Math 3100 Assignment 4 Subsequences and Completeness

Due at 12:00 pm on Friday the 9th of February 2018

- 1. Suppose $\{a_n\}$ is a sequence of real numbers and $b_n = \frac{a_1 + \dots + a_n}{n}$. Prove that if a_n converges to 0, then b_n converges to 0 as well. Is the converse true?
- 2. (a) Prove that if {a_n} is increasing, then every subsequence of {a_n} is also increasing.
 (b) Let {x_n} be a sequence of real numbers. Prove that {x_n} contains a subsequence converging to x if and only if for all ε > 0 there exist infinitely many terms from {x_n} that satisfy |x_n - x| < ε.
- 3. Let $A, B \subseteq \mathbb{R}$ which are non-empty, bounded above.
 - (a) Show that if $A \subseteq B$, then $\inf(B) \leq \inf(A) \leq \sup(A) \leq \sup(B)$.
 - (b) Show that if $\sup A < \sup B$, then there must exist $b \in B$ that is an upper bound for A.
 - (c) Prove that if $\sup(A) \notin A$, then there exists a sequence $\{a_n\}$ of points in A such that

$$\lim_{n \to \infty} a_n = \sup(A).$$

4. (a) Let $a_1 = \sqrt{2}$, and define

$$a_{n+1} = \sqrt{2 + a_n}$$

for all $n \ge 1$. Prove that $\lim_{n \to \infty} a_n$ exists and equals 2.

(b) Let $a_1 = \sqrt{2}$, and define

$$a_{n+1} = \sqrt{2a_n}$$

for all $n \ge 1$. Prove that $\lim_{n \to \infty} a_n$ exists and find its limit. Hint: For both parts try to apply the Monotone Convergence Theorem

- 5. Let $\{x_n\}$ be a bounded sequence of real numbers.
 - (a) Prove that the "supremum of the tails of $\{x_n\}$ " defined by $y_n := \sup\{x_n, x_{n+1}, \dots\}$ is a decreasing sequence that is bounded below. Conclude, using the Monotone Convergence Theorem, that $\{y_n\}$ is convergent.

The value of $\lim_{n \to \infty} y_n$ is called the *limit superior* of $\{x_n\}$ is usually denoted by $\limsup_{n \to \infty} x_n$.

- (b) The *limit inferior* of $\{x_n\}$, denoted by $\liminf_{n \to \infty} x_n$, is similarly defined to be $\lim_{n \to \infty} z_n$ where $z_n := \inf\{x_n, x_{n+1}, \dots\}$ is the corresponding "infimum of the tails of $\{x_n\}$ ". Briefly explain why the *limit inferior* always exists for any bounded sequence.
- (c) Prove that $\liminf_{n \to \infty} x_n \leq \limsup_{n \to \infty} x_n$ for every bounded sequence $\{x_n\}$ and give an example for which the inequality is strict.
- (d) Prove that $\lim_{n \to \infty} x_n$ exists $\underline{\text{if and only if}} \quad \liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n$. In this case all three share the same value.
- (e) * Let $x := \limsup_{n \to \infty} x_n$. Prove that there exists a subsequence of $\{x_n\}$ that converges x. *Hint:* Try to show that for all $\varepsilon > 0$ there are infinitely many terms from $\{x_n\}$ that satisfy $x - \varepsilon < x_n < x + \varepsilon$ and apply Question 2(b).