PROBLEM SESSION IV

1. Let $f, g \in L^1(\mathbb{R}^n)$ such that f, g are Borel measurable.

(a) Show that the function f(x-y)g(y) is Borel measurable in (x, y) and that for almost every x the function f(x-y)g(y) is integrable with respect to y.

(b) Define $f * g(x) = \int f(x - y)g(y) \, dy$, and show that $\|f * g\|_1 \le \|f\|_1 \|g\|_1.$

2. Let (X, μ) be a measure space and let $f : X \to \mathbb{R}$ be a measurable function. Define, for $\lambda \geq 0$

$$\phi(\lambda) = \mu\{x: f(x) > \lambda\}, \quad \psi(\lambda) = \mu\{x: f(x) < -\lambda\}.$$
Prove that

$$\int_X |f| \, d\mu = \int_0^\infty (\phi(\lambda) + \psi(\lambda) \, d\lambda.$$

3. Let $f \in L^{\infty}(\mathbb{R})$. Show that

$$\lim_{n \to \infty} \int_{R} \frac{|f(x)|^{n}}{1 + x^{2}} = \|f\|_{\infty},$$

where $\|f\|_{\infty} = \inf\{M : m(|f| \ge M) = 0\}.$

4. Let $f(x,y) = \frac{xy}{(x^2+y^2)^2}$ if $(x,y) \neq (0,0)$ and define f(0,0) = 0.

Determine if $f \in L^1([0,1] \times [0,1])$ and justify your assertion.

5. Let $f \in L^1(\mathbb{R})$ and for h > 0 let $A_h f(x) := \frac{1}{2h} \int_{|y| \le h} \int f(x - y) \, dy$.

- (a) Prove that $||A_h f||_1 \le ||f||_1$ for all h > 1.
- (b) Prove that $||A_h f f||_1 \to 0$ as $h \to 0^+$.

6. Suppose f is a finite-valued measurable function on [0,1] and let g(x,y) = |f(x) - f(y)|. Prove that if g is integrable on $[0,1]^2$ then f is integrable on [0,1].

7. Suppose $f \ge 0$ and that f is integrable on \mathbb{R} . For y > 0, let

$$g(y) = y m(\{x : f(x) \ge y\}).$$

Prove that

- (a) $\lim_{y \to 0_+} g(y) = \lim_{y \to \infty} g(y) = 0.$
- (b) g achieves its maximum at some point y_0 .