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NEIL LYALL ÁKOS MAGYAR

Abstract. Suppose A is a subset of the integers of positive upper density. We prove a quantitative
result on the existence of linearly independent polynomial configurations in the difference set of A.
This result is achieved by first establishing a higher dimensional analogue of a theorem of Sárközy
and then applying a simple lifting argument.

1. Introduction

1.1. Background. A striking and elegant result in density Ramsey theory states that in any
subset of the integers of positive upper density there necessarily exists two distinct elements whose
difference is a perfect square.

This result was originally conjectured by L. Lovász and eventually verified independently by
Furstenberg [3], using techniques from ergodic theory, and Sárközy [12], using an approach similar in
spirit to Roth’s Fourier analytic (circle method inspired) proof of Szemerédi’s theorem for arithmetic
progressions of length three.

Sárközy actually obtained the following stronger quantitative result.

Theorem A (Sárközy [12]). If A ⊆ [1, N ] and d2 /∈ A − A for any d 6= 0, then there exists an
absolute constant C > 0 such that

|A|
N

≤ C

(
(log log N)2

log N

)1/3

.

Notation: In the theorem above and in the sequel we will use N (and later also M) to denote
an arbitrary positive integer, [1, N ] to denote {1, . . . , N} as is customary, and A±A to denote the
usual difference and sum sets of A, namely A±A = {a± a′ | a, a′ ∈ A}.

The current best known quantitative bound of (log N)−c log log log log N in Theorem A is due to
Pintz, Steiger and Szemerédi [9]. These methods were later extended by Balog, Pelikán, Pintz and
Szemerédi [1] to obtain the same bounds, with the implicit constant now depending on k, for sets
with no k-th power differences. Unfortunately these impressive bounds are currently only known
for monomial differences.

We note that it is conjectured that for any ε > 0 and N ≥ N0(ε) sufficiently large there exists a
set A ⊆ [1, N ] with |A| ≥ N1−ε that contains no square differences, see for example [5]. Ruzsa [10]
has demonstrated that this is at least true for ε = 0.267.

Bergelson and Leibman (extending on the ideas of Furstenberg) established a far reaching qual-
itative generalization of Sárközy’s theorem, the so-called Polynomial Szemerédi Theorem.

Theorem B (Bergelson-Leibman [2]). If A is a subset of the integers of positive upper density and
P1(d), . . . , P`(d) are polynomials in Z[d] with Pi(0) = 0 for i = 1, . . . , `, then there exists m ∈ Z
and d 6= 0 such that

{P1(d), . . . , P`(d)} ⊆ A−m.
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We note that no quantitative version of this result is known beyond the linear case of Szemerédi’s
theorem and the special case of Sárközy’s theorem (the case ` = 2 above).

The purpose of this paper is to establish a quantitative result on the existence of certain poly-
nomial configurations in the difference set of a subset of the integers of positive upper density.

1.2. Statement of Main Results. We fix a family of linearly independent polynomials

P1(d), . . . , P`(d)

in Z[d] with Pi(0) = 0 for i = 1, . . . , ` and set k = maxi deg Pi.

Theorem 1. If A ⊆ [1, N ] and {P1(d), . . . , P`(d)} * A−A for any d 6= 0, then we necessarily have

|A|
N

≤ C

(
(log log N)2

log N

)1/`(k−1)

for some absolute constant C = C(P1, . . . , P`).

In the special case of a single polynomial (` = 1), this result has also recently been obtained by
Lucier [7] and constitutes the best bounds that are currently known for arbitrary polynomials with
integer coefficients and zero constant term.

We remark that by symmetrizing A one can immediately deduce, from Theorem 1, the following
result on the existence of the same polynomial configurations in a shift of the sumset of A.

Corollary 2. If A ⊆ [1, N ] and {P1(d), . . . , P`(d)} * A + A − 2m for any d 6= 0 and m ∈ [1, N ],
then we necessarily have

|A|
N

≤ C ′
(

(log log N)2

log N

)1/2`(k−1)

for some absolute constant C ′ = C ′(P1, . . . , P`).

Proof. Let δ = |A|/N . We apply Theorem 1 (which of course holds with [1, N ] replaced with any
interval of N consequative integers since we are considering differences) to the symmetric set

Ã = (A−m) ∩ (m−A)

with m ∈ [1, N ] chosen so that |Ã| ≥ (δ2/2)N . That this symmetrization is possible follows
immediately from the observation that∑

m

|(A−m) ∩ (m−A)| =
∑
m,n

1A(m + n)1A(m− n) ≥ |A|2/2. ¤

The strategy we will employ to prove Theorem 1 is to lift the problem to Zk in such a way that
we may then apply the following higher dimensional analogue of Sárközy’s theorem.

Theorem 3. If B ⊆ [1, N ]k and (d, d2, . . . , dk) /∈ B −B for any d 6= 0 then we necessarily have

|B|
Nk

≤ C

(
(log log N)2

log N

)1/(k−1)

for some absolute constant C = C(k).

Since Theorem 3 in concerned with the intersection of a difference set with the monomial curve
(d, d2, . . . , dk) we speculate that the methodology of Balog et al. [1] may be applied in this higher
dimensional situation to obtain far superior bounds in Theorem 3 and hence also in Theorem 1.
We plan to investigate this in a future paper.
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Further notational convention: Throughout this paper the letters c and C will denote absolute
constants that will generally satisfy 0 < c ¿ 1 ¿ C, whose values may change from line to line
and even from step to step, and will unless otherwise specified depend only on the dimension k.

2. Reduction to the key dichotomy proposition

We first present the lifting argument that allows us to deduce Theorem 1 from Theorem 3.

2.1. Proof that Theorem 3 implies Theorem 1. Let P : Zk → Z` denote the mapping given
by

Pi(b) =
k∑

j=1

cijbj ,

where Pi(d) = ci1d + · · ·+ cikd
k and let A` = A×A× · · · ×A ⊆ [1, N ]`.

The full rank assumption on the matrix {cij} ensures that there exists a m ∈ Z` and an absolute
constant c, depending only the coefficients of the matrix {cij}, such that

∣∣P(Zk) ∩ (A` −m)
∣∣ ≥ cδ`N `,

where δ = |A|/N . Thus, if we choose N ′ to be a large enough multiple of N (again depending only
the coefficients of the matrix {cij}) and let

B =
{

b ∈ [−N ′, N ′]k : P(b) ∈ A` −m
}

,

it follows that
|B| ≥ c δ`Nk.

The result now follows from Theorem 3 since if there were to exist a d 6= 0 such that

(d, d2, . . . , dk) ∈ B −B

this would immediately implies that

(P1(d), . . . , P`(d)) ∈ A` −A`,

since P(B) ⊆ A` −m. ¤
Matters therefore reduce to proving Theorem 3.

2.2. Dichotomy between randomness and arithmetic structure. Our approach will be to
establish a dichotomy between randomness and structure of the following form.

Let us fix the notation QM = [1,M ]× · · · × [1,Mk] and ε = (10k)−1.

Proposition 4. Let B ⊆ QM and 0 < δ ≤ |B|/|QM |. If M ≥ δ−(k+2)σ−1 with σ = ckδ
k−1/ log δ−1,

then either B behaves as though it were a random set in the sense that

(1)
M∑

d=1

∣∣∣B ∩
(
B + (d, d2, . . . , dk)

)∣∣∣ ≥ ε

4
δ|B|M

or B has arithmetic structure in the sense that there exists a grid Λ ⊆ QM of the form

(2) Λ = {m + (`1q, . . . , `kq
k) | (`1, . . . , `k) ∈ QL}

with L ≥ δk+2σM such that
|B ∩ Λ| > δ(1 + σ)|Λ|.
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As opposed to the standard L∞ increment strategy of Roth, we will obtain the dichotomy in
Proposition 4 by exploiting the concentration of the L2 mass of the Fourier transform. The proof
of Proposition 4 will be presented in Sections 3 and 4. Similar arguments of this type can be found
in Heath-Brown [6] and Szemerédi [15], see also Ruzsa and Sanders [11].

2.3. Proof that Proposition 4 implies Theorem 3. Let δ = |B|/Nk. It is easy to see, by
partitioning [1, N ]k into boxes of size M ×M2 × · · · ×Mk with M essentially equal to N1/k, that
we may, with no loss in generality, assume that B ⊆ QM with |B| ≥ δ|QM |.

If (d, d2, . . . , dk) /∈ B − B for any d 6= 0 (as is the assumption in Theorem 3), then Proposition
4 allows us to perform an iteration. At the nth step of this iteration we will have a set Bn ⊆ QMn

of size δn|QMn |, this set will be an appropriately rescaled version of a subset of B itself and hence
will also contain no non-trivial differences of the form (d, d2, . . . , dk).

Let B0 = B, M0 = M and δ0 = δ. Proposition 4 ensures that either

(3) Mn ≤ Cδ−(2k+1)
n log δ−1

n

or else the iteration proceeds allowing us to choose Mn+1, δn+1 and Bn+1 such that

Mn+1 ≥ cδ(2k+1)
n Mn/ log δ−1

n

and
δn+1 ≥ δn + cδk

n/ log δ−1
n .

Now as long as the iteration continues we must have δn ≤ 1, and so after O(δ1−k log δ−1) iterations
condition (3) must be satisfied, giving

(δ−(2k+1) log δ−1)−Cδ1−k log δ−1
M ≤ Cδ−(2k+1) log δ−1.

From this it follows that
log M ≤ Cδ−(k−1)(log δ−1)2

and consequently (after a short calculation that we leave to the reader) that

δ ≤ C

(
(log log M)2

log M

)1/(k−1)

.

This establishes Theorem 3. ¤
The rest of this article is devoted to the proof of Proposition 4.

3. Setting the stage for the proof of Proposition 4

Let M ≥ Cδ−(k+2)σ−1 and B ⊆ QM with |B| ≥ δ|QM |. Our approach will be to assume that B
exhibits neither of the two properties described in Proposition 4 and then seek a contradiction.

3.1. A simple consequence of B being non-random. If we were to suppose that B is non-
random, in the sense that inequality (1) does not hold, then it would immediately follows that

(4)
∑

m,n∈Zk

1B(m)1B(n)1S(m− n) ≤ 1
4

δ|B||S|

where
S = {(d, d2, . . . , dk) : 1 ≤ d ≤ εM}.
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3.2. A simple consequences of B being non-structured. If we were to assume that B is
regular, in the sense that B in fact satisfies the inequality

|B ∩ Λ| ≤ δ(1 + σ)|Λ|
for all arithmetic grids Λ ⊆ QM of the form (2) with L ≥ δk+2σM , then the set

B′ = B ∩ (
(εM, (1− ε)M ]× · · · × (εMk, (1− ε)Mk]

)

must contain most of the elements of B. In particular we must have

(5) |B′| ≥ (3/4)|B|
since if this were not the case we would immediately obtain a grid Λ ⊆ QM of the form (2) with
q = 1 and L ≥ εM such that

|B ∩ Λ| ≥ δ(1 + 1/4)|Λ|.

3.3. The balance function. We define the balance function of B to be

fB = 1B − δ1QM
,

and note that fB has mean value zero, that is
∑

fB(m) = 0. This property of the balance function
fB will be critically important in our later arguments.

It easy to verify that if B satisfies inequalities (4) and (5), then

(6)
∑

m,n∈Zk

fB(m)fB(n)1S(m− n) ≤ −1
4

δ|B||S|.

One can see this by simply expanding the sum into a sum of four sums, one involving only the
function 1B on which we can apply (4), two involving the functions 1B and −δ1QM

on which we
can apply (5), and one involving only the function −δ1QM

which can be estimated trivially.

3.4. Fourier analysis on Zk. For f : Zk → C with finite support we define the Fourier transform
of f to be

f̂(α) =
∑

m∈Zk

f(m)e−2πim·α.

The finite support assumption on f ensures that f̂ is a continuous function on the Tk and that or-
thogonality immediately gives both the Fourier inversion formula and Plancherel’s identity, namely

f(m) =
∫

Tk

f̂(α)e2πim·αdα and
∫

Tk

|f̂(α)|2dα =
∑

m∈Zk

|f(m)|2.

It is then easy to verify that from inequality (6) we immediately obtain the estimate

(7)
∫

Tk

|f̂B(α)|2|1̂S(α)| dα ≥ 1
4

δ|B||S|

where we recognize

(8) 1̂S(α) =
εM∑

d=1

e−2πi(α1d+α2d2+···+αkdk),

as a classical Weyl sum.
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3.5. Estimates for Weyl sums. Since ε = (10k)−1 is fixed it is clear that whenever |αj | ¿ M−j

there can be no cancellation in the Weyl sum (8), in fact the same is also true when each αj is this
close to a rational with small denominator (in other words there is no cancellation over sums in
residue classes modulo q). We now state a precise formulation of the well known fact that this is
indeed the only obstruction to cancellation.

Let η > 0. We define

(9) Mq = Mq(η) =
{

α ∈ Tk :
∣∣∣αj − aj

q

∣∣∣ ≤ 1
ηkM j

(1 ≤ j ≤ k) for some a ∈ [1, q]k
}

.

Lemma 5. Let η > 0 and M ≥ η−C (with C sufficiently large depending on k).

(i) (Minor box estimate) If α /∈ Mq for any 1 ≤ q ≤ η−k, then

|1̂S(α)| ≤ Cη|S|.
(ii) (Major box estimate) If α ∈ Mq for some 1 ≤ q ≤ η−k, then

|1̂S(α)| ≤ Cq−1/k|S|.

The proof of this result is a straightforward (and presumably well known) consequence of the
standard estimates for Weyl sums, for the sake of completeness we include these arguments in an
appendix.

4. The proof of Proposition 4

In the previous section we established that inequalities (4) and (5) would be immediate conse-
quences of B not exhibiting either of the two properties described in Proposition 4. We now present
the two lemmas from which we will obtain our desired contradiction.

In both lemmas below we set η = δ/8C, where C is the large constant in Lemma 5.

Lemma 6. Let η = δ/8C. If B is neither random nor structured, in the sense outlined in Propo-
sition 4, then there exists 1 ≤ q ≤ η−k such that

(10)
1

δ|B|
∫

Mq

|f̂B(α)|2dα ≥ cδk−1/ log δ−1.

The second lemma is a precise quantitative formulation, in our setting, of the standard L2 density
increment lemma.

Lemma 7. Let η = δ/8C and σ ≤ ηk−2/8π. If B is regular, in the sense that

|B ∩ Λ| ≤ δ(1 + σ)|Λ|
for all arithmetic grids Λ ⊆ QM of the form (2) with qL ≥ η2σM , then

(11)
1

δ|B|
∫

Mq

|f̂B(α)|2dα ≤ 12σ.

We therefore obtain a contradiction if σ ≤ cδk−1/ log δ−1, proving Proposition 4.
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4.1. Proof of Lemma 6. It follows from the minor box estimate of Lemma 5 and Plancherel’s
identity that ∫

minor boxes

|f̂B(α)|2|1̂S(α)| dα ≤ Cη|S||B|.

Therefore, if η = δ/8C, it follows from estimate (7) and the major box estimate of Lemma 5 that

η−k∑

q=1

q−1/k

∫

Mq

|f̂B(α)|2dα ≥ η|B|.

A simple counting argument (which we leave to the reader) then allows us to conclude that there
exists a 1 ≤ q ≤ η−k such that ∫

Mq

|f̂B(α)|2dα ≥ ηk|B|
log η−k

,

as required. ¤

4.2. Proof of Lemma 7. We fix q and L so that qL = η2σM and define

Λ = {−(`1q, `2q
2, . . . , `kq

k) | 1 ≤ `j ≤ Lj}.
Claim 1. If α ∈ Mq, then |1̂Λ(α)| ≥ |Λ|/2.

Proof of Claim 1. Since
k∑

j=1

Lj‖qjαj‖ ≤
k∑

j=1

(Lq)jη−kM−j = η−k
k∑

j=1

(η2σ)j ≤ 2η−(k−2)σ,

for all α ∈ Mq, where ‖ · ‖ denotes the distance to the nearest integer, it follows that

|1̂Λ(α)| ≥ |Λ| −
Lj∑

`j=1

∣∣e2πi(`1qα1+···+`kqkαk) − 1
∣∣ ≥ |Λ|

(
1− 2π

k∑

j=1

Lj‖qjαj‖
)
≥ |Λ|/2,

for all α ∈ Mq, provided σ ≤ ηk−2/8π. ¤

Plancherel’s identity (applied to the function fB ∗ 1Λ) and Claim 1 imply that

(12)
1

δ|B|
∫

Mq

|f̂B(α)|2dα ≤ 4
δ|B||Λ|2

∑

m∈Zk

|fB ∗ 1Λ(m)|2.

The conclusion of Lemma 7 will therefore be an immediate consequence of the following.

Claim 2. As a consequence of the assumptions in Lemma 7 if follows that
∑

m∈Zk

|fB ∗ 1Λ(m)|2 ≤ 3σ δ|B||Λ|2.

Proof of Claim 2. We let
M = {m ∈ Zk |m− Λ ⊆ QM}

E = (QM + Λ) \M
and write ∑

m∈Zk

|fB ∗ 1Λ(m)|2 =
∑

m∈M
|fB ∗ 1Λ(m)|2 +

∑

m∈E
|fB ∗ 1Λ(m)|2.
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We note that since

fB ∗ 1Λ(m) = |B ∩ (m− Λ)| − δ|QM ∩ (m− Λ)|
it follows from our regularity assumption on B that if m ∈M, then

−δ|Λ| ≤ fB ∗ 1Λ(m) ≤ δσ|Λ|,
while for m ∈ E we can only conclude that

|fB ∗ 1Λ(m)| ≤ |Λ|.

Now since fB has mean value zero the convolution

fB ∗ 1Λ(m) =
∑

n

fB(n)1Λ(m− n)

also has mean value zero. Thus, using the fact that |g| = 2g+ − g, where g+ = max{g, 0} denotes
the positive-part function, and the trivial size estimate |M| ≤ |QM |, we can deduce that

∑

m∈M
|fB ∗ 1Λ(m)|2 ≤ 2

(
sup

m∈M
|fB ∗ 1Λ(m)|

) ∑

m∈M
(fB ∗ 1Λ)+(m)

≤ 2(δ|Λ|)(δσ|Λ|)|M|
≤ 2δ2σ|Λ|2|QM |.

We leave it to the reader to verify that

|E| ≤
(
(1 + 2η2σ)k − (1− 2η2σ)k

)
|QM | ≤ 8kη2σ|QM |,

and hence ∑

m∈E
|fB ∗ 1Λ(m)|2 ≤ |Λ|2|E| ¿ 1

2

∑

m∈M
|fB ∗ 1Λ(m)|2,

provided 8kη2 ¿ δ2.

This concludes the proof of Claim 2 and establishes Lemma 7. ¤

Appendix A. Weyl sum estimates

A.1. Standard major and minor arc estimates. Let P (α, d) = α1d + · · ·+ αkd
k.

Lemma 8 (Weyl inequality). If |αk − ak/q| ≤ q−2 and (a, q) = 1, then
∣∣∣∣∣

N∑

d=1

e2πiP (α,d)

∣∣∣∣∣ ≤ Ck,εN
1+ε

(
1
q

+
1
N

+
q

Nk

)1/2k−1

.

This result is completely standard, see for example [8]. We now fix a sufficiently small µ =
µ(k) > 0 and define

(13) M′
a/q =

{
α ∈ Tk :

∣∣∣αj − aj

q

∣∣∣ ≤ 1
N j−µ

(1 ≤ j ≤ k)
}

.

Successive applications of Dirichlet’s principle and the Weyl inequality, starting with the highest
power k, gives the following qualitative estimate (a quantitative version of which can be found in
Vinogradov [17]).
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Proposition 9 (Minor arc estimate I). If α /∈ M′
a/q for any (a, q) = 1 with 1 ≤ q ≤ Nµ, then

(14)

∣∣∣∣∣
N∑

d=1

e2πiP (α,d)

∣∣∣∣∣ ≤ CN1−ν .

for some ν = ν(k, µ) > 0.

Proposition 10 (Major arc estimate). If α ∈ M′
a/q for some (a, q) = 1 with 1 ≤ q ≤ Nµ, then

(15)

∣∣∣∣∣
N∑

d=1

e2πiP (α,d)

∣∣∣∣∣ ≤ CNq−1/k
(
1 +

k∑

j=1

N j |αj − aj/q|
)−1/k

+ O(N1/2).

Proof. It is straightforward to write
N∑

d=1

e2πiP (α,d) = q−1S(a, q)vN (α− a/q) + O(N1/2)

where

S(a, q) :=
q−1∑

r=0

e2πiP (a,r)/q and vN (β) :=
∫ N

0
e2πiP (β,x)dx.

The result then follows from the observation that

(16) |S(a, q)| ≤ Cq1−1/k

whenever (a, q) = 1, which is a result of Hua (see for example [16]), and

(17) |vN (β)| ≤ CN
(
1 +

k∑

j=1

N j |βj |
)−1/k

which follows from van der Corput’s lemma for oscillatory integrals (see for example [13]) and
rescaling. ¤

A.2. Refinement of the major arcs. Let 0 < η ≤ 1 and

(18) Ma/q = Ma/q(η) =
{

α ∈ Tk :
∣∣∣αj − aj

q

∣∣∣ ≤ 1
ηkN j

(1 ≤ j ≤ k)
}

.

Combining Propositions 9 and 10 we easily obtain the following result from which Lemma 5 is
an immediate consequence.

Proposition 11 (Minor arc estimate II). If α /∈ Ma/q for any (a, q) = 1 with 1 ≤ q ≤ η−k, then
∣∣∣∣∣

N∑

d=1

e2πiP (α,d)

∣∣∣∣∣ ≤ CηN + O(N1−νk).

Proof. It follow from Proposition 10 that on M′
a/q we have

∣∣∣∣∣
N∑

d=1

e2πiP (α,d)

∣∣∣∣∣ ≤ CηN

provided (a, q) = 1 and either
η−k ≤ q ≤ Nµ

or there exists j such that
η−kN−j ≤ |αj − aj/q| ≤ N−j+µ. ¤
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Amer. Math. Soc., 9, No. 2 (1996), 725-753.

[3] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions,
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