Exam 1

No calculators. Show your work. Give full explanations. Good luck!

1. (8 points) Give counterexamples to the following **false** statements, no proofs are required.

Note that in each instance the converse statement is in fact true.

- (a) If $\{x_n\}$ is bounded, then $\{x_n\}$ is convergent.
- (b) If $\{x_n\}$ is convergent, then $\{x_n\}$ is both bounded and monotone.
- (c) If $\{x_n\}$ contains a convergent subsequence, then $\{x_n\}$ is bounded.
- (d) If A contains its supremum, then A has finitely many elements.
- 2. (7 points) Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers. Prove that if $\lim_{n \to \infty} x_n = x$ and $|x_n y_n| \le \frac{1}{n}$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} y_n = x$.
- 3. (8 points)
 - (a) Let $\{x_n\}$ be a sequence of real numbers. Carefully state the definition of $\lim_{n\to\infty} x_n = x$.
 - (b) Use your definition to prove that $\lim_{n \to \infty} \frac{3n+4}{n+1} = 3$.
- 4. (7 points)
 - (a) Carefully state the definition of a sequence of real numbers $\{x_n\}$ being a Cauchy sequence.
 - (b) Give an example of a Cauchy sequence and prove that Cauchy sequences are always bounded.
- 5. (10 points)
 - (a) Carefully state the Axiom of Completeness (the least upper bound axiom).
 - (b) Let $\{x_n\}$ be a bounded increasing sequence of real numbers. Use the Axiom of Completeness to prove that $\lim_{n\to\infty} x_n$ exists and equals $\sup\{x_n : n \in \mathbb{N}\}.$
- 6. (10 points) Let $\{x_n\}$ be a bounded sequence of real numbers.
 - (a) Carefully state the definition of $\limsup_{n \to \infty} x_n$ and justify why it always exists for such sequences.
 - (b) Prove that if $|x_n| \le 10$ for all $n \in \mathbb{N}$, then $\limsup_{n \to \infty} x_n \le 10$.