Exam 3

Study Guide and Practice Questions

1. (a) Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies

$$\lim_{h \to 0} (f(x+h) - f(x-h)) = 0.$$

Does this imply that f is continuous at x?

(b) Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous at x and satisfies

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = 0.$$

Does this imply that f is differentiable at x?

2. Let $f: \mathbb{R} \to \mathbb{R}$ and $x_0 \in \mathbb{R}$.

- (a) Carefully state the ε - δ definition of $\lim_{x\to c} f(x) = L$.
- (b) Prove that $\lim_{x\to x_0} f(x) = L$ if and only if $\lim_{n\to\infty} f(x_n) = L$ for all sequences $\{x_n\}$ in $\mathbb{R}\setminus\{x_0\}$ with $\lim_{n\to\infty} x_n = x_0$.

3. Let

$$f_a(x) = \begin{cases} x^a & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

- (a) For which values of a is f_a continuous at 0?
- (b) For which values of a is f_a differentiable at 0? In this case is the derivative function continuous?
- (c) For which values of a is f_a twice-differentiable?

4. Let

$$g_a(x) = \begin{cases} x^a \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Find particular non-negative (and potentially non-integer) values of a for which:

- (a) g_a is differentiable on \mathbb{R} , but g'_a is unbounded on [0,1].
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at 0.
- (c) g_a and g'_a are differentiable on \mathbb{R} , but g''_a is not continuous at 0.
- 5. (a) State and prove Rolle's Theorem.
 - (b) Carefully state the Mean Value Theorem and use it to prove the following:
 - i. If $f: \mathbb{R} \to \mathbb{R}$ is differentiable with f'(x) = 0 for all $x \in \mathbb{R}$, then f must be constant on \mathbb{R} .
 - ii. If $f: \mathbb{R} \to \mathbb{R}$ is differentiable with $f'(x) \geq 0$ for all $x \in (0, \infty)$, then f is increasing on $(0, \infty)$.
 - (c) Suppose $f: \mathbb{R} \to \mathbb{R}$ has the property that

$$|f(x) - f(y)| \le |x - y|^2$$

for all $x, y \in \mathbb{R}$. Prove that f is constant on \mathbb{R} .

(d) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous on $[0, \infty)$, differentiable on $(0, \infty)$, f(0) = 0, and f' is increasing on $(0, \infty)$. Prove that the function $g: (0, \infty) \to \mathbb{R}$ defined by

$$g(x) = \frac{f(x)}{x}$$

is increasing.

- 6. (a) State the Generalized Mean Value Theorem. Do you remember it's proof?
 - (b) Let f and g be continuous functions on some interval I containing c and differentiable on the same interval except possibly at c itself. Prove that if $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ and $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

- 7. (a) Find the value of $f^{(17)}(0)$ if $f(x) = \frac{4x}{2-x}$
 - (b) Give an example of an infinitely differentiable function that is <u>not</u> equal to its Taylor series.
 - (c) i. Prove that if $h:[0,\infty)\to\mathbb{R}$ is twice differentiable on [0,x], then

$$h(x) = h(0) + h'(0)x + \frac{h''(c)}{2}x^2$$

for some $c \in (0,x)$. Hint: Apply the "Generalized MVT" to h(x) - h(0) - h'(0)x and x^2 .

- ii. How well does 1 + x/2 approximate $\sqrt{1+x}$ on [0, 1/10]?
- 8. Prove that $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=1}^{\infty} n a_n x^{n-1}$ have the same radius of convergence.
- 9. (a) Carefully state the definition of uniform convergence of a sequence of functions $\{f_n\}$ to a function f on a set A.
 - (b) Prove that $f_n(x) = \frac{nx + \sin(nx^2)}{n}$ converges uniformly to x on \mathbb{R} .
 - (c) Prove that $F_n(x) = x^n(1-x)$ converges uniformly to 0 on [0,1].
- 10. (a) Carefully state the Weiertrass M-Test.
 - (b) Show that

$$f(x) = \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n}$$

is continuous on all of \mathbb{R} .

(c) Let

$$g(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{1 + x^{2n}}.$$

Find the values of x where the series defining g converges and show that we get a continuous function on this set.

11. ** Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b].

Prove that if f'(a) < 0 < f'(b), then there exists $c \in (a, b)$ such that f'(c) = 0.