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Abstract. We consider the L2 mapping properties of a model class of strongly singular integral
operators on the Heisenberg group Hn; these are convolution operators on Hn whose kernels are too
singular at the origin to be of Calderón-Zygmund type. This strong singularity is compensated for
by introducing a suitably large oscillation. Our results are obtained by utilizing the group Fourier
transform and uniform asymptotic forms for Laguerre functions due to Erdélyi .

Overture: Strongly singular convolution operators on Rd

These are convolution operators whose kernels are too singular at the origin to be of Calderón-
Zygmund type. We choose to compensate for this strong singularity by introducing a suitably large
oscillation. More precisely these are the operators given formally by

Sf = f ∗K,

where K be a distribution on Rd that away from the origin agrees with the function

K(x) = |x|−d−αei|x|−β
χ(|x|),

where β > 0 and χ is smooth cut off function which equals one near the origin1. Operators of
this type were first studied by Hirschman [7] in the case d = 1 and then in higher dimensions by
Wainger [12], Fefferman [3], and Fefferman and Stein [4]. What is of interest here is the precise
relationship between the size of the singularity and that of the required oscillation in order for S
to extend to a bounded operator on L2(Rd).

Theorem A. S extends to a bounded operator on L2(Rd) if and only if α ≤ dβ
2 .

Sketch of proof. Since S is translation invariant it may be realized as a Fourier multiplier,

Ŝf(ξ) = f̂(ξ) ·m(ξ),

where ̂ denotes the Fourier transform and m = K̂, the fact that K is a compactly supported
distribution ensures that m(ξ) is a function. Plancherel’s theorem then implies that

‖Sf‖L2(Rd) ≤ A‖f‖L2(Rd) if and only if |m(ξ)| ≤ A, uniformly in ξ.

Since K is also radial, i.e. K(x) = K0(x) for some function K0, we have

m(ξ) = (2π)
d
2

∫ ∞

0
K0(r)J d−2

2
(r|ξ|)(r|ξ|)

2−d
2 rd−1dr,

1 The distribution-valued function α 7→ K, initially defined for Re α < 0, continues analytically to all of C.
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where J d−2
2

is a Bessel function; see [10]. Using the well known asymptotics of Bessel functions it
is then straightforward to show that m(ξ) remains bounded for small |ξ| and that for large |ξ|,

�(1) m(ξ) = c1|ξ|
α− dβ

2
β+1 eic2|ξ|

β
β+1 + O

(
|ξ|

α− d+1
2 β

β+1
)
.

Remark. One can establish Theorem A independent of Fourier transform methods, see [8].

This article is devoted to the study of analogous operators on the Heisenberg group.

1. Introduction

The Heisenberg group Hn is of course Cn ×R endowed with the group law

[z, t] · [w, s] = [z + w, t+ s+ 1
2 Im(z · w̄)],

with identity the origin and inverses given by [z, t]−1 = [−z,−t]. The following transformations are
automorphisms of the group Hn:

• the nonisotropic dilations [z, t] 7→ δ ◦ [z, t] = [δz, δ2t], for all δ > 0;
• the rotations [z, t] 7→ [Uz, t], with U a unitary transformation of Cn.

We define the “norm” function ρ on Hn to be

ρ(z, t) = (|z|4 + t2)1/4,

and note that it is smooth, invariant under the rotations defined above, and homogeneous with
respect to the automorphic dilations. The usual Lebesgue measure dz dt on Cn ×R is the Haar
measure for Hn.

We define our strongly singular kernels on Hn to be the distributionsK that agree, for (z, t) 6= (0, 0),
with the functions

K(z, t) = ρ(z, t)−Q−αeiρ(z,t)
−β

χ(ρ(z, t)) with β > 0,

where Q = 2n+ 2 is the homogeneous dimension of Hn and χ is defined as before2.

Our main result is then the following.

Theorem 1.1. The operators T on Hn, formally given by Tf = f ∗K, satisfy the following:

(i) If α ≤ nβ, then T extends to a bounded operator from L2(Hn) to itself.
(ii) If T is a bounded operator on L2(Hn) then α ≤ (n+ 1

2)β.

Remark 1.2. There is a “gap of 1
2” between necessary and sufficient conditions. Note also that the

necessary condition coincides with the Euclidean condition α ≤ 2n+1
2 β.

2 As in the Eulidean case the distribution-valued function α 7→ K, initially defined for Re α < 0, continues
analytically to the entire complex plane.
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2. Reduction to Laguerre transform estimates

Let ε > 0 and set
Kε(z, t) = e−ερ(z,t)

−β
K(z, t)

and for f ∈ L2(Hn) we define
T εf(z, t) = f ∗Kε(z, t),

where convolution is taken with respect to the group structure on Hn. It is then easy to see that
if, for fixed ε > 0, we integrate the function Kε by parts N times and take the limit as ε→ 0 then
this must agree with the unique analytic continuation of K to the half plane Re(α) < Nβ. It then
follows that for f ∈ S(Hn),

Tf(z, t) = lim
ε→0

T εf(z, t).

We shall therefore, in the following, content ourselves with studying the operator T ε.

2.1. Group Fourier transform. Our operator T ε on Hn can be realized on the “transform” side,
via the group Fourier transform, as a multiplication of operators,

T̂ εf(λ) = f̂(λ) ·M(λ),

where M(λ) is the group Fourier transform of Kε. Recall that, for each λ 6= 0, M(λ) is an operator
on the Hilbert space L2(Rn) given by

M(λ)ϕ(ξ) =
∫
Hn

Kε(z, t)πλ(z, t)ϕ(ξ)dzdt,

where the πλ, given for z = x+ iy by

πλ(z, t)ϕ(ξ) = eiλ(x·ξ+ 1
2
x·y+t)ϕ(ξ + y)

are the infinite dimensional irreducible unitary representations of Hn, the so called Schrödinger
representations. It then follows from Plancherel’s theorem for the group Fourier transform that

‖T εf‖L2(Hn) ≤ A‖f‖L2(Hn) if and only if ‖M(λ)‖Op ≤ A uniformly over λ 6= 0.

Now since Kε were chosen radial on Hn, i.e. Kε(z, t) = Kε
0(|z|, t) for some function Kε

0, then it is
a well known result of Geller [6] that the operators M(λ) are in fact, for each λ 6= 0, diagonal with
respect to a (rescaled) Hermite basis for L2(Rn). More precisely

M(λ) = Cn
(
δj,k µ(|k|, λ)

)
j,k∈Nn ,

where Cn is a constant which depends only on the dimension and the diagonal entries µ(|k|, λ) can
be expressed explicitly in terms a Laguerre transform. Denoting κ = |k| we in fact have

µ(κ, λ) = cn−1
κ

∫ ∞

0
Kλ

0 (s)Λn−1
κ (1

2 |λ|s
2)(1

2 |λ|s
2)

1−n
2 s2n−1 ds,

where cδκ =
(

κ!
(κ+δ)!

)1/2, Λδκ(x) is a Laguerre function3 of type δ, and Kλ(z) =
∫
RK(z, t)eiλt dt.

It therefore follows that the operators M(λ) are bounded on L2(Rn) if and only if the diagonal
scalars µ(κ, λ) are bounded uniformly in κ, and hence

‖T εf‖L2(Hn) ≤ A‖f‖L2(Hn) if and only if |µ(κ, λ)| . A uniformly in κ and λ 6= 0.

For more on the group Fourier transform and Laguerre functions see [9] and [11].

3 For the definition and properties of Laguerre functions see §3.2.
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2.2. Main estimates. We have seen that matters therefore naturally reduce to the study of the
‘Fourier transforms’ µ(κ, λ). Making the change of variables

(s, t) 7→ (r sin
1
2 θ, r2 cos θ) where 0 < r <∞ and 0 ≤ θ ≤ π,

it follows that s4 + t2 = r4, ds dt = r2 sin−
1
2 θdr dθ, and hence that

µ(κ, λ) = cn−1
κ

∫ π

0

∫ ∞

0
(sin θ)n−1χε(r)r−1−αei[r

−β+λr2 cos θ](1
2λr

2 sin θ)
1−n

2 Λn−1
κ (1

2λr
2 sin θ)dr dθ,

where χε(r) = e−εr
−β
χ(r).

It is natural to consider the cases for bounded and unbounded κ separately. We now fix κ0 to be
a large constant. Our main result for bounded κ is the following.

Theorem 2.1. If κ ≤ κ0 and |λ| � 1 then we have the asymptotic expansion,

(2) µ(κ, λ) = c1|λ|
α−(n+1

2 )β

β+2 eic2|λ|
β

β+2 + O(|λ|
α−(n+1−ε)β

β+2 ).

For unbounded κ we write µ(κ, λ) =
∑∞

j=0 µj(κ, λ), where

µj(κ, λ) = cn−1
κ

∫ π

0

∫ ∞

0
(sin θ)n−1ϑ(2jr)χε(r)r−1−αei[r

−β+λr2 cos θ]x
1−n

2 Λn−1
κ (x)dr dθ,

with x = 1
2λr

2 sin θ and ϑ ∈ C∞
0 (R) supported in [12 , 2] chosen such that

∑∞
j=0 ϑ(2jr) = 1 for all

0 ≤ r ≤ 1. Our main result for unbounded κ is then the following.

Theorem 2.2. The following estimate holds uniformly for κ ≥ κ0 and λ 6= 0,

|µj(κ, λ)| ≤ Cmin{2j(α−nβ), (1 + |λ|κ)
α−nβ
2(β+1) }.

Remark 2.3. Theorem 2.2 alone only implies |µ(κ, λ)| ≤ C log(1 + |λ|κ)(1 + |λ|κ)
α−nβ
2(β+1) for κ ≥ κ0.

2.3. Proof of Theorem 1.1. Let us now see how Theorems 2.1 and 2.2 imply Theorem 1.1.

It is clear that part (ii) of Theorem 1.1 follows immediately from (2). Furthermore, one easily
obtains the estimate |µ(κ, λ)| ≤ C for all 0 < |λ| ≤ λ0, for some fixed constant λ0. It follows
from the Laguerre function estimates in §3.2 that this estimate holds uniformly for all κ, however
Theorem 2.2 shows us that for fixed λ we in fact have decay in κ.

In order to prove Theorem 1.1 (i) we shall dyadically decomposing our operator and using almost
orthogonality. Recall the following version of Cotlar’s Lemma,

Cotlar’s Lemma. Suppose {Ti} is a finite collection of bounded operators on L2. If in addition
these operators satisfy, for some δ > 0, the almost orthogonality condition

‖T ∗i Tj‖Op + ‖TiT ∗j ‖Op ≤ C2−δ|i−j|,

then ∥∥∥∑
i

Ti

∥∥∥
Op
≤ A,

where the constant A is independent of the number of these Tj.
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For an elegant proof of this result see [9]. If we now define the dyadic operator Tj = f ∗Kj , where

Kj(z, t) = ϑ(2jρ(z, t))Kε(z, t),

it then follows that

T εf(z, t) =
∞∑
j=0

Tjf(z, t).

Now the operators Tj are bounded on L2(Hn) if and only if

|µj(κ, λ)| ≤ C,

uniformly in κ and λ 6= 0. It therefore an immediate consequence of Theorem 2.2 that the norms
of Tj are uniformly bounded whenever α ≤ nβ. Theorem 1.1 now follows from an application of
Cotlar’s lemma (and a standard limiting argument) once we have verified that our operators Tj
are, in the following sense, almost orthogonal.

Lemma 2.4. If α = nβ then ‖T ∗i Tj‖Op + ‖TiT ∗j ‖Op ≤ C2−nβ|i−j|.

Proof. This follows trivially whenever |i − j| ≤ 10, since ‖T ∗i Tj‖Op ≤ ‖Ti‖Op‖Tj‖Op. We shall
therefore, without loss of generality, assume that j ≥ i + 10. Now T ∗i Tj has a kernel Lij(z, t) =
Kj ∗ K̄i([z, t]−1), and the same operator norm as the operator with kernel the L1 dilate of Lij ,
namely

L̃ij([z, t]−1) = 2−jQLij(2−j ◦ [z, t]−1)

= 2−jQ
∫
Kj(w, s)K̄i((2−j ◦ [z, t]) · [w, s])dwds

= 2−j2Q
∫
Kj(2−jw, 2−2js)K̄i([2−jz, 2−2jt] · [2−jw, 2−2js])dwds

= 2j2α
∫

ρ(w,s)∼1
ρ([z,t]·[w,s])∼2j−i

ρ(w, s)−Q−αρ([z, t] · [w, s])−Q−αei2jβ [ρ(w,s)−β−ρ([z,t]·[w,s])−β ]dwds.

We trivially obtain the estimate |L̃ij([z, t]−1)| ≤ C2j2α2(i−j)(Q+α), while integration by parts 2n
times gives the favorable estimate

|L̃ij([z, t]−1)| ≤ C2j(2α−2nβ)2(i−j)(Q+α) = 2(i−j)(Q+α).

This of course implies that ‖L̃ij‖L1(Hn) ≤ C2(i−j)α. �

So we have reduced matters to proving Theorem 2.1 and Theorem 2.2, we present these arguments
in Sections 4 and 5 respectively. As with the Euclidean case the asymptotics of special functions,
in this case Laguerre polynomials, will be crucial. We discuss these expansions in Section 3 as well
as stating some standard results for oscillatory integrals in one dimension that we shall require.

3. Preliminaries

3.1. Oscillatory integrals. We present here a very brief overview of the theory of oscillatory
integrals in one dimension, this gives an essentially complete description of the behavior of integrals
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of the form

I(λ) =
∫ b

a
eiλΦ(x)Ψ(x)dx, λ > 0,

as λ→∞, where Φ and Ψ are smooth functions. The behavior of I(λ) is governed by three basic
principles: localization, scaling, and asymptotics. We shall present these respective principles as
three propositions: the first of these can be thought of as a principle of non–stationary phase, the
second is one of van der Corput’s lemmas, and the third is a formulation of the method of stationary
phase; for proofs see [9] or [13].

Proposition 3.1. Suppose Ψ has compact support in (a, b) and Φ′ is never vanishes, then for all
N ≥ 0 we have

|I(λ)| ≤ CN,Φ,Ψλ
−N .

Proposition 3.2. Suppose Φ is real–valued and |Φ(k)(x)| ≥ 1 for all x ∈ (a, b), then

|I(λ)| ≤ Ckλ
− 1

k

[
|Ψ(b)|+

∫ b

a
|Ψ′(x)|dx

]
,

whenever (i) k = 1 and Φ′′(x) has at most one zero, or (ii) k ≥ 2.

Proposition 3.3. Suppose Φ is real–valued, Φ′(x0) = 0, while Φ′′(x0) 6= 0. If Ψ is supported in a
sufficiently small neighborhood of x0, then

I(λ) = eiλΦ(x0)σ(λ),

where σ is a symbol of order −1
2 , that is |σ(`)(λ)| ≤ c`(1 + λ)−

1
2
−`. The constant c` depends on the

C`+1 norms of Φ and Ψ on the suppΨ, the size of this support, and on a lower bound for |Φ′′(x0)|.

Example 3.4. The Bessel functions, defined for real k > −1
2 by the formula

Jk(λ) = (π
1
2 Γ(k + 1

2))−1
(λ

2

)k ∫ 1

−1
eiλt(1− t2)k−

1
2dt

are a model case for these oscillatory integrals and using the Propositions above one can show that

(3) Jk(λ) = σ1(λ)eiλ + σ2(λ)e−iλ,

where σi is a symbol of order −1
2 for i = 1, 2.

3.2. Asymptotic properties of Laguerre functions. Recall that Laguerre functions of type δ,
δ > −1, form an orthonormal basis for L2(R+) and are given by

(4) Λδκ(x) =
(

κ!
(κ+δ)!

)1/2
Lδκ(x)e

− 1
2
xx

δ
2 ,

where Lδκ(x) =
∑κ

j=0

(
κ+δ
κ−j

) (−x)j

j! are the Laguerre polynomials of type δ.

The two asymptotic formulae below which hold uniformly in their respective ranges of validity
(which overlap) are due to Erdélyi [2]; see also [5]. In what follows ν = 4κ+ 2δ + 2 and N = ν/4.
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3.2.1. The Bessel asymptotic forms. Let 0 ≤ x ≤ bν, b < 1. Then for κ ≥ κ0,

Λδκ(x) =
((δ + κ)!

κ!

) 1
2 2δ−

1
2 ν−

δ
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2 {Jδ(νψ) + O [ν−1( x

ν−x)
1
2 J̃δ(νψ)]},

and so

(5) Λδκ(x) = C1(δ)
(ν
x

) 1
2
( ψ
ψ′

) 1
2 {Jδ(νψ) + O [ν−1( x

ν−x)
1
2 J̃δ(νψ)]}

where C1(δ) is a constant independent of κ, ψ = ψ(t) satisfies

(6) ψ′(t) =
1
2

(1
t
− 1

) 1
2

and t = x
ν . For 0 ≤ t < 1,

ψ(t) = 1
2 [(t− t2)

1
2 + sin−1 t

1
2 ],

and

J̃δ(u) =

{
Jδ(u) if u sufficiently small,(
|Jδ(u)|2 + |Yδ(u)|2

) 1
2 otherwise,

here Yδ and Jδ are Bessel functions of order δ.

Lemma 3.5. If 0 ≤ t ≤ 1
2 , then 1

2 t
1
2 ≤ ψ(t) ≤ t

1
2 .

Proof. Let f(t) = (t− t2)
1
2 + sin−1 t

1
2 , notice then that f ′(t) =

(
1−t
t

) 1
2 . Now if 0 ≤ s ≤ 1

2 , we have
1
2s
− 1

2 ≤ f ′(s) ≤ s−
1
2 , and so

1
2

∫ t

0
s−

1
2ds ≤

∫ t

0
f ′(s)ds ≤

∫ t

0
s−

1
2ds

which implies t
1
2 ≤ f(t) ≤ 2t

1
2 , since f(0) = 0. �

3.2.2. The Airy asymptotic forms. Let 0 < aν ≤ x, a > 0. Then for κ ≥ κ0,

Λδκ(x) =
(−1)κ(

κ!(δ + κ)!
) 1

2

2
5
6NN+ 1

6 e−Nx−
1
2

( π

−φ′
) 1

2 {Ai(−ν
2
3φ) + O [x−1Ãi(−ν

2
3φ)]},

and so, using Stirling’s formula

(7) Λδκ(x) = C2(δ)(−1)κν
1
6x−

1
2

( 1
−φ′

) 1
2 {Ai(−ν

2
3φ) + O [x−1Ãi(−ν

2
3φ)]}

where C2(δ) is a constant independent of κ, φ = φ(t) satisfies

(8) [φ(t)]
1
2φ′(t) =

1
2

(1
t
− 1

) 1
2
,

and again t = x
ν . Now one can show

φ(t) =
(3

4

) 2
3

{
[cos−1 t

1
2 − (t− t2)

1
2 ]

2
3 if 0 < t ≤ 1,

−[(t− t2)
1
2 − cosh−1 t

1
2 ]

2
3 if t > 1,

and

Ãi(z) =

Ai(z) if z ≥ 0,(
|Ai(z)|2 + |Bi(z)|2

) 1
2 if z ≤ 0,
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here Ai and Bi are Airy integrals4.

Lemma 3.6. If 1
2 ≤ t ≤ 1, then 1

2(1− t) ≤ φ(t) ≤ 1− t.

Proof. Let g(t) = cos−1 t
1
2 − (t − t2)

1
2 , notice then that g′(t) = −

(
1−t
t

) 1
2 . Now if 1

2 ≤ s ≤ 1, we
have (1− s)

1
2 ≤ −g′(s) ≤ 2(1− s)

1
2 , and so∫ 1

t
(1− s)

1
2ds ≤ −

∫ 1

t
g′(s)ds ≤ 2

∫ 1

t
(1− s)

1
2ds

which implies 2
3(1− t)

3
2 ≤ g(t) ≤ 4

3(1− t)
3
2 , since g(1) = 0. �

Note also that, for z > 0

Ai(−z) = 1
3z

1
2 [J1/3(2

3z
3
2 ) + J−1/3(2

3z
3
2 )]

Bi(−z) =
(
z
3

) 1
2 [J1/3(2

3z
3
2 ) + J−1/3(2

3z
3
2 )].

3.2.3. Trivial Estimates. It follows from the asymptotics above that for κ large we have the
following crude estimates for our Laguerre function; see Askey and Wainger [1].

|Λδκ(x)| ≤ C



(xν)
δ
2 if 0 ≤ x ≤ 1

ν ,

(xν)−
1
4 if 1

ν ≤ x ≤ ν
2 ,

ν−
1
4 (ν − x)−

1
4 if ν

2 ≤ x ≤ ν − ν
1
3 ,

ν−
1
3 if ν − ν

1
3 ≤ x ≤ ν + ν

1
3 ,

ν−
1
4 (x− ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 if ν + ν

1
3 ≤ x ≤ 3ν

2 ,

e−γ2x if x ≥ 3ν
2 ,

where γ1, γ2 > 0 are fixed constants.

4. Bounded degree case: Proof of Theorem 2.1

We shall now prove Theorem 2.1, and hence assume κ ≤ κ0 for some large constant κ0. To obtain
estimates for µ(κ, λ) we may, with no loss in generality, assume that λ > 0. If we now perform the
rescaling r 7→ λ

− 1
β+2 r we see that

µ(κ, λβ+2) = cn−1
κ λα

∫ π

0

∫ ∞

0
(sin θ)n−1χε( rλ)r−1−αeiλ

βϕ(r,θ)(1
2λ

βr2 sin θ)
1−n

2 Λn−1
κ (1

2λ
βr2 sin θ)dr dθ,

where ϕ(r, θ) = r−β + r2 cos θ.

It is easy to see that Theorem 2.1 is then equivalent to the following result.

Theorem 4.1. If κ ≤ κ0 and λ� 1, then we have the asymptotic expansion

µ(κ, λβ+2) = c1λ
α−(n+ 1

2
)βeic2λ

β
+ O(λα−(n+1−ε)β).

4 Recall that Ai(z) and Bi(z) are independent solutions of the differential equation d2y
dz2 = zy and have the integral

representations Ai(z) =
1

π

R∞
0

cos( 1
3
t3 + zt)dt and Bi(z) =

1

π

R∞
0

n
e

1
3

t3+zt + sin( 1
3
t3 + zt)

o
dt.
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Let us introduce some notation, it follow from (4) that for λ > 0

µ(κ, λβ+2) =
∫ π

0
(sin θ)n−1I(θ)dθ =

∫ ∞

0
χε( rλ)r−1−αeiλ

βr−βJ (r)dr,

where

I = I(θ) = (cn−1
κ )2λα

∫ ∞

0
χε( rλ)r−1−αeiλ

βϕ(r,θ)Ln−1
κ (1

2λ
βr2 sin θ)e−

1
4
λβr2 sin θdr,

and

J = J (r) = (cn−1
κ )2λα

∫ π

0
(sin θ)n−1eiλ

βr2 cos θLn−1
κ (1

2λ
βr2 sin θ)e−

1
4
λβr2 sin θdθ.

Proof of Theorem 4.1. Let Cβ be a suitably small constant to be determined.

Region A: 0 ≤ r ≤ Cβ. Provided that Cβ is chosen small enough we have that

−∂rϕ(r, θ) = βr−(β+1) − 2r cos θ ≥ Cr−(β+1).

It then essentially follows from Proposition 3.1 (as χε( rλ) and all of its derivatives vanish at r = 0)
that

|I(θ)| ≤ Cλα−Nβ,

for all N ≥ 0, we of course then obtain that |µ(κ, λβ+2)| ≤ Cλα−Nβ.

Region B: Cβ ≤ r ≤ λ. We now certainly have that µ(κ, λ) is absolutely convergent, but now the
phase in I may be critical.

Case 1: If λ−β(1−ε) ≤ r2 sin θ ≤ r2, then λβr2 sin θ ≥ λβε. It follows immediately that

Ln−1
κ (1

2λ
βr2 sin θ)e−

1
4
λβr2 sin θ ≤ Cλ−Nβ,

for all N ≥ 0 and hence that |µ(κ, λβ+2)| ≤ Cλα−Nβ.

Case 2: If 0 ≤ r2 sin θ ≤ λ−β(1−ε), then it follows that either cos θ ≈ 1 or cos θ ≈ −1.

(i) We first note that if π
2 ≤ θ ≤ π then cos θ ≈ −1 and it follows that

−∂rϕ(r, θ) = βr−(β+1) − 2r cos θ ≥ Cβ,

and that we can argue as in Region A.

(ii) Now if 0 ≤ θ ≤ π
2 then cos θ ≈ 1 and we shall write J (r) = M(r) + E(r), where

M(r) = (cn−1
κ )2λαeiλ

βr2
∫ π

2

0
(sin θ)n−1Ln−1

κ (1
2λ

βr2 sin θ)e−
1
4
λβr2 sin θdθ,

E(r) = (cn−1
κ )2λα

∫ π
2

0
(sin θ)n−1Ln−1

κ (1
2λ

βr2 sin θ)e−
1
4
λβr2 sin θ[eiλ

βr2 cos θ − eiλ
βr2 ]dθ.

It is then easy to see that

|E(r)| ≤ Cλα+βr2
∫

0≤r2 sin θ≤λ−β(1−ε)

(sin θ)n+1dθ ≤ Cλα−(n+1−ε′)β)r−2n−2.



10 NEIL LYALL

Now for the main term we write M(r) = M1(r) +M2(r), where

M1(r) = (cn−1
κ )2λαeiλ

βr2
∫ π

2

0
(sin θ)n−1Ln−1

κ (1
2λ

βr2 sin θ)e−
1
4
λβr2 sin θ cos θ dθ,

M2(r) = (cn−1
κ )2λα

∫ π
2

0
(sin θ)n−1Ln−1

κ (1
2λ

βr2 sin θ)e−
1
4
λβr2 sin θ[1− cos θ]dθ.

In a similar manner to the estimate for E(r) above we obtain the estimate

|M2(r)| ≤ Cλα
∫

0≤r2 sin θ≤λ−β(1−ε)

(sin θ)n+1dθ ≤ Cλα−(n+2−ε′)β)r−2n−4.

Now for the main term M1(r) we have

M1(r) = (cn−1
κ )2λαeiλ

βr2
∫

0≤r2 sin θ≤λ−β(1−ε)

(sin θ)n−1Ln−1
κ (1

2λ
βr2 sin θ)e−

1
4
λβr2 sin θ cos θ dθ

= (cn−1
κ )2λαeiλ

βr2λ−nβr−2n

∫ λβε

0
un−1Ln−1

κ (1
2u)e

− 1
4
udu

= Cλα−nβeiλ
βr2r−2n + O(λα−Nβ).

We have therefore shown that

µ(κ, λβ+2) = Cλα−nβM + O(λα−(n+1−ε)β)),

where

M =
∫ ∞

0
χε( rλ)r−2n−1−αeiλ

βϕ(r,0)dr.

Now notice that
∂2
rϕ(r, 0) = β(β + 1)r−(β+2) + 2 ≥ 2,

it follows that ∂rϕ(r, 0) can vanish at most one point r = r0. Suppose that we are in a suitably
small neighborhood of r0, outside of this interval we have that |∂rϕ(r, 0)| ≥ C > 0 and can argue
as in Region A. Note that for all ` = 0, 1, . . .

|∂`rϕ(r, 0)|+ |∂`r[χε( rλ)r−2n−1−α]| ≤ c`.

We may therefore, in a suitably small neighborhood of r0, apply the method of stationary phase
(Proposition 3.3) and obtain that

M = C(r0)λ−
1
2
βeiλ

βϕ(r0,0) + O(λ−
3
2
β). �

5. Unbounded degree case: Proof of Theorem 2.2

We shall now prove Theorem 2.2, and hence assume κ ≥ κ0, for some large constant κ0. We may,
as in Section 4, assume λ > 0. Performing the rescaling r 7→ 2−jr we see that

µj(κ, λ22j) = cn−1
κ 2jα

∫ π

0

∫ ∞

0
(sin θ)n−1ϑ(r)r−1−αei2

jβϕ(r,θ)x
1−n

2 Λn−1
κ (x)drdθ,

where now
ϕ(r, θ) = r−β + λ2−jβr2 cos θ and x = x(λ, r, θ) = 1

2λr
2 sin θ.

It is then easy to see that Theorem 2.2 will be a consequence of the following result.
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Theorem 5.1. If κ ≥ κ0 then following estimate holds uniformly in κ and λ 6= 0,

|µj(κ, λ22j)| ≤ C2jα min{2−jnβ , (1 + λκ)−
n
2 }.

In order to estimate µj(κ, λ22j) we shall make use of the asymptotics for Laguerre functions pre-
sented in §3.2, it is then natural to consider six separate regions and write

µj(κ, λ22j) = µj,1(κ, λ22j) + · · ·+ µj,6(κ, λ22j)

where for k = 1, . . . , 6,

µj,k(κ, λ22j) = cn−1
κ 2jα

∫ π

0

∫ ∞

0
ηk(x)(sin θ)n−1ϑ(r)r−1−αei2

jβϕ(r,θ)x
1−n

2 Λn−1
κ (x)drdθ,

and each ηk(x) smoothly localizes x to the kth interval indicated in 3.2.3.

As in Section 4 we write, for λ > 0

µj,k(κ, λ22j) =
∫ π

0
(sin θ)n−1Ik(j, θ)dθ =

∫ ∞

0
ϑ(r)r−1−αei2

jβr−βJk(j, r)dr,

where, as we are now considering the case when κ ≥ κ0, we essentially have

Ik = Ik(j, θ) = 2jα
∫ ∞

0
ηk(x)ϑ(r)r−1−αei2

jβϕ(r,θ)(xν)
1−n

2 Λn−1
κ (x)dr,

Jk = Jk(j, r) = 2jα
∫ π

0
ηk(x)(sin θ)n−1eiλr

2 cos θ(xν)
1−n

2 Λn−1
κ (x)dθ.

It will again be natural to consider separately the regions where we can and cannot integrate by
parts in r. It is clear that we may choose a constant Cβ small enough so that

−∂rϕ(r, θ) ≥ Cr−(β+1) and |∂`rϕ(r, θ)| ≤ Cr−(β+`),

whenever 0 < λ2−jβ ≤ Cβ. However if we are to integrate by parts in r we must take care of what
happens when the derivative hits the amplitude of Ik.

Recall that Λδκ(x) = cδκL
δ
κ(x)e

− 1
2
xx

δ
2 . Now since d

dxL
δ
κ(x) = −Lδ+1

κ−1(x), and cδ+1
κ−1 = κ−

1
2 cδκ it follows

that
d

dx
Λδκ(x) = 1

2( δx − 1)Λδκ(x)−
(
κ
x

) 1
2 Λδ+1

κ−1(x).

Therefore, using the fact that ∂rx = 2x
r we see that

∂rΛδκ(x) = −r−1[(x− δ)Λδκ(x) + 2(xκ)
1
2 Λδ+1

κ−1(x)].

If we instead take N derivatives it is easy to see that we get

∂Nr Λδκ(x) = r−N [PN (x)Λδκ(x) + (xκ)
1
2PN−1(x)Λδ+1

κ−1(x) + · · ·+ (xκ)
N
2 P0(x)Λδ+Nκ−N (x)],

that is

(9) ∂Nr Λδκ(x) = r−N
N∑
`=0

(xκ)
`
2PN−`(x)Λδ+`κ−`(x),

where PN−`(x) is some polynomial of degree N − ` in x. It is therefore only advantageous to
integration by parts in r when both x and (xν)

1
2 are dominated by 2jβ and hence we shall in

general only do so when
max{(λν)

1
2 , λ} ≤ Cβ2jβ .
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In actual fact we shall establish, for each k, the following

|µj,k(κ, λ22j)| ≤ C2jα
{

2−jnβ if max{(λν)
1
2 , λ} ≤ Cβ2jβ ,

min{(λν)−
n
2 , λ−n} if max{(λν)

1
2 , λ} ≥ Cβ2jβ ,

and from this one easily establishes Theorem 5.1.

5.1. Neighborhood of 0: 0 ≤ x ≤ 1
ν . Notice that here xν ≤ 1 and |Λδκ(x)| ≤ C(xν)

δ
2 .

Region A: max{(λν)
1
2 , λ} ≤ Cβ2jβ. In this region we can integrate by parts. Using our trivial

estimate it is easy to see that

|∂Nr Λδκ(x)| ≤ C(xν)
δ
2
+N .

Therefore integrating by parts N times we obtain the estimate∫ π

0
(sin θ)n−1|I1(θ)|dθ = 2jα

∫ π

0
(sin θ)n−1

∣∣∣ ∫ ∞

0
η1(x)ϑ(r)r−1−αei2

jβϕ(r,θ)(xν)
1−n

2 Λn−1
κ (x)dr

∣∣∣dθ
≤ C2j(α−Nβ)

∫
sin θ≤min{1,(λν)−1}

(sin θ)n−1dθ

≤ C2j(α−Nβ)(1 + λν)−n,

for any N ≥ 0. So we obtain the estimate

|µj,1(κ, λ22j)| ≤ C2j(α−Nβ)(1 + λν)−n.

Region B: max{(λν)
1
2 , λ} ≥ Cβ2jβ. Here we necessarily have sin θ ≤ 2(λν)−1 ≤ 2−jβ and there-

fore either cos θ ≈ 1 or cos θ ≈ −1.

(i) We first note that if π
2 ≤ θ ≤ π then cos θ ≈ −1 and it follows that

−∂rϕ(r, θ) = βr−(β+1) − 2λ2−jβr cos θ ≥ C(1 + λ2−jβ),

we can therefore argue as in Region A and obtain the estimate

|µj,1(κ, λ22j)| ≤ C2jα(λν)−n min{2−jNβ , λ−N}.

(ii) Now if 0 ≤ θ ≤ π
2 then cos θ ≈ 1 and it is easy to see that

∂2
rϕ(r, θ) = βr−(β+1) + 2λ2−jβ cos θ ≥ C(1 + λ2−jβ),

and hence by van der Corput’s lemma we have |I1(θ)| ≤ C2jα min{2−j
1
2
β, λ−

1
2 }. It therefore follows

that

|µj,1(κ, λ22j)| ≤ C

∫ π

0
(sin θ)n−1|I1(θ)|dθ

≤ C2jα min{2−j
1
2
β , λ−

1
2 }

∫
sin θ≤(λν)−1

(sin θ)n−1dθ

≤ C2jα(λν)−n min{2−j
1
2
β, λ−

1
2 }.
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5.2. Oscillatory interval I: 1
ν ≤ x ≤ ν

2 . Notice that here ν
2 ≤ ν−x < ν, and |Λδκ(x)| ≤ C(xν)−

1
4 .

In this interval we shall make explicit use of the oscillation in the main term of our asymptotic
expansion, which are in this case is given in terms of Bessel functions; see §3.2.1. We note here
that from (6) and Lemma 3.5 it follows that

ψ′ ∼
(ν
x

) 1
2 while ψ ∼

(x
ν

) 1
2
.

The following estimates are then immediate,

(νψ)−
1
2 ∼ (xν)−

1
4 and ∂r[(νψ)−

1
2 ] = − x

rν
3
2

ψ−
3
2ψ′ ∼ −(xν)−

1
4 ,

∂rνψ =
1
r
x

1
2 (ν − x)

1
2 ∼ (xν)

1
2 and ∂2

rνψ = − 1
r2

x
3
2

(ν − x)
1
2

∼ x
3
2 ν−

1
2 ,

(ν
x

) 1
2
( ψ
ψ′

) 1
2 ≤ C and

∣∣∣∂r[(ν
x

) 1
2
( ψ
ψ′

) 1
2
]∣∣∣ ≤ C.

Region A: max{(λν)
1
2 , λ} ≤ Cβ2jβ. In this region we shall again integrate by parts in r and since

we have xN ≤ (xν)
N
2 it suffices to consider the integral

I2(θ) = 2j(α−Nβ)

∫ ∞

0
η2(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2 Λn−1+N
κ−N (x)dr.

Using the Bessel asymptotic forms (5) we may write I2 = cB + EB, where

B(θ) = 2j(α−Nβ)

∫ ∞

0
η2(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
Jn−1+N (νψ)dr.

Error term:

|EB(θ)| ≤ C2j(α−Nβ)

∫ ∞

0
η2(x)ϑ(r)(xν)

N+1−n
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
ν−1

(
x

ν−x
) 1

2 |J̃n−1+N (νψ)|dr

≤ C2j(α−Nβ)ν−1

∫
x≤ν

(xν)
1
2
(N−n− 1

2
)dx

≤ C2j(α−(n+ 1
2
)β),

provided N > n, since (xν)
1
2 ≤ C2jβ .

Main term: Since νψ ≥ (xν)
1
2 ≥ 1 we shall utilize expression (3) and write B = B1 +B2, where

B1(θ) = 2j(α−Nβ)

∫ ∞

0
η2(x)ϑ(r)ei2

jβ [ϕ(r,θ)+2−jβνψ](xν)
N+1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ)dr,

B2(θ) = 2j(α−Nβ)

∫ ∞

0
η2(x)ϑ(r)ei2

jβ [ϕ(r,θ)−2−jβνψ](xν)
N+1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ2(νψ)dr,

where each σi is a symbol of order −1
2 . Since ∂rψ ∼ 1

rψ it follows that

|∂`rσi(νψ)| ≤ Cr−`(νψ)−
1
2 .

Let us first consider the integral B1, and let Φθ(r) = ϕ(r, θ) + 2−jβνψ. Now

∂rΦθ(r) = −βr−(β+1) + λ2−jβ2r cos θ + 2−jβ 1
rx

1
2 (ν − x)

1
2 ,
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and so if Cβ is chosen small enough it follows that

|∂rΦθ(r)| ≥ C > 0.

In addition to this we also have

∂2
rΦθ(r) = β(β + 1)r−(β+2) + λ2−jβ2 cos θ − 2−jβ 1

r2
x

3
2

(ν−x)
1
2
≥ C > 0.

If we let

Ψθ(r) = ϑ(r)(xν)
N+1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ),

then for all ` = 0, 1, . . .
|∂`rΨθ(r)| ≤ C(xν)

N
2 (νψ)−

1
2 .

Applying van der Corput’s lemma (integration by parts) gives

|B1(θ)| ≤ C2j(α−(N+1)β)

∫ ∞

0
ϑ(r)(xν)

2N+1−2n
4 dr ≤ C2j(α−(n+ 1

2
)β),

again provided N > n. Of course the phase in B2 is never stationary, so we obtain the same
estimate for B2, in Region A we therefore obtain

|µj,2(κ, λ22j)| ≤ C2j(α−(n+ 1
2
)β).

Region B: max{(λν)
1
2 , λ} ≥ Cβ2jβ. Here we shall not integrate by parts first and so wish to

estimate

J2 = 2jα
∫ π

0
η2(x)(sin θ)n−1eiλr

2 cos θ(xν)
1−n

2 Λn−1
κ (x)dθ.

Using the asymptotic forms for our Laguerre functions we can write J2 = cB + EB, where

B(r) = 2jα
∫ π

0
η2(x)(sin θ)n−1eiλr

2 cos θ(xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
Jn−1(νψ)dθ.

Error term:

|EB(r)| ≤ C2jα
∫ π

0
η2(x)(sin θ)n−1(xν)

1−n
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
ν−1

(
x

ν−x
) 1

2 |J̃n−1(νψ)|dθ

≤ C2jα
∫

sin θ≤min{1,νλ−1}
(sin θ)n−1(xν)−

1
2
(n+ 1

2
)dθ

≤ C2jα min{(λν)−
1
2
(n+ 1

2
), λ−nν−

1
2 }.

Main term : Since νψ ≥ (xν)
1
2 ≥ 1 we shall, as before, write B = B1 + B2, where

B1(r) = 2jα
∫ π

0
η2(x)(sin θ)n−1ei[λr

2 cos θ+νψ](xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ)dθ,

B2(r) = 2jα
∫ π

0
η2(x)(sin θ)n−1ei[λr

2 cos θ−νψ](xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ2(νψ)dθ.

Let us first consider the integral B1, if we let Φr(θ) = λr2 cos θ + νψ then we have

∂θΦr(θ) = −λr2 sin θ + ν
(ν − x

x

) 1
2 λr2 cos θ

2ν

= −1
2λr

2
(
2 sin θ −

(ν − x

x

) 1
2 cos θ

)
.
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We shall now write B1 = B1
1 + B2

1, where

B1
1(r) = 2jα

∫ π

0
χ(sin θ)Ψr(θ)eiΦr(θ)dθ,

B2
1(r) = 2jα

∫ π

0
(1− χ(sin θ))Ψr(θ)eiΦr(θ)dθ,

and

Ψr(θ) = (sin θ)n−1(xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ).

Case 1: If 0 ≤ sin θ ≤ 1
10 , then there are two possibilities; cos θ ≈ 1 and cos θ ≈ −1.

(i) If 0 ≤ θ ≤ π
2 then cos θ ≈ 1 and (ν − x

x

) 1
2 cos θ ≥ 1

2
,

it therefore follows that
|∂θΦr(θ)| ≥ (sin θ)−1(xν)

1
2 .

(ii) If π
2 ≤ θ ≤ π then cos θ ≈ −1 and we trivially have the same estimate as above.

Notice also that
|∂2
θΦr(θ)| ≤ C(sin θ)−2(xν)

1
2 ,

and since for all ` = 0, 1, . . . we have that |∂`θσi(νψ)| ≤ c`(sin θ)−`(xν)−
1
4 it follows that if we let

Ψ1
r(θ) = χ(sin θ)Ψr(θ) then we have

|Ψ1
r(θ)| ≤ (sin θ)n−1(xν)

1−n
2
− 1

4 ,

|∂θΨ1
r(θ)| ≤ (sin θ)n−2(xν)

1−n
2
− 1

4 .

An application of integration by parts therefore gives

|B1
1(r)| ≤ C2jα

∫ π

0
η2(x)

∣∣∂θ([∂θΦr(θ)]−1Ψ1
r(θ)

)∣∣dθ
≤ C2jα

∫
sin θ≤min{1,νλ−1}

(sin θ)n−1(xν)
1−n

2
− 3

4dθ

≤ C2jα min{(λν)−
1
2
(n+ 1

2
), λ−nν−

1
2 }.

Case 2: If 1
10 ≤ sin θ ≤ 1, then λ ≤ 10ν and Φr(θ) may now be stationary, however we do have that

|∂2
θΦr(θ)| ≥ C(xν)

1
2 ≥ C(λν)

1
2 ,

and if we now let Ψ2
r(θ) = χ(sin θ)Ψr(θ) it follows that

|Ψ2
r(θ)|+ |∂θΨ2

r(θ)| ≤ C(xν)−
1
2
(n− 1

2
) ≤ (λν)−

1
2
(n− 1

2
).

It therefore follows from an application of van der Corput’s lemma that

|B2
1(r)| ≤ C2jα(λν)−

1
4 (λν)−

1
2
(n− 1

2
) ≤ C(λν)−

n
2 .

Bringing these two cases together we see that

|B1(r)| ≤ C2jα min{(λν)−
n
2 , λ−nν−

1
2 }.
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The integral B2 can be treated in exactly the same manner as above, in Region B we therefore
obtain

|µj,2(κ, λ22j)| ≤ C2jα min{(λν)−
n
2 , λ−nν−

1
2 }.

5.3. Oscillatory interval II: ν
2 ≤ x ≤ ν − ν

1
3 . We now have ν

1
3 ≤ ν − x ≤ ν

2 and |Λδκ(x)| ≤
Cx−

1
4 (ν − x)−

1
4 . Notice also that (λν)

1
2 ≤ 2λ.

The situation here is much the same as it was in §5.2 only here we must use instead the Airy
asymptotic form. In order to do better than the trivial estimate we shall again make use the
oscillation in the main term of our asymptotic expansion. It follows from Lemma 3.6 that

φ ∼ ν − x

ν
,

from this and (8) it is immediately clear that

1
10

≤ φ′ ≤ 10 and φ′′ ≤ C.

Region A: λ ≤ Cβ2jβ. In this region we should integrate by parts and since x ≤ (xν)
1
2 it suffices

to estimate,

I3(θ) = 2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2 Λn−1+N
κ−N (x)dr.

Using the Airy asymptotic forms (7) we may write this as I3 = cA+ EA, where

A(θ) = 2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 Ai(−ν

2
3φ)dr.

Error term:

|EA(θ)| ≤ C2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)(xν)

N+1−n
2 x−

3
2 ν

1
6
(

1
−φ′

) 1
2 |Ãi(−ν

2
3φ)|dr

≤ C2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)(xν)

1
2
(N− 1

3
−n)(ν

2
3φ)

1
2 (νφ

3
2 )−

1
2dr

≤ C2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)(xν)

1
2
(N− 1

2
−n)ν

1
4 (ν − x)−

1
4dr

≤ C2j(α−(n+ 1
2
)β)ν−

3
4

∫
ν−x≤ν

(ν − x)−
1
4dx

≤ C2j(α−(n+ 1
2
)β),

provided N > n.

Main term: Recall that for z > 0

Ai(−z) = 1
3z

1
2 [J1/3(2

3z
3
2 ) + J−1/3(2

3z
3
2 )],

since J1/3 and J−1/3 satisfy the same bounds for large z it suffices to estimate

Ã(θ) = 2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2J1/3(2

3νφ
3
2 )dr.
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It follows from (3) that,

J1/3(2
3νφ

3
2 ) = σ1(νφ

3
2 )ei

2
3
νφ

3
2 + σ2(νφ

3
2 )e−i

2
3
νφ

3
2 ,

where σi is a symbol of order −1
2 . We therefore write Ã = A1 +A2, where

A1(θ)=2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)ei2

jβ[ϕ(r,θ)+2−jβ 2
3
νφ

3
2](xν)

N+1−n
2 x−

1
2 ν

1
6
(

1
−φ′

)1
2 (ν

2
3φ)

1
2σ1(νφ

3
2)dr,

A2(θ)=2j(α−Nβ)

∫ ∞

0
η3(x)ϑ(r)ei2

jβ[ϕ(r,θ)−2−jβ 2
3
νφ

3
2](xν)

N+1−n
2 x−

1
2 ν

1
6
(

1
−φ′

)1
2 (ν

2
3φ)

1
2σ2(νφ

3
2)dr.

Let us first consider the integral A1, and now let Φ̃θ(r) = ϕ(r, θ) + 2−jβ 2
3νφ

3
2 . We note that

∂rΦ̃θ(r) = ∂rΦθ(r). It therefore follows that Φ̃θ behaves exactly as Φθ did in §5.2 and so for Cβ
chosen small enough we again wish to integrate by parts. In this case our amplitude

Ψ̃θ(r) = η3(x)ϑ(r)(xν)
N+1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 ),

courtesy of the symbol estimates |∂`rσ1(νφ
3
2 )| ≤ Cx

1
4
+`(ν − x)−

3
4
−`, satisfies for ` = 0, 1, . . . the

differential inequality

|∂`rΨ̃θ(r)| ≤ C(ν − x)−`−
1
4 νN−n+ 3

4
+`.

Integrating by parts N ′ times we therefore get the estimate

|A1(θ)| ≤ C2j(α−Nβ)

∣∣∣∣∫ ∞

0
Ψ̃θ(r)ei2

jβ
eΦθ(r)dr

∣∣∣∣
≤ C2j(α−(N+N ′)β)

∫
ν

1
3≤ν−x

(ν − x)−N
′− 1

4 νN+N ′− 1
4
−ndx

≤ C2j(α−(N+N ′)β)νN+ 2
3
N ′−n

≤ C2j(α−nβ−
N′
3
β),

again provided N > n, but also that N ′ ≥ 1. We of course obtain the same estimate for A2 since
its phase is trivially never stationary. In Region A we therfore obtain the estimate

|µj,3(κ, λ22j)| ≤ C2j(α−(n+ 1
2
)β).

Region B: λ ≥ Cβ2jβ. Recall that λr2 sin θ ∼ ν and hence sin θ ≤ Cνλ−1. Trivially we get
the estimate |µj(κ, λ22j)| ≤ C2jαλ−nν

1
2 , we’ll use the oscillation to do better. Using the Airy

asymptotic form (7) we may write J3 = cA+ EA, where

A(r) = 2jα
∫ π

0
η3(x)(sin θ)n−1eiλr

2 cos θ(xν)
1−n

2 x−
1
2 ν

1
6
(

1
φ′

) 1
2 Ai(−ν

2
3φ)dθ.
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Error term:∫ ∞

0
ϑ(r)r−1−α|EA(r)|dr ≤ C2jα

∫ π

0
(sin θ)n−1

∫ 2

1
2

(xν)
1−n

2 x−
3
2 ν

1
6
(

1
φ′

) 1
2 |Ãi(−ν

2
3φ)|drdθ

≤ C2jα
∫ π

0
(sin θ)n−1

∫ 2

1
2

(xν)−
1
2
(n+ 1

3
)(−ν

2
3φ)

1
2 (−νφ

3
2 )−

1
2drdθ

≤ C2jα
∫ π

0
(sin θ)n−1

∫ 2

1
2

(xν)−
1
2
(n+ 1

2
)ν

1
4 (ν − x)−

1
4drdθ

≤ C2jα(λν)−
1
2
(n+ 1

2
)

∫
sin θ≤Cνλ−1

(sin θ)
1
2
(n− 5

2
)ν−

3
4

∫
ν−x≤ν

(ν − x)−
1
4dxdθ

≤ C2jαλ−nν−
1
2 .

Main term: As in Region A it suffices to estimate

Ã(r) = 2jα
∫ π

0
η3(x)(sin θ)n−1eiλr

2 cos θ(xν)
1−n

2 x−
1
2 ν

1
6
(

1
φ′

) 1
2 (ν

2
3φ)

1
2J1/3(2

3νφ
3
2 )dθ,

and since νφ
3
2 ≥ 1 we shall, as before, write Ã = A1 +A2, where

A1(r) = 2jα
∫ π

0
η3(x)(sin θ)n−1ei[λr

2 cos θ+ 2
3
νφ

3
2 ](xν)

1−n
2 x−

1
2 ν

1
6
(

1
φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 )dθ,

A2(r) = 2jα
∫ π

0
η3(x)(sin θ)n−1ei[λr

2 cos θ− 2
3
νφ

3
2 ](xν)

1−n
2 x−

1
2 ν

1
6
(

1
φ′

) 1
2 (ν

2
3φ)

1
2σ2(νφ

3
2 )dθ.

Let us first consider the integral A1, and now let Φ̃r(θ) = λr2 cos θ+ 2
3νφ

3
2 . As above we note that

∂θΦ̃r(θ) = ∂θΦr(θ) and thus

∂θΦ̃r(θ) = −1
2λr

2
(
2 sin θ −

(ν − x

x

) 1
2 cos θ

)
.

Therefore, since ν − x ≤ x in this interval, it easy to see that

|∂θΦ̃r(θ)| ≥ Cλ,

provided cos θ ≤ sin θ. With this in mind we shall this time write A1 = A1
1 +A2

1, where

A1
1(r) = 2jα

∫ π

0
(1− χ( 1

10 tan θ))Ψ̃r(θ)ei
eΦr(θ)dθ,

A2
1(r) = 2jα

∫ π

0
χ( 1

10 tan θ)Ψ̃r(θ)ei
eΦr(θ)dθ,

and

Ψ̃r(θ) = (sin θ)n−1(xν)
1−n

2 x−
1
2 ν

1
6
(

1
φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 ).

Case 1: If tan θ ≥ 1, then letting Ψ̃1
r(θ) = (1− χ( 1

10 tan θ))Ψ̃r(θ) we see that

|Ψ̃1
r(θ)| ≤ Cν

3
4
−n(ν − x)−

1
4 ,

|∂θΨ̃1
r(θ)| ≤ Cν

7
4
−n(ν − x)−

5
4 .
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Letting y = x(λ, r, π2 ) we see that an application of van der Corput’s lemma gives,∫ ∞

0
ϑ(r)r−1−α|A1

1(r)|dr ≤ C2jαλ−1
(∫ 2

1
2

|Ψ̃1
r(
π
2 )|dr +

∫ π

0

∫ 2

1
2

|∂θΨ̃1
r(θ)|drdθ

)
≤ C2jαλ−1ν−

1
4
−n

( ∫
ν−y≤ν

(ν − y)−
1
4dy + ν

∫ π

0

∫
ν

1
3≤ν−x≤ν

(ν − x)−
5
4dxdθ

)

≤ C2jαλ−1ν−
1
4
−n(ν

3
4 + ν

11
12 )

≤ C2jαλ−(n+ 1
3
).

Here we have use the fact that ν ≥ Cλ, this is a consequence of sin θ ≥ 1
2 .

Case 2: If tan θ ≤ 1, then letting Ψ̃2
r(θ) = χ( 1

10 tan θ)Ψ̃r(θ) we see that

|Ψ̃2
r(θ)| ≤ C(sin θ)n−1ν

3
4
−n(ν − x)−

1
4 ≤ Cλ−(n−1)ν−

1
4 (ν − x)−

1
4 ,

|∂θΨ̃2
r(θ)| ≤ C(sin θ)n−2ν

3
4
−n(ν − x)−

1
4 + C(sin θ)n−1ν

2
3
−n|∂θ[(ν

2
3φ)

1
2σ1(νφ

3
2 )]|

≤ Cλ−(n−2)ν−
5
4 (ν − x)−

1
4 + Cλ−(n−1)ν−

1
3∂θ(νφ

3
2 )−

1
6 .

Here of course our phase may be stationary, however it is easy to see that

|∂2
θ Φ̃r(θ)| ≥ Cλ2(ν − x)−

1
2x−

1
2 ≥ λ2ν−1.

Arguing as above we see that van der Corput’s lemma gives,∫ ∞

0
ϑ(r)r−1−α|A2

1(r)|dr ≤ C2jαλ−1ν
1
2

∫ π

0

∫ 2

1
2

|∂θΨ̃2
r(θ)|drdθ

≤ C2jαλ−n
(
λν−1

∫
θ≤ ν

λ

dθ + ν
1
6

∫ 2

1
2

∫ π

0
∂θ(νφ

3
2 )−

1
6dθdr

)
≤ C2jαλ−n

(
λν−1

∫
θ≤ ν

λ

dθ + ν
1
4

∫ 2

1
2

(ν − y)−
1
4dr

)
≤ C2jαλ−n.

The integral A2 can be treated in exactly the same way, thus in Region B we obtain

|µj,3(κ, λ22j)| ≤ C2jαλ−n.

5.4. Neighborhood of the turning point: |ν − x| ≤ ν
1
3 . Here we just use a size estimate and

the fact that |Λδκ(x)| ≤ Cν−
1
3 . This is the best we can do since νφ

3
2 ≤ ν

(
ν−x
ν

) 3
2 ≤ 1. Notice again

that (λν)
1
2 ≤ 2λ.
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Region A: λ ≤ Cβ2jβ. We should integrate by parts and since x ≤ C(xν)
1
2 it suffices to estimate,

|I4(θ)| = 2j(α−Nβ)

∣∣∣∣∫ ∞

0
η4(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2 Λn−1+N
κ−N (x)dr

∣∣∣∣
≤ C2j(α−Nβ)νN−n

∫
|ν−x|≤ν

1
3

ν−
1
3dx

≤ C2j(α−nβ),

provided N > n. So in Region A we obtain the estimate

|µj,4(κ, λ22j)| ≤ C2j(α−nβ).

Region B: λ ≥ Cβ2jβ. Here we shall not integrate by parts first, so we wish to estimate

|µj,4(κ, λ22j)| = 2jα
∫ π

0
(sin θ)n−1

∣∣∣∣∣
∫ 2

1
2

η4(x)ei2
jβϕ(r,θ)(xν)

1−n
2 Λn−1

κ (x)dr

∣∣∣∣∣ dθ
≤ C2jα

∫
sin θ≤ ν

λ

(sin θ)n−1ν−n
∫
|ν−x|≤ν

1
3

ν−
1
3dxdθ

≤ C2αλ−n.

5.5. Monotonic region I: ν+ν
1
3 ≤ x ≤ 3

2ν. Recall that here |Λδκ(x)| ≤ Cν−
1
4 (x−ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 .

Notice that in this interval (λν)
1
2 ≤ λ.

Region A: λ ≤ Cβ2jβ. We should integrate by parts and since x ≤ C(xν)
1
2 it suffices to estimate,

|I5(θ)| = 2j(α−Nβ)

∣∣∣∣∫ ∞

0
η5(x)ϑ(r)ei2

jβϕ(r,θ)(xν)
N+1−n

2 Λn−1+N
κ−N (x)dr

∣∣∣∣
≤ C2j(α−Nβ)νN−n

∫
x−ν≥ν

1
3

ν−
1
4 (x− ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 dx

≤ C2j(α−nβ)

∫
u≥1

u−
1
4 e−γ1u

3
2 du

≤ C2j(α−nβ),

again provided N is large enough. So we again in Region A obtain the estimate

|µj,5(κ, λ22j)| ≤ C2j(α−nβ).
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Region B: λ ≥ Cβ2jβ. Here we shall not integrate by parts first, so we wish to estimate

|µj,5(κ, λ22j)| = 2jα
∫ π

0
(sin θ)n−1

∣∣∣∣∣
∫ 2

1
2

η5(x)ei2
jβϕ(r,θ)(xν)

1−n
2 Λn−1

κ (x)dr

∣∣∣∣∣ dθ
≤ C2jα

∫
sin θ≤ ν

λ

(sin θ)n−1ν−n
∫
x−ν≥ν

1
3

ν−
1
4 (x− ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 dxdθ

≤ C2jα
∫

sin θ≤ ν
λ

(sin θ)n−1ν−n
∫
u≥1

u−
1
4 e−γ1u

3
2 dudθ

≤ C2jαλ−n.

5.6. Monotonic region II: x ≥ 3ν
2 . Here we have the trivial estimate |Λδκ(x)| ≤ Ce−γ2x. Again

in this interval (λν)
1
2 ≤ λ.

Region A: λ ≤ Cβ2jβ. We should integrate by parts and since x ≥ (xν)
1
2 it suffices to estimate,

|I6(θ)| = 2j(α−Nβ)

∣∣∣∣∫ ∞

0
η6(x)ϑ(r)ei2

jβϕ(r,θ)xN (xν)
1−n

2 Λn−1+N
κ−N (x)dr

∣∣∣∣
≤ C2j(α−Nβ)ν

1−n
2

∫
x≥ν

xN−1−n−1
2 e−γ2xdx

≤ C2j(α−Nβ),

for all N ≥ 0. So in Region A we obtain the estimate

|µj,6(κ, λ22j)| ≤ C2j(α−Nβ).

Region B: λ ≥ Cβ2jβ. Here we shall not integrate by parts first, so we wish to estimate

|µj,6(κ, λ22j)| = 2jα
∫ π

0
(sin θ)n−1

∣∣∣∣∣
∫ 2

1
2

η6(x)ei2
jβϕ(r,θ)(xν)

1−n
2 Λn−1

κ (x)dr

∣∣∣∣∣ dθ
≤ C2jα

∫ π

0
(sin θ)n−1ν−n

∫
x≥ν

e−γ2xdxdθ

≤ C2jαλ−Nν−n
∫

sin θ≥ ν
λ

(sin θ)n−1−Ndθ

≤ C2jαλ−nν−N .

We have therefore established the Theorem 5.1.
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