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Abstract. Let F be a family of r integral forms of degree k in n variables x = (x1, ..., xn). We
study the number of solutions x ∈ [1, N ]n to the diophantine system F(x) = v under the restriction
that each of the xi’s has a bounded number of prime factors depending only on the parameters n,
k and r. We show that the system F have the expected number of almost prime solutions under
the same conditions as was established for integer solutions by Birch.

1. Introduction.

In general, proving the existence of solutions to a diophantine system has an integer solution is
impossible, however the problem becomes much more feasible assuming that the system is suffi-
ciently large with respect to certain notions of rank, or have high degree of symmetry. Indeed, it
was shown by Birch [3] and later extended by Schmidt [22], that local to global type asymptotic
formulas can be attained for homogeneous equations whose rank is exponentially large with respect
to its degree, using the classical Hardy-Littlewood method of exponential sums.

It is natural expect that similar results should hold when the solutions are restricted to special
sequences such as the primes or almost primes. For diagonal systems this has been done by Hua
[16], who, extending the methods of Vinogradov [26], derived asymptotics for the number of solu-
tions consisting of primes. For diagonal quadratic and cubic equations various further refinements
were obtained [27], [17], [5] considering both prime and almost prime solutions combining the circle
and sieve methods.

However it was shown only recently [6] that local to global type principles hold for the number
of prime solutions for any diophantine system whose rank is sufficiently large with respect to the
degree and number of equations. The methods there employed certain ideas from arithmetic combi-
natorics, a process of regularizing the system, leading to exceedingly strong, i.e. tower-exponential
type, conditions on the rank. It is expected that such results should hold under similar rank con-
ditions as was established for the existence of integer solutions. The aim of the present article is
to show this when the primes are replaced by the almost primes, i.e. numbers with a bounded
number of prime factors. This might also serve as a step toward a different approach to count
prime solutions at least for translation invariant systems, considering the primes as a dense subset
of the almost primes. Solutions to translation invariant systems in dense subsets of integers have
been established recently in [15], [18], [19].

In another direction, the existence of almost prime solutions to the system F(x) = v were proved
by Bourgain, Gamburd and Sarnak [2], provided the system of forms F preserved by sufficiently
large group of linear transformations Γ ⊆ GLn(Z). Their results are very strong in the sense that
they do not require the largeness of the rank of the system however, apart from quadratic forms,
examples of systems exhibiting such high degree of symmetry are quite rare.
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To state our main results let F = (F1, . . . , Fr) be a family of homogeneous polynomials of degree
k in the variables x = (x1, . . . , xn). For 0 < ε < 1 and N ≥ 1 let Pε

N denote set of natural numbers
m ≤ N such that each prime divisor of m is at least N ε. Note that each m ∈ Pε

N at most l = [1/ε]
prime factors. For given v ∈ Zn let

Mε
F (N) := |{x ∈ (Pε

N )n; F(x) = v},
that is the number of almost prime solutions x ∈ [1, N ]n to the system F(x) = v. For a fixed prime
p define the local density

σ∗
p(v) := lim

t→∞

(pt)rM(pt,v)

ϕn(pt)
, (1.1)

provided the limit exists, where M(pt,v) represents the number of solutions to the equation F(x) =
v in the multiplicative group of reduced residue classes mod pt, denoted by Un

pt , and ϕ is Euler’s

totient function. As almost primes are concentrated in reduced residue classes the general local to
global principle suggests that

Mε
F (N) ≈ε N

n−kr (log N)−nJ(N−kv)
∏
p

σ∗
p(v) =: Nn−kr (log N)−nS∗(N,v), (1.2)

as N → ∞, where J(u) is the so-called singular integral representing the density of real solutions
x ∈ [0, 1]n to F(x) = u, see [3],[22].

Following [3], define the rank of the system, Rank(F) as the codimension of the singular vari-
ety V ∗

F ⊆ Cn, consisting of points z ∈ Cn where the Jacobian ∂F/∂z drops rank. Note that for a
single quadratic form F (x) = Ax · x this agrees with the rank of the underlying matrix A. Our
main result is the following.

Theorem 1.1. Let F = (F1, . . . , Fr) be a system of r integral forms of degree k in n such that

Rank(F) > r(r + 1)(k − 1)2k−1. (1.3)

Then there exists a constant ε = ε(k, r) > 0 such that

Mε
F (N) ≥ cn,k,r Nn−kr (log N)−nS∗(N,v), (1.4)

for some constant cn,k,r > 0. In particular one may take ε = (64n3/2r2(r + 1)(r + 2)k(k + 1))−1.

Moreover if the equation F(x) = v has a nonsingular solution in Up, the p-adic integer units
for all primes p, and if it has a nonsingular real solution in the cube [δ, 1− δ]n, then

S∗(N,v) = J(N−kv)
∏
p

σ∗
p(v) ≥ c(δ) > 0. (1.5)

The validity of (1.5) follows from the fact that J(u) ≥ c(δ) > 0 provided that the equation F(x) = u
has a nonsingular real point in the cube [δ, 1−δ]n, see [22], Sec.9 and [3], Sec.6. Thus the conditions
on the existence of almost prime solutions are essentially the same as those of for integer solutions,
the only difference being the natural requirement to have local solutions among the p-adic units.

The key to prove Theorem 1.1 is to study a weighted sum over the solutions with weights that
are concentrated on numbers having few prime factors. Such weights have been defined by Gold-
ston, Pintz and Yildirim [10] in their seminal work on gaps between the primes. For given 0 < η < 1,
let R := Nη and define

ΛR(m) :=
∑
d|m

µ(d) f(
log d

log R
), (1.6)
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where µ is the Möbius function. We will eventually choose f(x) = (1− x)4n+ and follow the Fourier
analytic approach in [24] as opposed to the contour integration method of [10]. Using the so-called
”W -trick” introduced by Green and Tao in [12] to bypass the contribution of small primes, let
ω = ωF be a fixed positive integer depending only on the system F and let W :=

∏
p≤ω p, the

product of primes up to ω. Note that if x ∈ (Pε
N )n and p|xi implies p ≥ N ε > ω for sufficiently

large N , hence (xi,W ) = 1 for each 1 ≤ i ≤ n. We will write (x,W ) = 1 in this case. Under the
conditions of Theorem 1.1 our key estimates will be

Theorem 1.2. Let F = (F1, . . . , Fr) be a system of r integral forms of degree k in n variables
satisfying the rank condition (1.3). Then there exists η = η(r, k) > 0 such that for R ≤ Nη

∑
x∈[N ]n

(x,W )=1, F(x)=v

Λ2
R(x1x2 · · ·xn) = cn(f)N

n−rk(log R)−nS∗(N,v) (1 + oω→∞(1)), (1.7)

where

cn(f) =

∫ ∞

0
f (n)(x)2

xn−1

(n− 1)!
dx, and one may take η(r, k) =

1

8r2(r + 1)(r + 2)k(k + 1)
.

In addition, for given 0 < ε < η ≤ η(r, k),

∑
x∈[N ]n\(Pε(N))n

(x,W )=1,F(x)=v

Λ2
R(x1x2 · · ·xn) ≤ c′n+1(f)

(
ε

η

)2

Nn−rk(log R)−nS∗(N,v) (1 + oω→∞(1)),

(1.8)

with

c′n+1(f) = 2n

∫ ∞

0
f (n+1)(x)2

xn−1

(n− 1)!
dx.

In the proof of Theorem 1.2 we’ll use the asymptotic for the number of integer solutions x ∈ [N ]n

to F(x) = v subject to the congruence condition x ≡ s (mod D), where D is a modulus bounded by
a sufficiently small power N . This follows in a straightforward manner from the Birch-Davenport
variant of the circle method described in [3] and is summarized in

Proposition 1.1. Let F = (F1, . . . , Fr) be a family of integral forms of degree k satisfying the rank
condition (1.3), and For given D ∈ N and s ∈ Zn let

RN (D, s;v) := |{x ∈ [N ]n; x ≡ s (mod D), F(x) = v}|. (1.9)

Then there exists a constant δ′ = δ′(k, r) > 0 such that the following holds.

(i) If 0 < η ≤ η(r, k) := 1
4r2(r+1)(r+2)k2

then for every 1 ≤ D ≤ N
η

1+η and s ∈ Zn one has

the asymptotic

RN (D, s;v) = Nn−rkD−n J(N−kv)
∏
p

σp(D, s,v) + O(Nn−rk−δ′D−n). (1.10)

(ii) Moreover if

Rank (F) > (r(r + 1)(k − 1) + rk)2k (1.11)
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then the asymptotic formula (1.10) holds for η ≤ 1
4r(r+2)k .

Here σp(D, s,v) represents the density of the solutions among the p-adic numbers, more precisely

σp(D, s,v) = lim
l→∞

σl
p(D, s,v), σl

p(D, s,v) = p−l(n−r)|{x ∈ Zn
pl ; F(Dx+ s) ≡ v (mod pl)}|.

(1.12)

The product form of the main term in (1.10) will allow as to write the expressions on the left side of
(1.7) and (1.8) as an integral over an Euler product, which can be asymptotically evaluated using
the sieve methods. To understand the local factors of The Euler product one needs to analyze the
number of solutions to the system F(x) = v mod p, this has been done it [7] based on adapting
Birch’s method to finite fields. Here the W -trick is quite useful as one has to consider sufficiently
large primes for which the rank of the mod p - reduced variety VF = {F(x) = v} remains suffi-
ciently large.

The information needed about the Euler factors

γp(v) :=
P−n

σp(v)

∑
s∈Zn

p ,

F(s)≡v (mod p)

1p|s1···sn σp(p, s,v), (1.13)

is summarized in

Proposition 1.2. Let F be a family of r integral forms of degree k. If rank(F) > r(r+1)(k−1)2k

then for all sufficiently large primes p > ωF one has

γp(v) =
n

p
+O(p−2). (1.14)

1.1. Outline and Notations. The facts about the number of solutions to diophantine systems
among integers in a given residue class with respect to a small modulus will be given in Section 4
and will be used throughout the paper. The arguments are straightforward generalizations of those
of Birch discussed in [3]. In Section 3 we carry out the analysis of certain local factors attached
the primes, and prove Proposition 1.2. Here we rely on certain results obtained in [7] on the num-
ber of solutions of diophantine systems over finite fields, and some well-known facts in algebraic
geometry [8], [23] about the size and the stability of the dimension of homogeneous algebraic sets
when reduced mod p . Somewhat unusually, we will prove our main results in Section 2, using the
results of Section 3 and Section 4. This is to separate our main arguments relying on the sieve of
Goldston-Pintz-Yildirim [10], from those to count integer solutions of diophantine systems based
on the Hardy-Littlewood method of exponential sums.

The symbols Z, Q, R, and C denote the integers, the rational numbers, the real numbers, and
the complex numbers, respectively. We write ZN for the group Z/NZ as well as Z∗

N for the mul-
tiplicative group reduced residue classes (mod N). If X is a set then 1X denotes a characteristic
function for X in a specified ambient space, and on occasion, the set X is replaced by a condi-
tional statement which defines it. The Landau o and O notation is used throughout the work.
The notation f . g is sometimes used to replace f = O(g), we will assume that the parameters
n, k and r and usually do not denote the dependence on them. If the implicit constants depend
on further parameters m, l, ε, δ, . . . we indicate them as a subscript, thus we’ll write f .m,l,ε,δ... g,
f = Ok,ε,δ...(g) e.t.c. By oω→∞(1) we denote a quantity that tends to 0 as ω → ∞, and note that
this implies also that N → ∞ as well always assume that N is sufficiently large with respect to ω.
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2. Proof of the main results.

In this section we introduce the Euler product representation of the weighted sums over the so-
lutions defined in (1.7) and (1.8), and prove Theorems 1.1 and 1.2 using the main results of Section
3 and Section 4.

Let ϕN be the indictor function of the cube [1, N ]n, µ the Möbius function and write
∑′ for sums

restricted to square-free numbers. We’ll also use the customary notations [a, b] and (a, b) for the
least common multiple and greatest common factor of the numbers a and b. If b = (b1, . . . , bn) ∈ Zn

is such that (bi,W ) = 1 for all 1 ≤ i ≤ n, then we write (b,W ) = 1. We write a|b If a divides b and
1a|b for the indicator function of this relation. We start by making a few immediate observations
about the local factors σp(D, s,v) defined in (1.12).

Lemma 2.1. Let D, W be square free numbers such that (D,W ) = 1 and let p be a prime.
If (p,DW ) = 1 then

σp(DW, t,v) = σp(v). (2.1)

If p|D and t ≡ s (mod D) then one has

σp(DW, t,v) = σp(p, t,v) = σp(p, s,v). (2.2)

Similarly, if p|W and t ≡ b (mod W ) then

σp(DW, t,v) = σp(p, t,v) = σp(p,b,v). (2.3)

Proof. To see (2.1) note that for any l ∈ N the transformation x → DWx+ t is one-one and onto
on Zn

pl
. If p|D then D = pD′ with (p,D′W ) = 1, and one may write DWx + t = p(D′Wx) + t

and the first equality in (2.2) follows by making a change of variables y := D′Wx on Zn
pl
. Also

py+ t = p(y+u)+ s and the second equality follows by replacing y with y+u. Interchanging the
role of D and W (2.3) follows. �

Let F = (F1, . . . , Fr) be system of integral forms satisfying the rank condition (1.3), R := N
η

2(1+η) ,
with η = η(r, k) as defined in (1.10). Let W =

∏
p≤ω p for a sufficiently large constant ω = ωF , let

(b,W ) = 1 and define the sum:

SW,b(N) :=
∑

x≡b (mod W )
F(x)=v

Λ2
R(x1x2 · · ·xn)ϕN (x), (2.4)

and for ω < q, q prime

SW,q,b(N) :=
∑

x≡b (mod W )
F(x)=v

1q|x1...xn
Λ2
R(x1x2 · · ·xn)ϕN (x). (2.5)

Lemma 2.2. We have

SW,b(N) = Nn−drJ(N−dv)W−nSW,b(v)
∑′

(D,W )=1

hD(R) γD(v) +O(Nn−rk−δ), (2.6)

and similarly

SW,q,b(N) = Nn−drJ(N−dv)W−nSW,b(v)
∑′

(D,W )=1

hD(R) γ[D,q](v) +O(Nn−rk−δ), (2.7)

where

SW,b(v) :=
∏
p|W

σp(p,b,v)
∏
p-W

σp(v), (2.8)
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γD(v) := D−n
∑
s∈Zn

D
F(s)≡v (mod D)

1D|s1···sn
∏
p|D

σp(p, s,v)

σp(v)
, (2.9)

and

hD(R) :=
∑

[d1,d2]=D

µ(d1)µ(d2) f(
log d1
log R

) f(
log d2
log R

). (2.10)

Proof. By definition (1.6)

SW,b(N) =
∑

x≡b (mod W )
F(x)=v

ϕN (x)
∑′

[d1,d2]|x1···xn

µ(d1)µ(d2) f(
log d1
log R

) f(
log d2
log R

)

=
∑′

D

∑
[d1,d2]=D

µ(d1)µ(d2) f(
log d1
log R

) f(
log d2
log R

)
∑

x≡b (mod W )
F(x)=v

1D|x1···xn
ϕN (x)

(2.11)

The inner sum in x on last line of equation (2.11) is zero unless (D,W ) = 1 which we will assume
from now on. Indeed if there is a prime p such that p|D and p|W , then p|xi for some 1 ≤ i ≤ n and
hence bi ≡ xi ≡ 0 (mod p) contradicting our assumption (bi,W ) = 1. The conditions D|x1 · · ·xn
and x ≡ b (mod W ) depend only on x (mod DW ), thus one may write

∑
x≡b (mod W )

F(x)=v

1D|x1···xn
ϕn(x) =

∑
t∈Zn

DW , t≡b (mod W )
F(t)≡v (mod DW )

1D|t1···tn
∑

x≡t (mod DW )
F(x)=v

ϕN (x). (2.12)

Since D ≤ R2 ≤ N
η

1+η ; by Proposition 1.1 this further equals to

∑
t∈Zn

DW , t≡b (mod W )
F(t)≡v (mod DW )

1D|t1···tn

(
Nn−kr(DW )−nJ(N−kv)

∏
p

σp(DW, t,v) + O(Nn−kr−δ′D−n)

)
.

(2.13)

To estimate the contribution of the error terms to the sum SW,b(N) given in (2.11), note that for a
given D the number of pairs d1, d2 for which [d1, d2] = D is .τ Dτ for all τ > 0, and the summation
in D is restricted to D ≤ R2 as the function f(x) is supported on x ≤ 1. Thus the total error
obtained in (2.11) is bounded by

EW,b(N) .τ Nn−kr−δ′ Wn
∑

D≤R2

Dτ . Nn−kr−δ′/2. (2.14)

The main term can be evaluated by a routine calculation using the Chinese Remainder The-
orem and the properties of the local factors σ(D, ,v) given in lemma 2.1. Indeed, to every
t ∈ Zn

DW satisfying t ≡ b (mod W ) there is a unique s ∈ Zn
D such that t ≡ s (mod D), and

in that case F(s) ≡ v (mod DW ) is equivalent to F(s) ≡ v (mod D) using out assumption that
F(b) ≡ v (mod W ). Thus
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∑
t∈Zn

DW , t≡b (mod W )
F(t)≡v (mod DW )

1D|t1···tn
∏
p|W

σp(p,b,v)
∏
p|D

σp(p, t,v)
∏

p-DW

σp(v)

=
∏
p|W

σp(p,b,v)
∏
p-W

σp(v)
∑
s∈Zn

D
F(s)≡v (mod D)

1D|s1···sn
∏
p|D

σp(p, s,v)

σp(v)
. (2.15)

Then (2.6) follows from (2.11)-(2.15), and to see the validity of (2.7) it is enough to remark that
carrying out the calculation in (2.11) for the sum SW,q,b(N) the only difference is that the indicator
function 1D|x1...xn

is replaced by 1[D,q]|x1...xn
and hence (2.12)-(2.15) remains true with D replaced

by [D, q]. �

The sum

SW (f, γ) :=
∑′

(D,W )=1

γD(v)hD(R) (2.16)

can be asymptotically evaluated by sieve methods, see [10], [24]; we will sketch the approach in [24]
and indicate how to modify the argument to obtain an asymptotic for the related sum

SW,q(f, γ) :=
∑′

(D,W )=1

γ[D,q](v)hD(R) (2.17)

needed for the “concentration” estimate (1.7).

Lemma 2.3. ([?], Prop. 10) Let γD(v) be a multiplicative function satisfying estimate (1.14).
Then one has

SW (f, γ) = (
ϕ(W )

W
log R )−n

∫ ∞

0
(f (n)(x))2

xn−1

(n− 1)!
dx + oω→∞(1). (2.18)

Moreover if q > ω is a prime then

SW,q(f, γ) =
n

q
(
ϕ(W )

W
log R )−n

∫ ∞

0
(f (n)(x)− f (n)(x+

log q

log R
))2

xn−1

(n− 1)!
dx + oω→∞(1),

(2.19)

Proof. We specify f(x) = (1 − x)4n+ , the function exf(x) is compactly supported and 4n − 1 con-

tinuously differentiable hence its Fourier transform, denoted by f̂(t), satisfies |f̂(t)| . (1 + |t|)−4n.
Substituting the Fourier inversion formula

exf(x) =

∫
R
e−itxf̂(t) dt

into (2.13) one obtains

hD(R) =

∫
R

∫
R

∑
[d1,d2]=D

µ(d1)µ(d2)d
− 1+it1

log R

1 d
− 1+it2

log R

2 f̂(t1)f̂(t2) dt1dt2 =:

∫
R

∫
R
gD(t1, t2) dt1dt2.

(2.20)

The function gD(t1, t2)HD(R) is multiplicative in D hence∑′

(D,W )=1

gD(t1, t2)γD(v) =
∏
p>ω

(1 + gp(t1, t2))γp(v),

which gives
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SW (f, γ) =

∫
R

∫
R

∏
p>ω

(1− γp(v)

p
1+it1
log R

− γp(v)

p
1+it2
log R

+
γp(v)

p
2+it1+it2

log R

) f̂(t1)f̂(t2) dt1dt2. (2.21)

By Proposition 1.2

log

∣∣∣∣∣1− γp(v)

p
1+it1
log R

− γp(v)

p
1+it2
log R

+
γp(v)

p
2+it1+it2

log R

∣∣∣∣∣ ≤ 3n p
−1− 1

log R +O(p−2).

By the well-know asymptotic∑
p

p
−1− 1

log R = log log R+O(1),

we see that the integrand in (2.21) is bounded by C(log R)3n(1 + |t1|)−4n(1 + |t2|)−4n. Integrating
over the range |t1, |t2| >

√
log R gives

SW (f, γ) =

∫
|t1|,|t2|≤

√
log R

∏
p>ω

(1− γp(v)

p
1+it1
log R

− γp(v)

p
1+it2
log R

+
γp(v)

p
2+it1+it2

log R

) f̂(t1)f̂(t2) dt1dt2+O(log−nR).

Let, for Re(s) > 1,

ζW (s) :=
∏
p>ω

(1− 1

ps
)−1 = ζ(s)

∏
p≤ω

(1− 1

ps
).

From (1.14) it is easy to see that∏
p>ω

(1− γp(v)

p
1+it1
log R

− γp(v)

p
1+it2
log R

+
γp(v)

p
2+it1+it2

log R

) =
ζnW (1 + s1 + s2)

ζnW (1 + s1)ζnW (1 + s2)
(1 + oω → ∞(1)), (2.22)

with s1 = 1 + 1+it1
log R , s2 = 1 + 1+it2

log R . On the range |t1|, |t2| ≤
√
log R one has that∏

p≤ω

(1− p−s) =
∏
p≤ω

(1− p−1)(1 + oω→∞(1)) =
ϕ(W )

W
(1 + oω → ∞(1)).

Thus from the basic property ζ(s) = (s− 1)−1 +O(1) for s near 1, it follows

ζW (s) =
1

s− 1

ϕ(W )

W
(1 + oω → ∞(1)).

Substituting this into (2.22) gives

SW (f, γ) = (
ϕ(W )

W
log R)−n

∫
|t1|,|t2|≤

√
log R

(1 + it1)
n(1 + it2)

n

(2 + it1 + it2)n
f̂(t1)f̂(t2) dt1dt2 + o(1).

Note that by the quick decrease of f̂(t) the integration in t1 and t2 can be extended to R by making
an error of o(1). Finally, using the identities

(2 + it1 + it2)
−n =

∫ ∞

0
e−x(2+it1+t2)

x(n−1)

(n− 1)!
dx, (2.23)

and

f (n)(x) = (−1)n
∫
R
e−x(1+it)(1 + it)nf̂(t) dt (2.24)

obtained by integration by parts, one may write

SW (f, γ) = (
ϕ(W )

W
log R)−n

∫ ∞

0
(f (n)(x))2

x(n−1)

(n− 1)!
dx+ oω→∞(1).
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This shows (2.15).
To show (2.19) we modify the above argument as follows. We have

SW,q(f, γ) =

∫
R

∫
R

∑′

(D,W )=1

gD(t1, t2) γ[D,q](v) f̂(t1)f̂(t2) dt1dt2. (2.25)

For the inner sum we separate the cases q - D and q|D in which case we change variablesD := qD,
this gives∑′

(D,W )=1

gD(t1, t2) γ[D,q](v) = γq(v)(1 + gq(t1, t2))
∑′

(D,W )=1
q-D

gD(t1, t2) γ[D,q](v) =

γq(v)(1 + gq(t1, t2))

1 + gq(t1, t2)γq(v)

∏
p>ω
p̸=q

(1− γp(v)

p
1+it1
log R

− γp(v)

p
1+it2
log R

+
γp(v)

p
2+it1+it2

log R

).

Note that this differs from the integrand in(2.22) only by that additional factor

γq(v)(1 + gq(t1, t2))

1 + gq(t1, t2)γq(v)
==

n

q
(1− q

− 1+it1
log R )(1− q

− 1+it2
log R ) (1 + o(1)), (2.26)

as by our assumption q > ω hence γq(v) =
n
q (1 + o(1). Thus we have the analogue of (2.22)

SW,q(f, γ) =
n

q
(
ϕ(W )

W
log R)−n

∫
R

∫
R

(1 + it1)
n(1 + it2)

n

(2 + it1 + it2)n
× (2.27)

(1− e
− (1+it1)log q

log R )(1− e
− (1+it2)log q

log R ) f̂(t1)f̂(t2) dt1dt2 + o(1).

Finally, using (2.23) and (2.24) the one may rewrite the integral in (2.27) as

∫ ∞

0

(∫
R
(e−x(1+it) − e

−(x+ log q
log R

)(1+it)
) (1 + it)n f̂(t) dt

)2 xn−1

(n− 1)!
dx (2.28)

=

∫ ∞

0

(∫
R
f (n)(x)− f (n)(x+

log q

log R
)

)2 xn−1

(n− 1)!
dx.

�

We turn to the proof of our main results now. First we prove Theorem 1.2 which follows
from Lemma 2.2. and Lemma 2.3 by routine calculation using the properties of the local factors
σp(p,b,v) given in Lemma 2.1.

Proof of Theorem 1.2. Let η ≤ η(r,k)
2(1+η(r,k)) with η(r, k) be as specified in (1.7) Then by (2.6) and

(2.15) one has

∑
x∈[N ]n

(x,W )=1, F(x)=v

Λ2
R(x1x2 · · ·xn) =

∑
b∈Zn

W
(b,W )=1

SN,W,b(v) (2.29)

= cn(f)N
n−drJ(N−dv) (log R)−nϕ(W )−n (1+oω→∞(1))

∑
b∈Zn

W
(b,W )=1

SW,b(v) + O(Nn−kr−δ′).
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By Lemma 2.1 and the Chinese Remainder Theorem

ϕ(W )−n
∑

b∈Zn
W

(b,W )=1

SW,b(v) =
∏
p|W

(ϕ(p)−n
∑
b∈Zn

p

(b,p)=1

σp(p,b;v) )
∏
p-W

σp(v). (2.30)

Note that σp(v) = 1 +O(p−2) and hence
∏

p-W σp(v) = 1 + oω→∞(1). For a fixed l ∈ N and prime

p ≤ ω, by (1.10)

ϕ(p)−np−l(n−r)
∑

(b,p)=1
F(b)≡v (mod p)

|{x ∈ Zn
pl ; F(px+ b) = v}| (2.31)

= ϕ(p)−np−l(n−r)pn|{y ∈ Zn
pl ; (y, p) = 1, F(y) = v}| = pln

ϕn(pl)
M(pl;v),

where M(pl;v) is the number of solutions to F(y) ≡ v (mod pl) in the reduced residue classes
y ∈ Zn

pl
, (y, p) = 1. Taking the limit l → ∞, and recalling definition (1.12)

ϕ(p)−n
∑

(b,p)=1
F(b)≡v (mod p)

σp(p,b;v) = σ∗
p(v),

and then by (2.30)

ϕ(W )−n
∑

(b,W )=1
F(b)≡v (mod W )

SW,b(v) =
∏
p|W

σ∗
p(v) (1 + oω→∞(1)) = S∗(v) (1 + oω→∞(1)).

This proves (1.7).

To prove (1.8) note that to estimate a sum over x ∈ [N ]n\(Pε(N))n under the restriction (x,W ) = 1
one needs to sum only over those x = (x1, . . . , xn) for which q|x1 . . . xn for some prime ω < q ≤ N ε.
Thus, recalling the definition of the sums SW,q,b(N) given in (2.5) we have that

∑
x∈[N ]n\(Pε(N))n

(x,W )=1,F(x)=v

Λ2
R(x1 . . . xn) ≤

∑
ω<q≤Nε

∑
(x,W )=1,
F(x)=v

1q|x1...xn
Λ2
R(x1 . . . xn)ϕN (x) =

∑
ω<q≤Nε

SW,q,b(N).

Let us make the simple observation that |f (n)(x)− f (n)(x+ τ)| ≤ τ |f (n+1)(x)| for 0 ≤ x, τ ≤ 1 for
our choice f(x) = (1− x)4n+ . Then by estimates (2.7) and (2.19)

∑
ω<q≤Nε

SW,q,b(N) ≤ n

q

(
log q

log R

)2

cn+1(f)N
n−rk(log R)−nS∗(N,v)(1 + oω→∞(1)) +O(Nn−rk−δ).

Write ε′ := ε/η, so that N ε = Rε′ with R = Nη. The sum over the primes ω < q ≤ Rε′ can be
estimated by a dyadic decomposition using the Prime Number Theorem

∑
ω<q≤Rε′

q−1 (log q)2 =
∑

ω≤2j≤R

∑
2j−1<q≤2j

q−1 (log q)2 ≤ (2 + oω→∞(1))
∑

j≤ε′log2 R

j ≤ 2 (ε′)2.

This implies (1.8). �

Proof of Theorem (1.1). We need to choose ε > 0 to ensure that the expression in (1.8) is

essentially less then the one in (1.7). For that one needs to compare the quantities cn+1(f) and
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cn(f) defined in Theorem 1.5. For our choice f(x) = (1− x)4n+ we have that f (n)(x) = αn(1− x)3n+
while f (n+1)(x) = 3nαn(1− x)3n+ (with αn = (4n)!/(3n)!), thus by the beta function identity∫ 1

0
(1− x)axb dx =

a! b!

(a+ b+ 1)!

it is easy to see that cn+1(f) < 16n2 cn(f). Thus if 32n3 (ε/η)2 ≤ 1/2 then for N and ω =
sufficiently large

∑
x∈(Pε(N))n

F(x)=v

Λ2
R(x1x2 · · ·xn) ϕN (x) ≥ cnN

n−dr (log R)−nS∗(N,v) (2.32)

for some positive constant cn = cn(f) > 0.

Finally note that if x =∈ (Pε(N))n then each coordinate xi can have at most 1/ε prime divisors

hence ΛR(x1x2 · · ·xn) ≤ 2n/ε. Thus by (2.32) the number of solutions to F(x) = v in x ∈ (Pε(N))n

satisfies

Mε
F (N) ≥ c(n, k, r)Nn−dr (log N)−nS∗(N,v),

with c(n, k, r) := cn 2
−2n/ε for some ε = ε(n, k, r) > 0. In fact one may choose ε := (4n)−3/2η(r, k)

with η(r, k) = (8r2(r + 1)(r + 2)k(k + 1))−1 given in (1.7). This proves Theorem 1.1 �

3. The local factors.

In this section we study the Euler factors γp(v) and prove the asymptotic formula (1.14). Recall

σp(p, s,v) = lim
l→∞

σl
p(p, s,v), where

σl
p(p, s,v) = p−l(n−r) |{x ∈ Zn

pl ; F(px+ s) ≡ 0 (mod pl)}|.

Note that this factor is non-zero only if F(s) ≡ v (mod p). We call a point s ∈ Zn
p non-singular if

the Jacobian JacF (s) has full rank (= r) over the finite field Zp. In this case it is easy to calculate

factors σl
p(p, s,v) explicitly.

Lemma 3.1. Let s ∈ Zn
p be a non-singular solution to the equation F(s) ≡ v (mod p). Then

σl
p(p, s,v) = pr. (3.1)

Proof. We proceed by induction on l. For l = 1 we have F(px + s) ≡ F(s) ≡ v (mod p) for all
x ∈ Zn

p thus σ1
p(p, s,v) = pr. Let l = 2. We’d like to count x ∈ Zn

p2 satisfying

F(px+ s) ≡ F(s) + p JacF (s) · x ≡ v (mod p2).

Since F(s)− v = pu this reduces to

JacF (s) · x ≡ −u (mod p).

By assumption the map JacF (s) : Zn
p → Zn

p has full rank, thus the above equation has pn−r solution

in Zn
p and hence p2n−r solutions x ∈ Zn

p2 . It follows that σ
2
p(p, s,v) = pr. For l ≥ 3 we show that

σl
p(p, s,v) = σl−1

p (p, s,v).
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Note that if x ≡ y (mod pl−1) then F(px + s) ≡ F(py + s) (mod pl). For given y ∈ Zn
pl−1 write

y = pl−2u+ z with z ∈ Zn
pl−2 and u ∈ Zn

p . Then

F(py + s) ≡ F(pl−1u+ pz+ s) ≡ F(pz+ s) + pl−1JacF (s) · u (mod pl). (3.2)

Thus F(py + s) ≡ v (mod pl) implies that

F(pz+ s) ≡ (mod pl−1), (3.3)

the number such z ∈ Zn
pl−2 is p−np(l−1)(n−r)σl−1

p (p, s,v). For a given z satisfying (3.3) write

F(pz+ s) = pl−1b+ v, then (3.2) holds if and only if

JacF (s) · u ≡ −b (mod p). (3.4)

By our assumption JacF (s) has full rank (= r) above Zn
p thus the number of solutions to (3.4) is

pn−r. Since that decomposition y = pl−2u+ z is unique it follows that

σl
p(p, s,v) = pnp−l(n−r)p−np(l−1)(n−r)pn−rσl−1

p (p, s,v) = σl−1
p (p, s,v).

�

For singular values of s we can only get upper bounds on the local factors σp(p, s,v). The case

s = v = 0
¯
suggests that one cannot get better estimates then pkr.

Lemma 3.2. Let F be a family of r integral forms of degree k, and assume that

codim (V ∗
F ) ≥ r(r + 1)(k − 1)2k + 1. (3.5)

Then uniformly for l ∈ N and s ∈ Zn
p one has

σl
p(p, s,v) . pr

2k. (3.6)

Proof. By (4.31) we have

σl
p(p, s,v) =

l∑
m=0

∗∑
b∈Zr

pm

p−mne
−2πi

b·F(px+s)
pm Sb,pm(p, s),

where the sum in b are taken over r-tuples with at least one coordinate not divisible by p, and
Sb,pm(p, s) is the exponential sum defined in (4.8). If m > rk then Lemma 4.4 applies with ε = 1/r

(and K = codim (V ∗
F )/2

k−1) thus∑
m>rk

∗∑
b∈Zr

pm

p−mn|Sb,pm(p, s)| .
∑
m>rk

pmrp
− mK

(r+1)(k−1)
+τ .

∑
m>rk

p−mτ/2 . 1,

if τ = τ(r, k) > 0 is chosen sufficiently small. Indeed, by (3.5) we have K
(r+1)(k−1) − r = τ0(r, k) > 0

and then (3.6) then follows from the trivial estimate p−mn|Sb,pm(p, s)| ≤ 1. �

Proof of Proposition 1.2. Since σ−1
p (v) = 1 + O(p−2) for sufficiently large primes p it is enough

to show that (1.14) holds for

σp(v)γp(v) := p−n
∑

F(s)≡v (mod p)

1p|s1···snσp(p, s,v)

= p−n
∑

F(s)≡0 (mod p)
s non−singular

1p|s1···snσp(p, s,v) + p−n
∑

F(s)≡0 (mod p)
s singular

1p|s1···snσp(p, s,v)
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= p−n+r
∑

F(s)≡0 (mod p)

1p|s1···sn− p−n+r
∑

F(s)≡0 (mod p)
s singular

1p|s1···sn+ p−n
∑

F(s)≡0 (mod p)
s singular

1p|s1···snσp(p, s,v)

=: γ1p(v)− γ2p(v) + γ3p(v).

Let V ∗
F (p) denote the locus of singular points s ∈ Zn

p of the (mod p)-reduced variety
VF (p) := {F(s) = v}. It is well-known fact in arithmetic geometry, see [23], that

codim (V ∗
F (p)) = codim (V ∗

F ),

for all but finitely many primes p, i.e. that codimension of the singular variety does not change
when the equations defining the variety are considered mod p. Also, the number of points over Zp

on a homogeneous algebraic set V is bounded by its degree times p dimV , see [8] Prop. 12.1, hence

|V ∗
F (p)| . pn−codim (V ∗

F ), where the implicit constant may depend on n, k and r. Thus for sufficiently
large primes p ≥ ω we may apply Lemma 3.1 which gives for i = 2, 3

|γip(v)| . p−n+r2kpn−codim (V ∗
F ) . pr

2k−r(r+1)(k−1)2k−1−1 . p−2.

For J ⊆ [1, n] let define the coordinate subspace MJ := {s = (s1, . . . , s− n) ∈ Zn
p ; sj = 0 ∀ j ∈ J}.

By the inclusion-exclusion principle we have that

γ1p(v) = p−n+r
n∑

j=1

(−1)j−1
∑
|J |=j

∑
s∈MJ

1F(s)=v. (3.7)

If F is a system of r forms then it is not hard to show that rank(F|MJ
) ≥ rank(F) − r|J | for

any subspace MJ of codimension |J |, see [6], Cor. 2. By our assumption on the rank of the system
F we have that for 1 ≤ |J | ≤ r + 1

rank(F|MJ
)− r|J | ≥ r(r + 1)(k − 1)2k − r(r + 1) > 2k.

Then by Proposition 4 in [7] applied the the system F restricted to the subspace MJ ≃ Zn−j
p one

has

p−(n−j)+r|{s ∈ MJ ;F(s) = v}| = 1 +O

(
p
−

rank(F|MJ
)−r

2k

)
= 1 +O(p−1) (3.8)

This implies that corresponding to 2 ≤ j ≤ r + 1 in (3.7) contribute O(p−j) = O(p−2) to the
expression γ1p(v), while the trivial fact |MJ | = pn−j ≤ pn−r−2 shows that the same holds for the
terms corresponding to j ≥ r + 2. Thus, again by (3.8)

γ1p(v) = p−n+r
n∑

j=1

∑
s∈M{j}

1F(s)=v +O(p−2) =
n

p
+O(p−2).

This proves the Proposition. �

4. Appendix: Diophantine equations over Z and Zp.

In this section we sketch the proof of Proposition 2, which is a minor variant of the main result of
[3], see Theorem 1 there. For a family of integral forms F = (F1, . . . , Fr) and given d ∈ N, s ∈ Zr,
α ∈ Rr define the exponential sum

SN (d, s, α) :=
∑
x∈Zn

e2πiα·F(dx+s)ϕN (dx+ s), (4.1)

where ϕN is the indicator function of a cube BN of size N .
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Then one has the analogue of Lemma 2.1 in [3]

Lemma 4.1. Let 1 ≤ d < N , N1 := N/d and let s ∈ Zn. Then

|N−n
1 SN (d, s, α)|2k−1 . N−kn

1

∑
h1,...,hk−1∈[−N1,N1]n

n∏
j=1

min{N1, ∥dkαΦj(Φj(h
1, . . . ,hk−1)∥−1},

(4.2)

where for 1 ≤ i ≤ r the i=th component of the the multi-linear form Φj is given by

Φi
j(h

1, . . . ,hk−1) = k!
∑

1≤j1,...,jk−1≤n

aij1,...,jk−1,j
h1j1 , . . . , h

k−1
jk−1

,

and ∥β∥ denotes the distance of a real number β to the closest integer.

Proof. Write

Fd,s(x) := F(dx+ s) = dkF(x) +Gd,s(x), deg (Gd,s) < k. (4.3)

Also, ϕN (dx+ s) = ϕN1,s(x) where ϕN1,s is the indicator function of the cube BN1,s = d−1(BN − s)
of size N1.

Introducing the differencing operators

DhF (x) := F (x+ h)−F(x),

as well as their multiplicative analogues

∆hϕ(x) := ϕ(x+ h)ϕ̄(x),

we have by applying the Cauchy-Schwarz inequality k − 1-times

|N−n
1 SN (d, s, α)|2k−1 | . N−kn

1

∑
h1,...,hk−1∈Zn

∣∣∣∣∣ ∑
x∈Zn

e
2πiα·Dhk−1

...Dh1
Fd,s(x)∆hk−1

. . .∆h1ϕN1,s(x)

∣∣∣∣∣ .
(4.4)

By (4.3) and (??) we have that

Dhk−1
. . . Dh1Fd,s(x) = dkDhk−1

. . . Dh1F(x) = dk
n∑

j=1

xj Φj(h1, . . . ,hk−1).

Estimate (4.2) then follows form the fact that |
∑

x∈I e
2piβx| ≤ min{N1, ∥β∥−1} for any β ∈ R,

when the summation is taken over an interval I of length at most N1. �

Once this is established, the rest of the arguments in [3] carry over to our situation leading the
following minor arcs estimate. For given 1 ≤ d < N , N1 := N/d and 0 < θ < 1 define the system
of major arcs

M(θ) :=
∪

1≤q≤N
(k−1)rθ
1

∪
(a,q)=1

Ma,q(θ), where (4.5)

Ma,q(θ) := {α ∈ [0, 1]r; |αi − ai/q| ≤ q−1N
−k+(k−1)rθ
1 , 1 ≤ i ≤ r}.

Lemma 4.2. [[3], Lemma 3.3] If {dkα} /∈ M(θ) then one has for every τ > 0

|SN (d, s, α)| ≤ Cτ Nn−Kθ+τ
1 . (4.6)
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We need the above estimate in slightly different form, depending only on α.

Lemma 4.3. Let 0 < θ, ε < 1 and let 0 < η ≤ εr(1− k−1)θ. If d ≤ N
η

1+η then for α /∈ M(θ) one
has uniformly for s ∈ Zn

|SN (d, s, α)| .τ N
n− K

1+ε
θ+τ

1 (∀ τ > 0). (4.7)

Proof. If dkα ∈ Ma,q(θ) (mod 1), then there is q ≤ N
r(k−1)θ
1 and ai ∈ Z such that (ai, q) = 1

and |dkαi − ai/q| ≤ q−1N
−k+(k−1)rθ
1 . This implies that |αi − a′i/q1| ≤ q−1

1 N
−k+(k−1)rθ
1 for some

q1 ≤ dkN
(k−1)rθ
1 and a′i ∈ Z for which (a′i, q1) = 1. If d ≤ N

η
1+η then d ≤ Nη

1 and hence

q1 ≤ N
kη+r(k−1)θ
1 ≤ N

(1+ε)r(k−1)θ
1 . This implies that α /∈ M((1+ ε)θ. By taking the contrapositive

and changing variables θ := (1 + ε)θ the Lemma follows. �
As a first application we give an estimate for the Gauss sums

Sa,q(d, s) :=
∑
x∈Zn

q

e
2πi

a·F(dx+s)
q . (4.8)

Lemma 4.4. Let q ∈ N and 1 ≤ d < q
ε
k . Then for any a ∈ Zr such that (a, q) = 1 and s ∈ Zd one

has

|Sa,q(d, s)| .τ q
n− K

(1+ε)r(k−1)
+τ

(∀ τ > 0). (4.9)

Proof. Note that Sa,q(d, s) = SN (d, s,a/q) with N = dq, as x ∈ [0, q)n if dx+s ∈ BN = [0, dq)n+s.

Moreover if r(k − 1)θ < 1 then for any 1 ≤ q′ ≤ qr(k−1)θ < q and (a′, q′) = 1∣∣∣∣aq − a′

q′

∣∣∣∣ ≥ 1

qq′
>

1

q′
q−k+r(k−1)θ.

This implies that a/q /∈ M(θ). Since d < q
ε
k we can choose θ so that r(k − 1)θ < 1 but d < qη

for η := εr(1− k−1)η. The (4.7) implies that

|Sa,q(d, s)| .τ q
n− K

(1+ε)
θ+τ .τ q

n− K
(1+ε)r(k−1)

+τ
(∀ τ > 0),

choosing θ sufficiently close to 1
r(k−1) . �

Taking d = 1 and letting ε → 0 in (4.9) one has

Sa,q(1, s) = Sa,q(1, 0) .τ q
n− K

r(k−1)
+τ

.

Next, to apply [3], Lemma 4.4 adapted to our situation, we make the assumption that

K > (1 + ε)r(r + 1)(k − 1). (4.10)

Then one can chose small positive numbers δ and θ0 so that

δ + 2r(r + 2)θ0 < 1 (4.11)

and

2δθ−1
0 < K(1 + ε)−1 − r(r + 1)(k − 1). (4.12)

Lemma 4.5. Let δ, θ0 satisfy (4.10)-(4.11), and let 0 < η ≤ ε(1− k−1)θ0. Then for 1 ≤ d ≤ N
η

1+η

and s ∈ Zn one has∫
α/∈M(θ0)

|SN (d, s, α)| dα . Nn−dr−δ
1 . (4.13)
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If in addition we make the assumption that

η < δk−1r−1, (4.14)

then it is easy to see that

Nn−dr−δ
1 = Nn−drd−nN−δdkr+δ ≤ Nn−drd−nN−δ+(kr+δ)η(1+η)−1 ≤ Nn−dr−δ′d−n, (4.15)

for some δ′ > 0.

Going back to Proposition 1.2, we have under the conditions of Lemma 4.5 and (4.14)

RN (d, s,v) =

∫
e−2πi α·v SN (d, s;α) dα =

∫
M′(θ0)

e−2πi α·v SN (d, s;α) dα+O(Nn−rd−δ′d−n),

for any set M′(θ0) ⊇ M(θ0). From now on we will write

r(k − 1)θ0 = κ, (4.16)

and define

M′(θ0) :=
∪

1≤q≤Nκ
1

∪
(a,q)=1

M′
a,q(θ0), where (4.17)

M′
a,q(θ0) := {α ∈ [0, 1]r; |αi − ai/q| ≤ N−k+κ

1 , 1 ≤ i ≤ r}. (4.18)

Next, for given α ∈ M′
a,q(θ0), writing α = a/q+ β one has the following approximation of the sum

SN (d, s;α (see [3], Lemma 5.1).

Lemma 4.6. Let 0 < η ≤ 1
2 , d ≤ N

η
1+η , s ∈ Zn. Then for α ∈ M′

a,q(θ0)

SN (d, s;α) = Nnd−nq−nSa,q(d, s) I(N
kβ) + O(Nn−1+2η+κd−n), (4.19)

where

I(γ) :=

∫
Rr

e2πiγ·F(y)ϕ(y) dy. (4.20)

Proof. Writing x := qy + z with z ∈ [0, q)n, we have

SN (d, s;α) =
∑
z∈Zn

q

e
2πi

a·F(dz+s)
q

∑
y∈Zn

e2πiβ·F(qdy+dz+s)ϕN (qdy + dz+ s). (4.21)

As y varies by O(1) in the range |qdy| . N , the variation in the exponent is

O(|β|Nk−1qd) = O(N−1+2κ+η).

Thus the error in replacing the sum
∑

e2πiβ·F(qdy+dz+s)ϕN (qdy + dz+ s) by the integral∫
y∈Rr

e2πiβ·F(qdy+dz+s)ϕN (qdy + dz+ s) dy,

is O(Nn−1+2κ+η) + O((N/dq)n−1). By a change of variables y := N−1(qdy + dz+ s) we have∫
y∈Rr

e2πiβ·F(qdy+dz+s)ϕN (qdy + dz+ s) dy = Nnd−nq−nI(Nkβ).

Summing over z ∈ Zn
q , using (4.21) and (4.8) proves (4.19). �
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For µ ∈ Rr and Φ > 0, write

J(µ; Φ) :=

∫
|γi|≤Φ

I(γ) e−2πiγ·µ dγ,

and define

J(µ) := lim
Φ→∞

J(µ; Φ). (4.22)

By Lemma 5.2 and Lemma 5.3 in [3], J(µ) exists, continuous and uniformly bounded by∫
Rr

|I(γ)| dγ < ∞.

Also using assumption (4.9) and estimate (4.10) we have that the so-called singular series

S(d, s;v) :=

∞∑
q=1

∑
(a,q)=1

q−ne
−2πi a·v

q Sa,q(d, s) (4.23)

is absolute convergent. In fact,

∑
q≥Nκ

1

∑
(a,q)=1

q−n|Sa,q(d, s)| . N−δ. (4.24)

Indeed, as κ = r(k − 1)θ0 we have by assumption (4.10)

2δ

κ
<

K

(1 + ε)r(k − 1)
− r − 1.

Then by estimate (4.9)

∑
q≥Nκ

1

∑
(a,q)=1

q−n|Sa,q(d, s)| .τ

∑
q≥Nκ

1

q−
2δ
κ
+τ .τ N−2δ+τ

1 .τ N−2δ+δη+τ . N−δ.

Summarizing we have

Proposition 4.1. Let F = (F1, . . . , Fr) be a family of integral forms of degree k satisfying the rank
condition

K :=
codimV ∗

F
2k−1

> r(r + 1)(k − 1). (4.25)

There exists a constant δ′ = δ′(k, r) > 0 such that the following holds.

(i) If 0 < η ≤ 1
4r2(r+1)(r+2)k2

then for every 1 ≤ d ≤ N
η

1+η and s ∈ Zn one has the asymptotic

RN (d, s;v) = Nn−rkd−nS(d, s,v) J(N−kv) + O(Nn−rk−δ′d−n). (4.26)

(ii) Moreover if

K > 2r(r + 1)(k − 1) + 2rk, (4.27)

then the asymptotic formula (4.26) holds for η ≤ 1
4r(r+2)k .
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Proof. First we show that if 0 < ε ≤ 1 satisfies ε < K
r(r+1)(k−1) − 1 and η > 0 is such that

η <
1

4r(r + 2)k
min

{
ε,

K − (1 + ε)r(r + 1)(k − 1)

rk(1 + ε)

}
, (4.28)

then (4.26) holds for 1 ≤ d ≤ N
η

1+η and s ∈ Zn.

Set the parameters θ0 and δ as

θ0 :=
1

2r(r + 2)k + 1
, δ :=

θ0
2

min

{
1,

K

1 + ε
− r(r + 1)(k − 1)

}
,

to satisfy conditions (4.11) and (4.12). Then for

η <
1

4r(r + 2)k
min

{
ε,

K − (1 + ε)r(r + 1)(k − 1)

rk(1 + ε)

}
,

we have that η < ε(1−k−1θ0 and η < θ0k
−1r−1 hence both the conditions of Lemma 4.5 and (4.14)

are fulfilled.
Thus by (4.16), (4.19), (4.24) and using the fact that |M′(θ0)| ≤ N

(r+1)κ−rk+rη
1 ≤ N−rk+ 2

3 (by
our choice of θ0, η), we have that

RN (d, s,v) =
∑
q≤Nκ

1

∑
a

∫
M′

a,q(θ0)
e−2πi α·vSN (d, s;α) dα + O(Nn−rk−δ′d−n)

= Nnd−n

 ∑
q≤Nκ

1

q−ne
−2πi a·v

q Sa,q(d, s)

∫
|βi|≤N−k+κ

1

e−2πiβ·vI(Nkβ) dβ + O(N−rk− 1
3
+2κ+η)


= Nn−rkd−n

 ∑
q≤Nκ

1

q−ne
−2πi a·v

q Sa,q(d, s)J(N
−kv; dkNκ

1 ) +O(N−δ′)


= Nn−rkd−n S(d, s;v)J(N−kv) + O(Nn−rk−δ′d−n), (4.29)

for some δ′ = δ′(r, k) > 0.

Indeed, the first line is (4.16), the second line follows from (4.19) and the above remark on the
size of the major arcs, the third line by a scaling β := Nkβ and the last line from (??) and (4.24)
together with the estimate 2κ+ η ≤ k−1

k(r+2) +
1

4r(r+2)k ≤ 1
r+2(1−

3
4k ) <

1
3 .

If K > r(r + 1)(k − 1) then K
r(r+1)(k−1) − 1 ≥ 1

r(r+1)(k−1) thus one may choose ε slightly larger

than 1
r(r+1)k . This gives η ≤ 1

4r2(r+1)(r+2)k2
by (4.28). If K > 2r(r + 1)(k − 1) + 2rk then one may

choose ε slightly larger than 1, which gives η ≤ 1
4r(r+2)k . This proves the Proposition. �

Finally, consider the singular series

S(d, s,v) =
∞∑
q=1

q−n
∑

(a,q)=1

e
−2πia·v

q Sa,q(d, s), (4.30)

where writing Fd,s(x) := F(dx+ s)

Sa,q(d, s) =
∑
x∈Zn

q

e
2πi

Fd,s(x)·a
q .
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By the well-known multiplicative properties of the inner sums in (4.30)

S(d, s,v) =
∏

p prime

σp(d, s,v),

with local factors

σp(d, s,v) =

∞∑
m=0

p−mn
∑

(a,pm)=1

e
−2πi a·v

pm Sa,pm(d, s).

By estimate (4.9) and assumption (4.10) we have σp(d, s,v) = 1+O(p−1−δ′) and hence the product
is absolutely and uniformly convergent. Finally, by a straightforward calculation we have

σl
p(d, s;v) :=

l∑
m=0

p−mn
∑

(a,pm)=1

e
−2pi a·v

pm Sa,pm(d, s) = p−l(n−r) |{x ∈ Zn
pl ; Fd,s(x) = v}|.

(4.31)

Proposition 1.1 follows immediately from Proposition 4.1.
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