Final Exam - Practice Questions

- 1. Evaluate the given line integral.
 - (a) $\int_C yz^2 ds$, where *C* is the line segment from (-1, 1, 3) to (0, 3, 5)(b) $\int_C x^3 z \, ds$, where $C: x = 2 \sin t, y = t, z = 2 \cos t, 0 \le t \le \pi/2$ (c) $\int_C x^3 y \, dx - x \, dy$, where *C* is the circle $x^2 + y^2 = 1$ with counterclockwise orientation (d) $\int_C x \sin y \, dx + xyz \, dz$, where *C* is given by $\mathbf{r}(t) = t \, \mathbf{i} + t^2 \, \mathbf{j} + t^3 \, \mathbf{k}, 0 \le t \le 1$ (e) $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = x^2 y \, \mathbf{i} + e^y \, \mathbf{j}$ and *C* is given by $\mathbf{r}(t) = t^2 \, \mathbf{i} - t^3 \, \mathbf{j}, 0 \le t \le 1$ (f) $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \langle x + y, z, x^2 y \rangle$ and *C* is given by $\mathbf{r}(t) = \langle 2t, t^2, t^4 \rangle, 0 \le t \le 1$
- 2. Find the work done by the force field $\mathbf{F}(x, y, z) = z \mathbf{i} + x \mathbf{j} + y \mathbf{k}$ in moving a particle from the point (3, 0, 0) to the point $(0, \pi/2, 3)$
 - (a) along a straight line
 - (b) along the helix $x = 3\cos t$, y = t, $z = 3\sin t$
- 3. Show that **F** is a conservative vector field and find a potential function f such that $\mathbf{F} = \nabla f$.
 - (a) $\mathbf{F}(x, y) = \sin y \mathbf{i} + (x \cos y + \sin y) \mathbf{j}$
 - (b) $\mathbf{F}(x, y, z) = (2xy^3 + z^2)\mathbf{i} + (3x^2y^2 + 2yz)\mathbf{j} + (y^2 + 2xz)\mathbf{k}$
- 4. Show that **F** is a conservative vector field and use this fact to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve.
 - (a) $\mathbf{F}(x, y) = (2x + y^2 + 3x^2y)\mathbf{i} + (2xy + x^3 + 3^2)\mathbf{j}$, where C is the arc of the curve $y = x \sin x$ from (0,0) to $(\pi, 0)$
 - (b) $\mathbf{F}(x, y, z) = yz(2x + y)\mathbf{i} + xz(x + 2y)\mathbf{j} + xy(x + y)\mathbf{k}$, where C is given by $\mathbf{r}(t) = (1 + t)\mathbf{i} + (1 + 2t^2)\mathbf{j} + (1 + 3t^3)\mathbf{k}, 0 \le t \le 1$
- 5. Verify that Green's Theorem is true for the line integral

$$\int_C xy \, dx + x^2 \, dy$$

where C is the triangle with vertices (0,0), (1,0), and (1,2).

6. Use Green's Theorem to evaluate

$$\int_{C} (1 + \tan x) \, dx + (x^2 + e^y) \, dy$$

where C is the positively oriented boundary of the region enclosed by the curves $y = \sqrt{x}$, x = 1, and y = 0.

- 7. Find the counterclockwise circulation and outward flux of the field $\mathbf{F}(x, y) = (-\sin x)\mathbf{i} + x\cos y\mathbf{j}$ around and over the square cut from the first quadrant by the lines $x = \pi/2$ and $y = \pi/2$.
- 8. Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y) = x(x+y)\mathbf{i} + xy^2\mathbf{j}$ in moving a particle from the origin along the *x*-axis to (1,0), then along the line segment to (0,1), and then back to the origin along the *y*-axis

- 9. Use Green's Theorem to find the area of the regions bounded by the curves with the following vector equation.
 - (a) $\mathbf{r}(t) = \cos^3 t \, \mathbf{i} + \sin^3 t \, \mathbf{j}, \, 0 \le t \le 2\pi$
 - (b) $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin^3 t \, \mathbf{j}, \, 0 \le t \le 2\pi$
- 10. Evaluate

$$\int_C y^2 \, dx + 3xy \, dy$$

where C is the positively oriented boundary of the semi-annular region R in the upper half-plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

- 11. Find the area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices (0,0), (1,0), (1,2).
- 12. Evaluate the given surface integral.
 - (a) $\iint_S z \, d\sigma$, where S is the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 4
 - (b) $\iint_{S} (x^2 z + y^2 z) d\sigma$, where S is the part of the plane z = 4 + x + y that lies inside the cylinder $x^2 + y^2 = 4$
 - (c) $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$, where $\mathbf{F}(x, y, z) = xz \, \mathbf{i} 2y \, \mathbf{j} + 3x \, \mathbf{k}$ and S is the sphere $x^2 + y^2 + z^2 = 4$ with outward orientation
- 13. Verify Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} + x \mathbf{k}$, where S is the part of the plane x + y + z = 1 that lies in the first octant, orientated upwards.
- 14. Use Stokes' Theorem to evaluate

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

where $\mathbf{F}(x, y, z) = x^2 y z \mathbf{i} + y z^2 \mathbf{j} + z^3 e^{xy} \mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 5$ that lies above the plane z = 1 and is oriented upward.

15. Use Stokes' Theorem to evaluate

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where $\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$ and C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented counterclockwise as viewed from above.

- 16. Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, where D is the unit ball $x^2 + y^2 + z^2 \le 1$.
- 17. Use the Divergence Theorem to calculate the surface integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

where $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 2.

18. Compute the outward flux of

$$\mathbf{F}(x, y, z) = x^2 \,\mathbf{i} + y^2 \,\mathbf{j} + z^2 \,\mathbf{k}$$

through

- (a) the cube cut from the first octant by the planes x = 1, y = 1, and z = 1
- (b) the cube bounded by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$
- 19. Find curl **F** and div **F** if $\mathbf{F}(x, y, z) = x^2 z \mathbf{i} + 2x \sin y \mathbf{j} + 2z \cos y \mathbf{k}$.
- 20. Show that there is no vector field **G** such that curl $\mathbf{G} = 2x \mathbf{i} + 3yz \mathbf{j} + xz^2 \mathbf{k}$.