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Abstract Let P be a positive homogeneous polynomial of degree d, with integer
coefficients, and for natural numbers λ consider the solution sets

ZP,λ = {m ∈ Zn : P(m) = λ}.

We’ll study the asymptotic distribution of the images of these sets when projected
onto the unit level surface {P= 1} via the dilations, and also when mapped to the flat
torus Tn. Assuming the number of variables n is large enough with respect to the de-
gree d we will obtain quantitative estimates on the rate of equi-distribution in terms
of upper bounds on the associated discrepancy. Our main tool will be the Hardy-
Littlewood method of exponential sums, which will be utilized to obtain asymptotic
expansions of the Fourier transform of the solution sets

ωP,λ (ξ ) = ∑
m∈Zn,P(m)=λ

e2πim·ξ ,

relating these exponential sums to Fourier transforms of surface carried measures.
This will allow us to compare the discrete and continuous case and will be crucial
in our estimates on the discrepancy.

1 Introduction

A fundamental problem in number theory is to find integer solutions of diophantine
equations, that is equations of the form

P(m1, . . . ,mn) = λ
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where P is a polynomial with integer coefficients. The approaches fall into two
broad categories, algebraic and analytic, the latter being especially useful when the
number of variables is large with respect to the degree of the polynomial.

If the polynomial P is also positive and homogeneous of (even) degree d, then
for each natural number λ , there is a finite solution set

ZP,λ = {m ∈ Zn : P(m) = λ}. (1)

One may view these sets as the set of lattice points on the level surfaces {P= λ} and
by homogeneity they can be projected onto the unit level surface SP := {P = 1} via
the dilations m → λ−1/dm. We will study the rate of equi-distribution of the images
of the solution sets Z′

P,λ on the unit level surface SP as λ → ∞. Of course one needs
some more conditions on the the polynomial P in order to have solutions at all of
the diophantine equation P(m) = λ . For example if P(m) = m8

1 +(m2
2 + . . .+m2

n)
4

then even for large n there are only a sparse set of λ ’s (namely which can be written
as a sum of an 8-th and a 4-th power) for which there are solutions, and even for
those values of λ one cannot have equi-distribution as the first coordinate m1 can
take very few values. A natural condition on the polynomial P, introduced by Birch
[3], is that P being non-singular in the sense that

∇P(z) = (∂1P(z), . . . ,∂nP(z)) ̸= 0, for all z ∈ Cn, z ̸= 0.

Also, there are local or congruence obstructions. For example, the polynomial
P(m) = md

1 + p(md
2 + . . .+md

n) is non-singular, but the equation P(m) = λ can only
have an integer solution if λ is congruent to a d-th power modulo p. Nevertheless,
as it is implicit in the work of Birch [3], that if P is non-singular and if the number
of variables n is large enough with respect to the degree d, then there is an infinite
arithmetic progression Λ depending on P, which can be explicitly determined, such
that for each λ ∈ Λ the equation P(m) = λ has the expected number of solutions
≈ λ n/d−1, in fact the number of solutions can be asymptotically determined. We
will refer to such a set Λ as a set of regular values of the polynomial P.

As mentioned earlier, one of the problems we will be interested in is the asymp-
totic distribution of the images of the solution sets Z′

P,λ = {λ−1/dm; P(m) = λ}
as λ → ∞ (λ ∈ Λ ), on the unit level surface SP. First, one can show that there is a
natural measure σP on the surface SP, such that the sets Z′

P,λ become weakly equi-
distributed with respect to the measure dσP. That is for any smooth function ϕ one
has that

1
Nλ

∑
x∈Z′

P,λ

ϕ(x) →
∫

SP

ϕ(x)dσP(x), as λ → ∞, λ ∈ Λ ,

where Nλ is the number of solutions of the equation P(m) = λ . To get quantitative
information on the rate of equi-distribution, we define below the discrepancy of a
finite set Z ⊂ SP with respect to caps. For a unit vector ξ ∈ Rn and positive number
a, define the cap

Ca,ξ := {x ∈ SP : x ·ξ ≥ a},
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where x ·ξ is the dot product of the vectors x and ξ . Note that Ca,ξ is the intersection
of the surface SP with the half-space defined by x ·ξ ≥ a, and we will refer to ξ as
the direction of the cap. The associated discrepancy of a finite set Z ⊂ SP, consisting
of N points, with respect to caps of a given direction ξ is given by

D(Z,ξ ) = sup
a>0

| |Z ∩Ca,ξ |−N σP(Ca,ξ )|, (2)

where |A| denotes the size of a set A.

It turns out that for the solution sets Z′
P,λ the discrepancy depends heavily on the

direction of the cap. To see this consider the polynomial P(m) = m2
1 + . . .+m2

n, so
that when one is interested in the distribution of lattice points on spheres, projected
back to the unit sphere. It is well-known that for n ≥ 5, the size of the solution sets
are Nλ ≈ λ n

2−1. If ξ = (0, . . . ,0,1) then for certain values of a, the boundary of the
cap contain as much as ≈ λ n−3

2 points from the set Z′
P,λ . Indeed, after scaling back

with a factor of λ 1/2, the boundary of the cap is given by the equation:
m2

1+ . . .+m2
n−1 = µ for some µ depending on λ and a. Thus the discrepancy cannot

be smaller than λ n−3
2 ≈N

1− 1
n−2

λ . As opposed, we will show that if the direction of the
cap points away from rational points as much as possible, then one can obtain much
better bounds on the discrepancy. To be more precise, let us call a point α ∈ Rn−1

diophantine, if for every ε > 0 there exists a constant Cε > 0 such that for all q ∈ N

∥qα∥= min
m∈Zn−1

|qα −m| ≥Cε q−
1

n−1−ε . (3)

Correspondingly a point ξ ∈ Sn−1 is called diophantine, if for every 1 ≤ i ≤ n for
which ξi ̸= 0, the point α i ∈ Rn−1 is diophantine, where the coordinates of α i are
obtained by dividing each coordinate of ξ by ξi and deleting the i−th coordinate.
It is easy to see that the complement of diophantine points has measure 0 in Rn−1

and hence in Sn−1 as well. We will show, see also [12], in dimensions n ≥ 4, that the
discrepancy is bounded by above by

D(Z′
P,λ ,ξ )≤Cξ ,ε N

1
2+

1
2(n−2)

λ (4)

for all ε > 0, when ξ is diophantine. This is especially significant in large dimen-
sions as it is known from the works of Beck and Schmidt [2], [14], see also [10], that
for any set of N points on the unit sphere Sn−1, the L2 average of the discrepancy

with respect to spherical caps is at least N
1
2−

1
2(n−1) . For general non-singular, positive

and homogeneous polynomials P, the same observation shows that for rational di-

rections (p.e. when ξ = (0, . . . ,0,1)), the discrepancy is at least N
1− 1

n−d
λ , while we’ll

show that in diophantine directions it is bounded by N1−γd
λ with γd = 1

(d−1)2d+1 , in
large enough dimensions.
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We will also study the equi-distribution of the solutions when mapped to the flat
torus Tn = Rn/Zn. Let α = (α1, . . . ,αn) ∈ Rn and consider the map Tα : Zn → Tn,
defined by Tα(m) = (m1α1, . . . ,mnαn) (mod 1) . Then the images of the solution
sets take the form

Ωλ ,α = {(m1α1, . . . ,mnαn); P(m1, . . . ,mn) = λ} ⊆ Tn.

It is clear that if one of the coordinates of the point α is rational then the correspond-
ing coordinate of the points in the image set can take only finitely many different
values and the sets Ωλ ,α cannot become equi-distributed as λ → ∞. It turns out
that this is the only obstruction for non-singular polynomials P in sufficiently many
variables. Indeed we will see that if α ∈ (R\Q)n, then for any ϕ ∈C∞(T n) we have
that

N−1
λ ∑

P(m)=λ
ϕ(m1α1, . . . ,mnαn)→

∫
Tn

ϕ(x)dx, (5)

as λ → ∞ through regular values of the polynomial P. To obtain quantitative bounds
on the rate of equi-distribution, we will assume that each coordinate of the point α
is diophantine, that is ∥qαi∥ ≥ Cε q−1−ε , for all ε > 0 and for all q ∈ N with an
appropriate constant Cε > 0. Identify the torus with the set [− 1

2 ,
1
2 )

n and let K ⊆
(− 1

2 ,
1
2 )

n be a compact, convex set with nonempty interior. The discrepancy of the
image set Ωλ ,α with respect to the convex body K is defined by

D(K,α,λ ) = ∑
P(m)=λ

χK(m1α1, . . . ,mnαn)−Nλ voln(K),

where χK is the indicator function of the set K. We will show that for diophantine
points α one has the upper bound

|D(K,α,λ )| ≤ CP λ
n
d −1−γd , (6)

for some constant γd > 0 depending only on the degree d.
Let us remark that the above is a special case of a more general phenomenon;

namely if (X ,µ) is a probability measure space, and if T = (T1, . . . ,Tn) is a commut-
ing, fully ergodic family of measure-preserving transformations, then the images of
the solution sets

Ωλ ,x := {T m1
1 . . .T mn

n (x); P(m1, . . . ,mn) = λ} ⊆ X ,

become equi-distributed as λ → ∞, (λ ∈ Λ), for almost every x ∈ X [11]. To prove
such results one needs estimate certain maximal operators associated to averages
over the solution sets P(m) = λ , however, as in this generality one cannot hope for
quantitative bounds on the rate of equi-distribution, we will not discuss such results
below.

Crucial to all these results is the structure of Fourier transform of the indicator
function of the set of lattice points on the level surface {P = λ}. This is an expo-
nential sum of the form
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ω̂λ (ξ ) = ∑
m∈Zn, p(m)=λ

e−2πim·ξ . (7)

Note that ω̂λ (0) = Nλ , that is the number of solutions to the equation P(m) = λ , a
quantity which has been extensively studied in analytic number theory. Indeed for
the special case P(m) = m2

1 + . . .+m2
n asymptotic formulae for the number of so-

lutions were obtained by Hardy and Littlewood, by developing the so-called “circle
method” of exponential sums. Their methods were later further extended by Birch
and Davenport [3], [4], to treat higher degree non-diagonal forms; in fact they have
shown that

Nλ = ω̂λ (0) = cpλ
n
d −1

∞

∑
q=1

K(q,0,λ )+O(λ
n
d −1−δ ), (8)

for some δ > 0. The expression K(λ ) = ∑∞
q=1 K(q,0,λ ) is called the singular series,

and for regular values λ ∈Λ it is bounded below by a fixed constant AP > 0. It turns
out that one can derive similar asymptotic formulas for the exponential sums ω̂λ (ξ ),
which are uniform in the phase variable ξ . Namely, we will show that

ω̂λ (ξ ) = cP λ
n
d −1

∞

∑
q=1

mq,λ (ξ )+Eλ (ξ ), (9)

where
sup

ξ
|E (ξ )| ≤C λ ( n

d −1)(1−γ).

Moreover

mq,λ (ξ ) = ∑
l∈Zn

K(q, l,λ )ψ(qξ − l) σ̃P(λ
1
2 (ξ − l/q)),

where ψ is a smooth cut-off function supported near the origin, and σ̃P is the Eu-
clidean Fourier transform of the surface measure σP

σ̃P(ξ ) =
∫

SP

e−2πi x·ξ dσP(x).

This will allow us to compare the discrete and the continuous case and to estimate
the rate of equi-distribution of the solution sets in terms of the discrepancy. To give
an indication how this might work, let χa be the indicator function of the interval
[a,b] (b being a fixed number depending on P), then by taking the inverse Fourier
transform χa =

∫
χ̂a(t)e2πit·dt, and by making a change of variables t → λ−1/dt ,

one may write

|Z′
P,λ ∩Ca,ξ |= ∑

P(m)=λ
χa(λ− 1

d m ·ξ ) =
∫

R
λ

1
d χ̂a(tλ

1
d ) ω̂λ (tξ )dt,

and also
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σP(Ca,ξ ) =
∫

SP

χa(x ·ξ )dσP(x) =
∫

R
χ̂a(t) σ̃P(tξ )dt.

Substituting the asymptotic formula (9) into this expression one may study the con-
tribution of each term separately

Iq,λ (ξ ) :=
∫

R
λ

1
d χ̂a(tλ

1
d )mq,λ (tξ )dt.

A crucial point is that if |t| ≪ q−1 then ψ(qtξ − l) = 0 unless l = 0, moreover
ψ(qtξ ) = 1, hence

mq,λ (tξ ) = K(q,0,λ ) σ̃P(λ
1
d tξ ).

Writing

Iq,λ (ξ ) =
∫
|t|≪q−1

+
∫
|t|≫q−1

= I1
q,λ (ξ )+ I2

q,λ (ξ ),

one has, after a change of variables t := λ 1/d t, that

I1
q,λ (ξ ) = K(q,0,λ )

∫
|t|≪λ

1
d q−1

χ̂a(t)σ̃P(tξ )dt.

This tells us, by formula (8), that

cPλ
n
d −1

∞

∑
q=1

I1
q,λ (ξ )≈ Nλ σP(Ca,ξ ). (10)

To get upper bounds for the discrepancy one needs to estimate the contribution for
the rest of terms. This can done by exploiting the decay of the Fourier transform of
the measure σP and the cancelation in the exponential sums K(q, l,λ ).

The organization of the rest of this chapter is as follows. In the next section we
will derive the asymptotic expansion (9) for the polynomial P(m) = m2

1 + . . .+m2
d ,

and prove upper bounds on the discrepancy of lattice points on spheres. Next, we
will extend our approach to general non-singular forms, using the Birch-Davenport
method of exponential sums. Finally, in the last section we will study the equi-
distribution of the images of the solution sets {P(m) = λ} modulo 1, when mapped
to the flat torus Tn via the map Tα .

As for our notations, we will think of the polynomial P hence the parameters n,
d being fixed, and write f = O(g) or alternatively f ≪ g if | f (m)| ≤C g(m) for all
m ∈ N with a constant C > 0 depending only on the polynomial P or the parameters
n, d. We will also write, f ≫ g if g ≪ f and f ≈ g if both f ≪ g and f ≫ g . If
the implicit constant in our estimates depend on additional parameters ε,δ , . . . then
we may write f = Oε,δ ...(g) or f ≪ε,δ ,... g. The Fourier transform of a function f
defined on Zn will be denoted by f̂ , as opposed, somewhat unconventionally, we will
denote the Euclidean Fourier transform of a function ϕ defined on Rn by ϕ̃ . This is to
avoid confusion as we will often move between the discrete and continuous settings.
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2 The discrepancy of lattice points on spheres.

The uniformity of the distribution of lattice points on spheres has been extensively
studied and proved in dimension at least 4, see [6], and later in dimension 3 [5] using
difficult estimates for the Fourier coefficients of modular forms. These methods,
however, do not take into consideration the direction of the caps, and hence the
bounds obtained are subject to the limitations described in the introduction, arising
from caps whose direction has rational coordinates.

We will assume that the direction ξ of the caps is diophantine in the sense that
ξ i = ξ/ξi satisfies condition (3) for each 1 ≤ i ≤ n such that ξi ̸= 0. In this case,
when Z = {λ−1/2m; |m|2 = λ} , we will obtain the following upper bound on the
discrepancy, defined in (2).

Theorem 1. Let n≥ 4 and let ξ ∈ Sn−1 be a diophantine point. Then for every ε > 0,
one has

|Dn(ξ ,λ )| ≤Cξ ,ε λ
n−1

4 +ε (11)

We note that for n ≥ 4, and if n = 4 assuming that 4 does not divide λ , one has
that Nλ ≫ λ n

2−1, thus (11) implies that

|Dn(ξ ,λ )| ≤Cξ ,ε N
1
2+

1
2(n−2)+ε

λ .

In dimension n = 4, the best previous estimate for the normalized discrepancy
D(ξ ,λ )/Nλ was given in [6] of the order of λ−1/5+ε while we get the improve-
ment λ−1/4+ε . In case n = 4 and λ = 4k there are only 24 lattice points of length
λ 1/2, estimates for the discrepancy become trivial in such degenerate cases.

2.1 The Fourier transform of lattice points on spheres.

Our first task will be to derive the asymptotic formula (9) for the special case when
P(m) = |m|2 = m2

1 + . . .m2
n. As we have mentioned this can be viewed as an exten-

sion of the asymptotic formula for the number of representations of a positive inte-
ger λ as sum of n squares, and as such our main tool will be the Hardy-Littlewood
method of exponential sums. Because of the quadratic nature of the problem, there
are special tools available this case, most notably the transformation properties of
certain theta functions. Also, we will use the so-called Kloostermann refinement,
mainly to include the case n = 4. For a fixed λ ∈ N and ξ ∈ Tn, set δ = λ−1 and
write

e−2π ω̂λ (ξ ) = ∑
|m|2=λ

e−2πδ |m|2e2πim·ξ = ∑
|m|2=λ

w(m), (12)

where the weight function w(x)= e−2πδ |m|2e2πim·ξ is bounded and absolute summable.
Using the fact that

∫ 1
0 e2πi(|m|2−λ )α dα = 1 if |m|2 = λ and is equal to 0 otherwise,

one may write
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ω̂λ (ξ ) = e2π
∫ 1

0
S(α,ξ )e−2πiαλ dα,

where
S(α,ξ ) = ∑

m∈Zn
e2πi|m|2α w(m) = ∑

m∈Zn
e2πi((α+iδ )|m|2+m·ξ ) (13)

is a theta function. It is well-known, at least when ξ = 0, that it is concentrated near
rational points a/q with small denominator. To exploit this, one dissects the interval
[0,1] into small neighborhoods of the set of rational points RN = {a/q; (a,q) =
1, q ≤ N} for some specific choice of the parameter N. It is easy to see, using
Dirichlet’s principle, that one can choose intervals around the rational points a/q of
length |Ia/q| ≈ 1/Nq. This suggests that

ω̂λ (ξ )≈ c ∑
q≤N

∑
(a,q)=1

e−πiλ a
q

∫ 1
Nq

− 1
Nq

S
(

a
q
+ τ,ξ

)
e−2πiλτ dτ.

The idea behind the Kloosterman refinement is to make a specific choice of this
partition (the so-called Farey dissection) and to estimate carefully the errors arising
from the fact that the length of the intervals corresponding to a fixed denominator
are not quite the same. We will use the following general result

Theorem A (Heath-Brown [7]) Let P : Zn → Z be a polynomial with integral
coefficients, let λ , N be natural numbers and let w ∈ L1(Zn). Then one has

∑
P(m)=λ

w(m) = ∑
q≤N

∫ 1
qN

− 1
qN

e−2πiλτ S0(q,τ)dτ +E1(λ ) (14)

where
|E1(λ )| ≤C N−2 ∑

q≤N
∑

|u|≤q/2
(1+ |u|)−1 max

τ≈ 1
qN

|Su(q,τ)| (15)

Here C > 0 is an absolute constant and

Su(q,τ) = ∑
(a,q)=1

e2πi āu−aλ
q S(a/q + τ) , S(α) = ∑

m∈Zn
e2πiαP(m)w(m), (16)

where aā ≡ 1 (mod q).

This is proved in [7] for the case λ = 0 and for a non-negative weight function
w, however the proof extends without any changes to all λ ∈ N and w ∈ L1(Zn). Let
us postpone the proof of the above result to the end of this section, and see how it
translates to our situation.

By (13) we have that

S(a/q+ τ) = ∑
m∈Zn

e2πi a
q |m|2 e2πim·ξ hτ,δ (m),
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with hτ,δ (x) = e2πi(τ+iδ )|x|2 . Writing m := qm1 + s, where m1 ∈ Zn, s ∈ (Z/qZ)n,
and applying Poisson summation, we have

S(a/q+ τ) = ∑
s∈(Z/qZ)n

e2πi a
q |s|

2

∑
m1∈Zn

e2πi(qm1+s)·ξ hτ,δ (qm1 + s)

= ∑
s∈(Z/qZ)n

e2πi a
q |s|

2

∑
l∈Zn

∫
Rn

e2πi(qx+s)·ξ hτ,δ (qx+ s)e−2πi x·l dx

= ∑
l∈Zn

q−n ∑
s∈(Z/qZ)n

e2πi a|s|2+l·s
q

∫
Rn

hτ,δ (y)e2πiy·(ξ− l
q ) dy

= ∑
l∈Zn

G(a,q, l) h̃τ,δ (l/q−ξ ). (17)

Here G(a,q, l) is a normalized Gaussian sum:

G(a,q, l) = q−n ∑
s∈(Z/qZ)n

e2πi a|s|2−s·l
q . (18)

The function hτ,δ (x) is of the form e−πz|x|2 with z = 2(δ − iτ), hence, after a change
of variables x := z1/2x, its Fourier transform can be evaluated explicitly,

h̃τ,δ (l/q−ξ ) = (2(δ − iτ))−
n
2 e

− π|qξ−l|2

2q2(δ−iτ) . (19)

Let us first estimate the error terms Su(q,τ) in formula (15). Note that on the
range when |τ| ≈ 1/qN ≈ 1/qλ 1/2, one has Re

(
1

q2(δ−iτ)

)
= δ

q2(δ 2+τ2)
≥ c , for

some absolute constant c > 0. Thus

|h̃τ,δ (ξ − l/q)| ≤ C q
n
2 λ

n
4 e−c|qξ−l|2 . (20)

Also, by (17)
Su(q,τ) = ∑

l∈Zn
K(q, l,λ ;u) h̃τ,δ (ξ − l/q),

where
K(q, l,λ ;u) = ∑

(a,q)=1
e2πi āu−aλ

q G(a, l,q), (21)

These exponential sums have been extensively studied in number theory, various es-
timates are known in the literature, going back to the original work of Kloosterman.
We will use the following estimate, which we will take for granted for now, however
for the sake of completeness will include a proof later.
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Theorem B Let K(q, l,λ ;u) be the exponential sum defined in (21). Then one has
for every ε > 0,

|K(q, l,λ ;u)| ≤Cn,ε q
n−1

2 +ε (λ ,q1)
1
2 2

r
2 , (22)

where q = q12r with q1 odd, and (λ ,q1) denotes the greatest common divisor of λ
and q1.

We remark that using only standard estimates for Gaussian sums would yield to
a weaker bound of O(q−n/2+1), thus the extra cancelation in the sum over (a,q) = 1
is crucial. By this and estimate (20) we have

max
|τ|≈ 1

qN

Su(q,τ)≤Cε q
1
2+ε(λ ,q1)

1
2 2

r
2 . (23)

The factors (λ ,q1)
1
2 2

r
2 are at most λ ε on average for q ≤ λ 1

2 , hence they do not
play any role in our estimates. Indeed, it is easy to see that

Lemma 1. Let β ∈ R. Then for every ε > 0, one has

∑
q≤λ

1
2

qβ (λ ,q1)
1
2 2

r
2 ≤ Cβ ,ε λ

β+1
2 +ε

Proof. Let 1 ≤ µ ≤ λ 1/2. First, we show that

∑
q≤µ

(λ ,q1)
1
2 2

r
2 ≤Cε λ ε µ

To see this, write d = (λ ,q1) and q1 = dt. Then d divides λ and d2rt ≤ µ , hence
the left side is majorized by

∑
d|λ

∑
r∈N

d
1
2 2

r
2

µ
d2r ≤Cε λ ε µ

By partial summation, we have

Cε λ ε (λ
β
2 + ∑

µ≤λ
1
2

µ µβ−1 )≤Cε λ
β+1

2 +ε .

⊓⊔

Going back to the error term E1(λ ) defined in (15), we have by estimate (23) and
Lemma 1

|E1(λ )| ≤Cn,ε λ
n−1

4 +ε , (24)

for all ε > 0.
The main term in (14) takes the form
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M(λ ) : = ∑
q≤N

∫ 1
qN

− 1
qN

e−2πiλτ S0(q,τ)dτ

= ∑
q≤N

∑
l∈Zn

K(q, l,λ ;0)
∫ 1

qN

− 1
qN

e−2πiλτ h̃τ,δ (ξ − l/q) (25)

We will do now a number of transformations, to obtain the asymptotic formula (9),
described in the introduction. First we insert the functions ψ(qξ − l), the restrict
the summation in l to at most one non-zero term. Then we extend the integral to
the whole real real line and identify it with the Fourier transform of the normalized
measure on the unit sphere.

First, let ψ(ξ ) be a smooth cut-off function which is constant 1 on [− 1
8 ,

1
8 ]

n and
is equal to 0 for ξ /∈ [− 1

4 ,
1
4 ]

n. Then by (19), one estimates

∑
l∈Zn

(1−ψ(qξ − l)) |h̃τ,δ (ξ − l/q)| ≤Cn (τ2 +δ 2)−
n
4 e

cδ
q2(τ2+δ2) ≪ λ

n
4 q

n
2 ,

where the last inequality follows from the fact that e−u ≪ u−
n
4 choosing

u = δ
q2(τ2+δ 2)

. Thus, by (15), the total error accumulated by inserting the cut-off
functions in (25) is bounded by

|E2(λ )| ≤Cε λ
n
4−

1
2 ∑

q≤N
q−

1
2+ε(λ ,q)

1
2 ≤Cε λ

n−1
4 +ε , (26)

and the main term takes the form

M2(λ ) := ∑
q≤N

∑
l∈Zn

K(q, l,λ ;0)ψ(qξ − l)
∫ 1

qN

− 1
qN

e−2πiλτ h̃τ,δ (ξ − l/q). (27)

At this point, the integration can be extended to the whole real line, exploiting the
fact that now there is at most one nonzero term in the l-sum. For |τ| ≥ 1

qN ≥ δ one

has |s̃τ,δ (ξ − l/q)| ≪ τ− n
2 , thus the total error obtained in (27) by extending the

integration is

|E3(λ )| ≤ Cε ∑
q≤N

q−
1
2+ε(λ ,q)

1
2

∫
|τ|≥ 1

qN

τ−
n
2 dτ ≤Cε λ

n−1
4 +ε . (28)

Finally, we identify the integrals, and show that

Lemma 2.

Iλ (ξ ) := e2π
∫

R
e−2πiλτ h̃τ,δ (ξ )dτ = λ

n
2−1 σ̃(λ

1
2 ξ ), (29)

where σ is one-half of the surface area measure on the unit sphere in Rn.

Proof. By using (19) and making a change of variables: t = λτ to take out the
dependence on λ , one has that
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Iλ (ξ ) = e2π λ
n
2−1

∫
R

e−2πit(2(1− it))−
n
2 e−

πλ |ξ |2
2(1−it) dt.

Let η := λ 1/2ξ , then out task is to show that

J(η) := e2π
∫

R
e−2πit(2(1− it))−

n
2 e−

π|η |2
2(1−it) dt = σ̃(η).

We now insert an extra convergence factor e−πγ t2
into the integral defining J(η).

Denoting the resulting integral by Jγ we have Jγ → J as η → 0; moreover for any
test function ϕ in the Schwartz space∫

Rn
ϕ̂(η)J(η)dη = lim

γ→0

∫
Rd

ϕ̂(η)Jγ(η)dη .

Also, ∫
Rd

ϕ̂(η)Jγ(η)dη =
∫

Rd
ϕ(x)Jγ(x)dx. (30)

Note, that by (19) we have that h̃t,1(η) = (2(1− it))−n/2e−
π|η |2

2(1−it) , thus

Jγ(x) = e2π
∫

R
e−2πite−2π|x|2(1−it)e−πγt2

dt = γ−
1
2 e−π(1−|x|2)/γ e−π|x|2 .

Inserting this into (30), and letting γ → 0, we obtain∫
Rn

ϕ̂(η)J(η)dη =
∫

Rn
ϕ(x)dσ(x),

and thus J(η) = σ̃(η), as we wanted to prove. Note that

σ̃(0) = J(0) =
∫

R
e−2πit dt

(2(1− it))n/2 =
πn/2

Γ (n/2)
.

This identifies σ as one-half of the surface area measure of the unit sphere. ⊓⊔

Substituting the above formula (29) into the expression (27), the main term fi-
nally takes the form

M3(λ ) := λ n/2−1 ∑
q≤N

∑
l∈Zn

K(q, l,λ ;0)ψ(qξ − l)σ̃(λ 1/2(ξ − l/q). (31)

Note, that all error terms (15), (24), (26), and (28), we obtained in the process of
transforming the main term into the above expression is of magnitude Oε(λ

n−1
4 +ε).

Summarizing we have proved

Theorem 2. Let n ≥ 4. Then one has

ω̂λ (ξ ) = λ
n
2−1 ∑

q≤λ
1
2

mq,λ (ξ )+Eλ (ξ ),
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where
|Eλ (ξ )| ≤Cε λ

n−1
4 +ε (32)

holds uniformly in ξ for every ε > 0. Moreover

mq,λ (ξ ) = ∑
l∈Zn

K(q, l,λ )ψ(qξ − l) σ̃(λ
1
2 (ξ − l/q)) (33)

where

K(q, l,λ ) = q−n ∑
(a,q)=1

∑
s∈(Z/qZ)n

e2πi a(|s|2−λ )+s·l
q .

Here σ̃ denotes the Fourier transform of the surface-area measure σ on Sn−1, and ψ
is a smooth cut-off function supported on [− 1

4 ,
1
4 ]

n which is constant 1 on [− 1
8 ,

1
8 ]

n.

2.2 Some properties of diophantine points.

We will derive here a few elementary properties of diophantine points, needed later
in our estimates on the discrepancy. Crucial among them is the fact if ξ ∈ Sn−1 is a
diophantine point, then ∥tξ∥ ≫ T−ε on average for 1 ≤ t ≤ T , where ∥ξ∥ denotes
the distance of a point ξ ∈ Rn to the nearest lattice point. To start,let us call a point
α ∈ Rn of type ε if it satisfies condition (3) with a given ε > 0.

Lemma 3. For every ε > 0 the set of points α ∈ [0,1]n−1 of type ε has measure 1.

Proof. If a point α ∈ Rn−1 is not of type ε then there are infinitely many positive
integers q such that: ∥qξ∥ ≤ q−

1
n−1−ε . This means that there exists an m ∈ Zn such

that: |ξ −m/q| ≤ q−
n

n−1−ε . However the sum of the volumes of all such neighbor-
hoods around the points m/q ∈ [0,1]n−1 is bounded by

∞

∑
n=1

qn−1q−n−ε ≤Cε ,

thus the set of points which belong to infinitely many of such neighborhoods has
measure 0. ⊓⊔

This shows that the set of points α ∈Rn−1 which are not diophantine has measure
0. Indeed α is diophantine if it is of type εk = (1/2)k for all k ∈ N. Next we show
that ∥qα∥ ≈ 1 on average.

Lemma 4. Let α ∈ [0,1]n−1 be diophantine, Q > 1 and 1 ≤ k < n− 1. Then for
every ε > 0, we have

∑
q≤Q

∥qα∥−k ≤Cε Q1+ε (34)
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Proof. Let ε > 0. Consider the set of points {qα} ∈ [−1/2,1/2]n−1, for 1 ≤ q ≤ Q.
If q1 ̸= q2 then

|{q1α}−{q2α}| ≥ ∥(q1 −q2)α∥ ≥Cε Q− 1
n−1−

ε
n ,

thus the number of points in a dyadic annulus 2− j ≤ ∥qα∥ < 2− j+1 is bounded by
2−(n−1) j Q1+ε and the sum in (34) is convergent for 1 ≤ k < n−1. ⊓⊔

Lemma 5. Let ξ ∈ Sn−1 be diophantine, and assume that
max j |ξ j|= |ξn|. Let t ≥ 1 , α = (α1, . . .αn−1) , α j = ξ j/ξn and q = [tξn]. Then one
has

∥tξ∥ ≥ 1
n
∥qα∥

Proof. Note that
tξ j = tξnα j = [tξn]α j ±∥tξn∥α j

hence
|qα j −m j| ≤ |tξ j −m j|+∥tξn∥.

Thus taking m j = [tξ j], we have

∥qα j∥ ≤ ∥tξ j∥+∥tξn∥.

Summing for 1 ≤ j ≤ n−1 proves the lemma. ⊓⊔

Lemma 6. Suppose ξ ∈ Sn−1 is diophantine, and let t ≥ 1 and T ≥ 1. Then for every
ε > 0, one has

∥tξ∥ ≥Cε t−
1

n−1−ε (35)

Moreover, for 1 ≤ k < n−1 ∫ T

1
∥tξ∥−k ≤Cε T 1+ε (36)

Proof. By permuting the coordinates of ξ , one can assume that max j |ξ j| = |ξn|.
Inequality (35) follows immediately from Lemma 5 and the definition of a diophan-
tine point. Similarly (35) is reduced to (34) by observing that for a fixed q, the set
of t’s for which q = [tξn] is an interval of length at most 1/ξn ≤

√
n. ⊓⊔

2.3 Upper bounds on discrepancy.

We have developed all the necessary tools to prove Theorem 11, our main result in
this section. The argument will follow the broad outline given at the end of the intro-
duction, in addition we will use the standard stationary phase estimate on the Fourier
transform of the surface area measure on the unit sphere Sn−1, see for example [15]

|σ̂(ξ )| ≪ (1+ |ξ |)−
n−1

2 (37)
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Now, for given a > 0 let χa denote the indicator function of the interval [a,1+ a].
The discrepancy may be written as

Dn(ξ ,λ ) = ∑
|m|2=λ

χa(λ− 1
2 m ·ξ )−Nλ

∫
Sn−1

χa(x ·ξ )dσ(x). (38)

The function χa can be replaced with a smooth function ϕa,δ by making a small
error in the discrepancy. Indeed, let 0 ≤ ϕ(t) ≤ 1 be smooth function supported in
[−1,1]n, such that

∫
ϕ = 1. For a given δ > 0 let ϕ±

a,δ = χa±δ ∗ϕδ , where ϕδ (t) =
δ−1ϕ(t δ−1) and define the smoothed discrepancy as

Dn(ϕ±
a,δ ,ξ ,λ ) = ∑

|m|2=λ
ϕ±

a,δ (λ
− 1

2 m ·ξ )−Nλ

∫
Sn−1

ϕ±
a,δ (x ·ξ )dσ(x). (39)

Lemma 7. One has

|Dn(ξ ,λ )| ≤ max(|Dn(ϕ+
a,δ ,ξ ,λ )|, |Dn(ϕ−

a,δ ,ξ ,λ )|)+ O(δNλ ). (40)

Proof. Note that ϕ−
a,δ (t)≤ χa(t)≤ ϕ+

a,δ (t) thus

∑
|m|2=λ

ϕ−
a,δ (λ

− 1
2 m ·ξ )≤ ∑

|m|2=λ
χa(λ− 1

2 m ·ξ )≤ ∑
|m|2=λ

ϕ+
a,δ (λ

− 1
2 m ·ξ )

and

Nλ

∫
Sn−1

ϕ+
a,δ (x ·ξ )dσ(x)≥ Nλ

∫
Sn−1

χa(x ·ξ )dσ(x)≥ Nλ

∫
Sn−1

ϕ−
a,δ (x ·ξ )dσ(x)

Subtracting the above inequalities, (40) follows from the fact that∫
Sn−1

(ϕ+
a,δ −ϕ−

a,δ )(x ·ξ )dσ(x) ≪ δ

⊓⊔

In what follows, we take δ = λ−n and write ϕa,δ for ϕ±
a,δ , as our estimates work

the same way for both choices of the sign. By taking the inverse Fourier transform
of ϕa,δ (t) one has

∑
|m|2=λ

ϕa,δ (λ−1/2 m ·ξ ) =
∫

R
λ

1
2 ϕ̃a,δ (tλ

1
2 ) ω̂λ (tξ )dt (41)

also ∫
Sn−1

ϕa,δ (x ·ξ )dσ(x) =
∫

R
ϕ̃a,δ (t) σ̃(tξ )dt (42)

We substitute the asymptotic formula (9) into (41) and study the contribution of
each term separately. Accordingly, let
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Iq,λ :=
∫

R
λ

1
2 ϕ̃a,δ (tλ

1
2 )mq.λ (tξ )dt, (43)

and
Eλ =

∫
R

λ
1
2 ϕ̃a,δ (tλ

1
2 )Eλ (tξ )dt. (44)

To estimate the error term in (44) note that∫
R

λ
1
2 |ϕ̃a,δ (tλ

1
2 )|dt ≤C

∫
R
(1+ |t|)−1(1+δ |t|)−1 ≤C log λ .

Thus by (32) one has for every ε > 0

|Eλ | ≤Cε λ
n−1

4 +ε . (45)

Next, decompose the integral in (43) as

Iq,λ =
∫
|t|<1/8q

+
∫
|t|≥1/8q

= I1
q,λ + I2

q,λ . (46)

Here an important observation is that if |t|< 1/8q then ψ(qtξ − l) = 0 unless l = 0,
moreover ψ(tqξ ) = 1 since |tqξ j|< 1/8q for each j. Hence

mq,λ (tξ ) = K(q,0,λ ) σ̃(λ
1
2 tξ ).

Thus by (43) and a change of variables: t := tλ 1/2

I1
q,λ = K(q, l,λ )

∫
|t|<λ

1
2 /8q

ϕ̃a,δ (t) σ̃(tξ )dt. (47)

Lemma 8. One has for every ε > 0

|γnλ
n
2−1 ∑

q≤λ
1
2

I1
q,λ − Nλ

∫
Sn−1

ϕa,δ (x ·ξ )dσ(x) | ≤Cε λ
n−1

4 +ε (48)

Proof. Using (37), one has∫
|t|≥λ

1
2 /8q

|ϕ̃a,δ (t) σ̃(tξ ) |dt ≤ Cε λ− n−1
4 +ε q

n−1
2 (49)

Thus by (42) and (47)

| I1
q,λ −K(q,0,λ )

∫
Sn−1

ϕa,δ (x ·ξ )dσ(x) | ≤ Cε λ− n−1
4 +ε q

n−1
2 |K(q,0,λ )|

Substituting ξ = 0 in (33) one has

|Nλ − γnλ
n
2−1 ∑

q≤λ
1
2

K(q,0,λ )| ≤ Cε λ
n−1

4 +ε (50)
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Using (22) and (50), the left side of (48) is estimated by

Cε

λ
n−1

4 +ε +λ
n−3

4 +ε ∑
q≤λ

1
2

qε (λ ,q1)
1
2 2

r
2

 ≤ Cε λ
n−1

4 +ε (51)

⊓⊔

To estimate the remaining error terms one needs to exploit the diophantine prop-
erties of the direction ξ .

Lemma 9. Let ξ ∈ Sn−1 diophantine. Then for every ε > 0, we have

∑
q≤λ

1
2

|I2
q,λ | ≤ Cξ ,ε λ− n−3

4 +ε (52)

Proof. First, note that ψ(qξ − l) = 0 unless l = [qξ ], that is the closest lattice point
to the point qξ ∈ Rn. Using the notation {qξ}= qξ − [qξ ] one may write

mq,λ (tξ ) = K(q, [qtξ ],λ )ψ({qtξ}) σ̃

(
λ 1

2

q
{qtξ}

)

By making a change of variables t := qt, it follows from estimates (22) and (37) that

|I2
q,λ | ≤ Cε (λ

1
2 /q)−

n−3
2 q−

n−1
2 +ε (λ ,q1)

1
2 2

r
2 Jλ , (53)

where
Jλ =

∫
|t|≥1/8

|ϕ̃a,δ (t λ
1
2 /q)| ∥tξ∥−

n−1
2 dt,

and ∥tξ∥ denotes the distance of the point tξ to the nearest lattice point. For q≤ λ 1/2

one has
|ϕ̂a,δ (t λ

1
2 /q)| ≤C (λ

1
2 /q)−1 |t|−1 (1+δ |t|)−1 (54)

To estimate the integral Jλ we use (54), and integrate over dyadic intervals 2 j ≤
|t|< 2 j+1 ( j ≥−3). For a fixed j we have

∫ 2 j+1

2 j
t−1(1+δ t)−1 ∥tξ∥−

n−1
2 dt ≤Cε 2 jε (1+δ2 j)−1 (55)

Summing over j this gives: Jλ ≤ Cε (λ
1
2 /q)−1λ ε . Substituting into (53) one esti-

mates
|I2

q,λ | ≤ Cε λ− n−1
4 +ε qε (λ ,q1)

1
2 2

r
2 (56)

Summing over q ≤ λ 1/2, and using Lemma 1, estimate (52) follows. ⊓⊔

Theorem 1 follows immediately from Lemmas 7-9, and estimate (45).



18 Ákos Magyar

2.4 The Kloosterman refinement.

For the sake of completeness we include below the proofs of Theorems A-B. The
present form of Theorem A was given by Heath-Brown [7] in his study of non-
singular cubic forms, the idea going back to Kloosterman. Theorem B follows from
the multiplicative properties of Kloosterman sums and Weil’s estimates [13].

To start let w be an absolutely summable weight function, P be an integral poly-
nomial, N a fixed positive integer, and write

I := ∑
P(m)=λ

w(m) =
∫ 1−1/N+1

−1/N+1
S(α)dα, (57)

with S(α) = ∑m∈Zn e2πiP′(m)w(m) , P′(m) = P(m)− λ . Breaking up the interval
[−1/N + 1,1 − 1/N + 1] according to the Farey dissection of order N (see [9],
Ch.3.8), we have

I = ∑
q≤N

∑
(a,q)=1

∫
S(a/q +β )dβ .

Here for fixed a the inner integral is over the interval[
a+a′

q+q′
− a

q
,

a+a′′

q+q′′
− a

q

]
,

where a′/q′,a/q,a′′/q′′ are consecutive Farey fractions. Since qa′− q′a = −1 and
qa′′−q′′a = 1 the range of β is given by

−(q+q′)−1 ≤ qβ ≤ (q+q′′)−1.

Since for consecutive Farey fractions, we have q+q′,q+q′′ ≥ N, one may write I
as

∑
q≤N

∫ 1/qN

−1/qN
∑
a

S(a/q+β )dβ , (58)

where the inner sum is restricted to 1 ≤ a ≤ q, (a,q) = 1, and

q′ ≤ 1
q|β |

−q (β < 0), q′′ ≤ 1
qβ

−q (β > 0). (59)

The numbers q′,q′′ are completely specified by a as q′ ≡−q′′ ≡ a−1 (mod q) and
N − q < q′,q′′ ≤ N, thus (58) eventually restricts the summation in a. The point is
that if |β | ≤ q−1(q+N)−1, then (58) places no restriction on a, and otherwise ā =
a−1 (mod q) must lie in one of two intervals J(q,β )⊆ (0,q). Then one estimates

∑
ā∈J(q,β )

S(a/q+β ) = ∑
(s,q)=1

S(s̄/q+β ) ∑
t∈J(q,β )

1
q ∑
|u|≤q/2

e2πi u(s−t)
q
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=
1
q ∑
|u|≤q/2

Su(q,β ) ∑
t∈J(q,β )

e−2πi ut
q

≪ ∑
|u|≤q/2

(1+ |u|)−1|Su(q,β )|, (60)

where
Su(q,β ) = ∑

(s,q)=1
e2πi us

q S(s̄/q+β ),

using the estimate
1
q ∑

t∈J(q,β )
e−2πi ut

q ≪ (1+ |u|)−1.

Since
(qN)−1 −q−1(q+N)−1 = N−1(q+N)−1 ≤ N−2

and
q−1(q+N)−1 ≥ (2qN)−1,

the total contribution to (58) arising from the ranges |β | ≥ q−1(q+N)−1 is

≪ N−2 ∑
q≤N

∑
|u|≤q/2

(1+ |u|)−1 max
1
2≤qN|β |≤1

|Su(q,β )|. (61)

The remaining range for β gives

∑
q≤N

∫ 1/q(q+N)

−1/q(q+N)
S0(q,β )dβ .

If one integrates for |β | ≤ 1/qN instead, the resulting error is again of the form of
(61). Thus summarizing the above estimates, we have

I = ∑
q≤N

∫ 1/q(q+N)

−1/q(q+N)
S0(q,β )dβ +O(N−2 ∑

q≤N
∑

|u|≤q/2
(1+ |u|)−1 max

1
2≤qN|β |≤1

|Su(q,β )|).

and Theorem A follows.

From the standard estimate for the Gaussian sums G(a, l,q)≪ q−n/2, it is imme-
diate that

|K(q, l,λ ;u)| ≪ q−n/2+1. (62)

Also, G(a, l,q) is a product of one dimensional sums, thus for q odd, by completing
the square in the exponent, it may be written in the form (see also [13], Ch.4)

G(a, l,q) = q−n εn
q

(q
a

)n
e−2πi 4̄ā |l|2

q G(1,0,q)n,

where
( q

a

)
denotes the Jacobi symbol, εq is a 4th root of unity, and ā denotes the

multiplicative inverse of a mod q. Substituting this into (21) we have
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K(q, l,λ ;u) = εn
q q−nG(1,0,q)n ∑

(a,q)=1

(q
a

)n
e2πi aλ+4̄ā(u−|l|2)

q . (63)

The sum in (63) is a Kloostermann sum or Salie sum depending on whether n is
even or odd. Weil’s estimates ([13], Ch.4) imply

|K(q, l,λ ;u)| ≤Cε q−
n−1

2 +ε (λ ,q)
1
2 . (64)

Estimate (22) follows by writing q = q1q2, with q1 odd and q2 = 2r, applying (64)
to q1, (62) to q2 = 2r and using the multiplicative property

K(q, l,λ ;u) = K(q1, l q̄2,λ ;uq̄2
2)K(q2, l q̄1,λ ;uq̄1

2), (65)

where q1q̄1 ≡ 1 (mod q2), and q2q̄2 ≡ 1 (mod q1). Property (65) is well-known, and
is an easy computation using the Chinese Remainder Theorem. This finishes the
proof of Theorem B.

3 The discrepancy of lattice points on hypersurfaces.

We will study now the uniformity of distribution of lattice points on a homogeneous,
non-singular, hupersurface. We will show that if the dimension of the underlying
Euclidean space is large enough with respect to the degree of the hypersurface, then
there are non-trivial upper bounds on the discrepancy with respect to caps.

The analysis will be similar to what we have carried out for spheres, however in
this generality we will use the Birch-Davenport method of exponential sums, which
will allow us to develop uniform asymptotic formulae for the Fourier transform of
the set of lattice points on the hypersurface.

To formulate our main result in this section, let P(m) be a positive, homoge-
neous polynomial of degree d with integer coefficients, and for λ ∈ N, define the
hypersurface

Sλ = {x ∈ Rn; P(x) = λ}

We will write S for S1, the unit level surface. Recall that the polynomial is called
non-singular if for all z ∈ Cn/{0}

∇P(z) = (∂1(z), . . . ,∂n(z)) ̸= 0 (66)

Our main result in this section is the following upper bound of the set of solutions
Z′

P,λ = {λ−1/dm; P(m) = λ} with respect to the family of caps Ca,ξ corresponding
to a given diophantine direction ξ , defined in (2).

Theorem 3. Let n > d(d − 1)2d+1, and let P(m) be a positive, homogeneous non-
singular polynomial of degree d with integer coefficients. If ξ ∈ Sn−1 is diophantine,
then we have

|DP(ξ ,λ )| ≤Cξ ,ε λ ( n
d −1)(1−γd), (67)
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with γd = 1
(d−1)2d+1 .

To see why this upper bound is non-trivial, note that as P is positive, we have
that P(x)≈ |x|d , thus on average for L ≤ λ < 2L, the surface Sλ contains ≈ λ n/d−1

lattice points. Indeed there are ≈ Ln/d lattice points m in the region L ≤ P(m)< 2L,
and they lie on L hypersurfaces. As we have mentioned, because of congruence
obstructions, one cannot have that |Zn ∩Sλ | ≈ λ n/d−1 for all large λ , but it can be
shown that this holds all λ ∈ Λ , for an infinite arithmetic progression Λ ⊆ N. Such
a set Λ will be called a set of regular values. Thus one has

Corollary 1. Let n > d(d−1)2d+1, P(m) be a positive, homogeneous non-singular
polynomial of degree d with integer coefficients, and let Λ be a set of regular values
for P. If ξ ∈ Sn−1 is diophantine, then we have

|DP(ξ ,λ )| ≤Cξ ,ε N1−γd
λ , (68)

for each λ ∈ Λ , with γd = 1
(d−1)2d+1 , where Nλ denotes the number of lattice points

on the surface Sλ .

3.1 The Fourier transform of the set of lattice points on
hypersurfaces.

We will now generalize the asymptotic formula (9) describing the structure of the
Fourier transform of lattice points on spheres, using the Birch-Davenport version of
the Hardy-Littlewood method of exponential sums. This method was developed to
count solutions of (systems of) diophantine equations, when the number of variables
is large enough with respect to the degrees of the polynomials, and it is one of the
most far reaching application of analytic tools in the area of diophantine equations.
In spite of this there are very few accessible description of this method, so perhaps it
is of interest to discuss it in detail in the case of a single non-singular homogeneous
polynomial.

3.1.1 Minor arcs estimates.

To start, let ϕ be a smooth cut-off function which is constant 1 on the unit level
surface S = {P = 1}, and let N = λ 1/d . Then

ω̂λ (ξ ) = ∑
P(m)=λ

e2πi x·ξ ϕ(m) =
∫ 1

0
S(α ,ξ )e−2πiαλ dα, (69)

where
S(α ,ξ ) = ∑

m∈Zn
e2πi(P(m)+m·ξ )ϕ(m/N) (70)
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As is usual in the circle-method, we will now define a family of small intervals,
which we will call major arcs on which the exponential sum S(α ,ξ ) is concentrated.
Let 0 < θ ≤ 1 be a parameter, and for a given pair of natural numbers a,q such that
(a,q) = 1, define the corresponding major arc centered at a/q by

La,q(θ) = {α : 2|α −a/q|< q−1N−d+(d−1)θ},

moreover let
L(θ) =

∪
q≤N(d−1)θ ,(a,q)=1

La,q(θ).

If α /∈ L(θ), the we say α is in a minor arc. The following properties of the major
arcs are immediate from their definition.

Proposition 1. If

(i) θ1 < θ2 then θ1 ⊆ L(θ2).

(ii) θ < d
2(d−1) then the intervals La,q(θ) are disjoint for different values of

a and q.

(i3) |L(θ)| ≤ N−d+(d−1)θ .

We will now derive standard Weyl-type estimates, following [3], for the expo-
nential sum S(α ,ξ ), when α is in a minor arc. It will be useful to introduce the
notations

DhP(m) = P(m)−P(m+h), △hϕ(m) = ϕ(m)ϕ̄(m+h),

and inductively

Dh1,...,hk P = Dh1(Dh2,...,hk P), △h1,...,hk ϕ =△h1(△h2,...,hk ϕ).

Note, that the above expressions are independent of the order of the vectors h1, . . . ,hk.
We will also use repeatedly the expression

|∑
m

ϕ(m)|2 = ∑
m,h

△hϕ(m).

Writing ϕN(m) = ϕ(m/N), and taking averages, we have

|N−nS(α,ξ )|2 = N−2n ∑
h1,m

e2πiαDh1 P(m)−h·ξ△h1 ϕN(m)

≤ N−n ∑
h1

|N−n ∑
m

e2πiαDh1 P(m)△h1ϕN(m)|

Note that the summation is restricted to |h1| ≪ N and |m| ≪ N. Applying the
Cauchy-Schwartz inequality d −2 times, one has
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|N−nS(α,ξ )|2d−1 ≪ N−n(d−1) ∑
h1,...,hd−1

N−n|∑
m

e2πiαDh1 ,...,hd−1 P(m)△h1,...,hd−1ϕN(m)|

(71)
Note that the implicit constant in (71) depends only on the dimension n and the
degree d, and the summation again is restricted to |hi| ≪ N and |m| ≪ N. The point
is that after taking d −1 ”derivatives”, the polynomial Dh1,...,hd−1 P becomes linear,
i.e. it is of the form

Dh1,...,hd−1P(m) =
n

∑
j=1

m j Φ j(h1, . . . ,hd−1), (72)

where the coefficients Φ j : Zn(d−1) → Z are multi-linear forms. In fact writing the
homogeneous polynomial P as

P(m) = ∑
1≤ j1,..., jd

a j1,..., jd m j1 . . .m jd ,

such that the coefficients a j1,..., jd are independent of the order of the indices
j1, . . . , jd−1, it is not hard to see that

Φ j(h1, . . . ,hd−1) = d! ∑
j1,..., jd−1

a j1,..., jd−1, j h1
j1 . . .h

d−1
jd−1

. (73)

For simplicity let us introduce the notations h :=(h1, . . . ,hd−1), ΨN,h(x) :=△h1,...,hd−1ϕN(x) ,
and Φ(h) := (Φ1(h), . . . ,Φn(h) . Now, by (72) the inner sum in (71) is the Fourier
transform the function ΨN,h at ξ = αΦ(h). To estimate it, note that∣∣∣∣∣

(
d
dx

)k

ΨN,h(x)

∣∣∣∣∣≪ N−k, for all k ∈ N,

where the implicit constant depends only on n,d and k, and is supported on |x| ≪ N.
Thus integrating by parts k-times we have that

|Ψ̃N,h(ξ )| ≪ Nn (1+N|ξ |)−k,

where Ψ̃N,h denotes the Fourier transform of ΨN,h(x) considered as function on Rn.
Thus by Poisson summation

|Ψ̂N,h(ξ )| ≤ ∑
l∈Zn

|Ψ̃N,h(ξ − l)| ≪ Nn (1+N∥ξ∥)−k.

Here we used the notation ∥ξ∥=max j ∥ξ j∥, for a point ξ = (ξ1, . . . ,ξn), where ∥ξ j∥
denotes the distance of the j-th coordinate ξ j from the nearest integer. Plugging this,
into inequality (71) we have

|N−nS(α,ξ )|2d−1 ≪ N−n(d−1) ∑
h∈Zn(d−1), |h|≪N

(1+N ∥αΦ(h)∥)−k, (74)
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for all k ∈ N. We will fix now k = n+ 1, and use the multi-linearity of the forms
Φ j(h1, . . . ,hd−1), to estimate the right side of inequality (74) by the number of
(h1, . . . ,hd−1)Zn(d−1), |h j| ≪ N such that ∥αΦ(h)∥ ≤ N−1 . More generally, for
given parameters τ, η , let us introduce the quantities

R(Nτ ,N−η ,α) = |{h ∈ Zn(d−1); |h| ≪ N, ∥αΦ j(h)∥ ≤ N−η , 1 ≤ j ≤ n}|. (75)

Lemma 10.
(N−n|S(α,ξ )|)2d−1 ≪ N−n(d−1)R(N,N−1,α). (76)

Proof. Consider the points {α Φ(h)} ∈ [− 1
2 ,

1
2 ]

n , where { } denotes the frac-
tional part, and divide the cube [− 1

2 ,
1
2 ]

n into Nn cubes Bs of size 1
N . Now if

B0 = [− 1
2N ,

1
2N ]

n, then for each fixed h′ = (h1, . . . ,hd−2), the cube B0 will con-
tain at least as many points of the form {α Φ(h′,hd−1)} , as any of the other
cubes Bs. Indeed, this follows immediately from the linearity of the forms Φ j in
the variable hd−1. Since the center of the cubes Bs are N−1s = ( s1

N , . . . , sn
N ) with

−N/2 ≤ s j < N/2, the right side of (74) is bounded by

N−n(d−1) ∑
−N

2 ≤s1,...,sn<
N
2

(1+ |s|)−n−1 R(N,N−1,α) ≪ N−n(d−1)R(N,N−1,α).

⊓⊔

Next, we will use that fact that the quantities R(Nτ ,N−η ,α) can be compared
to each other for different values of the parameters τ,η , in fact we will need the
following

Lemma 11. Let 0 < θ < 1
d−1 . Then we have

N−n(d−1)R (N,N−1,α) ≪ N−n(d−1)θ R (Nθ ,N−d+(d−1)θ ,α). (77)

This is based on the following result

Lemma 12. (Davenport [4]) Let L1(u), . . . ,Ln(u) be n real linear forms in n vari-
ables u1, . . . ,un, say

L j(u) = ∑
k

λ jk uk,

which are symmetric in the sense that λ jk = λk j. Let 1 < K1 < K2 and for 0 < r < 1
let U(r) denote the number of integer solutions of the system

|uk|< rK1, ∥L j(u)∥< rK−1
2 . (78)

Then for all 0 < r ≤ 1 we have

U(1)≪ r−nU(r). (79)

This is Lemma 3.3 in [4] and is an application of the geometry of numbers.
Let us remark here only that the solutions of (78) can be viewed as lattice points
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(u,v) ∈ Z2n which are inside the convex symmetric body rB, where

B = {(u,v) ∈ R2n; |uk|< K1, |v j −L j(u)|< K−1
2 , 1 ≤ k, j ≤ n}.

Proof of Lemma 11. We will apply Lemma 12 in each variable h1, . . . ,hd−1 . Fix
h′ = (h2, . . . ,hd−1 , write u = h1 and L j(u) = α Φ j(u,hh′) . From (73) it is clear that
the linear forms L j(u) are symmetric, thus we can apply Lemma 12, with K1 = K2 =
N, r1 = Nθ−1, r2 = 1 for each h′. Summing over h′ gives

R(N,N−1α) ≪ Nn(1−θ)|{h ∈ Zn(d−1); |h1| ≪ Nθ , |h′| ≪ N, ∥α Φ(h)∥< Nθ−2}.

Next, set u= h2, fix the remaining variables and apply Lemma 69 with K1 =N, K2 =
N2−θ and r = Nθ−1. Continuing this procedure for all the variables h1, . . . ,hd−1

eventually, we have

R(N,N−1α) ≪ Nn(d−1)(1−δ )R (Nθ ,N−d+(d−1)θ ,α),

which is the same as (77). ⊓⊔

Note that if there is a point h ∈ Zn(d−1) , |h| ≪ N such that ∥αΦ j(h)∥ <

N−d+(d−1)θ and Φ j(h) ̸= 0, then setting q = |Φ j(h)| , we have that∣∣∣∣α − a
q

∣∣∣∣< 1
q

N−d+(d−1)θ

for some a ∈ Zn such that (a,q) = 1. Thus α ∈ L(θ) by the definition of major arcs,
hence if α is in a minor arc, we have

R (Nθ ,N−d+(d−1)θ ,α)= |{h∈Zn(d−1); |h|≪N, Φ1(h)= . . .=Φn(h)= 0}. (80)

which is the number of lattice points h ∈ Zn(d−1) of size |h| ≪ Nθ on the variety

SΦ := {z ∈ Cn(d−1); Φ1(z) = . . .= Φn(z) = 0}.

By (73) it is easy to see that Φ j(h, . . . ,h) = (d −1)!(∂/∂ j)P(h), thus if we set

△ := {(h, . . . ,h); h ∈ Cn} ⊆ Cn(d−1),

then
SΦ ∩△= {h ∈ Cn; ∂1P(h) = . . .= ∂nP(h) = 0}= {0},

by our assumption that the polynomial P is non-singular. Then by basic facts from
algebraic geometry it follows that

D := dim Sϕ ≤ n(d −1)−n.

The dimension of the algebraic set SΦ is defined algebraically, however it is well-
known, see [8], Ch.7, that if it has dimension is D then every bounded part of it can
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be covered by O(ρ−D) balls of diameter ρ for any 0 < ρ < 1. Combining this with
the fact that SΦ is homogeneous, we have

|{h ∈ Zn(d−1)∩SΦ ; |h| ≪ Nθ}| ≪ |{h′ ∈ (N−θ Z)n(d−1)∩SΦ ; |h′| ≪ 1}| ≪ NDθ .
(81)

Then by (76), (77) and (81), we have the following estimate on the minor arcs

Lemma 13. Let 0 < θ < 1. If α /∈ L(θ), then we have uniformly in ξ

|S(α ,ξ )| ≪ N n−nθ 2−(d−1)
. (82)

We will also need a variant of the above estimate when the cut-off function ϕ
is replaced by the indicator function χ of a cube of side length ≈ 1 centered near
the origin. The estimate below is proved in [3], however it easily follows from (82).
Indeed, choose a cut off function ϕ such that χϕ = χ , and let P1(m) = P(m)+m ·ξ .
Then by Plancherel’s identity

∑
m∈Zn

e2πiαP1(m) ϕ(m/N)χ(m/N) = (83)

=
∫

Tn

(
∑

m∈Zn
e2πiαP1(m)−m·ξ ϕ(N/P)

)
(Nnχ̂(Nξ ))dξ ≪ Nn− n

2d−1 (log N)n.

Here Tn is the flat torus, and the above estimate follows using (82) for the first term
of the integral uniformly in ξ , and the fact that ∥Nnχ̂(Nξ )∥L1(Tn) ≪ (log N)n.

Corollary 2. Let 1 ≤ a < q be natural numbers s.t. (a,q) = 1. The for the exponen-
tial sum

G(a,q, l) = q−n ∑
s∈(Z/qZ)n

e2πi aP(m)−l·s
q ,

one has
|G(a,q, l) ≪ q

− n
(d−1)2d (log q)n. (84)

Proof. Set N = q, α = a/q, ξ = l/q, θ = 1/2(d − 1) and notice that α /∈ L(θ).
Indeed, for q1 ≤ q(d−1)θ we have∣∣∣∣aq − a1

q1

∣∣∣∣≥ 1
q1q

≥ 1
q1

q−d+(d−1)θ .

Then (84) follows from (83), choosing χ to be the indicator function of [0,1)n, and
identifying (Z/qZ)n with [0,q)n ∩Zn. ⊓⊔

Corollary 3. If |α |< P−d/2 then one has

|S(α ,ξ )| ≪ Nn (Nd |α|)
− n

(d−1)2d−1 .

Proof. Choose θ such that |α|= N−d+(d−1)θ , that is (Nd |α|)
1

d−1 = Nθ . The major
arcs La,q(θ) are disjoint since (d − 1)θ < d/2, moreover α is an endpoint of the
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interval L0,1(θ) hence α /∈ La,q(θ). By (82) this gives

|S(α,ξ )| ≪ Nn−n2−(d−1)θ = Nn (Nd |α|)
− n

(d−1)2(d−1) .

⊓⊔

3.1.2 Approximations on the major arcs.

We will now derive an asymptotic expansion for the Fourier transform of the lat-
tice points on the hypersurface Sλ = {P = λ} along the lines as in Section 2.
Throughout this section we will assume that n is sufficiently large, in particular
that n > nd := d(d − 1)2d+1 , set γd := 1

(d−1)2d+1 , and for simplicity of notation

introduce the quantity D := (d −1)2d−1 .
Going back to the integral defined in (69), for a given θ , write

ω̂λ (ξ ) =
∫

α∈L(θ)
S(α,ξ )dα +

∫
α /∈L(θ)

S(α ,ξ )dα = Aλ (ξ )+E1
λ (ξ ). (85)

It follows from our assumptions on n, that there is a θ < 1
2(d−1) , such that

nθ2−(d−1) > d +nγd

thus (71) implies that S(λ ,ξ )≪Nn−d−nγd for λ /∈ L(θ) . Thus we have the estimate,
uniformly in ξ

|E1
λ (ξ )| ≪ Nn−d−nγd . (86)

We will fix a θ < 1
2(d−1) so that (86) holds, and will do a number of transformations

on the main term Aλ (ξ ) which are similar the ones we have used in the special case
of the spheres. For a given α ∈ La,q(θ) for some (a,q) = 1, q ≤ N(d−1)θ , write
α = a/q+β , with |β | ≤ N−d+(d−1)θ and m = qm1 + s with m1 ∈ Zn, s ∈ (Z/qZ)n.
Applying Poisson summation as in (17), we have

S(a/q+β ,ξ ) = ∑
m∈Zn

e2πi a
q P(m)e2πim·ξ Hβ ,N(m)

= ∑
s∈(Z/qZ)n

G(a,q, l) H̃β ,N(l/q−ξ ), (87)

where H̃β ,N is the Fourier transform of the function Hβ ,N(x) = e2πiβP(m)ϕ(m/N) ,
and G(a,q, l) is the exponential sum defined in (84). Thus we have

Aλ (ξ ) = ∑
q≤N(d−1)θ

∑
(a,q)=1

∑
l∈Zn

G(a, l,q) Jλ (ξ − l/q), (88)

where
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Jλ (ξ − l/q) =
∫
|β |≤N−d+(d−1)θ

H̃(l/q−ξ ,β )e−2πiλβ dβ

We shall approximate the functions Aλ (ξ ) with functions Bλ (ξ ) where the cut-off
function ψ(qξ − l) have been inserted in (88), that is let

Bλ (ξ ) = ∑
a,q

∑
l∈Zn

G(a, l,q)ψ(qξ − l)Jλ (ξ − l/q)

Next, we extend the integration in β and define

Mλ (ξ ) = ∑
a,q

∑
l∈Zn

G(a, l,q)ψ(qξ − l) Iλ (ξ − l/q)

with
Iλ (ξ − l/q) =

∫
R

H̃(ξ − l/q,β )e−2πiλβ dβ . (89)

A crucial point is to identify the the integrals Iλ (η), in fact we will show that

Iλ (η) = σ̃λ (η).

First we estimate the errors obtained

Lemma 14. If 0 < θ < 1
2(d−1) then one has uniformly in ξ

|Aλ (ξ )−Bλ (ξ )| ≪ Nn−d−nγd .

Proof. If we set

µβ (ξ ) = ∑
l

G(a,q, l)(1−ψ(qξ − l)) H̃N,β (ξ − l/q),

then it is enough to show that |µβ (ξ )|≪Nn−d−nγd uniformly for |β | ≤N−d+(d−1)θ

and ξ ∈ Tn. Let η = ξ − l/q, and estimate H̃N,β (η) by partial integration:

H̃N,β (η) ≤ Nn
∣∣∣∣∫Rn

e2πiNdβ P(x)ϕ(x) e2πiNx·η dx
∣∣∣∣

≪ Nn|Nη |−K
∣∣∣∣∫Rn

(d/dη)K (e2πiNdβ P(x)ϕ(x) e2πiNx·η dx
∣∣∣∣

≪ Nn|Nη |−K (1+Nd |β |)K .

Now, on the support of 1−ψ(qξ − l) we have that

N|η |= N|ξ − l/q| ≫ N1−(d−1)θ ,

hence for |β | ≤ N−d+(d−1)θ and θ < 1/2(d−1), choosing 0 < τ < 1
2 −(d−1)θ we

have
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|µβ (ξ )| ≪ Nn(N/q)−τK ∑
l∈Zn

(1+ |qξ − l|)−τK ≪ Nn−τK(1−(d−1)θ).

The Lemma follows by choosing K sufficiently large. ⊓⊔

In order to estimate the error obtained by extending the integration in β , we will
need the following

Lemma 15. For given η , L > 0 let

I(L,η) =
∫

e2πiL(P(x)+x·η)ϕ(x)dx.

Then one has
I(L,η) ≪ (1+L)−

n
D , (90)

with D = (d −1)2d−1.

Proof. The estimate is obvious for L< 1, so let L≥ 1. If |η | ≥C with a large enough
constant C, then the gradient of the phase L|P′(x)+η | ≥ L/2 on the support of ϕ
and (90) follows by partial integration.

Suppose |η | ≤C and introduce the parameters θ , N, α such that L = N(d−1)θ ,
α = N−dL, if θ is chosen sufficiently small, then we have N > L

2n
D . Changing vari-

ables y = Nx yields

I(L,η) = N−n
∫

e2πiα (P(y)+Nd−1y·η)ϕ(y/N)dy.

We compare the integral to a corresponding exponential sum

N−nS(α,η) = N−n ∑
m∈Zn

e2πiα (P(m)+Nd−1 m·η) ϕ(m/N).

If y = m+ z where m ∈ Zn and z ∈ [0,1]n, then it is easy to see that

|e2πiα (P(y)+Nd−1y·η)− e2πiα (P(m)+Nd−1m·η)| ≪ N−1+(d−1)θ ,

since |α |= N−d+(d−1)θ and |η | ≤C. Thus

|I(L,η)−N−nS(α)| ≪ N−1+2(d−1)θ ≪ N− 1
2 ≤ L− n

D .

Also, by Corollary 3

|N−n S(α ,η)| ≪ |Ndα|−
n
D = L− n

D

and (90) follows. ⊓⊔

We remark that a better uniform estimate can be obtained by using real variable
methods, exploiting the fact that P(x) ≈ |x|d . However we have chosen to estimate
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integral using exponential sums as this method works also for indefinite forms P.
Now, it is easy to prove

Lemma 16. We have, uniformly in ξ

|Bλ (ξ )−Mλ (ξ )| ≪ Nn−d−nγd

Proof. One has by (90)∫
|β |≥N−d+(d−1)θ

|H̃(ξ − l/q)|dβ ≪ Nn− n
D ≪ Nn−d−nγd .

The factors ψ(qξ − l) restrict the sum in l to at most one non-zero term, moreover
by (84) we have |G(a,q, l)| ≪ q−

n
D+ε ≪ q−3 , say. Thus

|Bλ (ξ )−Mλ (ξ ) ≪ ( ∑
q≤N(d−1)θ

∑
(a,q)=1

q−3)Nn−d−nγd ≪ Nn−d−nγd .

⊓⊔

Summarizing, we have the asymptotic formula

ω̂λ (ξ ) = Mλ (ξ )+Eλ (ξ ),

where

Mλ (ξ ) = ∑
q≤N(d−1)θ

∑
(a,q)=1

∑
l∈Zn

G(a,q, l)ψ(qξ − l) Iλ (ξ − l/q),

and
|Eλ (ξ )| ≪ Nn−d−nγd ,

uniformly in ξ ∈ Tn.

3.1.3 The singular integral.

We will now identify the integrals Iλ (η) with the Fourier transform of a certain
natural measure supported on the surface Sλ = {P = λ}. Note that by assumption
that the polynomial P is non-singular and positive, Sλ is a smooth, compact hyper-
surface in Rn.

There is a unique n−1-form dσP(x) on Rn\{0} such that

dP∧dσP = dx1 ∧ . . .∧dxn, (91)

called the Gelfand-Leray form (see [1], Sec.7.1). To see this, suppose that say
∂1P(x) ̸= 0 on some open set U . By a change of coordinates: y1 = P(x),y j = x j
for 2 ≤ j ≤ n, equation (91) takes the form
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dy1 ∧dσP(y) = ∂1H(y) dy1 ∧ . . .∧dyn

where x1 = H(y),x j = y j is the inverse map. Thus the form
dσP(y) = ∂1H(y)dy2 ∧ . . .∧dyn satisfies (91).

We define the measure σλ as the restriction of the n− 1 form dσP to the level
surface Sλ . This measure is absolutely continuous with respect to the Euclidean
surface area measure dSP,λ , more precisely one has

Proposition 2.

dσλ (x) =
dSλ (x)
|P′(x)|

, (92)

where dSλ denotes the Euclidean surface area measure on the level surface
{P = λ}.

Proof. Choose local coordinates y as before; in coordinates y level surface Sλ and
surface area measure dSλ takes the form

Sλ = {x1 = H(λ ,y2, . . . ,yn), x j = y j; 2 ≤ j ≤ n},

and

dSλ (y) = (1+
n

∑
j=2

∂ 2
j H(λ ,y))1/2 dy2 ∧ . . .∧dyn.

Using the identity P(H(y),y2, . . . ,yn) = y1 , one has

∂1P(x)∂1H(y) = 1 , ∂1P(x)∂ jH(y)+∂ jP(x) = 0,

This implies that

∂1H(y) = (1+
n

∑
j=2

∂ 2
j H(y))1/2 · |P′(x)|−1,

and (92) follows by taking y1 = λ . ⊓⊔

A crucial observation is that the measure dσλ , considered as a distribution on
Rn, has a simple oscillatory integral representation.

Lemma 17. Let P(x) be a non-singular, homogeneous polynomial, and let λ be a
real number. Then in the sense of distributions

σλ (x) =
∫

R
e2πi(P(x)−λ )t dt. (93)

This means that for any smooth cut-off function χ(t) and test function ϕ(x) one has

lim
ε→0

∫ ∫
e2πi(P(x)−λ )t χ(εt)ϕ(x)dxdt =

∫
ϕ(x)dσλ (x). (94)
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Proof. Let U be an open set on which ∂1P ̸= 0, and by a partition of unity we can
assume that suppϕ ⊆ U . Changing variables y1 = P(x), y j = x j the left side of
(94) becomes

lim
ε→0

∫ ∫
e2πi(y1−λ )t χ(εt)ϕ̃(y)|∂1H(y)|dydt =

∫
ϕ̃(λ ,y′)|∂1H(λ ,y′)|dy′,

where y′ = (y2, . . .yn).
The last equality can be seen by integrating in t and in y1 first, and using the

Fourier inversion formula:

lim
ε→0

∫ ∫
e2πi(y1−λ )t χ(εt)g(y1)dy1dt = g(λ ).

On the other hand Sλ ∩U = {x1 = H(λ ,y2, . . .yn), x j = y j} , and
σλ (y) = |∂1H(λ ,y′)|dy′ in parameters y′ = (y2, . . . ,yn). ⊓⊔

Now it is easy to identity the integrals Iλ (η) defined in (89). Indeed by (94), we
have

Iλ (η) =
∫

Rn

∫
R

e−2πi(P(x)−λ )β e2πix·η ϕ(x/P)dβ dη

=
∫

Rn
σλ (x)e

2πix·η ϕ(x/P)dη = σ̃λ (η)

Also, by homogeneity, σ̃λ (η) = λ n/d−1σ̃(λ 1/dη) , where σ is the Gelfand-
Leray measure restricted the unit level surface S = {P = 1}. Thus we have shown

Theorem 4. Let d ≥ 2, n ≥ d(d − 1)2d+1, and let P be a positive, homogeneous,
non-singular polynomial of degree d. Then we have

ω̂λ (ξ ) = Mλ (ξ )+Eλ (ξ ), (95)

where

Mλ (ξ ) = λ
n
d −1 ∑

q≤Nd−1θ
∑

(a,q)=1
∑

l∈Zn
G(a,q, l)ψ(qξ − l) σ̃(λ

1
d (ξ − l/q)), (96)

and
|Eλ (ξ )| ≪ Nn−d−nγd (97)

uniformly in ξ ∈ Tn, where γd = 1
(d−1)2d+1 .

Let us remark that following the error estimates carefully, in fact it was shown
that

|Eλ (ξ )| ≪ Nn−d− n
D+2 = Nn−d−nγ ′d

with some constant γ ′d > γd for n > d(d − 1)2d+1. This will be utilized in our esti-
mates on the discrepancy, to swallow certain small factors of size Nε .
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We will also need an estimate on the decay of the Fourier transform of the mea-
sure σ , later in our upper bounds on the discrepancy.

Lemma 18. One has
|σ̃(ξ )| ≪ (1+ |ξ |)−

n
D+1

Proof. Suppose |ξ |> 1, and choose a cut-off ϕ such that ϕσ = σQ . Then by (94),
we have

σ̃(ξ ) =
∫

e−2πi x·ξ ϕ(x)dσ(x)

= lim
δ→0

∫ ∫
e−2πi x·ξ e2πi(P(x)−1)tϕ(x)χ(δ t)dxdt

We decompose the range of integration into two parts

σ̃(ξ ) =
∫
|t|≥c|ξ |

∫
Rn

+
∫
|t|≤c|ξ |

∫
Rn

= I1 + I2

Note that if |t| ≤C|ξ | , with a sufficiently small constant c > 0, then one has for the
gradient of the phase

|(tP(x)− x ·ξ )′|= |P′(x)−ξ | ≥ |ξ |/2,

thus integrating by parts K times yields

|I2| ≤CN (1+ |ξ |)−K+1.

For |t| ≥C|ξ | we have by (90)

|
∫

e2πi(tP(x)−x·ξ )ϕ(x)dx| ≪ |t|−
n
D ,

hence
I1 ≪

∫
|t|≥C|ξ |

|t|−
n
D dt ≪ |ξ |−

n
D+1,

with D = (d −1)2d−1. ⊓⊔

3.1.4 The singular series.

In order to get nontrivial upper bounds on the discrepancy for the set of lattice points
on hypersurfaces, one needs to ensure that there are many lattice on the surface. We
will do this, by showing the existence of a regular set of values Λ corresponding to a
non-singular polynomial P. Most of what we discuss below is standard, for example
it is implicit in [3], so we only include the details for the sake of completeness.

Recall that we have a fixed θ slightly smaller than 1
2(d−1) , so that the asymptotic

expansion (96) holds with an error term of size O(Nn−d−nγd ), where N = λ 1/d and
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γd = 1
(d−1)2d+1 . Taking ξ = 0 this means that

ω̂λ (0) = λ
n
d −1 ∑

1≤N(d−1)θ
K(q,0,λ )+O(Nn−d−nγd ),

where

K(q,0,λ ) = ∑
(a,q)=1

G(a,q, l) = q−n ∑
(a,q)=1

∑
s∈(Z/qZ)n

e2πi a(P(s)−λ )−s·l
q .

To exploit the multiplicativity of the terms K(q,0,λ ) we need to extend the summa-
tion for all q ∈ N, and estimate the error obtained. This can be done by using (84)
which yields

|K(q,0,λ )| ≪ (log q)nq−
n
D+1,

thus for a sufficiently small ε > 0

∑
q≥N(d−1)θ

|K(q,0,λ )| ≪ε N−(d−1)θ( n
D−2−ε) ≪ N−nγd

if n > d(d − 1)2d+1, by our choice of the parameters, D and γd . Indeed, we have
that (n/D − 2) > 2nγd , thus choosing θ sufficiently close to (but smaller than)
1/2(d−1), the above estimate holds. It is well-known, and easy to see from the Chi-
nese Remainder Theorem, that K(q1,0,λ )K(q2,0,λ ) = K(q1q2,0,λ ) for q1 and q2
being relative primes, which implies that

∞

∑
q=1

K(q,0,λ ) = ∏
p prime

(
∞

∑
r=0

K(pr,0,λ )) = ∏
p prime

Kp(λ ).

Note that K(1,0,λ )= 1 and by estimate (84) we have that Kp(λ )= 1+O(p−
n
D+2)=

1+O(p−2) . Thus choosing R = RP sufficiently large, we have that

1/2 ≤ ∏
p>R p prime

|Kp(λ )| ≤ 2 (98)

Let is recall that Kp(λ ) is the density of solutions of the equation P(m) = λ among
the p-adic integers (see [3]). More precisely, if one defines

r(pK ,λ ) := |{m ∈ (Z/(pKZ)n : P(m)≡ λ (mod pN)}|,

then one has

Proposition 3.

K

∑
r=0

K(pr,0,λ ) = p−n(K−1)r(pK ,λ ).

Proof. Note that
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r(pK ,λ ) = ∑
m (mod pK)

p−K
pK

∑
b=1

e
2πi(P(m)−λ ) b

pK ,

since the inner sum is equal to pK or 0 according to whether P(m) ≡ λ (mod pK)
or not. Next one writes b = apK−r, where (a, p) = 1, 1 ≤ a < pr for r = 0,1, . . . ,K,
and collects the terms corresponding to a fixed r which turn out to be K(pr,0,λ ).
⊓⊔

Let us remark that this implies Kp(λ ) = limK→∞ p−n(K−1)r(pK ,λ ) , which can
be interpreted as the density of the solutions among the p-adic integers.

To count the number of solutions modulo pK , one uses the p-adic version of
Newton’s method.

Lemma 19. Let p be a prime, λ and let k, l be natural numbers such that l > 2k.
Suppose there is an m0 ∈ Zn for which

P(m0)≡ λ (mod pl),

moreover suppose, that pk is the highest power of p which divides all the partial
derivatives ∂ jP(m0).

Then for K ≥ l, one has p−K(n−1)rP(pK ,λ )≥ p−l(n−1).

Proof. For K = l this is obvious. Suppose it is true for K, and consider all the solu-
tions m1 (mod pN+1) of the form m1 = m+ pK−ks where s (mod p). Then

P(m+ pK−ks)−λ = P(m)−λ + pK−kP′(m) · s = 0 (mod pK+1),

which yields a+b · s = 0 (mod p) where apK = P(m)−λ and bpk = P′(m). Then
b j ̸= 0 (mod p) for some j hence there are pn−1 solutions of this form. All obtained
solutions are different mod (pK+1), and m1 satisfies the hypothesis of the lemma.
⊓⊔

We remark that in case of m = 1, k = 0 the above argument shows that there are
exactly p(K−1)(n−1) solutions m for which m = m0 (mod p) and P(m) = λ (mod pK).
It is not hard to establish now the existence of a set of regular values for the polyno-
mial P.

Lemma 20. let P(m) be a homogeneous non-singular polynomial of degree d ≥ 2,
then there exists an infinite arithmetic progression Λ and constants 0 < cP < CP,
such that for all λ ∈ Λ

cP ≤ K(λ )≤CP

Proof. Let λ0 =P(m0) ̸= 0 for some fixed m0 ̸= 0. Let p1, . . . , pJ be the set of primes
less then R. Let k be an integer s.t. pk

j does not divide dλ0 , for all j ≤ J, where d
is degree of P(m). By the homogeneity relation P′(m0) ·m = dλ0 it follows that
pk

j does not divide some partial derivative ∂iP(m0). Fix l s.t. l > 2k and define the
arithmetic progression
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Λ = {λ0 + k ∏J
j=1 pl

j : k ≥ kQ}. Then we claim that Λ is a set of regular values.
Indeed by Proposition 3 one has for λ ∈ Λ

Kp j(λ ) = lim
N→∞

p−n(N−1)
j rQ(pN

j ,λ )≥ p−l(N−1)
j .

This together with (98) ensures that the singular series K(λ ) remains bounded from
below, and the error term becomes negligible by choosing k = kP large enough. ⊓⊔

Let us remark that along the same lines it can be shown, that all large numbers
are regular values of P(m), if for each prime p< R and each residue class s (mod p),
there is a solution of the equations P(m) = s (mod p) such that P′(m) ̸= 0 (mod p).
This is the case for example for P(m) = ∑ j md

j .

3.2 Upper bounds for the discrepancy.

We will prove Theorem 3 by extending the arguments given in Section 2 to the case
of a general homogeneous non-singular hypersurface. Our main tool again will be
the asymptotic expansion (95)

ω̂λ (ξ ) = λ
n
d −1 ∑

q≤N(d−1)θ
mq,λ (ξ )+Eλ (ξ ),

where
mq,λ (ξ ) = ∑

l∈Zn
K(q, l,λ )ψ(qξ − l) σ̃(λ

1
d (ξ − l/q)).

Note that 0< θ < 1
2(d−1) and N = λ 1/d . Moreover we will need the decay estimates

|σ̃(ξ )| ≪ (1+ |ξ |)−
n
D+1 (99)

|Kp(q, l,λ )| ≪ε q−
n
D+1+ε (100)

Recall that the discrepancy of the set Z′
P,λ = {λ−1/dm; P(m) = λ} with respect to

caps Ca,ξ = {x ∈ SP : |x ·ξ ≥ a} may be written as

DP(ξ ,λ ) = ∑
P(m)=λ

χa(λ−1/dm ·ξ ) − Nλ

∫
SP

χa(x ·ξ )dσ(x),

where Nλ is the number of solutions of the diophantine equation P(m) = λ , and
χa is the indicator function of an interval [a,b], b being a fixed constant such that
|x ·ξ | ≤ b for all x ∈ SP and ξ ∈ Sn−1.

We turn to the proof of Theorem 3. As before, it will be enough to estimate the
”smoothed” discrepancy
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DP(ϕa,δ ,ξ ,λ ) = ∑
P(m)=λ

ϕa,δ (λ− 1
d m ·ξ )−Nλ

∫
SP

ϕa,δ (x ·ξ )dσ(x),

for, say δ = λ−n. Taking the inverse Fourier transform of the functions ϕa,δ , we
have

∑
P(m)=λ

ϕa,δ (λ−1/d m ·ξ ) =
∫

R
λ

1
d ϕ̃a,δ (tλ

1
d ) ω̂λ (tξ )dt (101)

also ∫
Sn−1

ϕa,δ (x ·ξ )dσ(x) =
∫

R
ϕ̃a,δ (t) σ̃(tξ )dt. (102)

Moreover, as in (43) and (44), set

Iq,λ :=
∫

R
λ

1
d ϕ̃a,δ (tλ

1
d )mq,λ (tξ )dt,

and
Eλ :=

∫
R

λ
1
2 ϕ̃a,δ (tλ

1
2 )Eλ (tξ )dt.

First, we estimate the error term using (95)

|Eλ | ≪ Nn−d−nγd

∫
R
(1+ |t|)−1(1+δ |t|)−1 (103)

≪ λ
n
d −1− n

d (log λ ) ≪ λ ( n
d −1)(1−γd), (104)

Next, we decompose the integral Iq,λ as in (46), and observe that for |t|< 1/8q

mq,λ (tξ ) = K(q,0,λ ) σ̃(λ 1/d tξ ).

Lemma 21. We have

|λ
n
d −1 ∑

q≤N(d−1)θ
I1
q,λ − Nλ

∫
SP

ϕa,δ (x ·ξ )dσ(x) | ≪ λ ( n
d −1)(1−γd). (105)

Proof. By the above observation and a change of variables t = λ 1/dt , we have

∑
q≤N(d−1)θ

I1
q,λ = ∑

q≤N(d−1)θ
K(q,0,λ )

∫
|t|<N/8q

ϕ̃a,δ (t) σ̃(tξ )dt.

We extend the integration to the whole real line to exploit (102), the error obtained
is bounded by∫

|t|≥N/8q
|ϕ̃a,δ (t)| |σ̃(tξ )|dt ≪

∫
|t|≥N/8q

(1+ |t|)−
n
D dt ≪ N− n

D+1q
n
D−1.

Thus
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d −1 ∑

q≤N(d−1)θ
I1
q,λ − ∑

q≤N(d−1)θ
K(q,0,λ )

∫
Sp

ϕa,δ (x ·ξ )dσp(x)

∣∣∣∣∣∣
≪ε N− n

D+1 ∑
q≤N(d−1)θ

q−
n
D+1+ε q

n
D−1 ≪ N−nγd , (106)

using the facts that (d − 1)θ < 1
2 and n

D − 2 > nγd , choosing ε > 0 sufficiently
small. ⊓⊔

Lemma 22. One has
∑

q≤N(d−1)θ
|I2

q,λ | ≪ N−nγd . (107)

Proof. Since ψ(qξ − l) = 0 unless l = [qξ ], the nearest lattice point to the point qξ ,
we have that

mq,λ (tξ ) = K(q, [qtξ ],λ )ψ({qtξ}) σ̃
(

N
q
{qtξ}

)
.

By making a change of variables t := tq, it follows from (99) and (100)

|I2
q,λ | ≪ε N− n

D+2 q−1+ε Jλ

where
Jλ =

∫
|t|≥1/8

|ϕ̃a,δ (tN/q)|∥tξ∥−
n
D+1 dt.

Note that for q ≤ N(d−1)θ < N1/2

|ϕ̃a,δ (tN/q)| ≪ q
N

|t|−1(1+ |δ t|)−1.

By a dyadic decomposition of the range of integration, using (36), we have

|Jλ | ≪ε
q
N ∑

j≥−3
2ε j (1+δ2 j)−1 ≪ qN−1+ε ′ ,

with ε ′ = ndε . Choosing ε > 0 sufficiently small, this implies

∑
q≤N(d−1)θ

|I2
q,λ | ≪ε ∑

q≤N1/2

qε N− n
D+1+ε ′ ≪ N− n

D+2 ≪ N−nγd . (108)

⊓⊔

Finally, we remark that Theorem 3 follows immediately from estimates (103)-
(107). ⊓⊔



Diophantine equations 39

3.3 The distribution of the solutions modulo 1.

We will study the distribution of the images of the solutions of a diophantine equa-
tion P(m) = λ on the flat torus Tn = Rn/Zn, via the map Tα : (m1, . . . ,mn) →
(m1α1, . . . ,mnαn) (mod 1), where α = (α1, . . . ,αn) ∈ Rn is a given point. We will
assume, as before, that P is a positive, homogeneous, non-singular polynomial of
degree d, and n ≥ nd is large enough with respect to the degree. Note that if one of
the coordinates αi is rational, say equal to a/q, then miαi can take at most q different
values modulo 1, so the images of the solution sets

Ωλ ,α := {(m1α1, . . . ,mnαn) : P(m1, . . . ,mn) = λ} ⊆ Tn (109)

cannot become equi-distributed on the torus as λ →∞, even if one restricts to regular
values only. In the opposite case, we have

Theorem 5. Let α = (α1, . . . ,αn) be point such that αi is irrational for all 1≤ i≤ n,
and ϕ be a smooth function on Tn. If Λ is a set of regular values of the form P, then
one has

lim
λ→∞,λ∈Λ

N−1
λ ∑

P(m)=λ
ϕ(m1α1, . . . ,mnαn) =

∫
Tn

ϕ(x)dx, (110)

where Nλ is the number of solutions of the equation P(m) = λ .

Proof. For simplicity, let us introduce the notation m ◦α = (m1α1, . . . ,mnαn). By
using the inverse Fourier transform ϕ(β ) = ∑l∈Zn ϕ̂(l)e2πiβ · l , we have

∑
P(m)=λ

ϕ(m◦α) = ∑
l∈Zn

ϕ̂(l) ∑
P(m)=λ

e2πi(m1l1α1+...mnlnαn)

= ∑
l∈Zn

ϕ̂(l) ω̂λ (l ◦α) = Nλ ϕ̂(0)+Tλ (α), (111)

where
Tλ (α) = ∑

l∈Zn, l ̸=0
ϕ̂(l) ω̂λ (l ◦α). (112)

Substituting the asymptotic expansion (95) into the above expression we have

Tλ (α) = ∑
q≤N(d−1)θ

∑
l ̸=0

mq,λ (l ◦α)ϕ̂(l) + ∑
l ̸=0

Eλ (l ◦α)ϕ̂(l).

Using the fact that ϕ̂(l)≤CM(1+ |l|)−M for all M ∈ N, estimate (97) implies

∑
l ̸=0

|Eλ (l ◦α)ϕ̂(l)| ≪ Nn−d−nγd ∥ϕ̂∥l1 ≪ Nn−d−nγd , (113)

where N = λ 1/d and γd > 0 is a constant depending on d. Also, by (100) one has

|mq,λ (l ◦α)| ≪ε Nn−dq−
n
D+1+ε σ̂

(
N
q
∥ql ◦α∥

)
. (114)
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Since α ∈ (R/Q)n by our assumption and l ̸= 0 we have that ∥ql ◦α∥> 0, thus

mq,λ (l ◦α)→ 0 as λ → ∞.

Let ε > 0 be fixed, then by (114) one estimates crudely

∑
q≥Nε

∑
l ̸=0

|mq,λ (l ◦α) ϕ̂(l)| ≪ Nn−d ∑
q≥Nε

q−
n
D+1 ≪ Nn−d−nε ′ . (115)

Also, for a fixed q ≤ Nε

∑
|l|≥Nε

|mq,λ (l ◦α) ϕ̂(l)| ≪ Nn−d−ε , (116)

by using the decay estimate |ϕ̂(l)| ≪ (1+ |l|)−2n .
Since for regular values λ ∈ Λ the number of solutions is Nλ ≈ λ

n
d −1 = Nn−d ,

(110) follows from (114)-(116). ⊓⊔

Let α = (α1, . . . ,αn) be a point such that each of its coordinates αi is diophantine
in the sense that ∥lαi∥ ≥ Cε |l|−1−ε for l ∈ Z/{0}, for every ε > 0. We will call
such points α diophantine, and we can extend this definition to points α ∈ Tn as α
diophantine if and only if α +m is such for any m ∈ Zn. Note that this condition on
α is different from the notion used in Sections 2-3, nevertheless (3) implies that the
set of diophantine points of the torus has measure 1. Also, it is immediate from the
definition that for any l = (l1, . . . , ln) ∈ Zn, l ̸= 0 we have that

∥l ◦α∥ ≥Cε |l|−1−ε . (117)

For diophantine points α we will derive quantitative estimates on the discrepancy
of the sets Ωλ ,α with respect to both smooth functions and compact, convex bod-
ies. To be more precise, for a smooth function ϕ ∈ C∞(Tn) define the associated
discrepancy as

D(ϕ ,α,λ ) := ∑
P(m)=λ

ϕ(m◦α)−Nλ

∫
T n

ϕ(x)dx. (118)

Theorem 6. Let α ∈ Tn be a diophantine point, and let ϕ ∈ C∞(Tn). Then for n >
nd = d(d −1)2d+1, one has

|D(ϕ ,α,λ )| ≪ λ
n
d −1−nηd , (119)

with a constant ηd > 0 depending only on the degree d.

Proof. We will argue as in the proof of Theorem 5, using condition (117) and the
decay estimates (99) and (100). To start, observe that by (111)-(112)

D(ϕ ,α ,λ ) = Tλ (α)≤ ∑
q≤N(d−1)θ

∑
l ̸=0

|mq,λ | |ϕ̂(l)| + O(Nn−d−nγd ).
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Since α is assumed to be diophantine we have for all ε > 0

|D(ϕ ,α,λ ) ≪ Nn−d ∑
q≤N(d−1)θ

∑
l ̸=0

q−
n
D+1

(
1+

N
q
∥ql ◦α∥

)− n
D+1

|ϕ̂(l)| (120)

≪ε Nn−d ∑
q≤N(d−1)θ

∑
l ̸=0

q−
n
D+1

(
1+

N
q2+ε |l|1+ε

)− n
D+1

(1+ |l|)−2n.

Now the parameter θ in the asymptotic formula (95) was chosen such that (d −
1)θ < 1/2, accordingly we will set ε = (1−2(d −1)θ)/4. This will ensure that

N
q2+ε |l|1+ε ≥ Nε ,

for 1 ≤ q ≤ N(d−1)θ and 0 < |l|< Nε , thus by (120)

∑
q≤N(d−1)θ

∑
0<|l|<Nε

|mq,λ (l ◦α)| |ϕ̂(l)| ≪ Nn−d−ε(n/D−1) ≪ Nn−d−nηd ,

with, say ηd = (1−2(d −1)θ)/8D. The rest of the sum is estimated crudely by

Nn−d ∑
q≤N(d−1)θ

∑
|l|≥Nε

q−
n
D+1(1+ |l|)−2n ≪ Nn−d−εn.

This finishes the proof of Theorem 6. ⊓⊔

Finally, we will study the discrepancy of the image sets Ωα,λ with respect to
compact, convex bodies K ⊆ (− 1

2 ,
1
2 )

n, when the flat torus T n is identified as a set
with [− 1

2 ,
1
2 )

n. Let us remark that in this case one cannot hope for better upper

bounds than O(λ
n
d −1− 1

d ). Indeed, consider the discrepancy with respect to the fam-
ily of cubes Kc = [−c,c]n. The number of solutions of the equation P(m) = λ is
≈ λ n/d−1 but (as P(m) ≈ |m|d) each coordinate can take ≪ λ 1/d values, thus the
number of solutions m = (m1, . . . ,mn) with m1 being fixed is at least λ

n
d −1− 1

d , for
some value of m1. Fix such an m1 and let c1 = m1α1 (mod 1). This means that the
boundary of the cube Kc1 contains at least λ

n
d −1− 1

d points of the set Ωα ,λ so the dis-
crepancy changes by at least this much as c passes through c1 and thus one cannot
have a better uniform upper bound on it. We will prove a similar upper bound, of the
form O(λ

n
d −1−ηd ) with a constant ηd > 0 depending only on the degree d which as

uniform over a large family of convex bodies.
We will use the fact that if K ⊆ (− 1

2 ,
1
2 )

n is a closed convex set with non-empty
interior then there exist convex sets K1 and K2 such that for sufficiently small δ > 0

B(K1,δ )⊆ K ⊆ B(K2,δ )⊆ (−1,1)n,

where B(K,δ ) is the set of points whose distance to the set K is at most δ . To make
our estimates uniform for a large family of convex bodies, define the quantity δK
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as the largest δ > 0 for which there exists a point x such that x+Bδ ⊆ K and also
K +Bδ ⊆ [− 1

2 ,
1
2 ]

n, where Bδ is the closed ball of radius δ centered at the origin.

Lemma 23. Let K ⊆ (− 1
2 ,

1
2 )

n be a closed convex body, and let x be a point in the
interior of K. For given 0 < δ < δK/10 , let C0 = 2/δK , λ1 = λ−1

2 = 1−C0δ , and
define the convex bodies K1 = x+λ1K, K2 = x+λ2K .

If ϕ ≥ 0 be a smooth cut-off function supported in (−1,1)n such that
∫

ϕ = 1, the
we have

χK ∗ϕδ ≤ χK ≤ χK2 ∗ϕδ , (121)

where χK stands for the indicator function of a set K, and ϕδ (x) = δ−nϕ(x/δ ).

Proof. From the definition it is immediate that K1 ⊆ K ⊆ K2 ⊆ (− 1
2 ,

1
2 )

n . By trans-
lation invariance we may assume that x0 = 0 and then it is enough to show that
B(K1,δ ) ⊆ K and B(K,δ ) ⊆ K2. Since K = x0 +λ1K2 = λ1K2 both claim can be
shown the same way. Indeed, assume indirect that there is y ∈K1 and z /∈K such that
|y− z| ≤ δ . Then by the Hahn-Banach Theorem there is a unit vector v for which

v · y+δ ≥ v · z > max
x∈K

v · x ≥ λ−1
1 y · z,

since λ−1
1 y ∈ K. Also, by our assumption BδK ⊆ K, hence

y · z ≥ v · z−δ > δK −δ ≥ δK/2.

This implies
λ1δ ≥ (1−λ1)y · z ≥C0δ δK/2,

which is a contradiction since λ1 < 1 and C0δK ≥ 2. The same argument shows that
B(K,δ )⊆ K2 and (121) follows. ⊓⊔

For a closed, convex body K ⊆ (− 1
2 ,

1
2 )

n and a diophantine point α , define the
discrepancy

D(K,α,λ ) = ∑
P(m)=λ

χK(m1α1, . . . ,mnαn)−Nλ voln(K),

where χK is the indicator function of K considered as a function on Tn, and let
voln(K) denote the volume of the body. We have the following uniform estimate on
the discrepancy.

Theorem 7. Let α ∈ Rn be diophantine and let δ0 > 0. Then for a closed, convex
body K ⊆ (− 1

2 ,
1
2 )

n such that δK ≥ δ0 we have

|D(K,α,λ )| ≪ Nn−d−ηd , (122)

where ηd > 0 is a constant depending only on d, and the implicit constant in (122)
depends only on the polynomial P, the point α and on δ0 and is independent of K.
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Proof. Let us use the notation ϕK,δ = χK ∗ϕδ . By (121) we have for δ < cδ0
(c > 0 being sufficiently small)

∑
P(m)=λ

ϕK1,δ (m◦α)−Nλ

∫
Tn

ϕK2,δ ≤D(K,α,λ )≤ ∑
P(m)=λ

ϕK2,δ (m◦α)−Nλ

∫
Tn

ϕK1,δ .

and also ∫
Tn
(ϕK2,δ −ϕK1,δ ) ≤ Cδ voln(K),

with a constant C ≪ δ−1
0 . Thus

|D(K,α,λ )| ≤ max
i=1,2

|D(ϕKi,δ ,α,λ )|+O(Nn−dδ ). (123)

To estimate the discrepancy with respect to the smooth functions ϕKi,δ we proceed
as before, with exception that now we have the estimates on their Fourier transform

|ϕ̂Ki,δ (l)|= |ϕ̂Ki(l)ϕ̂(δ l)| ≪ (1+δ |l|)−2n,

in particular ∥ϕ̂Ki,δ∥l1 ≪ δ−n. Thus

|∑
l ̸=0

Eλ (l ◦α)ϕ̂Ki,δ | ≪ Nn−d−nγd δ−n. (124)

For the main terms, we have

∑
0<|l|<Nε

|mq,λ (l ◦α) ϕ̂Ki,δ (l)| ≪ Nn−dq−
n
D+1

(
1+

N
q2+ε |l|1+ε

)− n
D+1

(1+δ |l|)−2n

≪ Nn−d−ε( n
D−1) q−

n
D+1δ−n, (125)

for q ≤ N(d−1)θ , choosing ε = (1−2(d −1)θ)/4 as before. Also

∑
|l|≥Nε

|mq,λ (l ◦α) ϕ̂Ki,δ (l)| ≪ Nn−dq−
n
D+1 ∑

|l|≥Nε
(1+δ |l|)−2n

≪ Nn−dq−
n
D+1 (1+δNε)−2n Nεn. (126)

Let δ = N− ε
4D then the right side of both (125) and (126) is O(Nn−d− ε

4D q−
n
D+1).

Summing for 1 ≤ q ≤ N(d−1)θ and using (123) we obtain the estimate

|D(K,α ,λ )| ≪ Nn−d− ε
4D .

Finally note that the exponent ηd := ε
4D depend only on the parameter θ and D,

hence ultimately only on dimension d, while the implicit constants in our estimates
depend on the parameter δ0 and not on the body K. This finishes the proof of Theo-
rem 7. ⊓⊔
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