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Abstract. In this article we study the behavior of strongly singular integrals associated
to three different, albeit equivalent, quasi-norms on Heisenberg groups; these quasi-norms
give rise to phase functions whose mixed Hessians may or may not drop rank along suitable
varieties. In the particular case of the Koranyi norm we improve on the arguments in [7]
and obtain sharp L2 estimates for the associated operators.

1. Introduction

The Heisenberg group Hn
a is a non-commutative nilpotent Lie group, with underlying

manifold R2n+1 equipped the group law

(1) (x, t) · (y, s) = (x + y, s + t− 2a xtJy)

where a is a nonzero real number and J denotes the standard symplectic matrix on R2n,
namely

J =
(

0 In

−In 0

)
with inverses given by (x, t)−1 = −(x, t). The nonisotropic dilations

(2) (x, t) 7→ (δx, δ2t).

are automorphisms of Hn
a and as such the homogeneous dimension of this group is 2n + 2.

We will consider here, for different quasi-norms ρ(x, t) on Hn
a , the class of model (group)

convolution operators formally given by

Tf(x, t) = f ∗Kα,β(x, t)

where Kα,β is a strongly singular distributional kernel on Hn
a that agrees, for (x, t) 6= (0, 0),

with the function
Kα,β(x, t) = ρ(x, t)−2n−2−αeiρ(x,t)−β

χ(ρ(x, t)),
where β > 0 and χ is smooth and compactly supported in a small neighborhood of the origin.

Operators of this type were first studied, using Fourier transform techniques, in the Eu-
clidean setting of Rd with ρ(x) = |x| by Hirschman [4] in the case d = 1 and then in higher
dimensions by Wainger [10], C. Fefferman [2], and C. Fefferman and Stein [3]. For some gen-
eralizations and an oscillatory integral approach to these classical results, see Lyall [6]. The
analogous questions on the Heisenberg group were first investigated by the second author in
[7].
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1.1. Statement of main results. There are various natural choices of quasi-norm on Hn
a ,

for example one can take

ρ0(x, t) = max{|x1|, . . . , |x2n|, |t|1/2},

however this choice is not smooth away from the origin. We shall instead consider the
following three equivalent quasi-norms which clearly are smooth away from the origin;

(i) ρ1(x, t) = (|x|4 + t2)1/4

(ii) ρ2 defined by ρ2(x, t) = 1 ⇐⇒ |x|2 + t2 = 1 and extended by homogeneity

(iii) ρ3(x, t) = (x4
1 + · · ·+ x4

2n + t2)1/4 .

The case when ρ(x, t) = ρ1(x, t), the so called Koranyi norm on the Heisenberg group, was
initially studied by the second author in [7] using the group Fourier transform.

Theorem (Lyall [7]). Let ρ(x, t) = ρ1(x, t) and a 6= 0.

(i) If α ≤ nβ, then T extends to a bounded operator from L2(Hn
a) to itself.

(ii) If T extends to a bounded operator from L2(Hn
a) to itself, then α ≤ (n + 1

2)β.

The proof of this result relied upon the radial nature of the Koranyi norm and uniform
asymptotic expansions for Laguerre functions due to Erdélyi [1] along with some careful
analysis.

In this article we optimally sharpen the previously obtained estimates and in addition
address the question of the behavior of different quasi-norms for the first time. We do not
employ the Fourier transform in our arguments and as such our methods are not restricted
to the class of translation-invariant operators.

We fix the constant

Cβ =
β + 2

2

(
2β + 5 +

√
(2β + 5)2 − 9

)
and note that Cβ ≥ 9 for all β > 0. Our first main result is then the following.

Theorem 1. If ρ(x, t) = ρ1(bx, bt) with 0 < a2/b2 < Cβ, then T extends to a bounded
operator from L2(Hn

a) to itself if and only if α ≤ (n + 1
2)β.

The analogous result for ρ(x, t) = ρ2(x, t), the nonisotropic Minkowski functional associ-
ated to the (Euclidean) unit ball, is the following.

Theorem 2. If ρ(x, t) = ρ2(bx, bt) with a2/b2 ≤ 1, then T extends to a bounded operator
from L2(Hn

a) to itself whenever α ≤ (n + 1
2)β.

We note that the Koranyi norm ρ1(x, t) is indeed an actual norm on Hn
a for all 0 < a2 ≤ 1,

as is the nonisotropic Minkowski functional ρ2(x, t) for sufficiently small |a|.
A negative result for the quasi-norm ρ3(x, t) that relates to the proofs of Theorems 1 and

2 is discussed in Section 5.
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2. Reductions and remarks

2.1. Reduction to dyadic estimates. The necessary condition in Theorem 1 follows from
the arguments in [7]. To establish sufficiency in both Theorems 1 and 2 matters reduce to
considering the dyadic operators

Tj(x, t) = f ∗Kj(x, t),

where
Kj(x, t) = ϑ(2jρ(x, t))Kα,β(x, t),

with ϑ ∈ C∞
0 (R) supported in [12 , 2] is chosen such that

∑∞
j=0 ϑ(2jr) = 1 for all 0 ≤ r ≤ 1.

As in [7] everything reduces to establishing the following key dyadic estimates.

Theorem 3. If α ≤ (n + 1
2)β and either

(i) ρ(x, t) = ρ1(bx, bt) with 0 < a2/b2 < Cβ, or
(ii) ρ(x, t) = ρ2(bx, bt) with a2/b2 ≤ 1,

then the dyadic operators Tj are bounded uniformly on L2(Hn
a), more precisely

(3)
∫
Hn

a

|Tjf(x, t)|2 dx dt ≤ C2j(2α−(2n+1)β)

∫
Hn

a

|f(x, t)|2 dx dt.

Theorems 1 and 2 then follow from an application of Cotlar’s lemma (and a standard
limiting argument) since the operators Tj are, in the following sense, almost orthogonal.

Proposition 4. If α ≤ (n + 1
2)β, then

‖T ∗j Tj′‖L2(Hn
a )→L2(Hn

a ) + ‖TjT
∗
j′‖L2(Hn

a )→L2(Hn
a ) ≤ C2−(n+ 1

2
)β|j−j′|.

This follows exactly as in [7] once we have made the observation that if ρ(x, t) is any
quasi-norm on Hn

a satisfying the estimate c−1 ≤ ρ(δx, δ2t) ≤ c for some c ≥ 1 and δ > 0,
then there exists a constant c0 > 1 so that either

c−1
0 ≤ ∂

∂xj
ρ(x, t) ≤ c0

for some j = 1, . . . , 2n, or

c−1
0 δ ≤ ∂

∂t
ρ(x, t) ≤ c0δ.

Since from this it follows that∣∣∣∇(y,s)[ρ(y, s)−β − ρ((x, t) · (y, s))−β]
∣∣∣ ≥ C > 0,

whenever ρ((x, t) · (y, s)) � ρ(y, s). For more details see [7].

2.2. Remarks on Lp → Lq estimates. For p ≤ q, the Lp → Lq operator norms of Tj are
equal to that of the rescaled operator T̃j given by

T̃jf(x, t) = 2jh(1/p−1/q)2jαSjf(x, t)

where h = 2n + 2 denotes the homogeneous dimension of Hn
a and

Sjf(x, t) =
∫
Hn

a

K̃j

(
(y, s)−1 · (x, t)

)
f(y, s) dy ds
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with
K̃j(x, t) = ϑ(ρ(x, t))ρ(x, t)−h−αei2jβρ(x,t)−β

.

In particular establishing Theorem 3 is equivalent to showing that the L2 operator norm
of Sj is O(2−jdβ/2), where d = 2n + 1 denotes the topological dimension of Hn

a , standard
interpolation techniques then give that the Lp operator norm of Sj is O(2−jdβ/22jdβ|1/p−1/2|).
If p ≤ 2 this is also a bound for the Lp → Lp′ , Lp → L2, and Lp′ → L2 operator norms and
can, for this range of p, be written more succinctly as O(2−jdβ/p′).

From the corresponding results for the dyadic operator Tj , which of course follow immedi-
ately from those for Sj , we obtain the following.

Theorem 5. If 1 < p < ∞ and either

(i) ρ(x, t) = ρ1(bx, bt) with 0 < a2/b2 < Cβ, or
(ii) ρ(x, t) = ρ2(bx, bt) with a2/b2 ≤ 1,

then T extends to a bounded operator from Lp(Hn
a) to itself whenever∣∣∣∣1p − 1

2

∣∣∣∣ <
dβ − 2α

2dβ
.

The estimates above match those obtained by Wainger [10] for the corresponding operators
in Rd. However, unlike the situation in the Euclidean setting which was settled in [2] and
[3], the behavior of the operator T on the Heisenberg group near L1 and the endpoint results
in Lp for p 6= 2 remain open problems.

We chose to use the notation h and d for the homogeneous and topological dimensions
of Hn

a in the arguments alluded to above as these also apply in the setting of homogeneous
groups; of course establishing the analogue of Theorem 3 in this more general group settings
remains an open problem.

3. Homogeneous groups and a proposition of Hörmander

The Heisenberg group is of course one of the simplest examples of a (non-commutative)
homogeneous group. Recall that a homogeneous group consists of Rd equipped with a Lie
group structure, together with a family of dilations

x = (x1, . . . , xd) 7→ δ ◦ x = (δa1x1, . . . , δ
adxd),

with a1, . . . , ad strictly positive, that are group automorphisms, for all δ > 0.

To each homogeneous group on Rd, we can associate its Lie algebra, consisting of left-
invariant vector fields on Rd, with basis {Xj}1≤j≤d where each Xj is the left-invariant vector
field that agrees with ∂/∂xj at the origin.

Key to establishing Theorem 3 is the following, presumably well known, generalization of
a proposition of Hörmander [5], see also [9], Chapter IX.

Proposition 6. Let Ψ be a smooth function of compact support in x and y, and Φ be real-
valued and smooth on the support of Ψ. If we assume that

(4) det
(
XjYkΦ(x, y)

)
6= 0,
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on the support of Ψ, then for λ > 0 we have

(5)
∥∥∥∫

Rd

Ψ(x, y)eiλΦ(x,y)f(y)dy
∥∥∥

L2(Rd)
≤ Cλ−

d
2 ‖f‖L2(Rd).

Proposition 6 can in fact be extended to families of smooth vector fields X1, . . . , Xd forming
a basis at every point of Rd; however, we choose to state it in this restricted generality (which
is already more than we need) as this admits a proof which is simply the natural modification
of Hörmander’s original argument.

Proof. By using a partition of unity we may assume that the amplitude Ψ has suitably small
compact support in both x and y. Denoting the operator on the left hand side of inequality
(5) by Tλ it is then easy to see that

T ∗λTλf(y) =
∫
Rd

Kλ(x, z)f(z) dz

where

Kλ(x, z) =
∫
Rd

eiλ[Φ(x,y)−Φ(z,y)]Ψ(x, y)Ψ(z, y) dy.

It therefore suffices to establish the kernel estimate

(6) |Kλ(x, z)| ≤ C(1 + λ|z−1 · x|)−N ,

since from this it would follow that∫
|Kλ(x, z)| dz ≈ |{z : |z−1 · x| ≤ λ−1}| = Cλ−d

and similarly for
∫
|Kλ(x, z)| dx, and therefore by Schur’s test that

‖T ∗λTλf‖L2(Rd) ≤ Cλ−d‖f‖L2(Rd).

The kernel Kλ(x, z) is of course always bounded, hence in order to establish (6) we need
only consider the case when |z−1 · x| ≥ λ−1. Now

YkΦ(x, y)− YkΦ(z, y) =
∫ 1

0

d

dt
YkΦ(z · t(z−1 · x), y) dt

=
d∑

j=1

(z−1 · x)j

∫ 1

0
XjYkΦ(z · t(z−1 · x), y) dt

=
d∑

j=1

(z−1 · x)jXjYkΦ(x, y) + O(|z−1 · x|2).

So if we let

A = A(x, y) = XjYkΦ(x, y) and u = u(x, y, z) = A−1 z−1 · x
|z−1 · x|

and define
∆(x, y, z) = (u1Y1 + · · ·+ udYd)[Φ(x, y)− Φ(z, y)]

it follows that
∆(x, y, z) = |z−1 · x|+ O(|z−1 · x|2).
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Therefore for |z−1 · x| small enough, it is here that we use our initial suitably small support
assumption, we have

|∆(x, y, z)| ≥ 1
2 |z

−1 · x|,
and if we now set

D =
1

iλ∆(x, y, z)
(u1Y1 + · · ·+ udYd),

it follows that∣∣∣∣∫
Rd

eiλ[Φ(x,y)−Φ(z,y)]Ψ(x, y)Ψ(z, y) dy

∣∣∣∣ =
∣∣∣∣∫

Rd

DN
(
eiλ[Φ(x,y)−Φ(z,y)]

)
Ψ(x, y)Ψ(z, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd

eiλ[Φ(x,y)−Φ(z,y)](Dt)N
(
Ψ(x, y)Ψ(z, y)

)
dy

∣∣∣∣
≤ CN (1 + λ|z−1 · x|)−N ,

for all N ≥ 0. �

4. Proof of Theorem 3

Since the operator norms of Tj are equal to that of the rescaled operator T̃j given by

T̃jf(x, t) = 2jα

∫
Hn

a

K̃j

(
(y, s)−1 · (x, t)

)
f(y, s) dy ds

where
K̃j(x, t) = ϑ(ρ(x, t))ρ(x, t)−2n−2−αei2jβρ(x,t)−β

it suffices to establish estimate (3) for the rescaled operators T̃j .

Since the T̃j are local operators, in the sense that the support of T̃jf is always contained
in a fixed dilate of some nonisotropic ball containing the support of f , we may make the
additional assumption that the integral kernels above have compact support in both (x, t)
and (y, s). Estimate (3) for T̃j then follows from Proposition 6 once we have verified the
non-degeneracy condition (4) in this setting.

It is well known that

X`
j =

∂

∂xj
+ 2axj+n

∂

∂t
, X`

j+n =
∂

∂xj+n
− 2axj

∂

∂t
j = 1, . . . , n,

and T = ∂
∂t form a real basis for the Lie algebra of left-invariant vector fields on Hn

a , while

Xr
j =

∂

∂xj
− 2axj+n

∂

∂t
, Xr

j+n =
∂

∂xj+n
+ 2axj

∂

∂t
j = 1, . . . , n,

and T = ∂
∂t form a real basis for the Lie algebra of right-invariant vector fields.

For convenience we shall use synonymously X`
2n+1 = Xr

2n+1 = T, and furthermore denote

X` = (X`
1, . . . , X

`
2n+1) and Xr = (Xr

1 , . . . , Xr
2n+1).

We note that
−[Xr

j ϕ̃](x, t) = [X`
jϕ]

(
(x, t)−1

)
,

where ϕ̃(x) = ϕ
(
(x, t)−1

)
, and hence

X`
jY

`
k

[
ϕ
(
(y, s)−1 · (x, t)

)]
= −[X`

jX
r
kϕ]

(
(y, s)−1 · (x, t)

)
.
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The non-degeneracy condition (4) in this setting is therefore equivalent to the following.

Proposition 7. Let Φ(x, t) = ρ(x, t)−β with β > 0. If (x, t) 6= (0, 0) and either

(i) ρ(x, t) = ρ1(x, t) with 0 < a2 < Cβ, or
(ii) ρ(x, t) = ρ2(x, t) with a2 ≤ 1,

then
det

(
X`

jX
r
kΦ(x, t)

)
6= 0.

Theorem 3 now follows immediately for b = 1, the proof in general follows from the
observation that Hn

a is isomorphic to Hn
a/b with the explicit isomorphism being given by

φ(x, t) = (bx, bt).

5. The determinant calculations

The purpose of this section is to prove Proposition 7, however we shall start by stating and
sketching the proof of a related negative result for the quasi-norm ρ3(x, t) on H1

a. Outlining
this argument first will be instructive as it is simpler than, while still similar to, those for
Proposition 7.

Proposition 8. Let n = 1 and Φ(x, t) = ρ3(x, t)−β, then

det
(
X`

jX
r
kΦ(x, t)

)
= 0

along the lines (0, x2, 0) and (x1, 0, 0).

Proof. Let ϕ3(x, t) = ρ3(x, t)4 = x4
1 + x4

2 + t2. It is straightforward to see that the ‘mixed’
Hessian of Φ is given by

X`
jX

r
kΦ(x, t) = −β

4 ϕ
−(β+8)/4
3 {ϕ3X

`
jX

r
kϕ3 − β+4

4 X`
jϕ3X

r
kϕ3}.

For convenience both here and in the proofs of both parts of Proposition 7 we define

A := X`
jX

r
kϕ3 and B := X`

jϕ3X
r
kϕ3.

Now since rank(B) = 1 it follows that

det(ϕ3A− β+4
4 B) = ϕ2

3

ϕ3 det(A)− β + 4
4

det

b1

a2

a3

 + det

a1

b2

a3

 + det

a1

a2

b3


 ,

where aj = (aj1, aj2, aj3) and bj = (bj1, bj2, bj3).

It is easy to verify that

X`
1ϕ3(x, t) = 4(x3

1 + ax2x3), X`
2ϕ3(x, t) = 4(x3

2 − ax1x3), and X`
3ϕ3(x, t) = 2t,

while

Xr
1ϕ3(x, t) = 4(x3

1 − ax2x3), Xr
2ϕ3(x, t) = 4(x3

2 + ax1x3), and Xr
3ϕ3(x, t) = 2t,

and hence that
A = 2(C + aD)
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where

C =

6x2
1 2t 0

−2t 6x2
2 0

0 0 0

 and D =

−4ax2
2 4ax1x2 2x2

4ax1x2 −4ax2
1 −2x1

−2x2 2x1 1/a


Since rank(D) = 1 it follows that

det(A) = 8 det
(

6x2
1 2t

−2t 6x2
2

)
= 32(9x2

1x
2
2 + t2).

For the first of the remaining three determinants we note that

det

b1

a2

a3

 = 8X`
1ϕ3 det(E + aF ),

where

E =

2x3
1 2x3

2 0
−2t 6x2

2 0
0 0 0

 and F =

−2x2t 2x1t t/a
4ax1x2 −4ax2

1 −2x1

−2x2 2x1 1/a

 .

Using the fact that rank(F ) = 1 we then see that

det

b1

a2

a3

 = 8X`
1ϕ3 det

(
2x3

1 2x3
2

−2t 6x2
2

)
.

In an almost identical manner we can also obtain that

det

a1

b2

a3

 = 8X`
2ϕ3 det

(
6x2

1 2t
2x3

1 2x3
2

)
,

and

det

a1

a2

b3

 = 8X`
3ϕ3

{
2ax2 det

(
−2t 6x2

2

2x3
1 2x3

2

)
+ 2ax1 det

(
6x2

1 2t
2x3

1 2x3
2

)
+ t det

(
6x2

1 2t
−2t 6x2

2

)}
,

we leave the details to the reader. Bringing all of this together we get that

det(ϕ3A− β+4
4 B) = −16ϕ2

3

{
6(β + 1)ϕ3x

2
1x

2
2 + (β + 2)t4 + 3(β + 4)x2

1x
2
2t

2 − 2(x4
1 + x4

2)t
2
}

.
�

5.1. Proof of Proposition 7, part (i). Let ϕ1(x, t) = ρ1(x, t)4 = |x|4 + t2. It is straight-
forward to see that the ‘mixed’ Hessian of Φ is given by

X`
jX

r
kΦ(x, t) = −β

4 ϕ
−(β+8)/4
1 {ϕ1X

`
jX

r
kϕ1 − β+4

4 X`
jϕ1X

r
kϕ1}.

We again define A := X`
jX

r
kϕ1 and B := X`

jϕ1X
r
kϕ1. Since rank(B) = 1 it follows that

det(ϕ1A− β+4
4 B) = ϕ2n

1


ϕ1 det(A)− β + 4

4

2n+1∑
j=1

det


a1
...
bj
...

a2n+1




,

where aj = (aj1, . . . , aj 2n+1) and bj = (bj1, . . . , bj 2n+1).
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It is an easy calculation to see that

X`ϕ1(x, t) =
(
4|x|2x + 4at(Jx), 2t

)
,

and

Xrϕ1(x, t) =
(
4|x|2x− 4at(Jx), 2t

)
,

where J is the standard symplectic matrix on R2n coming from the group structure. Hence
we have

A = 4
(

C 0
0 0

)
+ 8

(
D 0
0 0

)
+ 4aE and B = 4|x|2

(
F 0

)
+ 4atG

where

C = |x|2I + atJ, D = xxt, E =
(

2a(Jx)(xtJ) Jx
xtJ 1/2a

)
,

F = (X`ϕ1)xt, and G =
(
(X`ϕ1)(xtJ) X`ϕ1/2a

)
.

Now since both rank(D) = 1 and rank(E) = 1 it follows that

det(A) = 24n+1 det(C + 2D)

= 24n+1

(
|x|4 + a2t2

)n + 1
2

(
|x|4 + a2t2

)n−1
2n∑

j=1

xjX
`
jϕ1


= 24n+1

(
|x|4 + a2t2

)n−1(3|x|4 + a2t2
)
.

To obtain the final identity above we used the fact that

2n∑
j=1

xjX
`
jϕ1 = 4|x|4.

We note that for all j for which it makes sense, both

(7) rank


e1
...
gj
...

e2n+1

 = 1 and rank


d1
...
fj
...

d2n

 = 1.

From this and the observation that

2n∑
j=1

(X`
jϕ1)2 = 16|x|2

(
|x|4 + a2t2

)
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we may therefore conclude that

2n∑
j=1

det


a1
...
bj
...

a2n+1

 = 24n+1
2n∑

j=1

det




c1
...
0j
...

c2n

 +


2d1
...

|x|2fj
...

2d2n





= 24n+1|x|2
2n∑

j=1

X`
jϕ1 det


c1
...

0j + xt

...
c2n


= 24n−1

(
|x|4 + a2t2

)n−1|x|2
2n∑

j=1

(X`
jϕ1)2

= 24n+3|x|4
(
|x|4 + a2t2

)n
.

Finally, we can combine (7) and the fact that

det(C + 2D) =
(
|x|4 + a2t2

)n−1(3|x|4 + a2t2
)
,

together with the identity

n∑
j=1

(xjX
`
j+nϕ1 − xj+nX`

jϕ1) = −4a|x|2t

to obtain

det


a1
...

a2n

b2n+1

 = 42n+1aX`
2n+1ϕ1 det

(
C + 2D Jx
|x|2xt t/2a

)

= 42n+1t


2a|x|2

n∑
j=1


xj det


c1
...

0j+n + xt

...
c2n

− xj+n det


c1
...

0j + xt

...
c2n




+ t det(C + 2D)


= 42n+1t

(
|x|4 + a2t2

)n−1

1
2a|x|2

n∑
j=1

(xjX
`
j+nϕ1 − xj+nX`

jϕ1) + t
(
3|x|4 + a2t2

)
= 42n+1t2

(
|x|4 + a2t2

)n−1 (
(3− 2a2)|x|4 + a2t2

)
.
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Bringing this all together we see that

2n+1∑
j=1

det


a1
...
bj
...

a2n+1

 = 42n+1
(
|x|4 + a2t2

)n−1 {
2|x|8 + t2

(
3|x|4 + a2t2

)}
,

and consequently

det(ϕ1A− β+4
4 B) = −(4ϕ1)2n

(
|x|4 + a2t2

)n−1
f1(x, t)

where

f1(x, t) = 2(β + 1)|x|8 + (β + 2)t2
(
3|x|4 + a2t2

)
− 2|x|4a2t2

= 2(β + 1)|x|8 +
(
3(β + 2)− 2a2

)
|x|4t2 + (β + 2)a2t4.

By analyzing the discriminant

∆ = 4a4 − 4(β + 2)(2β + 5)a2 + 9(β + 2)2,

we see that our Hessian will be non-degenerate provided either

2a2 ≤ 3(β + 2) or |2a2 − (2β + 5)(β + 2)| < (β + 2)
√

(2β + 5)2 − 9,

which reduces simply to the condition that

a2 < Cβ =
β + 2

2

(
2β + 5 +

√
(2β + 5)2 − 9

)
.

Remark 9. We conclude by remarking that when a2 ≥ Cβ the Hessian degenerates along the
paraboloids

|x|4 =
2a2 − 3(β + 2)±

√
∆

4(β + 1)
t2.

In particular when a2 = Cβ we have that ∆ = 0 and hence the Hessian degenerates along
the paraboloid

|x|4 =
2Cβ − 3(β + 2)

4(β + 1)
t2 =

(β + 1)(β + 2) +
√

(β + 1)(β + 4)
2(β + 1)

t2.

5.2. Proof of Proposition 7, part (ii). We start by letting ϕ2(x, t) = ρ2(x, t)2 and noting
that as a consequence ϕ2 must satisy the identity

(8) ϕ−1
2 |x|2 + ϕ−2

2 t2 = 1.

Arguing as in the proof of Proposition 7, part (i) (and using the same notation) we see
that ϕ2 satisfies

det(ϕ2A− β+2
2 B) = ϕ2n

2


ϕ2 det(A)− β + 2

2

2n+1∑
j=1

det


a1
...
bj
...

a2n+1




.
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It is an easy calculation to see that

AX`ϕ2(x, t) =
(
2ϕ−1

2 x + 4at(Jx), 2ϕ−2
2 t

)
,

and

AXrϕ2(x, t) =
(
2ϕ−1

2 x− 4at(Jx), 2ϕ−2
2 t

)
,

where J is the standard symplectic matrix on R2n coming from the group structure and

(9) A = ϕ−2
2 |x|2 + 2ϕ−3

2 t2 = ϕ−1
2 + ϕ−3

2 t2.

A further (somewhat lengthy) calculation then gives that

A2A = 2Aϕ−2
2

(
C 0
0 0

)
+ 2Aϕ−4

2 D,

where

C = ϕ2I + 2atJ

and

D = [tX`ϕ2 − ϕ2(2aJx, 1)][tXrϕ2 − ϕ2(−2aJx, 1)]t.

Now since rank(D) = 1 it follows that

(10) det(A2A) = 22n+1A2n−1ϕ
−(4n+6)
2 (ϕ2

2 + 4a2t2)n|x|4,

here we used the fact that

det(C) = (ϕ2
2 + 4a2t2)n

and

A(tX`
2n+1ϕ2 − ϕ2) = A(tXr

2n+1ϕ2 − ϕ2) = −ϕ−1
2 |x|2.

Using the fact that for all j = 1, . . . , 2n + 1

(11) rank


d1
...
0j
...

d2n+1

 = 1

together with the observation that

(12) det


c1
...

0j + 2ϕ−1
2 xt

...
c2n

 = ϕ−1
2 (ϕ2

2 + 4a2t2)n−1AX`
jϕ2



STRONGLY SINGULAR INTEGRAL OPERATORS ON THE HEISENBERG GROUP 13

and some simple reductions we may conclude that

A4n+2
2n∑

j=1

det


a1
...
bj
...

a2n+1

 = 4nA2nϕ
−(4n+2)
2 |x|2

2n∑
j=1

X`
jϕ2 det


c1
...

0j + 2ϕ−1
2 xt

...
c2n


= 4nA2n−1ϕ

−(4n+1)
2 (ϕ2

2 + 4a2t2)n−1|x|2
2n∑

j=1

(AX`
jϕ2)2

= 4n+1A2n−1ϕ
−(4n+5)
2 (ϕ2

2 + 4a2t2)n|x|4.

To obtain the final identity above we used the fact that

(13) A2
2n∑

j=1

(X`
jϕ2)2 = 4ϕ−4

2 (ϕ2
2 + 4a2t2)|x|2.

Using fact (11) one more time we see that

A4n+2 det


a1
...

a2n

b2n+1

 = 4nA2n+2ϕ−4n
2 X`

2n+1ϕ2X
r
2n+1ϕ2 det(C) +

2n∑
j=1

det



c1
...
dj
...

c2n

b2n+1


It follows from (12) that for 1 ≤ j ≤ n we have

det



c1
...
dj
...

c2n

b2n+1


= 4nA2n+1ϕ

−(4n+1)
2 X`

2n+1ϕ2(tX`
jϕ2 − 2aϕ2xj+n) det


c1
...

0j + 2ϕ−1
2 xt

...
c2n


= 4nA2n+2ϕ−4n

2 (ϕ2
2 + 4a2t2)n−1X`

2n+1ϕ2(tX`
jϕ2 − 2aϕ2xj+n)X`

jϕ2

and similarly

det



c1
...

dj+n
...

c2n

b2n+1


= 4nA2n+2ϕ−4n

2 (ϕ2
2 + 4a2t2)n−1X`

2n+1ϕ2(tX`
j+nϕ2 + 2aϕ2xj)X`

j+nϕ2.



14 NORBERTO LAGHI NEIL LYALL

It then follows from the identity

A
n∑

j=1

{
xjX

`
j+nϕ2 − xj+n)X`

jϕ2

}
= −8a2ϕ−1

2 t|x|2

together with (13) that

2n∑
j=1

det



c1
...
dj
...

c2n

b2n+1


= 4n+1A2nϕ

−(4n+4)
2 (ϕ2

2 + 4a2t2)n−1X`
2n+1ϕ2

{
(ϕ2

2 + 4a2t2)− 2Aa2ϕ3
2

}
|x|2t.

Bringing this all together we see that

A4n+2
2n+1∑
j=1

det


a1
...
bj
...

a2n+1

 = 4n+1A2nϕ
−(4n+4)
2 (ϕ2

2 + 4a2t2)nt2 +♥

where

♥ = 4n+1A2n−1ϕ
−(4n+5)
2 (ϕ2

2 + 4a2t2)n−1|x|2
{
(ϕ2

2 + 4a2t2)(|x|2 + 2ϕ−1
2 t2)− 4Aa2ϕ2

2t
2
}

= 4n+1A2nϕ
−(4n+1)
2 (ϕ2

2 + 4a2t2)n−1|x|2.
In the last step we have used the identity

Aϕ2
2 = |x|2 + 2ϕ−1

2 t2.

We therefore have that

A4n+2 det(ϕ2A− β+2
2 B) = −22n+1A2n−1ϕ

−(2n+5)
2 (ϕ2

2 + 4a2t2)n−1f2(x, t)

where

f2(x, t) = 2Aϕ4
2|x|2 − (ϕ2

2 + 4a2t2)(|x|4 − 2Aϕ2t
2)

= Aϕ4
2|x|2 + 4ϕ2

2t
2(1− a2) + 16a2t4 + 4a2ϕ−2

2 t6.

6. Further comparisons

6.1. Nonisotropic R2n+1. When a = 0 (not a Heisenberg type group, but still a homoge-
neous group) we of course have X`

j = Xr
j = ∂/∂xj and it is then straightforward to verify

that in this case we have the following:

If ρ(x, t) = ρ1(x, t), then (in the notation of Section 5) we get that

det(ϕ1A− β+4
4 B) = −b (4ϕ1)2n|x|4n

{
2(β + 1)|x|4 + 3(β + 2)t2

}
and in particular the Hessian degenerates along the line (0, t).

While if ρ(x, t) = ρ2(x, t), then

A4n+2 det(ϕ2A− β+2
2 B) = −22n+1A2n−1ϕ−5

2

{
βAϕ3

2 +Aϕ2
2|x|2 + 4t2

}
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which is clearly non-degenerate. For a closely related result, see Shayya [8].

6.2. Polarized Heisenberg group. The polarized Heisenberg group Hn
a,pol is isomorphic

to the full Heisenberg group Hn
a and has the multiplication law

(x, t) · (y, s) = (x + y, s + t− 2a xtJpol y)

where again a is a nonzero real number, but now Jpol denotes the matrix on R2n,

Jpol =
(

0 In

0 0

)
.

In particular, if n = 1 and a = −1/2, then this is the m = 3 case of the groups of m×m
upper-triangular matrices with ones along the diagonal; see Stein [9].

When n = 1 the corresponding Lie algebra is generated by the left-invariant vector fields

X`
1 =

∂

∂x1
, X`

2 =
∂

∂x2
+ 2ax1

∂

∂t
, and X`

3 =
∂

∂t
,

with the right-invariant vector fields being given by

Xr
1 =

∂

∂x1
+ 2ax1

∂

∂t
, Xr

2 =
∂

∂x2
, and Xr

3 =
∂

∂t
.

Proposition 10. Let n = 1 and Φ(x, t) = ρ1(x, t)−β, then for all real a

det
(
X`

jX
r
kΦ(x, t)

)
= 0

along the line (0, t).

In actual fact, using again the notation of the previous section, we have that

det(ϕ1A− β+4
4 B) = −16

{
2(β + 1)|x|8 + 3(β + 2)|x|4t2 − 2(β + 2)aϕ1x1x2t

}
.

We leave the details to the reader.

Proposition 11. Let n = 1 and Φ(x, t) = ρ2(x, t)−β with β > 0, then for (x, t) 6= (0, 0)

det
(
X`

jX
r
kΦ(x, t)

)
6= 0

provided a2 ≤ 1.

Proof. A calculation similar to those above yields

A6 det(ϕ2A−β+2
2 B) = −8Aϕ−7

2

{
βAϕ2(ϕ2

2 − ax1x2t) + (2Aϕ3
2 − 2Aϕ2ax1x2t− (x2

1 + x2
2)

2)
}

.

Now it is easy to see that

2Aϕ3
2 − 2Aϕ2ax1x2t− (x2

1 + x2
2)

2 = 2ϕ2
2 + 2t2 − (ϕ2 − ϕ−1

2 t2)2 − 2Aϕ2ax1x2t

≥ ϕ2
2 − ϕ−2

2 t4 − 2Aϕ2ax1x2t

= Aϕ2(ϕ2(x2
1 + x2

2)− 2ax1x2t)

≥ Aϕ2(x2
1 + x2

2)(ϕ2 − |at|),

which is clearly nonnegative if a2 ≤ 1, since it follows from (8) that ϕ2 ≥ |t|. In the last line
above we used the easily verifiable inequality

(14) 2ax1x2t ≤ (x2
1 + x2

2)|at|.
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From this inequality it also follows that

ϕ2
2 − 2ax1x2t ≥ 2|x1x2|(ϕ2 − |at|)

and hence, if we again assume that a2 ≤ 1, we see that

ϕ2
2 − ax1x2t ≥ ϕ2

2/2. �
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