Exam 1 Material

Properties of Completeness, Cardinality of Sets, Basic Topology (Metric Spaces), and Numerical Sequences and Series

Examinable Material (References are Sections from Rudin)

1.1-1.23: Axioms of ℝ (we focused specifically on 1.7-1.11, 1.19-1.21)
* 1.24-1.35: Complex Numbers (non-examinable)
1.36-1.38: Euclidean Spaces (including the Cauchy-Schwarz inequality)

2.1-2.14: Cardinality (including proofs given in class that $\mathbb R$ is uncountable)

2.15-2.30: Metric Spaces

* 2.29-2.30 were not covered are are non-examinable

2.31-2.42: Compact Sets (Class notes differs from text)

* 2.33, 2.36, 2.39, 2.40 and 2.45-2.47 were not covered are are non-examinable

* 2.43-2.44: Perfect sets (non-examinable, for this Exam)

3.1-3.14: Numerical Sequences
3.15-3.20: Limit superior, limit inferior, and some special sequences
3.21-3.46: Numerical Series (including Dirichlet and Abel tests) - See class handout
* 3.38-3.40: Power Series (non-examinable)
* 3.47-3.55: Addition and Multiplication of Series and Rearrangements (non-examinable)

Exam 1 Practice Questions

- 1. (a) Give the definition of the infimum of a bounded set of real numbers.
 - (b) Let $\{x_n\}$ be a bounded sequence. Give the definition of $\liminf x_n$ and prove that it always exists in \mathbb{R} .
 - (c) Prove that if $\beta < \liminf x_n$, then there exists a $N \in \mathbb{N}$ such that $x_n > \beta$ for all $n \ge N$.
- 2. (a) Give a definition of what it means for a set to be countable (recall that a countable set must be infinite).
 - (b) Prove that the natural numbers can be written as a countable union of disjoint countable sets.
 - (c) Using the observation in (b) (or otherwise) to prove that a countable union of countable sets is always countable.
- 3. Give examples of the following. No proofs are required.
 - (a) a divergent series whose sequence of partial sums is bounded
 - (b) an infinite subset of \mathbb{R} which has no limit points,
 - (c) a proper subset of \mathbb{R} which has uncountably many limit points
 - (d) a bounded set of real numbers with countably many limit points
 - (e) an open cover of (1, 2] which does not admit a finite subcover
- 4. (a) State and prove the Bolzano-Weierstrass theorem.
 - (b) Prove that every bounded sequence in \mathbb{R}^k contains a convergent subsequence, using the fact that we know this to be true in the case k = 1.
- 5. Prove that every non-empty compact subset of \mathbb{R} has a largest member.