Exam 1

In Questions 1-4 below the real numbers \mathbb{R} are equipped with their usual Euclidean metric.

1. (a) Prove that if $\{x_n\}$ is a sequence of real numbers with the property that the set

$$\{n \in \mathbb{N} : x_n \in B_{\varepsilon}(x)\}\$$

is infinite for all $\varepsilon > 0$, then $\{x_n\}$ must contain a subsequence which converges to x.

(b) Let ∑_{n=1}[∞] a_n be a convergent series of real numbers and {b_n} be a monotone and bounded sequence of real numbers. Prove that ∑_{n=1}[∞] a_nb_n converges.
 Hint: First show that if s_n = a₁ + · · · + a_n for all n ≥ 1, then

$$\sum_{k=1}^{n} a_k b_k = s_n b_{n+1} + \sum_{k=1}^{n} s_k (b_k - b_{k+1}).$$

- 2. Let $\{x_n\}$ be a sequence with the property that $x_n > 0$ for all $n \in \mathbb{N}$.
 - (a) Give a definition of lim inf x_n and carefully argue why it is well-defined and either takes values in [0,∞) or equals ∞.
 Be sure to indicate under what circumstances lim inf x_n = ∞.
 - (b) i. Prove that if $\alpha := \liminf_{n \to \infty} \frac{x_{n+1}}{x_n}$, then $\liminf_{n \to \infty} x_n^{1/n} \ge \alpha$. ii. Give an example where one has strict inequality above, no proof is required.
- 3. (a) Prove that any collection of open intervals in \mathbb{R} with the property that no three contain a common element is at most countable.
 - (b) Let $A \subseteq \mathbb{R}$ be uncountable.
 - i. Prove that the isolated points of A form an at most countable set.
 - ii. Conclude that $A \cap A'$, the set of limit points of A contained in A, is uncountable and further prove that for any $\varepsilon > 0$, there in fact exists $x \in \mathbb{R}$ such that $A \cap A' \cap B_{\varepsilon}(x)$ is uncountable.
- 4. Let K be a non-empty sequentially compact subset of \mathbb{R} .
 - (a) Prove that K is both closed and bounded.
 - (b) Prove that $\sup K$ exists and is contained in K.
- 5. Let (X, d) be a metric space.
 - (a) Prove that if $G \subseteq X$ is an open set, then its complement G^c is a closed set.
 - (b) Let y, z be fixed points in X. Prove that the set

$$E = \{ x \in X : d(x, y) \ge d(x, z) \}$$

is closed.