, and S. Wainger*

Abstract

In this paper we prove an analogue in the discrete setting of Zd, of the
spherical maximal theorem for Rd. The methods used are two-fold: the appli-
cation of certain “sampling” techniques, and ideas arising in the study of the
number of representations of an integer as a sum of d squares, in particular, the
“circle method”. The results we obtained are by necessity limited to d ≥ 5, and
moreover the range of p for the Lp estimates differs from its analogue in Rd.

1. Introduction

Geometric considerations, in particular curvature, play an important role
in harmonic analysis in R

d. Emblematic of this are the properties of the
spherical maximal function. Given the significance of this operator, it is an
interesting and natural question to ask what happens when we consider its
discrete analogue; that is, what can be said of the corresponding version of the
spherical maximal theorem taken over Zd? It is the purpose of this paper to
answer this question by proving optimal �p estimates in this setting.

We shall now describe these results, turning first to Rd. The spherical
averages are defined by the operators Aλ,where

Aλ (f) = f � dσλ

with dσλ the normalized invariant measure on the sphere |x| = λ. With the
definition of the maximal function, A�(f)(x) = sup

0<λ<∞
|Aλ(f)(x)|, we recall the

main estimate for it,

(1.1) ‖A� (f) ‖Lp(Rd) ≤ A ‖f‖Lp(Rd) , if p >
d

d − 1
and d ≥ 2 .

(See [S], [SW1], [B1].)
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The discrete analogue of Aλ is the operator

(1.2) Aλ (f)(n) =
1

N(λ)

∑
|m|=λ

f(n − m) .

Here n and m are restricted to range over Zd; also N(λ) = the number of
m ∈ Zd, so that |m| = λ. Notice that only those λ for which λ2 is an integer
are relevant; also observe that N(λ) = rd(λ2), where rd(k) is the standard
counting function giving the number of ways of representing k as a sum of d

squares.
Now, up to this point, formulating a discrete analogue of the spherical

maximal function, i.e. A�(f)(n) = sup
0<λ<∞

|Aλ(f)(n)|, and asking the question

of its �p boundedness, seem quite straightforward.∗ However, this is misleading
since quite different ideas must come into play in the discrete analogue, and
anyway, the range of exponents is not the same as the version in R

d. The
theorem we prove is the following optimal result.

Theorem. The maximal operator A� is bounded in �p(Zd) to itself for
p > d

d−2 , when d ≥ 5.

Alex Ionescu has pointed out to us that simple examples show that this
result cannot be improved: in fact, when d ≥ 5, A� is not bounded on �p for
p ≤ d

d−2 ; moreover when d < 5, the �p boundedness fails for every p < ∞
(the case p = ∞ is of course trivial). The relevant examples can be found
in Section 8. Here the facts that the number of representations rd(k) is an
irregular function of k when d ≤ 4, while rd(k) ≈ k

d−2
2 when d ≥ 5, play a

role. (For these assertions about rd(k), consult [W].)
Our attack on the discrete spherical maximal function proceeds in three

stages. To begin with (motivated by the ideas of the circle method) we ap-
proximate Aλ by an infinite sum of simpler operators

(1.3) Mλ = cd

∑
e−2πiλ2a/q M

a/q
λ ,

with each M
a/q
λ associated to a reduced fraction a/q, with 0 < a/q ≤ 1. Now

since each M
a/q
λ is a convolution operator on Zd, it corresponds to a Fourier

multiplier m
p/q
λ (ξ), which is given by

m
a/q
λ (ξ) =

∑
�∈Zd

G(a/q, �) Φq(ξ − �/q) dσ̂λ(ξ − �/q) .

∗Here we use the notation that for f defined on Zd, it belongs to �p(Zd) if
∑

n∈Zd

|f(n)|p is finite.

The �p norm is of course the pth root of the sum.
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Here G is a normalized Gauss sum, Φq is a suitable cut-off function, and dσ̂λ

is the Fourier transform of the unit measure dσλ on the sphere |x| = λ.
Notice that the first term of Mλ, corresponding to a/q = 1 ≡ 0 mod 1, can

be viewed as the vestige of the continuous analogue on Rd. All the other terms
are approximations corresponding to the other rationals.

The second stage is to study each M
a/q
λ as a sort of discrete analogue of

an operator on Rd. The main tool is a general abstract theorem which allows
one to pass from certain convolution operators on Rd to analogous operators
on Zd. While ideas about special cases of this principle have been implicit in
the past, our general approach seems both new interesting in its own right.
It is presented in Section 2. It is based in part on variants of “sampling”
ideas which go back to Plancherel and Pólya [PP] and which were taken up
again later by Shannon [ShW]. Using arguments of a different kind, Bourgain
obtained certain results of this form; see [B2, (3.5)].

The final stage of the argument is to show that Mλ is an adequate approx-
imation of Aλ. This is begun in Sections 4 and 5, and is concluded in Sections
6 and 7.

The analysis of our theorem has as its starting point a partial result ob-
tained previously by one of us [M] (see Proposition (4.2) below). The interested
reader may also want to compare the related ways the sums

∑
|n|=λ

e2πin·ξ are

treated in our paper (see Section 5), and in a previous work of Bleher and
Bourgain [BB, §6]. The context of that paper is however quite different from
ours.

2. Discrete analogues of convolution operators

Suppose T (f) = f � K is a convolution operator in Lp(Rd) to itself with
a suitable distribution kernel K. Then, as is known, its Fourier transform

K̂ = m(ξ) =
∫
Rd

K(x)e−2πixξdx is a bounded function, and we can think of T

as a Fourier multiplier operator given by (Tf)∧(ξ) = m(ξ)f̂(ξ).
To be precise, in what follows we shall assume in this section that in

addition to m(ξ) being bounded, it is supported in the fundamental cube
Q = {ξ = (ξj) : −1/2 < ξj ≤ 1/2, j = 1, . . . �}. In this case K(x) =∫
Rd

e2πixξ m(ξ)dξ is an L2 function on Rd, which is continuous (in fact, C∞).

Thus Kdis = K
∣∣∣
Zd

is well-defined, as is the convolution operator acting on

functions on Zd given by

Tdis(f) = f � Kdis , Tdis(f)(n) =
∑

m∈Zd

K(m) f (n − m) .
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Note that the condition that the multiplier be supported in Q is natural.
Because then not only does T determine Tdis, but conversely Tdis determines
T , i.e. K

∣∣∣
Zd

determines K. This follows since K
∣∣∣
Zd

determines the Fourier
coefficients of the function m(ξ), when expanded as a function on Q.

Let mper be the periodic extension of m, i.e. mper(ξ) =
∑
�∈Zd

m(ξ − �).

Then mper(ξ) is the Fourier multiplier corresponding to Tdis in the sense∑
n∈Zd

Tdis (f)(n) e−2πinξ = mper(ξ)
∑

n∈Zd

f(n)e−2πinξ ,

for suitable functions f on Zd.
Let us note that

(2.0) mper(ξ) =
∑

n∈Zd

K(n) e−2πinξ

in the sense of L2 convergence of the series on any compact subset of Rd.
In fact, m(ξ) =

∑
n∈Zd

K(n) e−2πinξ on Q represents the Fourier inversion

of the identity K(n) =
∫

m(ξ)e2πinξ dξ (m(ξ) is supported in Q); and, more-
over, mper(ξ) is the periodic function which agrees with m(ξ) on Q. This
establishes (2.0).

The question we will be concerned with is how the norm of Tdis as an
operator on �p(Zd) is controlled by the norm of the operator T acting on
Lp(Rd). For our applications it will be important to be able to deal with the
more general case where the Lp and �p spaces of complex-valued functions are
replaced by the spaces Lp

B(Rd) and �p
B(Zd) of functions taking their values in

the Banach space B. In order to avoid technical problems involving definability,
measurability, etc., we shall restrict our attention to the case when the Banach
spaces in question are finite-dimensional. However, all our estimates will be
independent of the Banach spaces in question, so that a limiting argument will
encompass the results in the generality needed. In particular, this argument
will apply to the case when B is an L∞ space, which is what is needed for the
maximal theorems below.

We shall suppose that B1 and B2 are a pair of finite-dimensional Banach
spaces, and assume that m(ξ) is a bounded measurable function, taking its
values in L(B1, B2); and as we have said we suppose m is supported in Q.
Then T , described above, is a bounded mapping from L2

B1
(Rd) to L2

B2
(Rd),

and similarly Tdis is bounded from �2
B1

(Zd) to �2
B2

(Zd).

Proposition 2.1. Fix p, 1 ≤ p ≤ ∞. If T is bounded from Lp
B1

(Rd) to
Lp

B2
(Rd), then Tdis is bounded from �p

B1
(Zd) to �p

B2
(Zd). For these operators

we have the norm inequality
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(2.1)
∥∥∥ Tdis

∥∥∥
�p
B1

→�p
B2

≤ C
∥∥∥ T

∥∥∥
Lp

B1
→Lp

B2

,

with a bound C that depends only on the dimension d, but not on p or the
Banach spaces B1 and B2.

Remarks. (1) It would be interesting to know if C can be taken to be
independent of the dimension d, or for that matter if C = 1.

(2) There is a converse to (2.1); i.e., a reverse inequality also holds. Since
that fact will not be used below we will omit its proof.

The proof of the proposition requires the following “sampling” and exten-
sion lemma. We fix the function Ψ on Rd by

Ψ(x) =
(

sin πx1

πx1

)2 (
sin πx2

πx2

)2

. . .

(
sin πxd

πxd

)2

, x = (x1, x2, . . . xd) .

For any suitable function f on Z
d we consider its extension fext = F on R

d

given by

(2.2) F (x) = fext(x) =
∑

n∈Zd

f(n) Ψ(x − n) .

(Note that if f ∈ �p for some p, the series above converges for every x ∈ Rd.)
We observe that in fact F

∣∣∣
Zd

= f , since Ψ(0) = 1, and Ψ(n) = 0, if n ∈ Z
d,

n �= 0; thus fext is a genuine extension of f . The following estimate holds for
any (finite-dimensional) Banach space B.

Lemma 2.1. If f ∈ �p(Zd, B), then F ∈ Lp(Rd, B), and

(2.3) (1/A) ‖f‖�p
B

≤ ‖F‖Lp
B

≤ A ‖f‖�p
B

.

Here A is a constant that depends only on d, but not p or the space B.

Ideas of this kind go back to Plancherel and Pólya [PP]. In that work

(when e.g. d = 1), the function sin πx
πx was used in effect in place of

(
sin πx

πx

)2
.

The resulting version of (2.3) is then more delicate and holds only in the range
1 < p < ∞, since it involves the Hilbert transform; it also does not cover the
case of Banach space-valued functions.

To prove the lemma we observe two easily established estimates,∫
Rd

Ψ(x)dx ≤ A1 and sup
x

∑
n∈Zd

Ψ(x − n) ≤ A1 .

Then for any p < ∞, by Hölder’ inequality

|fext(x)|p ≤
(∑

n

|f(n)|p Ψ(x − n)

) (∑
n

Ψ(x − n)

)p−1
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and integration in x then gives

‖ fext ‖p
Lp

B
≤‖ f ‖p

�p
B

Ap
1 .

The proof of the corresponding result for p = ∞ is similar but simpler.
To prove the converse inequality, choose Φ̂ to be a C∞ function with

compact support so that Φ̂(ξ) = 1, when ξ ∈ 2Q. Since
[(

sin πx1
πx1

)2
]∧

=

(1 − |ξ1|)+, it follows that

Ψ̂ · Φ̂ = Ψ̂ , and hence Ψ � Φ = Ψ .

As a result fext � Φ = fext and since fext(n) = f(n), we have

f(n) =
∫
Rd

fext(y) Φ(n − y) dy .

Thus as before,∣∣∣f(n)
∣∣∣p ≤

(∫
Rd

∣∣∣fext(y)
∣∣∣p ∣∣∣Φ(n − y)

∣∣∣dy

) (∫
Rd

∣∣∣Φ(n − y)
∣∣∣ dy

)p−1

,

and
‖f‖p

�p
B

≤ ‖fext‖Lp
B

Ap
2 ,

if ∫
Rd

|Φ(y)| dy ≤ A2 , and sup
y

∑
n∈Zd

|Φ(n − y)| ≤ A2 .

The argument also gives the case p = ∞. The lemma, inequality (2.3), is thus
established with A = max(A1, A2).

To prove the proposition, we consider the cube 3Q which can be cov-
ered by 3d disjoint translates of Q. In fact, it is easily verified that 3Q =

U
�∈Zd,�=(�1,...�d)

sup
j

|�j |≤1

(Q + �). Now let m(ξ) be continued periodically to 3Q, i.e. de-

fine m̃(ξ) by m̃(ξ) =
∑

supj |�j |≤1

m(ξ + �). We let T̃ denote Fourier multiplier

operator, whose multiplier is m̃(ξ). Then clearly

(2.4) ‖ T̃ ‖Lp
B1

→Lp
B2

≤ 3d ‖ T ‖Lp
B1

→Lp
B2

.

On the other hand, we claim that

(2.5) T̃ (fext) = (Tdis(f))ext .

To verify (2.5) it suffices to do it for f = δm, for every fixed m, where

δm(n) =


1 if n = m

0 if n �= m .
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We will check this by taking the Fourier transform of both sides of (2.5).
Indeed

Tdis(f)(n) = K(n − m)

and
(Tdis(f))ext =

∑
n∈Zd

K(n − m) Ψ(x − n) .

Hence,

(Tdis(f)ext)
∧ =

∑
n

K(n − m) Ψ̂ (ξ) e−2πinξ

=
(∑

K(n − m) e−2πinξ
)

Ψ̂(ξ)

=

(∑
n

K(n) e−2πinξ

)
e−2πimξ Ψ̂(ξ)

= mper(ξ) Ψ̂(ξ) e−2πimξ (by (2.0)).

On the other hand

T̃ (fext)∧ = m̃(ξ) (fext)∧ = m̃(ξ) (Ψ(x − m))∧ = m̃(ξ)Ψ̂(ξ) e−2πimξ.

Now we have the desired identity, since m̃(ξ) = mper(ξ) on the support of Ψ̂
(note that 2Q ⊂ 3Q).

Once (2.5) is established we have∥∥∥∥Tdis(f)
∥∥∥∥

�p
B2

≤ A

∥∥∥∥ (Tdis(f))ext

∥∥∥∥
Lp

B2

(by the lemma)

= A

∥∥∥∥T̃ (fext)
∥∥∥∥

Lp
B2

≤ 3d A

∥∥∥∥T (fext)
∥∥∥∥

Lp
B2

≤ 3d A

∥∥∥∥T

∥∥∥∥
Lp

B1
→Lp

B2

∥∥∥∥fext

∥∥∥∥
Lp

B1

(by (2.4)))

≤ 3d A2

∥∥∥∥T

∥∥∥∥
Lp

B1
→Lp

B2

∥∥∥∥f

∥∥∥∥
�p
B1

(by the lemma).

Thus
∥∥∥∥Tdis

∥∥∥∥
�p
B1

→�p
B2

≤ 3d A2

∥∥∥∥T

∥∥∥∥
Lp

B1
→Lp

B2

, and the proposition is proved with

C = 3d A2.

We now fix an integer q ≥ 1. We shall also make the stronger assumption
that m(ξ) is supported in Q/q, and consider mq

per defined by

(2.6) mq
per(ξ) =

∑
�∈Zd

m(ξ − �/q) .
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Notice that mq
per is periodic with respect to elements in (1/q)Zd, and

hence, in particular, periodic with respect to Zd.
We consider the operator T q

dis, a convolution operator on Zd, having mq
per

as its Fourier multiplier; i.e.,∑
m∈Zd

T q
dis (f)(n) e−2πinξ = mq

per(ξ)
∑

n∈Zd

f(n) e−2πin·ξ ,

for suitable f .

Corollary 2.1.

(2.7)
∥∥∥∥T q

dis

∥∥∥∥
�p
B1

→�p
B2

≤ C

∥∥∥∥T

∥∥∥∥
Lp

B1
→Lp

B2

.

Again the bound C does not depend on p, B1 and B2; it is also independent
of q.

Proof of the corollary. Let T q be the operator on Lp
B1

(Rd) to Lp
B2

(Rd)
whose multiplier is m (ξ/q). Notice that m(ξ/q) is supported for ξ ∈ Q.

Now a simple scaling argument shows∥∥∥∥T q

∥∥∥∥
Lp

B1
→Lp

B2

=
∥∥∥∥T

∥∥∥∥
Lp

B1
→Lp

B2

,

and so if (T q)dis is the discrete analogue in the sense of Proposition 1,

(2.8)
∥∥∥∥(T q)dis

∥∥∥∥
�p
B1

→�p
B2

≤ C

∥∥∥∥T

∥∥∥∥
Lp

B1
→Lp

B2

.

However, we must emphasize that (T q)dis �= T q
dis. In fact, the convolu-

tion kernel of (T q)dis, which comes from the multiplier m(ξ/q), is Kq(n) =
qdK(qn), n ∈ Zd.

Next we observe the convolution kernel, K#(n), of T q
dis is given by

K#(m) =


qdK(m), if m ∈ qZd

= 0 if m ∈ Zd , but m /∈ qZd ,

because ∫
Q

 ∑
�∈Zd

m(ξ − �/q)

 e2πiξm dξ

=
∫

Q

 ∑
�′∈Zd

m(ξ − �′)

 e2πiξm dξ ×


qd if m ∈ qZd

0 if m /∈ qZd .
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Now finally let T# denote the operator mapping functions of qZd to itself, given
by the kernel K#, i.e.

T#(f ′)(nq) =
∑

m∈Zd

f ′((n − m)q) K#(mq) .

Then clearly∥∥∥∥T#

∥∥∥∥
�p
B1

(qZd)→ �p
B2

(qZd)
=

∥∥∥∥(T q)dis

∥∥∥∥
�p
B1

(Zd)→ �p
B2

(Zd)

which is an immediate consequence of the isomorphism Z
d ↔ qZd, given by

n ↔ qn, (n ∈ Zd).
Finally note that T q

dis can be written as T# ⊗ I, if we write �p
B(Zd)

as �p
B(qZd) ⊗ �p(Zd�qZd), with T# acting on the first factor, and the iden-

tity acting on the second factor.
As a result ∥∥∥∥T q

dis

∥∥∥∥
�p
B1

→ �p
B2

≤
∥∥∥∥T#

∥∥∥∥
�p
B1

(qZd)→ �p
B2

(qZd)
.

Combining this with (2.8) proves Corollary 2.1.

We next consider a version of a convolution operator, whose multiplier is
somewhat akin to (2.4). Here we shall consider

(2.9) m(ξ) =
∑
�∈Zd

γ� Φ(ξ − �/q)

under the following assumptions:

(a) Φ is a C∞ function supported on Q/q. As a function on Q it has the
Fourier expansion

Φ(ξ) =
∑

m∈Zd

ϕm e−2πimξ

with ∑
m∈Zd

|ϕm| ≤ A .

(b) {γ�} is a qZd periodic sequence; i.e., γ� = γ�′ if � − �′ ∈ qZd.

Now let {γ̂s} be the Fourier transform of {γ�}; i.e., γ̂s =
∑

�∈Zd�qZd

e2πis�/q γ� .

We shall also restrict our attention to scalar-related functions on �p(Zd), as
opposed to the Banach-space case treated in the previous proposition, because
of the specific use of Plancherel’s identity. Our result is as follows.
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Proposition 2.2. Let T be the operator on functions on Z
d whose

Fourier multiplier is given by (2.8), satisfying the conditions above. Then with
1 ≤ p ≤ 2,

(2.10)
∥∥∥∥T

∥∥∥∥
�p(Zd)→ �p(Zd)

≤ A

(
sup

�
|γ� |

)2−2/p (
sup

s
|γ̂s |

)2/p−1

.

For the case p = 2 we use Parseval-Plancherel’s theorem for Zd, together
with the disjointedness of the supports of the Φ(ξ − �/q) and the fact that
sup

ξ
|Φ(ξ)| ≤ A. This implies that |m(ξ)| ≤ A sup

�
|γ�|, yielding the case p = 2.

For the case p = 1, we calculate the �1(Zd) norm of the kernel K(n),
corresponding to the multiplier m(ξ). It is given by

K(n) =
∫

Q

(∑
γ�Φ(ξ − �/q)

)
e2πinξ dξ

= ϕ(n)

 ∑
�∈Zd�qZd

γ� e2πin�/q

 = ϕ(n)γ̂n .

Hence by property (a),
∑

n∈Zd

|K(n)| ≤ A sup
n

|γ̂n |, and as a result the case

p = 1 of (2.10) is proved. The general result for 1 ≤ p ≤ 2 then follows by
Riesz’ convexity theorem.

3. The main term

The averages we are interested in,

Aλ(f)(n) =
1

N(λ)

∑
|m|=λ

f(n − m) ,

will be replaced by the equivalent averages
1

λd−2

∑
|m|=λ

f(n − m) ,

when d ≥ 5. This equivalence comes about because, as we have pointed out
with N(λ) = number of n ∈ Z

d, so that |n| = λ, we have N(λ) ≈ λd−2,
whenever λ2 is an integer, and d ≥ 5. In order not to introduce new notation,
we shall designate these averages also by Aλ and now write

(3.1) Aλ(f)(n) =
1

λd−2

∑
|m|=λ

f(n − m) ,

and in what follows we shall always assume that λ is restricted so that λ2 is
an integer.
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Here we shall deal with the main term in the approximation of Aλ. It is
a convolution operator Mλ acting on functions on Zd, which can be written as

(3.2) Mλ = cd

∞∑
q=1

∑
1≤a≤q
(a,q)=1

e−2πiλ2a/q M
a/q
λ ,

where the sum is taken over all reduced fractions a/q, with 0 < a/q ≤ 1. Hence
cd is the constant = πd/2

Γ(d/2) . Also each M
a/q
λ is the convolution operator whose

multiplier is

(3.3)
∑
�∈Zd

G(a/q, �) Ψq (ξ − �/q) dσ̂λ (ξ − �/q) .

In the above, Ψq(ξ) = Ψ(qξ), where Ψ is a C∞ cut-off function supported
in the cube Q/2, with Ψ(ξ) = 1, for ξ ∈ Q/4. Also G(a/q, �) is the normalized
Gauss sum

(3.4) G(a/q, �) = q−d
∑

n∈Zd/qZd

e2πi(|n|2a/q+n·�/q) ,

and dσ̂λ(ξ) is the Fourier transform of the normalized invariant measure dσλ

supported on the sphere |x| = λ. Note that (3.3) is periodic on ξ with periods
in Zd, since G(a/q, �) = G(a/q, �′), if � ≡ �′mod qZd; also, for each ξ only one
term in (3.3) is nonzero.

We define the corresponding maximal operators,

M�(f)(n) = sup
0<λ<∞

|Mλ(f)(n)| ,

and
M

a/q
� (f)(n) = sup

0<λ<∞

∣∣∣Ma/q
λ (f)(n)

∣∣∣ .
The basic estimates for these are as follows:

Proposition 3.1. (a) ‖ M
a/q
� ‖�p→�p = O

(
q−d(1−1/p)

)
if d ≥ 3, and

d
d−1 < p ≤ 2,

(b) ‖ M� ‖�p→�p ≤ A if d ≥ 5, and d
d−2 < p ≤ 2 .

To prove part (a) we write Ψ = Ψ · Ψ′, where Ψ′ is another C∞ function,
supported in Q, with Ψ′(ξ) = 1 for ξ ∈ Q/2. Then the operator corresponding
to the multiplier (3.3) can be written as a product of two operators, with
multipliers respectively: ∑

�∈Zd

G(a/q, �) Ψ′
q (ξ − �/q)

and ∑
�∈Zd

Ψq(ξ − �/q) dσ̂λ (ξ − �/q) ,
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where Ψ′
q(ξ) = Ψ′(qξ), if we recall that for each ξ only one term in each of the

above sums is nonvanishing.
To the first multiplier we apply Proposition 2.2 (in §2) with γ� = G(a/q, �),

and Φ(ξ) = Ψ′
q(ξ). Note that Φ(ξ) is supported in Q/q, and moreover

ϕ(n) =
∫
Rd

Φ(ξ) e−2πinξ dξ = q−1 Ψ̃(q−1n) ,

where Ψ̃ is the Fourier transform of Ψ′. Now |Ψ̃(x) | ≤ AN (1 + |x|)−N for all
N ≥ 0, so that

∑
n∈Zd

|ϕ(n)| ≤ A.

Next, there is the estimate |G(a/q, �)| = O(q−d/2); this is well-known,
but in any case it follows from the standard one-dimensional case merely by
observation that G(a/q, �) is a d-fold product of these one-dimensional sums.†

Moreover, if γ̂s =
∑

�∈Zd/qZd

e2πis·�/q G(a/q, �), then,

γ̂s =
1
qd

∑
n∈Zd/

qZd

∑
�∈Zd/q Zd

e2πis·�/q e2πi(a/q)|n|2 e2πin·�/q = e2πi(a/q)|s|2 .

Hence by Proposition 2.2, the norm of the corresponding operator (acting on
�p to itself, 1 ≤ p ≤ 2, with scalar-valued functions) is O(q−(d/2)(2−2/p)) =
O(q−d(1−1/p)).

Next, the multiplier

(3.5)
∑
�∈Zd

Ψq (ξ − �/q) dσ̂λ(ξ − �/q)

corresponds to a convolution operator from �p(Zd) (scalar-valued), to �p
B(Zd),

where B is the �∞ space of functions of λ > 0, for which λ2 is an integer, and
0 < λ2 ≤ N . Notice that Φq(ξ) = Φ(qξ) is a bounded multiplier of Lp(Rd)
to itself (with norm independent of q). Observe also that dσ̂λ(ξ) is a bounded
multiplier from Lp(Rd) to Lp

B(Rd), for p > d
d−1 , which is a consequence of the

spherical maximal theorem in Rd. Finally, note that m(ξ) = Φq(ξ) dσ̂λ(ξ) is
supported in Q/q. Thus, applying the corollary to Proposition 2.1, we see that
(3.5) is a bounded multiplier from �p(Zd) to �p

B(Zd), with norm independent of
N (and q). Letting N → ∞, and combining this with the estimate for the first
multiplier, we have established conclusion (a) of Proposition 3.1. The second
conclusion follows from this because

M� ≤ cd

∑
1≤q<∞

∑
(a,q)=1
1≤a≤q

M
a/q
� ,

†For the one-dimensional estimates, see [W].
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so that ∥∥∥∥M�

∥∥∥∥
�p→�p

≤ A
∑

1≤q<∞
q · q−d(1−1/p) < ∞ ,

if 1 − d(1 − 1/p) < −1, i.e. when p > d
d−2 .

4. Approximations

We now state the assertions which guarantee that Mλ provides an ade-
quate approximation to our operator Aλ. There are two facts; the first is a
purely �2 statement.

Proposition 4.1. There is a bound A, so that for any Λ > 0,

(4.1) ‖ sup
Λ≤λ≤2Λ

|Aλ(f) − Mλ(f)| ‖�2 ≤ A Λ2−d/2 ‖ f ‖�2 , if d ≥ 5 .

The second is a partial result for Aλ which was known previously (see [M]).

Proposition 4.2. There is a bound A, so that for any Λ > 0

(4.2) ‖ sup
Λ≤λ≤2Λ

|Aλ(f) ‖�p ≤ A ‖ f ‖�p , if d ≥ 5 , p >
d

d − 2
.

Recall that the λ which appear in (4.1) and (4.2) are always restricted to
the fact that λ2 is an integer.

We shall momentarily take these two propositions for granted and see how
they, together with Proposition (3.1), prove our main theorem.

Now (4.2) together with Proposition (3.1) yield

‖ sup
Λ≤λ≤2Λ

(Aλ − Mλ)f ‖�p ≤ A ‖ f ‖�p for 2 ≥ p >
d

d − 2
.

Interpolating this with (4.1) gives

‖ sup
Λ≤λ≤2Λ

|(Aλ − Mλ)(f)| ‖�p ≤ A Λ−ε(p) ‖ f ‖�p

for some ε(p) > 0, if d
d−2 < p ≤ 2.

Next,

sup
1≤λ<∞

|(Aλ − Mλ) (f)| ≤
∞∑

k=0

sup
2k≤λ≤2k+1

|(Aλ − Mλ)f | .

Taking the �p norm we get that

‖ sup
1≤λ<∞

|(Aλ − Mλ) f | ‖�p ≤ A′ ‖ f ‖�p , for
d

d − 2
< p ≤ 2 ,
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since
∑
k

2−ξ(p)k < ∞. Thus, invoking Proposition (3.1) again yields

‖ sup
1≤λ<∞

|Aλ(f)| ‖�p≤ A ‖ f ‖�p when
d

d − 2
< p ≤ 2 .

Since the corresponding estimate for p = ∞ is trivial, the full range d
d−2 <

p ≤ ∞ then follows by interpolation, proving the main theorem.

5. The decomposition of Aλ

To prove the crucial approximation property (4.1) we shall decompose
the operator Aλ into a sum, each of whose terms corresponds to a fraction a/q,
with 1 ≤ q, 1 ≤ a ≤ q, and (a, q) = 1. It is here we use the ideas of the “circle
method” of Hardy, Littlewood, and Ramanujan.

Let us fix Λ > 0, and consider any λ for which Λ ≤ λ ≤ 2Λ. We shall
write aλ(ξ) for the multiplier corresponding to the operator Aλ given by (3.1).
We claim that

aλ(ξ) =
e2πελ2

λd−2

∑
n∈Zd

e−2πε|n|2 e2πin·ξ
∫ 1

0
e2πi(|n|2 −λ2)t dt .

Here ε is positive, but otherwise arbitrary; we will fix it later by setting ε =

1/Λ2. This identity is obvious because
∫ 1

0
e2πi(|n|2−λ2)t dt = 1 or 0 according

to whether |n| = λ or not.
Now we introduce the Θ function

(5.1) F(z, ξ) =
∑

n∈Zd

e−2π|n|2z e2πinξ ,

for (z) > 0, and we make a Farey direction of level = Λ of the interval
[0, 1] of the t integration. That is, for each a/q, (a, q) = 1 with 1 ≤ a ≤ q,
and q ≤ Λ, we associate the interval Ī(a/q) =

{
t : − β

qΛ ≤ t − a/q ≤ α
qΛ

}
,

where α = α(a/q, Λ) ≈ 1, and β = β(a/q, Λ) ≈ 1, with α and β chosen
appropriately. We denote by I(a/q) the corresponding intervals translated to
the origin, I(a/q) =

{
τ : − β

qΛ ≤ τ ≤ α
qΛ

}
. Inserting this in the above formula

for aλ(ξ) and using identity (5.1) we get

aλ(ξ) =
∑

1≤q≤Λ

∑
1≤a≤q
(a,q)=1

a
a/q
λ (ξ) ,

where

(5.2) a
a/q
λ (ξ) =

e2πελ2

λd−2
e−2πiλ2a/q

∫
I(a/q)

e−2πiλ2τ F(ε − iτ − i a/q, ξ) dτ .
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Next we use the fundamental identity for the Θ function (5.1). It states
that for (z) > 0,

(5.3) F
(

z − i
a

q
, ξ

)
=

1
(2z)d/2

∑
�∈Zd

G

(
a

q
, �

)
exp

(−π|ξ − �
q |2

2z

)
.

Here G(a/q, �) is the normalized Gauss sum (3.4). The above is the d-dimensional
version of a familiar identity. (For d = 1 see, e.g., [SW1, (3.4)]; also [W].) The
general case d ≥ 1 can be proved the same way invoking the Poisson summation
formula; alternatively one can observe that (5.3) is merely the d-fold product
of the corresponding 1-dimensional identities for each variable ξ1, ξ2, . . . ξd, sep-
arately.

From (5.3) and (5.2) it follows that

(5.4) a
a/q
λ (ξ) = e−2πiλ2a/q

∑
�∈Zd

G(a/q, �) Jλ (a/q, ξ − �/q) ,

where

(5.5) Jλ(a/q, ξ) =
e2πελ2

λd−2

∫
I(a/q)

e−2πiλ2τ (2(ε − iτ))−d/2 e
−π|ξ|2
2(ε −iτ) dτ .

6. Approximations, continued

We shall approximate the multipliers a
a/q
λ (ξ) above by multipliers b

a/q
λ (ξ)

where the cut-off factors Φq(ξ − �/q) have been inserted in (5.4). That is, we
define

(6.1) b
a/q
λ (ξ) = e−2πiλ2a/q

∑
�∈Zd

G(a/q, �) Φq(ξ − �/q) Jλ(ξ − �/q) .

Here Φq(ξ) = Φ(qξ).
Next we approximate b

a/q
λ (ξ) by replacing the integral (5.5) that appears

in (6.1) by the corresponding integration when taken over the whole real line.
So we set

(6.2) c
a/q
λ (ξ) = e−2πiλ2a/q

∑
�∈Zd

G(a/q, �) Φq(ξ − �/q) Iλ(ξ − �/q) ,

with

(6.3) Iλ(ξ) =
e2πελ2

λd−2

∫ ∞

−∞
e−2πiλ2τ (2(ε − iτ))−d/2 e

−π|ξ|2
2(ε −iτ) dτ .

We define the operators A
a/q
λ , B

a/q
λ , C

a/q
λ , as the convolution operators

(acting on functions of Zd), whose Fourier multipliers are respectively, a
a/q
λ (ξ),

b
a/q
λ (ξ), and c

a/q
λ (ξ).
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Proposition 6.1.∑
1≤q≤Λ

∑
1≤a≤q
(a,q)=1

‖ sup
Λ≤λ≤2Λ

∣∣∣ (
A

a/q
λ − B

a/q
λ

)
f

∣∣∣ ‖�2 ≤ A Λ2−d/2 ‖ f ‖�2 ,(6.4)

∑
1≤q≤Λ

∑
1≤a≤q
(a,q)=1

‖ sup
Λ≤λ≤2Λ

∣∣∣(B
a/q
λ − C

a/q
λ

)
f
∣∣∣ ‖�2 ≤ A Λ2−d/2 ‖ f ‖�2 .(6.5)

It is understood that in the above assertions our ε is fixed to be = 1/Λ2.
To prove (6.4), let Fτ be the function on Zd which is given in terms of its

Fourier expansion by F̂τ (ξ) = µ(ξ) f̂(ξ) where

µ(ξ) =
∑
�∈Z

(1 − Φq(ξ − �/q)) e−π|ξ −�/q|2/2(ε−iτ) .

Note that since each term in the sum is supported where |ξ − �/q| ≥ c/q,

sup
ξ

|µ(ξ)| ≤ A exp
( −cε

q2(ε2 + τ2)

)
,

for some c > 0 . Thus

‖ Fτ ‖�2 ≤ A exp
( −cε

q2(ε2 + τ2)

)
‖ f ‖�2 .

Now observe that

sup
Λ≤λ≤2Λ

∣∣∣(A
a/q
λ − B

a/q
λ

)
f

∣∣∣ ≤ A Λ−d+2 q−d/2
∫

I(a/q)
(ε2 + τ2)−d/4 |Fτ |dτ ,

because G(a/q, �) = O(q−d/2).
As a result,

sup
Λ≤λ≤2Λ

∥∥∥ ∣∣∣ (
A

a/q
λ − B

a/q
λ

)
f

∣∣∣∥∥∥
�2

≤ A Λ−d+2 q−d/2
∫

I(a/q)
(ε2 + τ2)−d/4 exp

( −cε

q2(ε2 + τ2)

)
dτ · ‖ f ‖�2 .

Now, because eu ≤ c u−d/4, we get a contribution of Λ−d+2 ε−d/4 |I(a/q)|
‖ f ‖�2 . Taking into account that ε = 1/Λ2, and

∑
1≤q≤Λ

∑
a,q

|I(a/q)| = 1,

we obtain (6.4).
The proof of (6.5) is similar. Notice that we are now integrating over τ in

the complement of I(a/q), and thus |τ | ≥ c/qΛ. We are led in the same way
to see that

‖ sup
Λ≤λ≤2Λ

∣∣∣(B
a/q
λ − C

a/q
λ

)
f

∣∣∣ ‖�2

≤ A Λ−d+2 q−d/2
∫
|τ |≥c/qΛ

τ−d/2 dτ · ‖ f ‖�2

≤ A Λ−d+2 q−d/2 (qΛ)d/2−1 ‖ f ‖�2 = A Λ−d/2+1 q−1 ‖ f ‖�2 .



DISCRETE ANALOGUES IN HARMONIC ANALYSIS 205

Now sum in a, then over q, q ≤ Λ. This gives a contribution of

O
(
Λ−d/2+1

)  ∑
1≤q≤Λ

∑
1≤a≤q

1

 q−1 ‖ f ‖�2 = O
(
Λ−d/2+2

)
‖ f ‖�2 ,

which proves (6.5).
To complete the approximation process (the proof of (4.1)) we now identify

Iλ(ξ) given by (6.3).

Lemma 6.1.
Iλ(ξ) = cd dσ̂λ (ξ) .

Taking this temporarily for granted we observe that as a result, cd M
a/q
λ =

C
a/q
λ (see (3.3) and (6.2), (6.3)). Hence for Λ ≤ λ ≤ 2Λ,

|(Aλ − Mλ) f | ≤
∑

1≤q≤Λ

∑
(a,q)=1

∣∣∣(A
a/q
λ − C

a/q
λ

)
f

∣∣∣
+

∑
q>Λ

∑
(a,q)=1

cd

∣∣∣Ma/q
λ f

∣∣∣ .

However, ∣∣∣ Aa/q
λ − C

a/q
λ

∣∣∣ ≤
∣∣∣ Aa/q

λ − B
a/q
λ

∣∣∣ +
∣∣∣ Ba/q

λ − C
a/q
λ

∣∣∣ .
Thus, invoking Proposition (6.1), and Proposition (3.1) for p = 2, we see that

‖ sup
Λ≤λ≤2Λ

| (Aλ − Mλ) (f) | ‖�2

= O
(
Λ2−d/2

)
‖ f‖�2

+

∑
q>Λ

∑
1≤a≤q

q−d/2

 ‖ f‖�2

= O
(
Λ2−d/2

)
‖ f ‖�2 , if d ≥ 5 .

Therefore, Proposition (4.1) is now proved, and with it the proof of our
main theorem is complete, save for verification of the lemma above.

7. Proof of Lemma 6.1

The identity

(7.1)
e2πελ2

λd−2

∫ ∞

−∞
e−2πiλ2τ (2(ε − iτ))−d/2 e

−π|ξ|2
2(ε −iτ) dτ = cd dσ̂λ(ξ)

is probably known, but we have not found it in the literature, and so we will
give a proof.
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First we observe that the left-side of (7.1) is in fact independent of ε, and so
we may take ε = 1/λ2. We see that this follows by changing the contour while
integrating the function F (z) = (2z)−d/2 e2πz e−π|ξ|2/2z along lines parallel to
the x axis in the upper half-plane. Next, with ε = 1/λ2, and with the change
of variables λ2τ = t,

Iλ(ξ) = e2π
∫ ∞

−∞
e−2πit 1

(2(1 − it))d/2
e

−πλ2|ξ|2
2(1−it) dt .

We now insert an extra convergence factor e−πδt2 in the integral defining
Iλ above. Denoting the resulting integral by Iδ

λ we have Iδ
λ → Iδ

λ; moreover if
ϕ is any test function in the Schwartz space, then∫

Rd
ϕ̂(ξ) Iλ(ξ) dξ = lim

δ→0

∫
Rd

ϕ̂(ξ) Iδ
λ(ξ) dξ .

Also,

(7.2)
∫
Rd

ϕ̂(ξ) Iδ
λ(ξ) dξ =

∫
Rd

ϕ(x) Îδ
λ(x) dx .

Calculating the Fourier transform of the Gaussian e
−π|λ|2ξ|2

2(i−it) we see that

Îδ
λ(x) =

∫ ∞

−∞
e−2πit e−πδt2 e−2π

|x|2
λ2 (1−it) dt ,

which in turn is e−2π|x|2/λ2
δ−1/2 e−π(1−|x|2/λ2)/δ . Inserting this in (7.2), and

letting δ → 0, we obtain∫
Rd

ϕ̂(ξ) Iλ(ξ) dξ = cd

∫
Rd

ϕ(x) dσλ(x) ,

and thus Iλ(ξ) = cd dσ̂λ(ξ), as was to be proved.
Note that

cd = Iλ(0) = e2π
∫ ∞

−∞
e−2πit dt

(2(1 − it))d/2
=

πd/2

Γ(d/2)
.

8. Counter-examples

Since we shall be dealing with all d ≥ 2, we return to the original definition
of the averages Aλ,

Aλ(f)(x) =
1

N(λ)
·

∑
|m|=λ

f(n − m) .

Let us take f to be the unit mass at the origin; i.e. f(0) = 1, and f(n) = 0, if
n ∈ Zd, n �= 0. Then clearly f ∈ �p(Zd), for every p. Next, we observe that

Aλ(f)(n) = 1/N(λ) = 1/N(|n|) , if |n| = λ .
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Hence,

(8.1) A� (f)(n) = sup
λ

Aλ(f)(n) ≥ 1/N(|n|) .

(Recall that N(λ) = number of m ∈ Zd, so that |m| = λ ; i.e. N(λ) = rd(λ2).)
Consider now the situation when d ≥ 5. Then as we have pointed out,

N(λ) ≈ λd−2, and so A�(f)(n) ≥ c|n|−d+2. But the latter function belongs to
�p(Zd) only when p > d

d−2 , and so the necessity of that condition is proved.
Next assume d ≤ 4. We shall use the fact that r4(22k) = 24, for every

k ≥ 1. This follows from the Jacobi formula which states that r4(m) = 8 ·
σ∗

1(m), where σ∗
1(m) is the sum of the divisors of m which are not divisible by

4. (See [HW, Chap. 20].) Thus

r2(22k) ≤ r3(22k) ≤ r4(22k) = 24 .

Now for each d, d ≤ 4, we then have N(λ) ≤ 24, if λ = 2k. And so for n ∈ Zd

with n = (2k, 0, . . .), we see that A�(f)(n) ≥ 1/24, by (8.1). Because this
happens for infinitely many n, we have A�(f) /∈ �p, for any p < ∞, and so the
necessity of the condition d ≥ 5 is established.
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