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Abstract. We prove an extension of Bourgain’s theorem on pinned distances in measurable subset of R2

of positive upper density, namely Theorem 1′ in [1], to pinned non-degenerate k-dimensional simplices in
measurable subset of Rd of positive upper density whenever d ≥ k + 2 and k is any positive integer.

1. Introduction

Recall that the upper density δ of a measurable set A ⊆ Rd is defined by

δ(A) = lim sup
N→∞

|A ∩BN |
|BN |

,

where | · | denotes Lebesgue measure on Rd and BN denotes the cube [−N/2, N/2]d.

1.1. Existing results. A result of Katznelson and Weiss [2] states that if A is a measurable subset of R2

of positive upper density, then its distance set

dist(A) = {|x− y| : x, y ∈ A}
contains all large numbers. This result was later reproven using Fourier analytic techniques by Bourgain in
[1]. Bourgain in fact established more, namely the following generalization and “pinned variant”.

Theorem 1.1 (Theorem 2 in [1]). Let ∆ be a fixed non-degenerate k-dimensional simplex. If A is a
measurable subset of Rd of positive upper density with d ≥ k + 1, then there exist λ0 = λ0(A) such that for
all λ ≥ λ0 one has

(1) x+ λ · U(∆) ⊆ A
for some x ∈ A and U ∈ SO(d).

Theorem 1.2 (Pinned distances, Theorem 1′ in [1]). If A is a measurable subset of R2 of positive upper
density, then there exist λ0 = λ0(A) such that for any given λ1 ≥ λ0 there is a fixed x ∈ A such that

(2) A ∩ (x+ λ · S1) 6= ∅
for all λ0 ≤ λ ≤ λ1.

1.2. New results. Our first result is the following optimal strengthening of Theorem 1.1 above.

Theorem 1.3 (Optimal Density of Embedded Simplices). Let ∆ = {0, v1, . . . , vk} ⊆ Rk be a fixed non-
degenerate k-dimensional simplex and ε > 0.

If A is a measurable subset of Rd with d ≥ k + 1, then there exist λ0 = λ0(A, ε) such that

(3)

∫
SO(d)

δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) dµ(U) > δ(A)k+1 − ε

for all λ ≥ λ0. In particular, for each λ ≥ λ0 we may conclude that there exist U ∈ SO(d) such that

(4) δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) > δ(A)k+1 − ε
and there exist x ∈ A such that

(5) µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
> δ(A)k − ε.

While the main result of this paper is the following (optimal) extension of Bourgain’s pinned distances
theorem, Theorem 1.2 above, to non-degenerate k-dimensional simplices when k ≥ 2.
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Theorem 1.4 (Optimal Density of Embedded Pinned Simplices). Let ∆ = {0, v1, . . . , vk} ⊆ Rk be a fixed
non-degenerate k-dimensional simplex and ε > 0.

If A is a measurable subset of Rd with d ≥ k + 2, then there exist λ0 = λ0(A, ε) such that for any given
λ1 ≥ λ0 there is a fixed x ∈ A such that

(6) µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
> δ(A)k − ε for all λ0 ≤ λ ≤ λ1.

Remark. Theorem 1.4 should hold whenever d ≥ k + 1. Extending our result to this range will require an
appropriate extension of Bourgain’s circular maximal function theorem to the specific configuration spaces
considered in this article. We plan to address this extension in a separate article.

Remark. Theorems 1.3 and 1.4 also hold with the notion of upper density replaced with that of upper Banach
density, but we choose not to pursue this approach here.

2. Reducing Theorems 1.3 and 1.4 to Key Dichotomy Propositions

2.1. Dichotomy Propositions. We will adapt Bourgain’s approach in [1] and deduce Theorems 1.3 and
1.4 as consequences of the following quantitative finite versions, namely Propositions 2.1 and 2.2 below.

Proposition 2.1 (Dichotomy for Theorem 1.3). Let ∆ = {0, v1, . . . , vk} ⊆ Rk be a fixed non-degenerate
k-dimensional simplex, ε > 0, 0 < η � ε5/2, and N ≥ C∆η

−4.

If A ⊆ BN ⊆ Rd with d ≥ k + 1, then for any λ satisfying 1 ≤ λ ≤ η4N one of the following statements
must hold:

(i) ∫
SO(d)

|A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))|
Nd

dµ(U) >

(
|A|
Nd

)k+1

− ε

(ii)
1

|A|

∫
Ωλ

|1̂A(ξ)|2 dξ � ε2

where

Ωλ = Ωλ(η) = {ξ ∈ Rd : η2 λ−1 ≤ |ξ| ≤ η−2λ−1}.

Proposition 2.2 (Dichotomy for Theorem 1.4). Let ∆ = {0, v1, . . . , vk} ⊆ Rk be a fixed non-degenerate
k-dimensional simplex, ε > 0, 0 < η � ε3, and N ≥ C∆η

−4.

If A ⊆ BN ⊆ Rd with d ≥ k + 2, then for any pair (λ0, λ1) satisfying 1 ≤ λ0 ≤ λ1 ≤ η4N one of the
following statements must hold:

(i) there exist x ∈ A with the property that

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
>

(
|A|
Nd

)k
− ε for all λ0 ≤ λ ≤ λ1

(ii)
1

|A|

∫
Ωλ0,λ1

|1̂A(ξ)|2 dξ � ε2

where

Ωλ0,λ1
= Ωλ0,λ1

(η) = {ξ ∈ Rd : η2 λ−1
1 ≤ |ξ| ≤ η−2λ−1

0 }.

2.2. Proof of Theorems 1.3 and 1.4.

2.2.1. Proof that Proposition 2.1 implies Theorem 1.3. Let ε > 0 and 0 < η � ε5/2. Suppose that A ⊆ Rd
with d ≥ k + 1 is a set for which the conclusion of Theorem 1.3 fails to hold, namely that there exists
arbitrarily large integers λ for which∫

SO(d)

δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) dµ(U) ≤ δ(A)k+1 − ε.
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For a fixed integer J � ε−2 we now choose a sequence {λ(j)}Jj=1 of such λ’s with the additional property

that 1 ≤ λ(j) ≤ η4λ(j+1) for 1 ≤ j < J . We now choose N so that λ(J) ≤ η4N and that we simultaneously
have both that

(7) δ(A)k+1 − ε/2 ≤
(
|A ∩BN |
Nd

)k+1

− ε/4

and that ∫
SO(d)

|AN ∩ (AN + λ(j) · U(v1)) ∩ · · · ∩ (AN + λ(j) · U(vk))|
Nd

dµ(U) ≤ δ(A)k+1 − ε/2

holds for all 1 ≤ j ≤ J , where AN = A ∩BN . For the last inequality we exploited Fatou’s Lemma.

Abusing notation and denoting the set AN = A ∩ BN by A, an application of Proposition 2.1, with ε
replaced with ε/4, thus allows us to conclude that for this set one must have

(8)
J∑
j=1

1

|A|

∫
Ω
λ(j)

|1̂A(ξ)|2 dξ � Jε2 > 1.

On the other hand it follows from the disjointness property of the sets Ωλ(j) , which we guaranteed by our
initial choice of sequence {λ(j)}, and Plancherel’s Theorem that

(9)

J∑
j=1

1

|A|

∫
Ω
λ(j)

|1̂A(ξ)|2 dξ ≤ 1

|A|

∫
Td
|1̂A(ξ)|2 dξ = 1

giving a contradiction. �

2.2.2. Proof that Proposition 2.2 implies Theorem 1.4. Let ε > 0 and 0 < η � ε3. Suppose that A ⊆ Rd
with d ≥ k + 2 is a set for which the conclusion of Theorem 1.4 fails to hold, namely that there exists
arbitrarily large pairs (λ0, λ1) of real numbers such that for all x ∈ A one has

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
≤ δ(A)k − ε

for some λ0 ≤ λ ≤ λ1.

For a fixed integer J � ε−2 we choose a sequence of such pairs {(λ(j)
0 , λ

(j)
1 }Jj=1 with the property that

1 ≤ λ(j)
0 ≤ η4λ

(j+1)
1 for 1 ≤ j < J . We now choose N so that λ

(J)
1 ≤ η4N and

(10) δ(A)k − ε ≤
(
|A ∩BN |
Nd

)k
− ε/2.

Abusing notation and denoting the set A ∩BN by A, an application of Proposition 2.2 thus allows us to
conclude that for this set one must have

(11)

J∑
j=1

1

|A|

∫
Ω
λ
(j)
0 ,λ

(j)
1

|1̂A(ξ)|2 dξ � Jε2 > 1.

On the other hand it follows from the disjointness property of the sets Ω
λ
(j)
0 ,λ

(j)
1

, which we guaranteed by

our initial choice of pair sequence {(λ(j)
0 , λ

(j)
1 )}, and Plancherel’s Theorem that

(12)

J∑
j=1

1

|A|

∫
Ω
λ
(j)
0 ,λ

(j)
1

|1̂A(ξ)|2 dξ ≤ 1

|A|

∫
Td
|1̂A(ξ)|2 dξ = 1

giving a contradiction. �



4 LAUREN HUCKABA NEIL LYALL ÁKOS MAGYAR

3. Preliminaries

3.1. The multi-linear operators A(j)
λ . Let ∆ = {0, v1, . . . , vk} be our fixed k-dimensional simplex. With-

out loss of generality we may assume that |v1| = 1. For each 1 ≤ j ≤ k we introduce the multi-linear operator

A(j)
λ , defined initially for Schwartz functions g1, . . . , gj , by

(13) A(j)
λ (g1, . . . , gj)(x) =

∫
· · ·
∫
g1(x− λy1) · · · gj(x− λyj) dσ(d−j)

y1,...,yj−1
(yj) · · · dσ(d−1)(y1)

where dσ(d−1) denotes the measure on the unit sphere Sd−1 ⊆ Rd induced by Lebesgue measure normalized

to have total mass 1 and dσ
(d−j)
y1,...,yj−1 denotes, for each 2 ≤ j ≤ k, the normalized measure on the sphere

Sd−jy1,...,yj−1
⊆ [y1, . . . , yj−1]⊥ ' Rd−j+1

of radius rj = dist(vj , [v1, . . . , vj−1]).

The multi-linear operator A(j)
λ is a natural object for us to consider in light of the observation that it

could have equivalently be defined for each 1 ≤ j ≤ k using the formula

(14) A(j)
λ (g1, . . . , gj)(x) :=

∫
SO(d)

g1(x− λ · U(v1)) · · · gj(x− λ · U(vj)) dµ(U)

and hence for any bounded measurable set A ⊆ Rd, the quantity

(15)
〈
1A,A(k)

λ (1A, . . . , 1A)
〉

=

∫
SO(d)

|A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))| dµ(U).

A trivial, but important, observation will be the fact that

(16)
∣∣∣A(j)

λ (g1, . . . , gj)(x)− gj(x)A(j−1)
λ (g1, . . . , gj−1)(x)

∣∣∣ ≤ ∫ ∣∣gj(x− λyj)− gj(x)
∣∣ dσ(d−j)

y1,...,yj−1
(yj).

3.2. A second averaging operator and some basic estimates. We now introduce a second averaging

operator, which we also denote by A(j)
λ , defined initially for any Schwartz function g, by

(17) A(j)
λ (g)(x) =

∫
· · ·
∫ ∣∣∣∫ g(x− λyj) dσ(d−j)

y1,...,yj−1
(yj)

∣∣∣ dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1)

Note that if the functions g1, . . . , gj−1 are all bounded in absolute value by 1, then clearly

(18)
∣∣A(j)

λ (g1, . . . , gj)(x)
∣∣ ≤ A(j)

λ (gj)(x).

Fix 1 ≤ j ≤ k. It is easy to see, using Minkowski’s inequality, that for any Schwartz functions g we have
the extremely crude estimate

(19)

∫ ∣∣A(j)
λ (g)(x)

∣∣2 dx ≤ ∫ |g(x)|2 dx.

However, arguing more carefully one can just as easily obtain, using Plancherel’s identity, the estimate

(20)

∫ ∣∣A(j)
λ (g)(x)

∣∣2 dx ≤ ∫ · · · ∫ (∫ |ĝ(ξ)|2
∣∣ ̂
dσ

(d−j)
y1,...,yj−1(λ ξ)

∣∣2 dξ) dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1),

where as usual

(21) d̂µ(ξ) =

∫
Rd
e2πix·ξ dµ(x)

denotes the Fourier transform of any complex-valued Borel measure dµ and ĝ(ξ) is the Fourier transform of
the measure dµ = g dx. In light of (20) it will come as little surprise that is the course of our arguments we
will have use for the basic estimate

(22)
∣∣ ̂
dσ

(d−j)
y1,...,yj−1(ξ)

∣∣+
∣∣∇ ̂
dσ

(d−j)
y1,...,yj−1(ξ)

∣∣ ≤ C∆

(
1 + dist(ξ, [y1, . . . , yj−1])

)−(d−j)/2
,

which is a consequence of the well-known asymptotic behavior of the Fourier transform of the measure on
the unit sphere Sd−j ⊆ Rd−j+1 induced by Lebesgue measure, see for example [4].
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3.3. A smooth cutoff function ψ and some basic properties. Let ψ : Rd → (0,∞) be a Schwartz
function that satisfies

1 = ψ̂(0) ≥ ψ̂(ξ) ≥ 0 and ψ̂(ξ) = 0 for |ξ| > 1.

As usual, for any given t > 0, we define

(23) ψt(x) = t−dψ(t−1x).

First we record the trivial observation that∫
ψt(x) dx =

∫
ψ(x) dx = ψ̂(0) = 1

as well as the simple, but important, observation that ψ may be chosen so that

(24)
∣∣1− ψ̂t(ξ)∣∣ =

∣∣1− ψ̂(tξ)
∣∣� min{1, t|ξ|}.

Finally we record a formulation, appropriate to our needs, of the fact that for any given small parameter
η, our cutoff function ψt(x) will essentially supported where |x| ≤ η−1t and is approximately constant on
smaller scales. More precisely,

Lemma 3.1. Let η > 0 and t > 0, then

(25)

∫
|x|≥η−1t

ψt(x) dx� η.

and

(26)

∫ ∫ ∣∣ψt(x− λy)− ψt(x)
∣∣ dσ(d−j)

y1,...,yj−1
(yj) dx� η

for any 1 ≤ j ≤ k provided t ≥ η−1λ.

Proof. Estimate (25) is easily verified using the fact that ψ is a Schwartz function on Rd as∫
|x|≥η−1t

ψt(x) dx =

∫
|x|≥η−1

ψ(x) dx�
∫
|x|≥η−1

(1 + |x|)−d−1 dx� η.

To verify estimate (26) we make use of the fact that both ψ and its derivative are rapidly decreasing,
specifically∫ ∫ ∣∣ψt(x− λy)− ψt(x)

∣∣ dσ(d−j)
y1,...,yj−1

(yj) dx ≤
∫ ∫ ∣∣ψ(x− λy/t)− ψ(x)

∣∣ dσ(d−j)
y1,...,yj−1

(yj) dx

� λ

t

∫
(1 + |x|)−d−1 dx� λ

t
. �

4. Proof of Proposition 2.1

Let f = 1A and δ = |A|/Nd. Suppose that 1 ≤ λ ≤ η4N and that (i) does not hold, then

(27) 〈f,A(k)
λ (f, . . . , f)〉 ≤ 〈f, δk − ε〉 = (δk − ε)|A|.

If we let f1 := f ∗ ψη−1λ, then by (16) and (26) it follows that for all x ∈ Rd and 1 ≤ j ≤ k we have

(28)
∣∣∣A(j)

λ (f, . . . , f, f1)(x)− f1(x)A(j−1)
λ (f, . . . , f)(x)

∣∣∣� η

and consequently

(29) f1(x)k +

k∑
j=1

f1(x)k−jA(j)
λ (f, . . . , f, f − f1)(x)� A(k)

λ (f, . . . , f)(x) + η.

Together this with (27) this gives

(30)

k∑
j=1

〈
ffk−j1 ,A(j)

λ (f, . . . , f, f − f1)
〉
≤ 〈f, δk − fk1 − ε/2〉

provided η � ε. We will now combine this with the following result, which we isolate as a lemma.
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Lemma 4.1. Let η > 0 and f1 := f ∗ ψη−1λ, then

(31) 〈f, δk − fk1 〉 � 〈f, η〉

Combining Lemma 4.1 with (30) we see that if η � ε and (27) holds, then there exist 1 ≤ j ≤ k such that

(32)
∣∣∣〈ffk−j1 ,A(j)

λ (f, . . . , f, f − f1)
〉∣∣∣� ε|A|

and hence, using (18) and the fact that 0 ≤ f1 ≤ 1, that

(33)
〈
f,A(j)

λ (f − f1)
〉
� ε|A|.

The final ingredient in the proof of Proposition 2.1 is the following

Lemma 4.2 (Error term). If f2 := f ∗ ψη2λ, then for any 1 ≤ j ≤ k we have the estimate

(34)
〈
f,A(j)

λ (f − f2)
〉
� η2/5|A|.

Indeed, since 〈
f,A(j)

λ (f2 − f1)
〉
≥
〈
f,A(j)

λ (f − f1)
〉
−
〈
f,A(j)

λ (f − f2)
〉

we see that (33) together with Lemma 4.2 will imply that if η � ε5/2 and (27) holds, then there exist
1 ≤ j ≤ k such that

(35)
〈
f,A(j)

λ (f2 − f1)
〉
� ε|A|.

It then follows, via Cauchy-Schwarz and Plancherel, that

(36)

∫ ∣∣f̂(ξ)
∣∣2∣∣ψ̂η2λ(ξ)− ψ̂η−1λ(ξ)

∣∣2 dξ �k ε
2 |A|,

which is essentially the estimate that we are trying to prove and since (24) implies that

(37)
∣∣ψ̂η2λ(ξ)− ψ̂η−1λ(ξ)

∣∣� η

whenever ξ /∈ Ωλ, it indeed sufficies and concludes the proof of Proposition 2.1. �

4.1. Proof of Lemma 4.1. It suffices to establish the result when k = 1, namely that

(38)

∫
f(x)f1(x) dx ≥ (δ − Cη) |A|

since from Hölder’s inequality we would then obtain

(δ − Cη)k |A|k ≤
(∫

f(x)f1(x) dx
)k
≤ |A|k−1

∫
f(x)f1(x)k dx

from which the full result immediately follows. Towards establishing (38) we note that using Parserval and

the fact that 0 ≤ ψ̂ ≤ 1 we have

(39)

∫
f(x)f1(x) dx =

∫
|f̂(ξ)|2ψ̂(η−1λ ξ) dξ ≥

∫
|f̂(ξ)|2|ψ̂(η−1λ ξ)|2 dξ =

∫
f1(x)2 dx

and as such we need only show that

(40)

∫
f1(x)2 dx ≥ (δ − Cη) |A|.

We now let N ′ = N + η−2λ and write∫
f1(x)2 dx =

∫
BN

f1(x)2 dx+

∫
Rd\BN′

f1(x)2 dx+

∫
BN′\BN

f1(x)2 dx.

Cauchy-Schwarz and the fact that f is supported on BN gives

(41)

∫
BN

f1(x)2 dx ≥ 1

|BN |

(∫
BN

f1(x) dx
)2

=
1

|BN |

(∫
BN

f(x) dx
)2

= δ|A|,

while the fact that λ� η4N ensures that

|BN ′\BN |
|BN |

�
(
N ′

N
− 1

)
� η−2 λ

N
� η2
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and hence, since η � δ, that ∫
BN′\BN

f1(x)2 dx� η2|BN | ≤ η|A|.

Estimate (40) now follow from the discussion above since from (25) we additionally have∫
Rd\BN′

f1(x)2 dx ≤ |A|
∫
|y|�η−2λ

ψη−1λ(y) dy � η|A|.

�

4.2. Proof of Lemma 4.2. It follows from an application of Cauchy-Schwarz and Plancherel that〈
f,A(j)

λ (f − f2)
〉2 ≤ |A| · ∫ |f̂(ξ)|2|1− ψ̂(η2λ ξ)|2I(λ ξ) dξ

where

(42) I(ξ) =

∫
· · ·
∫ ∣∣ ̂

dσ
(d−j)
y1,...,yj−1(ξ)

∣∣2 dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1).

While from (22), the trivial uniform bound I(ξ) � 1, and an appropriate “conical” decomposition,
depending on ξ, of the configuration space over which the integral I(ξ) is defined, we have

(43) I(ξ) ≤ C∆(1 + |ξ|)−(d−j)/2.

Combining this observation with (24) we obtain the uniform bound

(44) |1− ψ̂(η2λ ξ)|2I(λ ξ)� min{(λ|ξ|)−1/2, η4λ2|ξ|2} ≤ η4/5

which, after an application of Plancherel, completes the proof. �

5. Proof of Proposition 2.2

Suppose that we have a pair (λ0, λ1) satisfying 1 ≤ λ0 ≤ λ1 ≤ η4N , but for which (i) does not hold. It
follows that for all x ∈ A there must exist λ0 ≤ λ ≤ λ1 such that

(45) A(k)
λ (f, . . . , f)(x) ≤ δk − ε.

We now let f1 = f ∗ ψη−1λ1
, noting the slight difference from the definition of f1 given in the proof of

Proposition 2.1. It follows from (45), as in the proof of Proposition 2.1, that for all x ∈ A there must exist
λ0 ≤ λ ≤ λ1 such that

(46)

k∑
j=1

f1(x)k−jA(j)
λ (f, . . . , f, f − f1)(x) ≤ δk − f1(x)k − ε/2

provided η � ε, and hence that

(47)

k∑
j=1

A(j)
∗ (f − f1)(x) ≥ f1(x)k − δk + ε/2

for all x ∈ A, where for any Schwartz function g, A(j)
∗ (g) denotes the maximal average defined by

(48) A(j)
∗ (g)(x) := sup

λ0≤λ≤λ1

A(j)
λ (g)(x).

Consequently, provided η � ε and appealing to Lemma 4.1, we may conclude that there must exist
1 ≤ j ≤ k such that

(49)
〈
f,A(j)

∗ (f − f1)
〉
� ε|A|.

Arguing as in the proof of Proposition 2.1 we see that everything reduces to establishing the L2-boundedness

of A(j)
∗ together with appropriate estimates for the “mollified” maximal operator

(50) M(j)
η (f) := A(j)

∗ (f − f2)

where f2 = f ∗ ψη2λ0
.
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Note that

(51) M(j)
η (f) = sup

λ0≤λ≤λ1

∫
· · ·
∫ ∣∣∣∫ f(x− λyj) dµ(j)

η (yj)
∣∣∣ dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1)

where

(52) dµ(j)
η = dσ(d−j)

y1,...,yj−1
− ψη2λ0λ−1 ∗ dσ(d−j)

y1,...,yj−1
.

and hence

(53) µ̂
(j)
η (λ ξ) =

̂
dσ

(d−j)
y1,...,yj−1(λ ξ)

(
1− ψ̂(η2λ0 ξ)

)
.

The precise results that we need are recorded in the following two propositions.

Proposition 5.1 (L2-Boundedness of the Maximal Averages A(j)
∗ ). If d ≥ j + 2, then

(54)

∫
Rd
|A(j)
∗ (g)(x)|2 dx�

∫
Rd
|g(x)|2 dx.

Proposition 5.2 (L2-decay of the “Mollified” Maximal Averages M(j)
η ). Let η > 0. If d ≥ j + 2, then

(55)

∫
Rd
|M(j)

η (f)(x)|2 dx� η2/3

∫
Rd
|f(x)|2 dx.

The proofs of Propositions 5.1 and 5.2 are presented in Section 6 below. �

6. Proof of Propositions 5.1 and 5.2

6.1. Proof of Propositions 5.1. We first note that Cauchy-Schwarz ensures∫
Rd
|A(j)
∗ (g)(x)|2 dx ≤

∫
· · ·
∫ ∫

Rd
sup

λ0≤λ≤λ1

∣∣∣∫ g(x−λyj) dσ(d−j)
y1,...,yj−1

(yj)
∣∣∣2 dx dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1).

Now for fixed y1, . . . , yj−1 we can clearly identify [y1, . . . , yj−1]⊥ with Rd−j+1 and dσ
(d−j)
y1,...,yj−1 with a

constant (depending only on d and ∆) multiple of dσ(d−j), the normalized measure on the unit sphere
Sd−j ⊆ Rd−j+1 induced by Lebesgue measure. Writing Rd = Rj−1 × Rd−j+1, g(x) = gx′(x

′′), and applying
Stein’s spherical maximal function theorem for functions in L2(Rd−j+1) [4], which asserts that

(56)

∫
Rd−j+1

sup
λ0≤λ≤λ1

∣∣∣∫ g(x− λy) dσ(d−j)(y)
∣∣∣2 dx� ∫

Rd−j+1

|g(x)|2 dx

whenever d ≥ j + 2, gives∫
Rd

sup
λ0≤λ≤λ1

∣∣∣∫ g(x− λy) dσ(d−j)
y1,...,yj−1

(y)
∣∣∣2 dx

= C∆

∫
Rj−1

∫
Rd−j+1

sup
λ0≤λ≤λ1

∣∣∣∫ gx′(x
′′ − λy) dσ(d−j)(y)

∣∣∣2 dx′′ dx′
≤ C

∫
Rj−1

∫
Rd−j+1

|gx′(x′′)|2 dx′′ dx′ = C

∫
Rd
|g(x)|2 dx

with the constant C independent of the initial choice of frame y1, . . . , yj−1. The result follows. �

6.2. Proof of Propositions 5.2. We will deduce the validity of Proposition 5.2 from the following result
for the slightly more general class of operators defined for any L > 0 by

(57) M(j)
L (f) = sup

λ0≤λ≤λ1

∫
· · ·
∫ ∣∣∣∫ f(x− λy) dµ

(j)
L (y)

∣∣∣ dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1)

where

(58) d̂µ
(j)
L (λ ξ) = mL(ξ)

̂
dσ

(d−j)
y1,...,yj−1(λ ξ)

with the multiplier mL now any smooth function that satisfies the estimate

(59) |mL(ξ)| � min{1, L|ξ|}.

Recall that estimate (24) is precisely the statement that |1− ψ̂(Lξ)| � min{1, L|ξ|}.
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Theorem 6.1. If d ≥ j + 2 and 0 < L < λ0, then

(60)

∫
Rd
|M(j)

L (f)(x)|2 dx�
( L
λ0

)1/3
∫
Rd
|f(x)|2 dx.

Proof. An application of Cauchy-Schwarz gives

(61)

∫
Rd
|M(j)

L (f)(x)|2 dx ≤
∫
· · ·
∫ [ ∫

Rd
sup

λ0≤λ≤λ1

|ML,λ(f)(x)|2 dx
]
dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1).

where ML,λ is the Fourier multiplier operator defined by

(62) M̂L,λ(f)(ξ) = f̂(ξ)mL(ξ)
̂

dσ
(d−j)
y1,...,yj−1(λ ξ).

A standard application of the Fundamental Theorem of Calculus, see for example [3], gives

(63) sup
λ0≤λ≤λ1

|ML,λ(f)(x)|2 ≤ 2

∫ λ1

λ0

|ML,t(f)(x)||M̃L,t(f)(x)| dt
t

+ |ML,λ0
(f)(x)|2

where M̃L,t(f) = t
d

dt
ML,t(f). We further note that M̃L,t is clearly also a Fourier multiplier operator, indeed

(64)
̂̃
ML,t(f)(ξ) = f̂(ξ)mL(ξ)

(
tξ · ∇ ̂

dσ
(d−j)
y1,...,yj−1(tξ)

)
.

We now immediately see that∫
Rd
|M(j)

L (f)(x)|2 dx

≤ 2

∞∑
`=blog2 λ0c

∫ 2`

2`−1

∫
· · ·
∫ ∫

Rd
|ML,t(f)(x)||M̃L,t(f)(x)| dx dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1)

dt

t

+

∫
· · ·
∫ ∫

Rd
|ML,λ0

(f)(x)|2 dx dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1).

Applying Cauchy-Schwarz to the first integral above (in the variables x, y1, . . . , yj−1, and t together),
followed by an application of Plancherel (in two resulting integrations in x as well as in the one that appears
in the second integral above), we obtain the estimate

(65)

∫
Rd
|M(j)

L (f)(x)|2 dx ≤ 2

∞∑
`=blog2 λ0c

(
I` Ĩ`

)1/2
+ I

with

(66) I` =

∫ 2`

2`−1

∫
Rd
|f̂(ξ)|2|mL(ξ)|2I(t ξ) dξ

dt

t

(67) Ĩ` =

∫ 2`

2`−1

∫
Rd
|f̂(ξ)|2|mL(ξ)|2Ĩ(t ξ) dξ

dt

t

and

(68) I =

∫
Rd
|f̂(ξ)|2|mL(ξ)|2I(λ0 ξ) dξ

where, as in the proof of Proposition 4.2, we have defined

(69) I(ξ) =

∫
· · ·
∫ ∣∣ ̂

dσ
(d−j)
y1,...,yj−1(ξ)

∣∣2 dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1)

and analogously now also define

(70) Ĩ(ξ) =

∫
· · ·
∫ ∣∣ξ · ∇ ̂

dσ
(d−j)
y1,...,yj−1(ξ)

∣∣2 dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1).

Combining (59) with (43), and recalling that we are assuming that d ≥ j + 2, gives

(71) |mL(ξ)|2I(t ξ)� min{(t|ξ|)−1, L2|ξ|2} ≤ L2/3t−2/3
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which ensures, via Plancherel, that

(72) I` �
( L

2`

)2/3

‖f‖22 and I �
( L
λ0

)2/3

‖f‖22.

Arguing as in the proof of estimate (43), we can see that estimate (22) for ∇ ̂
dσ

(d−j)
y1,...,yj−1(ξ) ensures that

Ĩ(ξ) is bounded whenever d ≥ j + 2. It follows immediately from this observation (and Plancherel) that

(73) Ĩ` � ‖f‖22.

Combining (65), (72), and (73), we get that∫
Rd
|M(j)

L (f)(x)|2 dx�

L1/3
∞∑

`=blog2 λ0c

2−`/3 +
( L
λ0

)2/3

∫
Rd
|f(x)|2 dx

�
( L
λ0

)1/3
∫
Rd
|f(x)|2 dx

as required. �

References

[1] J. Bourgain, A Szemerdi type theorem for sets of positive density in Rk, Israel J. Math. 54 (1986), no. 3, 307–316.
[2] H. Furstenberg, Y. Katznelson and B. Weiss, Ergodic theory and configurations in sets of positive density, Israel J.

Math. 54 (1986), no. 3, 307–316.

[3] L. Grafakos, Classical Fourier Analysis, Graduate Text in Mathematics, Volume 249, 2008.
[4] E. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press,

Princeton, NJ., 1993.

Department of Mathematics, The University of Georgia, Athens, GA 30602, USA

E-mail address: lhuckaba@math.uga.edu

Department of Mathematics, The University of Georgia, Athens, GA 30602, USA

E-mail address: lyall@math.uga.edu

Department of Mathematics, The University of Georgia, Athens, GA 30602, USA

E-mail address: magyar@math.uga.edu


