Exam 1 – Study Guide and Practice Questions

1. Let $\{x_n\}$ denote a sequence of reals and A denote a subset of \mathbb{R} .

Carefully state the definition of the following:

- (a) A is bounded
- (b) $\sup(A)$ and $\inf(A)$
- (c) $\{x_n\}$ is bounded
- (d) $\{x_n\}$ converges to some real number x
- (e) $\{x_n\}$ diverges to infinity
- (f) a subsequence of $\{x_n\}$
- (g) $\{x_n\}$ is Cauchy
- 2. Use the definition of convergence to prove the following:

(a)
$$\lim_{n \to \infty} \frac{3n+5}{n+3} = 3$$
 (b) $\lim_{n \to \infty} \frac{2n+1}{2-n} = -2$

- 3. (a) Let $\{x_n\}$ be defined recursively by $x_1 = 2$ and $x_{n+1} = \frac{1+x_n}{2}$ for each $n \in \mathbb{N}$. Show that $\{x_n\}$ converges and find its limit.
 - (b) Show that if $x_n = \frac{1}{1+n} + \frac{1}{2+n} + \dots + \frac{1}{n+n}$ for each $n \in \mathbb{N}$, then $\{x_n\}$ converges.
- 4. Assume that $\lim_{n \to \infty} a_n = \infty$, that is the sequence $\{a_n\}$ diverges to infinity, and that $\lim_{n \to \infty} b_n = L$ with L > 0. Prove the following two statements;
 - (a) There exists some $N \in \mathbb{N}$ such that if n > N, then $b_n > L/2$.
 - (b) The sequence $\{a_n b_n\}$ diverges to infinity.
- 5. Prove that if $|a_n| \leq b_n$ and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = 0$.
- 6. Let A be non-empty bounded subset of \mathbb{R} . Prove that $\inf(A) = -\sup(-A)$, where $-A = \{-a : a \in A\}$.
- 7. Let $\{x_n\}$ denote a bounded sequence of real numbers.
 - (a) Give the definition of $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$
 - (b) Prove that if $\limsup_{n \to \infty} |x_n| = 0$, then $\lim_{n \to \infty} x_n$ exists and equals 0.
 - (c) Prove that if $\{x_n\}$ diverges then it has at least two subsequences that converge to different limits.
- 8. Carefully state the following:
 - (a) The Axiom of Completeness (AoC)
 - (b) The Monotone Convergence Theorem (MCT)
 - (c) The Bolzano-Weierstrass Theorem (BW)
 - (d) The Cauchy Criterion (CC)
- 9. Prove the following implications:
 - (a) $\{x_n\}$ convergent $\implies \{x_n\}$ is bounded
 - (b) $\{x_n\}$ convergent $\implies \{x_n\}$ is Cauchy
 - (c) $AoC \implies MCT$
 - (d) $BW \Longrightarrow CC$ (you should also show that Cauchy \Longrightarrow Bounded)