DISCRETE MULTILINEAR MAXIMAL OPERATORS AND PINNED SIMPLICES

NEIL LYALL AKOS MAGYAR ALEX NEWMAN PETER WOOLFITT

ABSTRACT. We prove that any given subset of Z% of upper density § > 0 will necessarily contain, in an
appropriate sense depending on ¢, an isometric copy of all large dilates of any given non-degenerate k-simplex,
provided d > 2k + 3. This provides an improvement in dimension, from d > 2k + 5, on earlier work of
Magyar. We in fact establish a stronger pinned variant. Key to our approach are new #2 estimates for
certain discrete multilinear maximal operators associated to simplices. These operators are generalizations
the discrete spherical maximal operator and may be of independent interest.

1. INTRODUCTION

1.1. Simplices in dense subsets of Z?. Recall that the upper Banach density of a set A C Z% is defined by

AN(t N
0"(A) = lim sup | (£ + QX ))|7
N=ooyeza  |Q(N)]
where | - | denotes counting measure on Z¢ and Q(N) the discrete cube [-N/2, N/2]¢ N Z.
In light of the fact that the square of the distance between any two distinct points in Z¢ is always a positive
integer we also introduce the convenient notation vN:= {\ : A > 0 and \* € Z}.

In [12] the second author established the following result on the existence of unpinned two point configura-
tions (distances) in dense subsets of the integer lattice.

Theorem A (Magyar [12]). Let A C Z¢ with d > 5. If §*(A) > 0, then there exist an integer ¢ = q(5*(A))
and Ao = Mo(A) such that for all X € VN with X > A there exist a pair of points {x,z+y} C A with |y| = g\.

The approach taken in [12] was an adaptation of Bourgain’s in [3] to the analogous problem in the continuous
setting of R%. In [13] the second author adapted this further to establish the following analogous result for non-
degenerate k-simplices. Recall that for any 1 < k < d we refer to a configuration A = {vg = 0, vy, ..., v} C Z4
as a non-degenerate k-simplex if the vectors vy, ..., v are linearly independent.

Theorem B (Magyar [13]). Let k > 2, A C Z% with d > 2k + 5, and A = {0,vy1,...,vx} C Z% be a
non-degenerate k-simplex. If 6*(A) > 0, there exists an integer ¢ = q(6*(A)) and Ao = Ao(A, A) such that for
all X € VN with X > A there exist © € A with z + A’ C A for some A" = {0,y1,...,yr} =~ AA.

In the theorem above, and throughout this article, we say that two configurations AA = {0, Avy, ..., vk}
and A" ={0,y1,...,yr} in Z% are isometric, and write A’ ~ MA, if |y; — y;| = Av; — v;| for all 0 < i,j < k.

In this article we establish an improvement on the dimension condition in Theorem B above from d > 2k+5
to d > 2k + 3 and simultaneously establish a stronger pinned variant, namely

Theorem 1. Letk > 1, A C Z* withd > 2k+3, and A = {0, vy, ...,vx} C Z¢ be a non-degenerate k-simplex.
If 6*(A) > 0, there exists an integer ¢ = q(0*(A)) and Ao = Ao(A, A) such that for any Ay > Ao there exists a
fized x € A such that for all X € [Ao, \i] N VN one has x + A’ C A for some A" = {0,y1,...,yr} =~ AA.

Remark. The threshold Ao in the results above cannot be taken to depend on ¢*(A) only. Indeed, for
any positive integers ¢ and M the set (Qgar N Z%) + (4dgMZ)? will have density (4d)~¢ but never contain
pairs {z,z + y} with |y| = gdM. Since A could fall entirely into a fixed congruence class of some integer
1 <7 < 6*(A)~Y? the value of ¢ in the results above must be divisible by the least common multiple of all
integers 1 < 7 < 6*(A)~"/%. Indeed if A = (rZ)? with 1 <7 < §~ /¢ then A will have upper Banach density
at least &, but the distance between any two points z,y € A will always take the form 7\ for some X € vN.
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We note that the case k = 1 of Theorem 1 was already established by the first two authors in [8]. To the
best of our knowledge, there have been no previous results addressing pinned simplices in dense subsets Z¢ in
any dimension when k > 2. Statements such as these are intimately connected with estimates for discrete
maximal averages.

1.2. Discrete multilinear maximal averages associated to simplices. An important result in the
development of discrete harmonic analysis is the ¢P-boundedness of the so-called discrete spherical maximal
function [11]. For any A\ € VN we let Sy = {y € Z?: |y| = A} denote the discrete sphere of radius \ centered
at the origin. For f : Z% — R we then define the discrete spherical averages

Axf(@) =[S\ Y fla+y).
YyESA

noting that if d > 5, then cg\472 < |Sy| < CyA%~2 for some constants 0 < c¢q < Cy < 00, see [16]. In [11] it
was shown that for p > d/(d — 2) one has the following maximal function estimate

[[sup [AfI, < Cpallf1ls
A>1

where || f|l, = (3, |f(2)|P)}/P denotes the ¢?(Z%) norm of the function f.

In [10] the authors gave a new direct proof of £2-boundedness of the discrete spherical maximal function
that neither relies on abstract transference theorems nor on delicate asymptotic for the Fourier transform of
discrete spheres. Implicit in that paper is the fact that £2-boundedness follows as a consequence of stronger
refined “mollified” estimates in which one obtains gains in ¢? over suitably large scales when applied to
functions whose Fourier transform is localized away from rational points with small denominators.

Recall that for f € ¢1(Z%) we define its Fourier transform f : T¢ — C by f(¢) = > peza f(@)e 2™ For
each n > 0 we define

¢y :=lem{1 < ¢ <n~?}
and for any L > g, we let
Qur={¢eT: ¢c[-L7" L7+ (¢,'2)%}.

Key to the proof of Theorem 1 is an extension of the approach from [10] to multilinear maximal operators

associated to simplices. Given a non-degenerate k-simplex A = {vg = 0,v1,...,vx} C Z% and \ € VN, we let
SAA = {(y17 cee 7yk') € de A= {anla s 7yk} = AA}
For functions fi,..., fi : Z¢ — C we then define the multilinear averaging operator

Asa(fry- o5 fi)(@) = |Saal ™! > Aty fule )

(y1,--,Yk)ESra
noting that if d > 2k + 3 and X € VN, then
(1) ea NHE—RGEHD <16y (| < Oy ARk (D)
for some constants 0 < ca < Ca < 00, see [6] or [13].
Note that for k =1 and v; = (1,0,...,0) we have that Sxa = S and hence Aya(f) = Ax(f).
The /P mapping properties of the maximal operators corresponding to these averages were considered in
[2] and [4]. Here we establish the following particular ¢?-estimates, the first non-trivial estimates of any type

for such operators in dimensions lower that d = 2k + 5 when k > 2. The stronger refined ¢? estimate (3), in
addition to implying (2), plays a crucial role in our proof of Theorem 1.

Theorem 2. Ifk>1,d>2k+3, and A = {0,v1,...,v:} C Z? be a non-degenerate k-simplex, then

(2) | il;};IAm(f1,~-~,fk)l||2 < Caallfillz- I fell2-
In fact, for any n > 0, and L > qf], we have
n
3 H H <c e
(3) )\ES:IIP2L|A)\A(JC1 follf, < A [ fillz - Nl fill2

whenever suppfj CQp | for some 1 < j <k, where Q; | denotes the complement of .

Estimate (3) in the case k = 1 was originally established in joint work with Magyar [8] via an adaptation
of the transference methods from [11].
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2. PROOF OF THEOREM 1

2.1. Reduction to uniform distributed sets. In light of the observation made after Theorem 1 above
regarding the sensitivity of this problem to the local structure of A, it is natural to first consider the case
when A is, in a suitable sense, well distributed in small congruence classes. In fact, this approach ultimately
leads directly to a proof of Theorem 1.

Following [8] we define A C Z% to be n-uniformly distributed (modulo gy) if, for some n > 0, its relative
upper Banach density on any residue class modulo g, never exceeds (1+n*) times its density on 74, namely if

0" (Als+ (gq2)") < (L+1") 6"(A)

for all s € {1,..., qn}d. A straightforward density increment argument allows one to deduce Theorem 1 from
the following analogue for n-uniformly distributed subsets of Z%.

Proposition 1. Lete >0, 0 <n < % and k > 1.
If A C 72 with d > 2k + 3 is n-uniformly distributed, and A = {0,vy,...,vx} C Z% is a non-degenerate
k-simplez, then there exist \g = Mo(A4, A,n) such that for any Ay > Ao there exists a fized x € A such that

Asa(la, ... 1a)(z) > 6 (A)F —¢
for all X\ € [\, M| N VN, noting that
Asa(La, .. 14) (@) = 1Sl {5 yk) €Z% - 2+ A C A with A ={0,y1,...,yx} = AA}.

In Proposition 1 above, and throughout this article, we use the notation o < 3 to denote that o < ¢ for
some suitably small constant ¢ > 0.
Proposition 1 in fact implies the following stronger optimal formulation of Theorem 1.

Corollary 1. Let k > 1, A C Z% with d > 2k + 3, and A = {0,vy,...,v} C Z? be a non-degenerate
k-simplex. For any e > 0, there exists an integer ¢ = q(e,d) and \g(A, A, ) such that for any A\ > Ao there
exists a fized x© such that

@ 1Sal™ H,-me) € @2)™ 2 2+ A C A with A = {0,y1,..., g} = AgA}| > 5" (A)* —¢
for all X € (Ao, M) NVN.

Remark. By considering sets A of the form Use{l g A, with each set A; a “random” subset of the
congruence class s + (gZ)? one can further easily see that conclusion (4) above is in general best possible.

Proof that Proposition 1 implies Corollary 1. Let 0 < ¢ < § < 1 and A C Z¢ with d > 2k 4+ 3. To prove
Corollary 1 it is enough to prove that if *(A) > § then there exists \g = A\g(4, A, ¢) and ¢ = ¢(e,d) such
that for any A; > Ao there exists a fixed € A such that (4) holds for all A € VN with A\g < XA < A\p.

Let 0 < n < €. We prove the above for 6, := (14+n%*)~™ inductively for all m > 0, using Proposition 1. For
m = 0 the statement is trivial as 6*(A) = §o = 1 and hence A contains arbitrarily large cubic grids. Suppose
it holds for ¢ = ¢, and assume that 6*(A) > d,,41. If A is n-uniformly distributed then the result holds for
§ = 041 by Proposition 1. In the opposite case there is an s € Z¢ so that §*(A|s+ (¢,Z)%) > (1 +n*)4.
Let ¢ : s+ (¢,2)* — Z* be defined by ¢(z) := ¢, ' (x — s) and let A" := ¢(A). Then §*(A") > 6y, thus (4)
holds for A" and § = §,,,, with some ¢’ = ¢’(g,d) and 2’ € A’. Note that

{(y1, .. ye) € (@Z)%* 2/ + A" C A with A" = {0,y1,...,ur} ~ ¢ A\A}|
=H{(y1,..-,yx) € (qnq'Z)dk Dgpr’ + A C A with A ={0,y1,. .., yk} = ¢,¢' \AY
which implies that (4) holds for A, § = 6,41 with ¢ = ¢,,¢ and z = g2’ + s. O

2.2. Proof of Proposition 1. Before proving proving Proposition 1 we need two preparatory lemmas.
We refer to a subset QQ C Z% as a cube of sidelength £(Q) = N if

Q=1 +Qn
for some to € Z%, where as usual Qy = [-N/2, N/2]%.
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Definition (U;L(Q)—norm). For any cube Q C Z%, integers 1 < ¢ < L < £(Q), and functions f: Q — R
we define

1 1/2
(5) 1913 0 = (i 22 17 * xaz0)
tezd
where X, 1, denotes the normalized characteristic function of the cubes Q.1 := Qr N (¢Z)%, namely
q\4 if VAL _ L Lid
0 Xapl@) =4 () @€ @0 5]
0 otherwise

In (5) above and in the sequel we denote the convolution f % g of two functions f and g by

frg@):=>_ flx—y)g

yezZd

We note that the U, ! (Q)-norm measures the mean square oscillation of a function with respect to cubic
grids of size L and gap q The first key ingredient in our proof of Proposition 1 is the simple, yet significant,
observation from [8] that subsets of Z¢ with positive upper Banach density that are n-uniformly distributed
are also, in a precise sense, uniformly distributed at certain scales.

Lemma 1 (Consequence of Lemmas 1 and 2 in [8]). Let n > 0 and A C Z? be n-uniformly distributed with
§ :=0*(A) > 0. There erists a positive integer L = L(A,n) and cubes Q C Z% of arbitrarily large sidelength
Q) with £(Q) > n~*L such that

(7) [ANQ| > (0 —0(1))Q
and
(8) 114 = d)1ellu: @ = O

The second key ingredient in our proof of Proposition 1 is the following maximal variant of a so-called
generalized von-Neumann-type inequality, which follows in a straightforward manner from Theorem 2.

Lemma 2 (Corollary of Theorem 2). Let k > 1, d > 2k + 3, and A = {0,v1,...,v:} C Z% be a non-
degenerate k-simplex. For any n > 0, positive integer L, cube Q C Z¢ with sidelength N > n~SL, and
functions fi,..., fr : @ = [=1,1] we have

Ty

zezd "

sup | Asalfur-on fi)(@)] < Caa (min, 1fllus @) +O0).

—3L<A<n3N

Proof. By Cauchy-Schwarz, it suffices to prove the stronger estimate
1 N\ 172
(G S o s @) < Caa (nin, Il @ +O0)).
Q) , n=3L<A<N3N
TEZ?
This follows from Theorem 2 by symmetry and sublinearity after decomposing fr = fr1 + fi,2 + fr,3 with
Jrea = fr* Xgy,L
where fi 2 and fi 3 satisfy
Frz=fx lo o, (1=Xg,z) and fis= F loe o (1— Xan L)-

Indeed, estimate (2) implies that

<|Q 2

zeZ?

S\ 172 1/2
bup‘A)\A fl,...,fk_l,g)(x)’ ) OdA<|Q| Z |g(x)|2)

z€Zd

for any g : Z% — C. Note that if g = fi 1 then

1 1/2
(57 = 15a@P) " =I5y, or

TEZ
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In light of the fact that
d
~ q —omiz-
GEE B S

v€[=5.5)% anle

it is easy to see that X,.1,(¢/q) = 1 for all £ € Z¢ and that there exists some absolute constant C' > 0 such that
9) 0<1—=Xq,.(§) <CLIE—t/q]
for all ¢ € T4 and ¢ € Z%, and hence that 1 — xg, 7(§) = O(n) for all £ € Q, ,-17. It thus follows, by

Plancherel, that
1 1/2
(i1 2 Wral@l?) =00

z€Z?

Finally, since suppﬁ; C sz_l 1.» it follows from estimate (3) that

1/2
( ! Z sup ‘A,\(fhm,fk17fk,3)($)‘2> < Cygan. O

|Q| zezd n=3L<A<n3N

Proof of Proposition 1. Let 0 < e <J <1 and 0 < n < 2.

Suppose there exists a set A C Z? with d > 2k + 3 with § = §*(A4) > 0 that is n-uniformly distributed but
for which the conclusion of Proposition 1 fails, namely that there exists arbitrarily large pairs (Ag, A1) such
that for every x € A one has

.A)\A(IA, ey IA)(JJ) < 5k — &
for some A € [Ag, \1] N VN,

Combining this with Lemma 1 we can conclude that there exists a positive integer L and a cube Q € Z¢
with sidelength N sufficiently large so that in addition to the properties (7) and (8) we also have the property
that

AkA(lAﬂQ, RN 1AﬁQ)(x) < ok ¢
for every x € A for some A € [p73L,n*N] N v/N.

We now let A’ := AN Q’, where Q' denotes the cube of sidelength (1 — n®)N with the same center as Q.

It then follows, provided that IV was chosen sufficiently large, that

Aa(lg,dlg,...,01g)(z) = o*

for every z € A’ and hence that for each such = one has

k—1
Z AAA(lAmQ, . 1AQQ, (1A — 5)1@7(51(2, .. .,(51Q)(£U) < —¢
= N

j copies

for some A € [p~3L,n*N] N v/N. Consequently, we have that

k—1
(10) Z sup ’A)\(lAnQ,...lAmQ,(lA—(S)IQ,(SlQ,...,(SlQ)(JZ) 26
=0 n—3L<A<n3N N——

j copies
for every z € A’.

Since n < ¢ and |A’| > |AN Q| —n?|Q| it follows from (7) that |A’|/|Q| > §/2. Combining this observation
with (10) we obtain

k—1
1
(11) o= sup ‘AA(1AQQ,...1AQQ,(1A —0)1g,d1g,...,010)(x)| > d/2.
— Q| =, eria<pn| T —————
J=0 T€Z J copies
However, Lemma 2 and (8) clearly imply that for each 0 < j7 < k — 1 one has
1
= sup  [Ax(1ang,---1ang; (1a — 81,810, ...,d10)(x)| = O(n)
Q| aczd NTALEASHIN —_—

J copies

which leads to a contradiction if 1 is chosen sufficiently small with respect to 2. O
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3. PROOF OF THEOREM 2

Following the approach in [10] we will deduce Theorem 2 from refined estimates for our maximal operators
at a single dyadic scale, namely Proposition 2 below. We first need to introduce some notation closely related
to that in Section 1.2. For any integer j > 0 we let

qj = lem{1,2,...,27}
noting that ¢; < er, and for any non-negative integers j and [ that satisfy 27 <1, we let

(12) Q={¢eT: e -2 27"+ (¢;'2)"}.

Proposition 2. Ifk>1,d > 2k +3, and A = {0,v1,...,v.} C Z? be a non-degenerate k-simplex, then
(13) | sup [ Axa(fr, s fllly € Caa 279257 1 fillz - | full2

QZS)\§21+1
whenever suppﬁ C Q;l for some 1 < i < k, where Qil denotes the complement of €1, ;.

It is easy to see that Proposition 2 is equivalent to estimate (3) of Theorem 2. Indeed, note that in proving
(3) one may restrict the sup to n72L < A < 2p~2L. Choosing 1,57 € N such that 2! < n72L < 2/*! and
279 > 1=2 we have that 277 < L and hence Q;; C ,, ;. Applying Proposition 2 with j and [ chosen as above
implies estimate (3) of Theorem 2, while applying estimate (3) of Theorem 2 with L = 2!~ and n = 277/2
immediately implies Proposition 2.

We are left with establishing that Proposition 2 implies estimate (2) of Theorem 2. Following the approach
in [10] we start by introducing a smooth sampling function supported on ;.

3.1. A smooth sampling function supported on );;. Let ¢ € S(R?) be a Schwartz function satisfying

1o(6) < 9(€) < 12g(&)
where Q = [~1/2,1/2]¢ and

W) = [ d(@)e P Edr

Rd
denote the Fourier transform of 1) on R%. For a given ¢ € N and L > ¢ we define VgL Z* - R as

Ve r(x) = {(g)dzb (%) if 2 € (¢Z)?

0 otherwise

Writing 2 = ¢r + s with r € Z% and s € Z%/qZ?, it follows from Poisson summation that
Var(§) = Y dla)e i
zeZ4
is a ¢~ '-periodic function on T¢ that satisfies
bo.1(6) = Y W(LE ~1/q).
ezl

For a given ! € N and 0 < j < J; := [logy(1)] — 2, we now define the sampling function
(14) Vi = g, 215

and note that supp \fll)j C Q.
Finally we define AW, ; = ¥; ;11 — ¥; ; and note the important almost orthogonality property they enjoy.

Lemma 3 (Lemma 1 in [10]). There exists a constant C = Cy > 0 such that

Z |ﬂ’l,j(f)|2 <C

1>27

uniformly in j € N and & € T4,
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3.2. Proof that Proposition 2 implies estimate (2) of Theorem 2. Let k > 1, d > 2k + 3, and

A =1{0,vy,...,v} C Z% be a non-degenerate k-simplex. In [10] the authors gave a direct proof of estimate
(2) of Theorem 2 when k = 1, the /2>-boundedness of the discrete spherical maximal function. We may thus,
without loss in generality assume that k > 2, supp fk C Q¢ It and that
(15) | Sup AR oDy S Cuxllfillz - I fa-all2
where A = {0,v1,...,04_1} C Z%.
Let
(16) M(fi,ooo fiu) = sup [Asalfi, - fu)l:
21§)\§21+1
Writing
J—1
fo=Frx W0+ > fux AU+ (fr — fux U1p)
§=0
it follows by subadditivity that
Ji—1
(17) Ml(fl, RN fk) < ./\/ll(fl, cooy fr % \Ijl,O) + Z Ml(fl, cooy frox A\I/l,j) + Ml(fl, v [ — frx \Ill’Jl).
§=0

Estimate (2) of Theorem 2 will now follow from a few observations and applications of Proposition 2, in
light of the fact that

sup [Axa(fis-- -5 fr)| =sup Mi(f1,. ., fr)-
A>1 1

We first observe that the first term on the right in (17) above satisfies
Mi(fr,o s fox Vi) < CoH(fr) il;p|u4,\5(f1,--~,fk71)\
>1

uniformly in [, where
H(f)(x) = su ‘ ’
(H@) ~ N2 1On] |QN| yg fla

with Q(N) the discrete cube [—-N/2, N/2]2 N Z¢ denotes the discrete Hardy-Littlewood maximal operator,
which trivially satisfies ||H f|lcoc < ||flloc < |If]l2 by the nesting of discrete ¢ spaces. It therefore follows from
the inductive hypothesis (15) that

Sl;pHMl(fh v fexWio)ll2 < Cllfilla - [ fill2-

For the middle terms in (17) we first note that

J—1 oo Ji—1

sup ST Mfr,. o fex AT < (Z > Mi(fr,. ..,fk*A\I/lvj)‘Q)l/Q
=0

=0 j=0

Taking £? norms of both sides of the inequality above and applying Minkowski’s inequality, followed by an
application of Proposition 2, gives

HSUI) > Mifr,. o frx AL ) H Z(Z”Ml f1,~~,fk*A‘I’l,j)H§)l/2

b o<y joo1>20

<Ol a3 2723 i dw3)

J 1>27

< Cllfallz- - N1 fxll2

where the last inequality above follows from Lemma 3.
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One more application of Proposition 2 with j = [log, I] — 2 to the last term in (17) gives

HSlllle(f17~--7fk — i x Wi, ) (Z [Mi(frs-s fro— fr = \I/l,Jl)”%)l/Q

<c(zmog2)) 1fillo- il
< Ol Il -

4. PROOF OF PROPOSITION 2

Given any simplex A = {vg = 0,v1,...,v:} C R? we introduce the associated inner product matriz
T =Ta = (tij)1<i,j<k with entries t;; := v; - v;, where “” stands for the dot product in R<. Note that T is a
positive semi-definite matrix with integer entries and T is positive definite if and only if A is non-degenerate.
It is easy to see that A’ ~ AA, with A" = {yo = 0,y1,..., ¥}, if and only if

(18) Yi " Y; = )\2251‘]‘ for all 1 < i,j < k.

If we let M € Z%** be a matrix with column vectors yi,...,yx € Z%, then the system of equations above can
be written as the matrix equation

(19) M'M = N°T,

where M? is the transpose of the matrix M. It therefore follows that
Axalfiss @) = 1Sal™ D0 fAl@+y) - fulz + yr)Srer(M)

Y1, YR €LY

if we use Syzr (M) to denote the indicator function of relation (19).

Let I, = [0,2]*+1)/2 denote the space of symmetric k x k matrices with entries in the interval [0, 2].
Using the fact that

ko k
(X Y) =tr YXt = ZZ TijYij,
for any k x k matrices X = (z;5), Y = (y,;), one has

(20) Syap (M) = 271@/ s tr[(MEM—A2T)X] dX
Iy

where dX =[], <), dwij. Moreover, if M*M = AT then
tr(TMIM) = tr(MT P M?) = tr(\21) = kX2
Given | € N write A = 2! and ¢ = 272/, We have

(21) Shep (M) = 271@61@5,\2 / 677”‘)\2 tr(TX) i tr(M(XJriaT’l)M‘)dX'
Iy
Let
. . -1 t

Gxe(M)=Gxe(yr,...,yp) = ™ TMETETTHM
be the Gaussian function, where y1,...,y, € Z% are the column vectors of the matrix M, and define the
corresponding multi-linear operator
(22) Bxo(fi, o @)= Y fulw+yn) o ful@ 4 ) Gxe(rs o un)-

Y1yee Yr €ELL

It follows that
Ax(fro- o i) (@) = 2R kX 5y A 7 / NI By (f1, o fi) (@) dX.
Iy,
Thus for the maximal function

Ml(flv"‘vfk) = sup ‘A)\A(flv"‘vfk”

215)\S2l+1
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we have the pointwise estimate

(23) Mi(f1,..., fi)(@) < Cqn AFEFD : IBx,e(f1, .- fr)(@)]dX,
k
ase=A"2=2"2 and A <\ < 2A. Finally, by Minkowski’s inequality
(24) IMi(frse s fi)ll < Caa ATHERTD ; I1Bx.e(f1,- - fi)(@)]2 dX.
8
Taking the Fourier transform of the expression in (22) we obtain EX\,E(fl, <oy 1)(€) equals
(25) [ A€ Feal@)fel€ =& == 6 ) Cxab G €= G = G dr - den.

Thus by the Cauchy-Schwarz inequality and Plancherel’s indentity, one has

(26) IBx.<(frs-- f)ll3 < |1GxelZ H 1£:l13-

Thus, the £2 x --- x £2 — ¢? boundedness of the dyadic maximal operator M;(f1, ..., fx) follows from the
estimate

(27) / 1Gx oo dX < Cyp AFE—H=1)
Iy

with A = 2!, For the mollified estimate assume that, supp f; CQf ), Le. f, = 19; lﬁ for some 1 <i < k. By
symmetry of the expression in (22) we may assume without loss of generality that ¢« = 1. In this case in equality

(25) the function (7);(51, coy&k—1,€ — & — -+ — &x—1) can be replaced by 1Q§,l(§1) CTX\E(&, v &1, € —
& — -+ —&,_1), thus to prove Theorem 2, it is enough to show that for j,I € N with 272 <[, one has
(28) / e, (61) Gxc(éry oy En)lloo X < Can 27972571 ARETETD

Iy
with A = 20,

5. ESTIMATES FOR THETA FUNCTIONS ON THE SIEGEL UPPER HALF SPACE.

To prove estimates (27) and (28) we will follow the approach given in Section 5 of [13]. For the sake of

completeness we recall below some of the basic notions and constructs. If M = [my,...,ms] € Z¥F and
X = [&,...,&] € R¥F are d x k matrices then one has that tr(M'X) = my - & + ... + my - & where -
denotes the usual dot product. Thus the Fourier transform of a function f(mq,...,my) = f(M) may written
FX)=Fer, &)= Y f(M)e2miutra),
Mezdxk

This implies that

(29) éX,s(X) _ Z e tr[(M (X +ieT ™ )MT—2M*X] _ O (X + ieT’l, —X,0)
MezZdxk
is the theta-function 04y : Hj x R¥*k x R4¥F 5 C defined by
(30) Oar(Z,X,E) = Z el (M —E)Z(M—£)'+2M' X~ X]
Mezdxk

for Z = X + 1Y € Hy, Hj, being the Siegel upper space, see (5.1)-(5.3) in [13].

We partition the range of integration I and estimating the theta function separately on each part by
exploiting its transformation properties. This may be viewed as the extension of the classical Farey arcs
decomposition to k > 1. Recall the integral symplectic group
(31) Ty = {’y = ( é g ) : AB' = BA', CD' = DC*', AD' — BC" = Ek,}
which acts on the Siegel upper-half space Hy = {Z = X +iY : X € My, Y € Pr} as a group of analytic
automorphisms; The action being defined by: v(Z) = (AZ + B)(CZ + D)~ for v € 'y, Z € Hy, see [13]
and also [6]. Let us recall also the subgroup of integral modular substitutions:
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(32) Ty = {7 — ( ‘6‘ v > . AB' = BA!, AD' = Ek}
Writing U = A* and S = AB?, it is easy to see that D = U~! and B = SU ™!, moreover S is symmetric
and U € GL(k,Z), i.e. det(U) = £1. The action of such v € I'y, o on Z € H;, takes the form:

(33) Z)=Z[U]+ S

using the notation Z[U] = U'ZU. The general linear group GL(k,Z) acts on the space Py of positive k x k
matrices, via the action: Y — Y[U], Y € Py, and let Ry denote the corresponding so-called Minkowski
domain, see Definition 1 on pl2 of [7]. A matrix Y = (y;;) € Ry is called reduced. We recall that for a
reduced matrix Y

(34) Y=Yp, w11y <y

where Yp = diag(yi1,...,yrr) denotes the diagonal part of Y, and A ~ B means that A — ¢t B > 0,
B — ¢, A > 0 for some constant ¢, > 0. For a proof of these facts, see Lemma 2 on p20 in [7]. A fundamental
domain Dy, for the action of I'y, on Hy, called the Siegel domain, consists of all matrices Z = X + Y,
(X = (=i5)), satistying

A B
(35) Y € Ry, |zij| <1/2, |det(CZ+D)|>1, V= ( c D ) eTy.

The second rows of the matrices v € 'y, are parameterized by the so-called coprime symmetric pairs of
integral matrices (C, D), which means that C'D? is symmetric and the matrices GC and GD with a matrix G
of order k are both integral only if G is integral, see Lemma 2.1.17 in [1]. It is clear from definition (5.6) that
if v = yy1 with second rows (Ca, D2) and (C1, D1) for some v € T'y, oo, then (Cs, Dy) = (UC1,UD;) for some
U € GL(k,Z). On the other hand, if both 7; and 4, have the same second row (C, D) then yo7; ! € |
This gives the parametrization of the group I'y o \I'y by equivalence classes of coprime symmetric pairs (C, D)
via the equivalence relation (Cs, D) ~ (C1, D) if (Co, Do) = (UC1,UDy) for some U € GL(k,Z), see also
p.54 in [1]. We will use the notation [y] = [C, D] € T'y oo \Ik.

If one defines the domain: Fy = U, er, . YDk, then Hj = U[V]EFk,m\Fk ~~'Fy is a non-overlapping cover
of the Siegel upper half-plane. Correspondingly, for a given matrix T' > 0 of order k, define the Farey arc
dissection of level T, as the cover

(36) L= Ir[y], Irfyl={Xel,: X +iT ' er'F}
(V€T k, 00 \T'k

We recall the basic estimates (5.14)-(5.16) in [13] whose proofs are based on the transformation property
0a,6(Z, X,0)| = | det (CZ + D)|™% [ap(y(Z), XA — K, /2, XC' — N, /2)|

for some matrices K.,, N, € Z"**, see Proposition 5.2 in [13]. Namely, if (C, D) is a coprime symmetric pair,
then for Z € Ir[C, D] one has

(37) 164.5(Z, X,0)| < Cuy | det (CZ + D)~ %

uniformly for X € My(R).
Next we describe the “mollified” estimate (5.16) in [13] in slightly different form. For ¢ € Nand 7 > 0
define the region

(38) Qur = {X eR™ . | X — P/2¢| <7 for some P € Z¥*F}.
If [y] = [C, D] coprime symmetric pair, ¢ := |det(C)| > 0, then for Z € Ir[C, D]
(39) |0ax(Z,X,0)| < |det (CZ + D)% (e*Cmiﬂ(Y) + echQN(chC))

uniformly for &' € Qf . Here Y = Imvy(Z), min(Y') = mingcga 520 |[Y2 - 2| and p(Y) = ming cga, |51 [V - 2|
Define, similarly as in (5.20) in [13]

(40) Jr[C, D] = / sup |0a (X +4iT1, —X,0)|dX.
Ir[C,D] X
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By (37) we have that

(41) Jr[C, D] < Cyy JH[C, D],

where

(42) JO[C, D] = / |det(CZ + D)|% dX.

Xelr[C,D]

If g := | det(C)| > 0, then for 7 > 0 let

(43) Jr..C, D] ::/ sup Loe (X) [0an(X +4T71, —X,0)| dX.
Ir[c,D] X -

By estimate (39) one has

(44) JT,T[Ca D] < Cd,k Jﬁl"[ca D} + J%,T[C’ DL

where

(45) Jp|C, D] = / |det(CZ + D)|~% ee™n() gx

I7]C,D)
(46) J2_[C,D] = / |det(CZ + D)|~2 e~ YO gx,
’ Ir[C,D)

where Y = Im~(Z) and v € I';, such that [y] = [C, D] € T'y 5o \I'.
Then by inequalities (5.24)-(5.26) given in Propositions 5.3-5.4 in [13], we have

d—k—1

(47) 3" JrlC,D + OS] < Caype det(T) > | det(C)| " 2and
St=8

48) > Jp lC, D+ OS] < Cap det(T) 7 (|det(C)| " Fmin(T) =5 + [ det(C)| % (r2u(T))~“F")
5t=5
where the summation is over all symmetric integral matrices S € My (Z).

Recall that the map [C, D] — C 1D provides a one-one and onto correspondence between the classes of
coprime symmetric pairs [C, D] € T'y 5o \I'y, with det(C) # 0, and symmetric rational matrices R of order k,
and the pairs [C, D + CS] correspond to the matrices R+ S with symmetric S € Z**¥. Let us write Q(1)***
for the space of modulo 1 incongruent symmetric rational matrices, where Q(1) = Q/Z, Q being the set of
rational numbers. If R = C~1D, for a coprime symmetric pair [C, D] then will write

(49) Jr[R] == > Jr[C,D+CS],
St=S

(50) Jr-[R == > Jr,[C,D+CS],
St=S

which is well-defined as it only depends on the equivalence class [R] € Q(1)**%. Finally write d(R) = | det(C)|
for R = C~!D. Then by (30) and (40), we have with e = A=2 that

(51) / sup (g (X +ieT™, —X,0)[dX = Y Jer[CDl+ Y. Jaer[CD] =)+ Z
I X [C,D],det(C)#£0 [C,D],det(C)=0 1
An estimate for the second sum is given in Corollary 5.1 in [13], namely it is shown that

(52) Z < Cyp [A2T|—DE=R)2 < oy AR k=)

where |T| = (3_,;t%)'/? is the Euclidean norm of the matrix 7. For the first sum we use estimate (47) for

the matrix AT, which implies

(53) Z Y Jaep[R] < Cap AU N d(R)T,

[R]€Q(1)k** [RI€Q(1)kx*
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Recall the following estimate, proved in Lemma 1.4.9 in [6]; for « > 1 and s > 1 one has

(54) w Y AR TR ) dR)TFTT <2+

1<d(R)<u

1-s

s—l)u

where the summation is taken over [R] € Q(1)***. In particular 3, d(R)~%? < 1 in dimensions d > 2k + 2,
thus estimate (27) follows from (29), (51) and estimates (52)-(53).

For the mollified estimate (28), we set 7 = 277! besides A = 2! and ¢ = 272/, Again, we note that if
q=|det(C)| >0 and if ¢ | g; i.e. if ¢ divides g; then & € Qf; implies that X' € Q. , for X = (&1,..., &), for
the sets Q;; and Q. 4 defined in (12) and (38). Using this observation, we have

(55) (/‘mm1gjgggw¢k@¥+4gT— ~X,0dX £ Y JaersRl+ > Jaer[RI+ ).
Iy, X ’
d(R)lg; d(R)tg; 2
In dimensions d > 2k + 3, using (48) and (54), the first sum on the right side of (55) is crudely estimated by
(56) Z Tnera[B] S ARER=D) Z (d(R)~ T L d(R)E(rA) " 22’“)
d(R)|g; 1<d(R)<q;

< AMITED (g9 % 4 97 F) < ARdTRmDo—

Indeed, ¢; =lem{l < ¢ < 27} ~ e? < 26 as 2712 <[ by our assumptions. To estimate the second term on
the right side of (55), we need the following.

Lemma 4. Let j € N and s > 1. Then
(57) > dR)Thr <o)
d(R)tq;

where the constant C may depend on d,k and s.

Proof. Let
(58) U(s) := Z d(R)F=s = Z ap(n)n=?,
[RI€Q(1)k >k n21
with ax(n) = 3_gp)—, d(R)~ k. For two Dirichlet series ¥(s) = Y onsra(n)n=® and @(s) =3, o, b(n)n™* we
will write U(s) < ( ) if |a(n)| < b(n) for all n > 1.
It is proved in [6], see Lemma 1.4.9 there, that
(59) U(s) 2 (s +1)%¢(s) = Y bre(n)n ™",
n>1

with K = 2% 4+ k — 3. Clearly the coefficients of the Dirichlet series ((s + 1)%((s) are multiplicative i.e.
br (nm) = b (n)bg (m) if (n,m) = 1, moreover are easy to show that,

dK(m)
60 b =
(60) ) =3,
where dx(m) = [{m1,...,mr € N:mima---mg = m}|. Since ¢; = l.e.m.{1 < ¢ < 27}, if n{ g; the either

there is a prime p > 27 such that p | n or there is a prime p < 27 such that p?» > 2/ but p?» | n. Accordingly,
we have the estimate

(61) Z d(R)™Fs = Zak(n)nfs < Z Z b (pn)p™n™° + Z Z br (pPn)p~ N7,

d(R)tq; ntq; p>2in=>1 p<2inz1

Writing n = p"m, the first sum on the right side of (61) is estimated by

(62) YD bklmp T =3 > bk(p )i (m)p " m

p>2i n>1 p>27 r=1m>1,ptm
Using the fact that b (p"m) = b (p")bx(m) and by (60)

—~ di (p*) o~ (s+1)F
") =1 St LT <
(63) br (p") +£1ps__+£1 5 S b
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uniformly in > 1. Thus, for s > 1,

(64) SN bkbk(m)p T S Y pt < 2075

usi

p>29 =1 m>1,ptm p>27

ng the fact that the number of primes 27 < p < 27/*1 is bounded by 27 J~! for all J > j.
The second term on the right side of (61) is estimated similarly, except that here we use the fact that

p» > 2J for p < 27. We have

(65) Yo X bk =N Y bk (p)br (m)pT " m

as

p<2i n>1 p<2i T=%p m>1,ptm
(oo}
—rs —Yp S j(1—s) ;—1
IO DY B Y B
p<2 r="p p<2

the number of primes p < 27 is bounded by 27571, Estimate (57) follows immediately from (64)-(65). O
In dimensions d > 2k + 2, Lemma 4 with s = d/2 — k > 3/2 implies that

(66) Y Jaer[R] S AMTEEDA(R) TR AR,

d(R)q;

with A = 2!, Finally, by (52) (55)-(56) and (66) one obtains, in dimensions d > 2k + 2
(67)

/ sip19;k(§1)\0d7k(X+i5T’1,fX,O)|dX S ARA=R=D) (973/2 571 4 9783/2 4 9=81) < ARd=k=1)g=i/2 =1
L 5.

[1]
(2]
(3]
[4]
[5]

[6]

[9]
(10]
(11]

(12]
[13]
(14]
[15]
(16]

Estimate (28) follows immediately from (29) and (67).
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