Exam 1

No calculators. Show your work. Give full explanations. Good luck!

1. (25 points)

- (a) Let $\{x_n\}$ be a sequence of real numbers. Carefully state the definition of the following:
 - i. $\lim_{n \to \infty} x_n = x$
 - ii. $\lim_{n\to\infty} x_n = \infty$.
- (b) Use the definition given in (i) to prove that $\lim_{n\to\infty} \frac{2n+1}{n-3} = 2$.
- (c) Use the definitions given above to prove that if $\lim_{n\to\infty} x_n = 2$, then
 - i. $\{x_n\}$ is bounded
 - ii. $\lim_{n\to\infty}\frac{1}{x_n}=\frac{1}{2}$
 - iii. $\lim_{n\to\infty} (x_n + y_n) = \infty$ whenever $\lim_{n\to\infty} y_n = \infty$

2. (12 points)

- (a) Carefully state the Monotone Convergence Theorem.
- (b) Let $x_1 = 1$ and $x_{n+1} = \left(\frac{n}{n+1}\right) x_n^2$ for all $n \in \mathbb{N}$.
 - i. Find x_2 , x_3 , and x_4 .
 - ii. Show that $\{x_n\}$ converges and find the value of its limit.
- 3. (13 points) Let $\{x_n\}$ be a bounded sequence of real numbers.
 - (a) Carefully state the definition of $\limsup_{n\to\infty} x_n$ and justify why it always exists for such sequences.
 - (b) Prove that if $\alpha = \limsup_{n \to \infty} x_n$ and $\beta > \alpha$, then there exists an N such that $x_n < \beta$ whenever n > N.
 - (c) Let $S = \{x : \text{there exists a subsequence of } \{x_n\} \text{ that converges to } x\}.$
 - i. Why do we know that S is non-empty?
 - ii. Prove that if $x \in S$, then $x \leq \limsup_{n \to \infty} x_n$.

1