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Arithmetical graphs

Dino J. Lorenzini
Department of Mathematics, University of California at Berkeley, Berkeley, CA94720, USA

Introduction

In this paper, we discuss some properties of intersection matrices, as they arise in
the study of degenerating curves in algebraic geometry. In particular, we provide
some information on the Smith normal form (row and column reduction) of such
integer positive definite forms of rank (n — 1).

Before defining the notion of arithmetical graph, we state some notations used
throughout this work.

G a connected non oriented graph.

n number of vertices of G.

C; a vertex of G.

¢;; the number of edges linking C; to C;.
m number of edges of G.

p first Betti number of G:f=m—(n—1).

d; number of edges at the vertex C; = degree of C;.
Adjacency matrix The matrix A =(a;;) where a;; =0 Vi and a;;=c;; for i+ j.
d-matrix D A diagonal matrix (¢y,...,C,,) With c;€Z; ;.

We denote by M the matrix D — A.
Multiplicity vector R a vector ‘R =(ry,...,r,) with r,eZ,, and
ged(ry,...,r,)=1 Welet 'J=(1,1,...,1)

Definition. An arithmetical graph consists of the following data: a connected graph
G, a d-matrix D and a multiplicity vector R such that MR =0, where M:=D — A.

We may also say that (M,R) defines an arithmetical structure on G. The
arithmetical graph (G, M, R) is called “minimal” if ¢;; > 1 for alli = 1,...,n. It is said
to be “reduced” if R =J and “simple” if sk (G) = G (see Sect. 3).

Every connected graph has a natural structure of reduced arithmetical graph:
take D = diag(d,,...,d,) where d, is the degree of the vertex C; in G.

Let (G,M,R) be an arithmetical graph. The matrices M arise in algebraic
geometry as intersection matrices of degenerating curves. Let diag(e,,...,e,—; 0),
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e,ley|---|e,—, be a matrix row and column euivalent (over Z) to the matrix M.
Raynaud has proven that the group @:=Z/e,Z x --- x Z/e,_,Z is the group of
components of the Néron model of the jacobian associated to the generic curve.
We refer the reader to [8] for the geometric motivations in studying arithmetical
graphs. We discuss in this paper the properties of such a matrix M and its associated
group @ and we hope that by presenting here our results without any references
to geometry, some non algebraic geometers will take interest in this subject and
bring new techniques to the study of these matrices.

With the above notations, 2 —2 =) (d;— 2). For any arithmetical graph, we
i=1

define its linear rank g by 2go —2 = ). r(d; — 2). Since it might happen that r; > 1
i=1

when d; = 1, it is not clear from the definitions that g, = . We prove this fact in
4.7. Both integers g, and g, — B can be interpreted geometrically [8]. The reader
will find tables for arithmetical graphs of linear rank one and two in [9] and [11].

Let [°%®@ denote the exact power of the prime [ dividing the integer a.
Our guess relative to the structure of @ (for simple graphs) is the following: if
B<n—1,then y:=e;" ----e, | ,satisfies Y. ord,(¥)(I—1)<2g,—2B. This implies

Iprime

in particular that e, ---e,_, ,<2%°~?# This can also be expressed by saying that
@ splits as a product Y'x C; x -+ x Cy, where C,,..., C, are cyclic groups and
Y=2Zfe,Z x --- x Z[e,_, _4Z is bounded by an explicit constant depending on
go — B only.

We prove this fact for a wide class of arithmetical graphs (6.2), including the
cases where:
e Gisasimple tree (3.5); |@|=[]r¥"?and Y ord,(|®i)(I— 1) <2g,—2p. This

lprime
theorem complements a result of Oort and Lenstra [6], where a bound for
2 ord, () ®|)(I — 1) is discussed for the first time.

lprime

e R=1J (6.2); in this case |®| equals x, the number of spanning trees of G.
e For any arithmetical graph, we show that v:=[][r#~2 is an integer (4.6) and
satisfies the bound Y ord,(v)(I — 1) £ 2g, — 2B (4.7). Moreover, we show that

lprime
| D < vk (3.5).

There exists only finitely many structures of arithmetical graph on any given
graph G (1.6). For each such structure, we defined its volume v and its linear
rank g,. We do not know if these integers are related in any way to the standard
numerical invariants associated to a graph.

1. The Group @

Proposition 1.1. Let (G, M, R) be an arithmetical graph. The matrix M satisfies the
" following properties:

e It is symmetric and represents a positive semidefinite quadratic form of
rankn — 1. Its kernel is generated over Q by R.
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o The adjoint of the matrix M is given by ad (M) = & R('R) where ¢ is a positive
integer.

Proof. In order to prove the first statement, it is sufficient to show that the
determinant of every principal minor of M is strictly positive. We shall prove this
fact only for M™, the minor obtained by deleting the last row and the last column
from M. The proof for a minor of any dimension is similar.

Let N be the matrix obtained from M™ by multiplying its i'® column by r;. Let
N, denote the i'"® column of N. Then ) N, is a vector with positive coefficients, and
because G is connected, one of these coefficients is strictly positive. Suppose that
det(N)=0. Then up to reordering, we may assume that there exists a set
(a,=1,a,,...,a,_,) with ;<1 for all i and such that ) a;N;=0. Since G is
connected, this last condition on the N ;s contradicts the previous one, and hence
det (M™) £ 0. It is not hard to find a path in GL,(R) between M™ and a matrix with
positive determinant, so that det(M™) > 0.

By definition of the adjoint, M-ad(M)=det M-I, =0. Since the kernel of
M is generated by R, ad (M) = R-'S where 'S is a vector with integer coefficients.
Ad (M)is a symmetric matrix and hence R-'S=S-'R. In particular, (R-RyS=(R-S)'R.
This implies that S = ¢R for some (nonzero) rational number ¢. Since R and S
have both integer coefficients and ged (r,,...,r,) =1, is also an integer. ¢ is a
positive integer because the principal minors of M have positive determinants.

Remark 1.2. The matrices that we call intersection matrices in this work, i.e. the
matrices M of arithmetical graphs (G, M,R), are called M-matrices by some
authors: see for instance [3, chapter 6], where many equivalent properties of
such matrices M are listed.

Corollary 1.3. We denote by M'i the (n—1xn—1) minor obtained from M by
removing the i* line and the j* column. Then ¢=det(MY)-(r,r;)”" for all
i, je{l,...,n}. In particular, ¢ equals the gcd of the determinants of all(n — 1 x n— 1)
minors of M.

Keeping the terminology and notations used in algebraic geometry, we define
the group of components of the arithmetical graph (G, M, R) to be the group
@ =Ker (‘R)/Im (M), where M:Z"—Z" and '‘R:Z2" > Z.

Theorem 1.4. Let (G, M, R) be an arithmetical graph and diag(e,...,e,-,0) be an
integer matrix row and column equivalent to M over Z. Then ®=Z/e,Z x -+ X Zle, Z
and ¢(M) equals the order ¢ of the group .

Proof. There exists two matrices 4, B in GL(n, Z) such that:
AMB = diag(e,,...,€,-1,0) ¢€Z VYi=1,...,n—1.
It is easy to check that Ker('R'B~!)/Im('BM'A) = Ker (‘R)/Im(M). Since

ot
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and because Ker M is generated by R, the last column of B is a multiple of R. In
fact, since B is a integer matrix and gecd (ry,...,7,) =1, the last column of B is up
to a sign equal to R. Since B~ *'B=1d, B"!'R = + E, where 'E,=(0,...,0,1). It
follows that Ker (‘'R'B~ 1) has the first (n — 1) standard vectors as an obvious basis
and hence

Ox7/e;Zx - xZle,_,Z and |D|=|e; --e,_,|

To show that ¢ = ¢, we note (see [5, p.179]) that if M is equivalent to M’, the
ged A;(M) of the determinants of all (i x i) minors of M equals, up to a sign, the
gced 4,(M’) of the determinants of all (i x i) minors of M'. It is clear then that
¢ =A,_,(AMB) and by 1.3, § = 4,_,(M).

The following “Theorem of the Elementary Divisors” gives a computable way
to determine the structure of the group @. For its proof, we refer the reader to the
book of Jacobson [5, p.179].

Theorem 1.5. Let M be a (n x n) matrix with integer coefficients. We let A; denote
the gcd of the determinants of all (i x i) minors in M. Then M is equivalent over Z
to a diagonal matrix diag(f,,..., f,,0,...,0) where r is the (determinantal) rank of
M and where, up to a sign, fy, =4, f,=4,/4,,....f,=A4A,/4,_,.

Let h = h(M) be the minimal integer such that A4,., % 1 and h = rank (M) — h. If
diag(e,,...,e,,0,...,0) is any diagonal matrix equivalent to M over Z, then ¢; =1
for at most h = h(M) distinct i’s. In particular, when M is an intersection matrix,
@ can be written as a product of & cyclic groups and & is minimal for this property.

Lemma 1.6. There exists only finitely many structures of arithmetical graph on any
given graph.

Proof. Since all principal minors of M have positive determinants, intersection
matrices can be characterized by the following property: M + X is non singular
for all matrices X =diag(x,,...,x,) with x;,>0 for all i=1,...,n and X0
(see [3, Chap. 6]). Suppose that there exists an infinite sequence of pairwise distinct
arithmetical structures (M, = D, — 4, R,) on a given graph G. As was pointed out
to the author by H. Lenstra, we can then extract from the sequence (D,);>-; an
infinite subsequence (D;);Z ; with the following properties: let D; = diag(c;y, .. .,Cjs);
each “coordinates sequence” (c;)j, is either a strictly increasing sequence of
positive integers or a constant sequence. This contradicts the fact that the matrices
M s are singular.

Remark 1.7. Let (G,M,R) be an arithmetical graph such that the diagonal
coefficients of the matrix M are all equal to 2. The graphs G having such a structure
arise in connection to Lie algebras or to elliptic curves and have been classified.
Such a structure on G is minimal and is in fact the only one having this property:

_as quoted in the above lemma, any matrix of the form M + X with X positive is
non singular.

1.8. Let (G, M, R) be an arithmetical graph and ‘Q = (q,,...,¢,) be an integer vector
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n
such that x = Z q;r; £0. We consider the matrices
i=1

M g — M - 0!
no=(M120 0) s (222 9)

. . . MO
It is very easy to check that both matrices are equivalent to ( 0 1). We note that

(‘R x)My=(0--0)=(—="R x)My,.

The matrix My, is symmetric. When it defines an arithmetical graph, we may
call this new graph the blow-up of G with respect to Q in analogy to the geometrical
situation. In particular, the blow-up has the same group of components as the
graph G. The fact that M, defines an arithmetical graph depends only on the
matrix 4, not on the structure (D, R). Using the same kind of arguments as in 1.1,
it is easy to check that

1) ad(Mg)= + ¢(M)(f)(‘R x)

2) ad(M,,) = + ¢(M>(f>(’R %),

In particular, we have obtained the following proposition, which generalizes a
well-known theorem of Temperley (see [4, p.35]).

Proposition 1.9. Let (G, M, G) be an arithmetical graphand Q = (q1,...,q,) an integer
vector such that x = Z 1:0;%0. Then ¢ =x"2|det(M —Q'Q)| =x"?*|det(M + Q' Q)|

Example 1.10. Every multiplicity vector R defines an arithmetical graph (G(R),
M(R), R) where M(R) =rl, —(R-'R) and r =12 + --- + r2. The group @ associated
to this arithmetical graph is isomorphic to (Z/rZ)"~ 2. Note that G(J) is the complete
graph on n vertices and its group @ is isomorphic to (Z/nZ)" 2.

Proof. Using the previous proposition, we easily check that ¢ = r"~ 2 To determine
the group structure, we compute the elementary divisors (see 1.5) of M(R). It is
easy to check that A, =1 because ged(ry,...,r,) = 1. The reader may also check
that all determinants of (2 x 2) minors are either 0 or divisible by r, so that
r|f, =A4,/A,. Since f,| f5] | fo—1 and the product of the f;s equals r"~ 2, we must
have f,=--=f,_,=r.

Remark/Definition 1.11. Let (G,M,R) be an arithmetical graph. The associated
reduced structure (G, M,J) of an arithmetical graph (G, M, R) is the arithmetical
graph correspondmg to the matrix M =RMR, where R= diag(ry,...,")-
We claim that ¢(G)=(r, ,,)2¢>(G) By corollary 1.3, we know that
$(M) =det(M*')r; 2 and that ¢(M)=det(M''). Since R is a diagonal matrix,
det (M!!)=(ry---r,)det(M*)(r,---r,) and hence our claim is true.

Proposition 1.12. The following exact sequences of abelian groups relate the structure
of @ to the structure of ®.
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0-[]z/rz—E- ®-0
0-E—d-[]Z/rz-0

where E = Ker (‘R)/Im (MR).

Proof. We first note that Ker (‘R)/Im (MR) = R Ker (R)/R(Im (MR)) because R is
injective. Then the inclusions

Im (MR) < Im (M) = Ker (R)
R(Im(MR)) c R(Ker'R) = Ker (\J)

and the following lemma lead to the desired exact sequences.
Lemma 1.13. Let (G, M,R) be~ an arithmetical graph. Then Im(M)/Im (Mﬁ) ~
ZirZ x --- x Z/r,Z =~ Ker("J)/RKer ('R).

Proof. Let C=2Z/rZ x --- x Z/r,Z. The first isomorphism is proven by con-
sidering the following diagram of groups with exact rows and columns.

0 0. 0
! ! !

0 — Ker (M)n R(Z") — Ker (M) —> K —0
| ! !

00— R@" _— " — C —0
Im Im l

0— MR@) — M(@") —InM)/Im(MR)—0
! l !
0 0 0

Ker (M) is generated by R. Since R(Z") contains R(J)=R, Ker(M)< R(Z") and
K =0. In order to prove the second isomorphism, we consider the following

diagram:

0 0 0

'l ! !
0—  Ker(R) — 2" -257—0

i) IR Il
0—  Ker(J) —2"-97—0

! ! l
0— Ker(J)RKer((R)— C —0

! ]

0 0
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2. The case of a tree

We say that a vertex C,, of a graph G is a terminal vertex if it has degree equal to
one. A node of G is a vertex C; of degree d; = 3. A terminal chain at C, is a connected
component of G — C; which contains a terminal vertex but no nodes.

For any graph G, we define the skeleton of G to be the graph sk (G) which has
the same set of vertices as G but where C; is linked by exactly one edge to C; iff
c;;>0. When c;; # 0, we denote by (i, j) the unique edge in sk(G) linking C; and
C;. When G =sk(G), we say that G is a simple graph.

Given a graph G, let GV be the graph obtained from G by removing all vertices
(and all their adjacent edges) of the terminal branches of sk(G). We write
GO =(GY" )P, The sequence G2GV2...2GY... is stationary for i large
enough. We let

di(G)= () G?
i=1
Sk (di(G)) = di(sk (G)) is the maximal subgraph of sk (G) that does not have any
terminal chains. Each one of its vertices has degree bigger or equal to 2. When G
is a tree, di(G) is the trivial graph with one vertex and no edges. We set the group
of components of the trivial graph to be the trivial group.

Theorem 2.1. Let (G, M,J) be a reduced arithmetical graph. Then
oGz [l Z/eyZ x ®(di(G))
C;0rC;¢di(G)
Proof. We shall perform rows and column operations and abbreviate “add
x; times the i column and x; times the j® column to the k® column” by
“x; Col; + x; Col; + Col,”, and similarely for the rows. Let TC be a terminal chain
of sk(G) and G’ be the graph obtained from G by removing all the vertices
Ci,...,C,-; of TC. We denote by C, the node by which TC is attached to G'.

q—1
We claim that ®(G) = [] Z/c,;+,Z x ®(G’). The matrix M has the following form:
i=1

C11 —Cy2
—Ci2 €32
Ci-14-1 —Cg-14

. cq—l,ll

N

We note that M is not quite the direct sum of two blocks. Perform “Col, + -+ +Col,”
and “Row, + -+ Row,” to get a new matrix which is the direct sum of
two blocks; the lower one is the matrix M’ of the graph G'. In order to get
the other block in the desired diagonal form, it is sufficient to do “Row; + Row,”,
“Row, +Rowy”,...,“Row,_, +Row,_” and “Col, +Col,”",...,“Col,_,+Col,_,".

Corollary 2.2. Let (G,M,J) be a reduced arithmetical graph such that sk(G) is a
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tree. Then
o= [ Z/yz

cj#0.i<j

Corollary 2.3. Let (G, M, R) be an arithmetical graph. Suppose that sk (G) is a tree
and let d, be the degree of C, in sk(G). Then

= 1ola)

and @ is killed by L, where L =lcm(c;;r;r;, ¢;; % 0).

Proof. To show that ¢ = ( IT ¢ )(H rh )(r1 r,)” % apply the previous

j *0,i<j
corollary to the reduced structure of G and then use 1.11. We shall give a different

proof of this fact in 3.5. Sk(G)is also a tree and we can apply 2.2 to find the group
structure of @. It is clear that L kills @. But then, by 1.12, L also kills &.

Example 2.4. Following the notations introduced by Kodaira for the reductions
of elliptic curves [11], we denote the graph below by I¥, where v = 1 is the number
of vertices of multiplicity 2 in the graph minus one.

122 221
1 1

When v is even, ®([¥) = Z/27 x Z/2Z and when v is odd, &(I*) = Z/4Z. We see
that in this last case, the bound obtained in the corollary is achieved.

We note (C,r) a vertex C with multiplicity r. When (G, M, R) is a simple
arithmetical graph, we can bound the exponent of @ in a slightly different way
because of the following properties:

1. Let (C,,r;), i=1,2,3 be three consecutive vertices on a chain (i.e. C, cannot
be a node). Then ged (ry,r,) = ged (r,,73) because r, divides r, +r.

2. Let (C,,r;), i=1,2,m be three vertices on a terminal chain such that C, and
C, are consecutive and that C,, is the terminal vertex. Then r,, = gcd (r,,7,).

For an edge (i, j) linking (C;,7;) and (Cj, r;), we let f;; = ged (r;,7;) and we note that

if (i, j) and (k, 1) are on the same chain, then f;; =f,,.

Corollary 2.5. The group of components @ of a simple arithmetical tree (G, M, R) is

killed by K =lem(ry,...,r,)'lem(f;;) and has order equal to [] ré~2, where d;
i=1

denotes the degree of the vertex C; in G.

Proof. By the previous corollary, we know that @ is killed by L=Ilcm(r;r)),
where c; 0. We can write r;r;=lcm(r;,r))- f;;. But Iem(a;b,,i=1,...,n) divide
lem (@;)*lem (b;) and Icm (lcm(ay, 9;)) = lem(ay, ..., a,). This imply that & is killed
by lem(ry,...,r,) lem(f;).

We do not know if the bound K can be replaced by K’ =lem(r,,...,r,) lcm(fi, (k)
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not on a terminal chain). In the special case where the graph is a tree with exactly
one node, one can get a more precise result; we omit the proof of the next proposition

(see [7]).

Proposition 2.6. Let (G, M, R) be a simple arithmetical tree with exactly one node.
Let r be the multiplicity of the unique node. Then the group @ is killed by r.

3. Volume and Linear Rank

Definition 3.1. A spanning subgraph of a graph G is a subgraph H of G such that
its vertices are exactly the vertices of G. A spanning tree is a spanning subgraph
which is a tree. We let x(G) denote the number of spanning trees of G.

Theorem 3.2. Let (G, M,J) be a reduced arithmetical graph. Then ¢ = «(G).
This theorem is proven in the books of Berge [2] or Biggs [4].

Remark 3.3. When (G, M, J) is a reduced arithmetical graph, the previous theorem
shows that @ is trivial if and only if G is a tree. This is not true for non reduced
arithmetical graphs in general, as it can be seen by the following example:

2 4 3

e

¢ = 1: compute the number of spanning trees of the associated reduced graph
first and then divide by []r?.

Given a graph G, we denote the edge of sk (G) linking C; and C; by (i, j) and
the pair (i, j) represents an edge iff ¢;; 4 0. We describe a spanning tree T=
[G1sd1)s--->(in—1s ju—1)] using the n — 1 edges of sk(G) that belong to T.

Corollary 3.4. Let (G, M, J) be a reduced arithmetical graph. If sk (G) is a tree, then

Cii |-

¢= |1 ci In the general case, ¢ = i

i ¥0i<j span.trees T of sk (G) <(LJ')€T
Proof. By 3.2, we only need to compute x(G). In order to completely define a
spanning tree of G, we must choose, for each (i, j)esk (G), one edge among the c;;
edges linking C; and C;. Hence k(G)= [] c¢;;. Note that when sk (G) is a tree,

cij+0i<j
this corollary follows also from 2.2.

Corollary 3.5. Let (G, M, R) be an arithmetical graph and d, the degree of the vertex
C; in sk(G). Then

¢§(1_"] r;’f-Z)-x(G) and x(c)§( § ci,)-x(sk(c))

cy¥0i<

Equality occurs in the first case iff G is reduced or sk (G) is a tree and it holds in the
second case iff sk (G) is a tree or G =sk(G).
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Proof. In order to prove the first inequality, we compute «(G), noting, by 1.11 and
3.2, that ¢(G) = (r;---r,) " 2k(G).

K(G) = Z ( l—[ Cijrirj>
span.trees T of sk(G) \ (i,j)eT

A -1
=(nr‘i?i)|: ZT . ( H cij)( H "i"j> ]
span.trees T of sk(G) \ (i,))eT (i, )¢ T

where ( I1 rirj) =1if T=sk(G). Sinee( I1 r,-rj) <1, we get that

(i, )}¢T @ ))¢T

K(G) < (M)( Y ( 11 cij)) =[1#x(G).
span.trees T of sk(G) \ (i,))eT

-1
Equality occurs iff | [] rir; =1 for all T, and this occurs if only if all r;s are
(. )¢T
equal to 1 or sk(G) isja tree. We now compute x(G) in a similar way:

KG= ¥ ( I] c..,.)
span.trees T of sk(G) \ (i,j)eT

=(nc.'j)'[ Z < H Cu')—]]‘
span.trees T of sk(G) \ (i, jj¢T

-1
Since ( IT cij> <1, we get that
)T

K(G)é( [1 Cij)'K(Sk(G)) )

c,j+0,i<j

Definition 3.6. Let (G, M, R) be an arithmetical graph. Let d; be the degree of the
vertex C; in G. The volume v of the arithmetical graph (G, M, R) is the rational

number v = f[ rda=2,

q=
1t is very easy to check that 2f —2 = Z (d; — 2). To generalize this notion, we

define the linear rank g, of the anthmetlcal graph (G,M,R) by the formula:
2go—2= Z rd,—2)= Z To(Cog — 2).

=
The linear rank of an arithmetical graph is an integer: smce 'RMR =0,

n
Y, cult =2 Y. cyrir;. go is then an integer because Z cyr? = Z c;r; (mod 2). If
i=1 i<j i=1
the graph is minimal (i.e. if c,, 2 2 Vq), then g 2 1.
n
Let 2y:=2go—2B= Y (r,— 1)(d,—2). It follows that go=p(G) when the
=1

q
arithmetical graph G is reduced. When the graph is minimal, the converse is also
true, namely: g, = B implies that (G, M, R) is reduced (see 4.13).
We note that since some of the d;s might be equal to 1, the volume v is a priori
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only a rational number. For the same reason, it is also not at all clear that g, —
is a positive integer. In the next section, we shall first prove these facts for simple
graphs (4.6, 4.7), and then (4.10) we shall reduce the general case to the case where
the graph G is simple.

4. Bound for the volume
The function I(x)= ). ord, (x)(p — 1), defined for any integer x, was introduced

p prime

by Lenstra and Oort in [6]. It satisfies I(xy) = I(x) + I(y) and In,(x) S I(x) < x— 1.
In particular, x £ 2'®, Our aim in this section is to show that, for any arithmetical
graph, the volume v is an integer and that

0<1)= l(n r) < 3 = 1~ 2= 290~ 25

These inequalities are trivial in the special case where all the terminal multiplicities
of the graph are equal to one.

Proposition 4.1. Let (G, M, R) be a simple arithmetical tree (v = ¢ in this case) with
exactly one node. Then I(¢) < 2g,. In particular g, is a positive integer and when

go=0,d=1.

Proof. Let r denote the multiplicity of the node and r,,...,r; the multiplicities of
the vertices adjacent to the node. Let x; = gecd (r,7;). We remarked already in 2.6

that x; is the multiplicity of the terminal vertex on the chain started by (C,, r;) We
-2

also know that ¢ =

is an integer and that 2g,=(d —2)r — Z X+ 2.
XpXg =1
Suppose first that x;,_, =x,=1:

-2 -2 a
ES Zl() Z<£——l>§.gl(r—xi)=(d-—2)r—‘zlx,-+2=2g0.

i=1 i

It is then sufficient to show how to find a set (y,,..., y,-2, 1, 1) of integers satisfying
the same hypothesis as the set (xl, ,Xg), 1.e. y;|r,Viand ¢ =r*"2/y, ---y,_,, with

the extra condition that z Vi Z x;. Then

$)<@—2r— ¥ y+22d—2)r— ix,-+2=2go.
i=1 i=

r

. r . .
We assume that x, = --- = x,; and write ¢ =—----° . Since ¢ is an

Xy Xg-2 Xa-1%q .
integer, any prime p dividing x,_,x, (say p divides x,) must divide one of the —s

Xy
(say p divides xL> The new set ( PX15X25--5%X4- 15 P ) satisfies
1

X4 d Xq
Px1+x2"'+xd~l+; | X x)= xx—‘;' (p—1)20.
=1
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We continue this process until we have used all the primes dividing x,_; x,.

Remark 4.2. The following facts are easy but fundamental properties of a simple
arithmetical graph (G,M, R) We use them for instance to show that the volume

v= H r#i~2 of G is an integer. However, even when it is known that v is an integer,

it is not obvious to factor it into a product of integers (the terminal vertlces have
d;=1). To overcome this difficulty, we break the graph G with k nodes into k
simple arithmetical trees with one node only, as explained below.

A connecting chain of G is a set of vertices C,...,C,4, such that 1) ¢;;,, =1
for all i=0,...,q,2) if g+ 0, the degree of C; in G equals 2 for all i=1,...,q,
and 3) C, and C, ., are nodes of G. We define a terminal chain of G in the same
way, except that we require that C,, ; be a terminal vertex of G. We denote by /; the
number of connecting chains attached at a vertex C;. Let (C,r) denote a vertex C
with multiplicity r.

1. Let (C,,ry), i=1,2,3 be three consecutive vertices on a chain (i.e. C, cannot
be a node). Then ged (r,,r,) = ged(r,, ;) because r, divides r; + ;.

2. Let (C;,r;), i=1,2,m be three vertices on a terminal chain such that C, and
C, are consecutive and that C,, is the terminal vertex. Then r,, = gcd (ry,r5).

3. Given two integers r,r,, we can construct a terminal chain (C,r), (C,7;),...,
(C,» ) Of a simple arithmetical graph, with multiplicities r; and “self-intersections”
c;; defined using Euclid’s algorithm:

@) rzr, r=cyry—r, with r,<r,
rl = szrz _r3 With r3 < r2

Fn—1 = Coum"'m with r,=gcd(r,r,)

(i) r<ry r=ry—(ry—r) with (r;—r<r,
and case (i) with r.,(r;—7)

4. Given integers r,ry,...,rg,s=ged (ry,...,r,) such that r dividesry + -+ + 1y,
we can construct a simple arithmetical graph with exactly one node (C,r/s) and d
terminal chains such that the vertices C,,...,C, adjacent to the node have
multiplicities r,/s,...,r,/s and such that the terminal vertex on the chain started
by C; has multiplicity gcd (r, r;)/s.

5. Given a connecting chain (Cy,7),...,(Cy44,7,+1) of G, we can talk about
the “ged” of this chain:=ged(r;,7;44) for all 0=<i<g. By break a connecting
chain of G at an edge (i, j) and complete, we mean the following construction: 1)
Remove the edge (i, j) linking (C;,r;) and (C;,r;) 2) Construct as in 3. a terminal
chain T; with the pair (r;,r;) and a second terminal chain T; with the pair (r;, ;)
3) Attach T; at C; and T; at C; to obtain a new arithmetical graph G'. Note that
the terminal multiplicity of T; and T; are both equal to ged (r;,7;).

6. Each node of a simple arithmetical graph defines, as in 4, a simple arithmetical
tree with one node only.

Definition 4.3. Let(C,r) be a node of a simple arithmetical graph, (C,,r,),...,(Cyr4)
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the vertices adjacent to the node and s(C) = gcd (r,7,,...,7,). The order of the node
(C,r) is the rational number:
-2

()=

ged(r,ry) - -ged(r,ry)

The local rank of the node is the integer:

d
29O)=@d—-2(r—-1)— _; (ged (r,r;) — 1)

As noted above, each node of a simple arithmetical graph defines a simple
arithmetical tree with exactly one node. We can apply the previous proposi-
tion to this new arithmetical tree and get that s(C)*-¢(C) is an integer and
I(s?¢(C)) £ 29,(C), where g,(C) is defined as:

r 4 /1
gs(C)=(d—2)(§— 1)— 2 (—ng(r,r.-)~ 1)
i=1\ S
We also have the relation: (g(C) — 1) = s*(g,(C) — 1).

Corollary 4.4. With the same notations as in the definition:

When g(C) 21, 1(¢(C)) = l(s*$(C)) < 24,(C) < 29(C)
1

When g(C) <0, 4,(C)=0, g(O)=—(—1), ¢O)=3

In particular, if g(C) =0, l(¢(C)) < 2¢(C).

Example 4.5. In the case of the last type of linear rank 2 in Namikawa and Ueno’s
classification [9], g, equal 0 for both nodes.

g_ij...LT:e_a ¢,=§3.%

Given a spanning tree T =[(i, j;), ..., (in-p> ju-p)] Of G, (notations as in 3.3),
we let f(T)= n fij» where f;; = ged (r;, ;) when (C;,r;) is linked to (C;, ;) by (i, j).
(. )T

Let f =lem(f(T)) and when G is a tree, set f = 1.
TeG -

Proposition 4.6. The volume v of a simple arithmetical graph (G, M, R) is an integer
divisible by f2. In particular, I(v) 2 0.

Proof. When G is a tree, v(G) = ¢(G) is an integer by 3.5 and f =1 by definition.
Suppose that G is not a tree and let T be one of its spanning trees. Use 4.2 to
break the connecting chains at all edges (i, )¢ T and to complete T to get a new
arithmetical tree T,,. In particular, v(T,,) is an integer. T,, has the same set of node
as G. To each (i, j)¢ T corresponds two terminal chains in T, both with terminal
multiplicity equal to f;;. It is very easy to check that o(G) = o(T,,)" f *(T,,).
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Theorem 4.7. Let (G, M, R) be a simple arithmetical graph of volume v. Then
0=1{v) <29, — 2.
In particular, the linear rank g, is a positive integer.

Proof. We deduce simultaneously the inequalities 2g, — 28 = 0 and 2g, — 2 = I(v)
without using the previous proposition. However, this method does not enable us
to prove directly that I(v) = 0 or that v is an integer.

For any node (C;,r;), we denote by (C;;,7;;),...,(Cy,,ry,) the vertices adjacent
to C; that are on a terminal chain. The others are denoted by (C;;, 4+ 1,7 1,+1),---»
(Ci 457:4,)- Remember that ged (r,7;;) is the multiplicity of the terminal vertex of
the j™ terminal chain at C;. By 3.6, we get:

29— 2B = il (ra—1Dd,~2)

knodes

Zl [(d )(ri—1)- Z (ged (i, i) — )]

[(d 2)(r— 1)~ .Z (ged o) = 1) + z (ged ()~ )]

j=hi+

llMa- -

[Zg(ci) + Z (ng (rnru) ] = 'il ﬂ(Cl)

1
!IM:.-

i

where p(C;):=29(C,) + Z (gcd(r,, r;;)— 1). We defined the volume as:

j=hLi+

. knodes pdi—2
v=[] ré 2= -
ql=—ll -l=—11 ged (i, riy) - ged (ry, rzi)

k
= il;ll (P(C:)-ged (ri, 7y 1) -+ -ged (ri,74))

and in particular
dy

k k
I(v)= i; [l(dJ(C:)) + j=;+  Need(r, ru))] = i; v(C)

di
where v(C;):=l(¢(C))) + ; l(ged (73, 7;;)). We see that in order to complete the
j=hL+1

proof of the theorem, we need to study the nodes C; with u(C;) <0 and the nodes
C; with v(C;) > pu(C;). We call such nodes “special” nodes.

Let C be such a node. If u(C) < 0, then g(C) must obviously be strictly smaller
than zero. If v(C) > u(C), then 4.4 implies that g(C) is also strictly negative. Hence
in both cases, g(C)= —(s(C) — 1) and s(C)=s > 1 by 4.4. We also note that this
node C cannot have more than one connecting chain. In fact, suppose that C has
two of them, with ged’s sa and sb:

dy

,,(C)=—2(s—1)/+(sa—1)+(5b—1)+ ; (ged (rinriy) — 1)

=[; 4+
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=(a—1)+ (b — 1)+ (positive terms)
20

v(C) = — 2i(s) + I(sa) + I(sb) + ._i Iged (r;,7,y))
=1(@)+ () + (-+) e
S@@-1N+0G-1H+ ._:le (ged (ririj) — 1)
< uw(O) o

Let r,; denote the multiplicity of the vertex on the connecting chain linked to (C,r).
We are going to show that ged (r,r,;) = s(C). Suppose that ged (r,r;) =sa, a > 1. We
would have:

WO =-26—D+@Ea—1)=6-1)a-2)+@-1)=1
v(C)= —2l(s) + l(sa) = — I(s) + l(a) = l(a) < (a — 1) = u(c).

We are now ready to finish the proof of this theorem by induction on the number
of nodes of G. If G has one node only, then s(C)=1 and this node cannot be
special. Suppose the theorem true for any arithmetical graph having k — 1 nodes
and let G be a graph with k nodes. If G has no special nodes, the theorem is true.
If G has a special node C, we are going to construct a new arithmetical graph G’
with k — 1 nodes, such that G and G’ have the same invariants: B(G’) = B(G),
v(G")=0(G) and go(G') = go(G).

We proceed as follow: the node C has only one connecting chain T. Let D be
the other node on T. We break T at any edge and complete to get two new graphs.
Let G' be the graph that contains D. This graph has k — 1 nodes and it is clear
that f(G’) = B(G). The degree in G’ of a node of G’ equals its degree in G. The
number of terminal chains in G’ of a node of G’ equals its number of terminal
chains in G, except for the node D which has one more terminal chain in G’ than
in G. This new terminal chain has terminal multiplicity equal to s(C).

We remark at this point that G’ is an arithmetical graph because the
ged of the multiplicities of its vertices is equal to one. Using the fact that
#(C)=s(C)"2, it is not hard to check that v(G’) = v(G). Similarly, using the fact
that g(C) = — (s(C) — 1), one checks that go(G’) = go(G).

Corollary 4.8. Let (G, M, R) be an arithmetical graph with (G) = 0. Then l($) < 2g,.

Proof. Since =0, G is a simple arithmetical tree and ¢ =v.

Corollary 4.9. Let (G, M, R) be an arithmetical graph. If g, =0, then G is a non
minimal simple tree.

Proof. Since g,=p=0,G is a simple tree. From the formula 2g,—2=Y rf{c;—2)= -2
we get that at least one of the c;s equal 1, which, by definition, means that G is
not minimal.

Theorem 4.10. Let (G, M, R) be an arithmetical graph. Its volume v is an integer and
I(v) <29, - 28.
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Proof. We use Proposition 4.11 below to reduce to the case of a simple graph and
then we apply 4.6 and 4.7.

Proposition 4.11. Let (G, M, R) be an arithmetical graph. There exists a simple
arithmetical graph H, obtained from G by a sequence of elementary blow-ups, such
that ®(G) = @(H), v(G) = v(H), go(G) = go(H) and B(G) = B(H).

Proof. In 1.8, we defined the blow up of G with respect of a vector Q. When Q is
of the from Q;; = E; + E;, where E, denotes the k'™ column vector of Id,, we say
that the blow up is elementary. Geometrically, it corresponds to blowing up the
intersection point of two irreducible components that intersect normally.

Let (C;,r;) and (Cj,r;) be two vertices of G linked by c;; edges. If ¢;;> 1, we
blow up G with respect to Q;; to get a new graph G, with one more vertex and
one more edge than G. G, is in fact obtained by “dividing in two” one edge of G
linking C; and C;: replace this edges by a vertex E, of multiplicity r; + r;, linked
exactly once to C; and C;.

It is trivial that B(G) = B(G,), v(G) = v(G,), 9o(G) = ¢go(G,). Moreover, since G,
is obtained as a blow-up, @(G) = &(G,) by 1.8. It is clear that after finitely many
such elementary blow-ups, we will obtain a simple graph (i.e. a graph such that
¢;j=1for all i % j).

Remark 4.12. Let d; denote the degree of the vertex (C;,r;) in the graph G and let
d; be its degree in sk (G). We could define in a similar way 7= ﬂr‘.' 2
B=p(sk(G)), 250—2=r (d; — 2). We note that 7 and § Jo are not always integers,

4 -
as it can be seen on the following example: M ( _1 12).

Theorem 4.13. Let (G, M, R) be an arithmetical graph. If g, = B, the multiplicity of
all nodes and all terminal vertices in G equals one. Moreover, if G is minimal, G is
reduced if and only if go = p.

We sketched a proof of this theorem in [7]. Once again, this is a non trivial result
due to the fact that some of the d;s in the formula 2g, —28 =3 (r;— 1)(d; - 2)
might be equal to one. This theorem is also proven by Saito in [10], 2.4.

For each prime p, define g, by the formula 2g, —2 =Y r,/p*?*?(d,— 2). It is
easy to show that g,, as well as g,, is an integer. It might be possible to deduce
the statement 2g, — 2§ = I(v"”) = 0, where v = pp~°"»", from the method used
in this section. Saito has classified the graphs for which the equality g, = g, holds
([10], 2.4). We conjecture that the inequalities g, = g, 2 f always hold. Unlike the
statement g, = B, these two inequalities cannot be proven by geometric methods,
due to the fact that an analogue to Winters’ Existence Theorem [12], for curves
degenerating in characteristic p > 0, is not known.

5. The integer &

In this section, we discuss the minimal number & of generators of the finite abelian
group @. We prove that if the arithmetical graph (G, M, J) is reduced, h < (G).
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Given an intersection matrix M, let diag(e,,...,e,-,,0) be a diagonal matrix
row and column equivalent to M. Then ®=Zje,Z x --- x Zfe,_,Z by 14. It is
clear that h<n— 1. As noted in 1.5, the integer h can be computed using the
Theorem of the Elementary Divisors. In particular, h=n—1 iff the greatest
common divisor of the coefficients of M is not equal to 1; hence if the graph is
simple, h <n — 2. Note also that h = 0 iff the group @ is trivial.

We discuss now a construction needed to prove the main result of this section.
Let (G, M, J) be a reduced arithmetical graph and (i, j) an edge of sk (G). The number
of spanning trees k of G equals x, + c;;x,, where k, is the number of its spanning
trees not passing through any of the c;; edges linking C; and C; and «, is the
number of its spanning trees passing through one (fixed) of these edges.

In fact, x, is the number of spanning trees of the graph G, obtained by removing
from G these c;; edges. When G, is not connected, x; = 0. k, is the number of
spanning trees of the graph G, obtained from G, by identifying the two vertices
C,and C;. We note that B(G,) = B(G) — ¢;;and B(G,) = B(G,) + 1. This construction
can be generalized to arithmetical graphs. We shall say that (i, j) is an r-edge of
(G,M,R) if:

1. Its endpoints (C;,r;) and (C;,r;) are such that r;=r;=r.
2. sk(G)—{(i, j)} is connected.

We renumber the vertices of G such that (i, j) = (1, 2) and write ¢ =c,,. Let M, be

the matrix obtained by adding the matrix —;c “ ) to the upperleft corner of

M. If (jc :}C) is the (2 x 2) upperleft minor of M, the corresponding one in

M, is (x;c ygc) Since sk (G) — {(1,2)} is connected and M-R=0, (x —c)r

and (y — c)r are strictly positive integers. Hence (M,, R) defines an arithmetical
graph G,.

Perform “Row, + Row,” and “Col, + Col,” on the matrix M (or on the
matrix M) to get a new matrix N and let M, =(N)!!. Let R, be the projection
of R on the last (n — 1) coordinates. The reader will check that M,-R, =0 and
that G, is connected.

S.1. Let (1,2) be an r-edge of an arithmetical graph (G, M, R). The pairs (M, R)
and (M,,R,) constructed above define two arithmetical graphs (G,,M,R) and
(G2, M3, R;). Moreover, $(G)=§(G,)+cd(G,)>1 and if ged(¢(G,), #(G,)) =
ged (7, (G)) = 1, then the group d(G) is cyclic.

Proof. By 1.3, we know that ¢(G)=r"2det(M'?), ¢(G,)=r"2det(M}?) and
&(G,)=r"2det(M}')=r~2det((M'*)'"). This shows our claim because det(M*?)=
det(M12)+c,,det((M**)!?!). In order to show that @ is cyclic, it is sufficient to
show that A,_,(M)=1. The matrices M, M, both contain the minor M}'. In
particular, A,_,(M) divides the determinant of M}!, which is equal to r*¢(G,).
On the other hand, A, _ ,(M) divides 4, _ ,(M) = ¢(G). Hence, if gcd (¢(G), 12 $(G,)) =
1, @ is cyclic.
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Proposition 5.2. Let (G, M, J) be a reduced arithmetical graph with f(G) independent
cycles. Then its group of components @ can be minimally at most generated by
B(G) elements.

Proof. We know that when G is a tree, @ is trivial (h = 0). We prove our claim
by induction on B(G). Let (i, j) be an edge of sk (G) such that B(G,) < B(G). (If such
an edge does not exist, sk (G) is a tree and the result follows from 2.2.) The claim
is true for G, by induction hypothesis: h(G,) < (G, ). The claim is true for G if we
show that A(G) < h(G,) + 1. This is done in the following lemma.

Lemma 5.3. Let (G, M, R) be an arithmetical graph. Let (G, M, R) and (G,, M,,R,)
be the arithmetical graphs associated to an r-edge of G. Then

IG1)~h(G,)I<1, [RG)—hG)I<1 and |R(G)—h(Gy)IS1

Proof. Tt is clear that there should be some relations between h = h(G), by = h(G,)
and h, = h(G,) because M, M, M, have many minors in common. Our main tool
is the Theorem of the Elementary Divisors. Our claim can be rephrased in the
following way, where h; = h(G;) = rank (M;) — h;

hi—1<h<h;+1 and h,<h=Zh,+2
Case 1. M and M,.

Let k > 2. The determinant of every k-minor of M is a linear combination of
determinants of k-minors of M, and of determinants of (k — 1)-square matrices
which are simultaneously (k — 1) minors of M and M,. No (k — 2)-minors are
needed because det(C)=0. The same is true when M and M, are interchanged.
We have then: )

A (M) F+ 1=4,(M,) $ 1
A (M) $1=>4,M)+1
and in particular
If hsn-3 A, (M)F1=4,,,(M)>1
=h <h+1
If hysn—3 A4, ,(M)F+1=4,,,(M)>1
=h<h +1L

Since h,hy < n— 1, the inequality h; < h + 1 also holds for h=(n — 2), (n — 1) and
similarely for the inequality h<h, + 1.
Case 2. M and M, (the case M, and M, is similar).

The elementary divisors of M and N are equal. Let k = 3. The determinant of
every k-minor of N is a linear combination of determinants of (k — 2)-square
matrices that are simultaneously (k — 2)-minors of N and M,. On the other hand,
every (k — 2)-minor of M, is a (k — 2)-minor of N. We have then:

- A2 (N)>1=4,(M5) + 1
A3 (M3)> 1=>4,(N) +1
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and in particular
If hsn-4, Ay (N)F+ 1=4,,3(M3)> 1
=>h,<h+2
If h,<n-3, A, M)¥1=4,,,,(N)>1
=>h§h2.

Since G has an r-edge, ¢(G)=4,_,(M)>1 and h<n—2. This shows that the
inequalities hold for all possible values of 4 and h,.

Remark 5.4. The graphs I¥,v =1 defined in 2.4 show that the second inequality
is sharp. When v is even, G = G(I¥) = Z/2Z x Z/2Z and G, = G(I*_,) = Z/4Z.

6. A splitting

Let (G,M,R) be a simple minimal arithmetical graph. We proved already the
following facts:

3.5 B+y=go ¢ <vk(G) with ()2
4.7 Ifp=0 b=v with )2y
413 53 Ify=0 ¢=x(G) and h(D)ZP.

The cases f =0 and y =0 being understood, it is natural to wonder if the general
case is a combination of these two special cases. We might ask whether there exists
an exact sequence 0 - ¥ — @— C — 0 such that

1. The order of ¥ is I-bounded by 2y.
2. The minimal number of generators h(C) of C is bounded by .

Let &=Z/e,Z x - xZe,_Z with e|---|le,;. If PB(G)<n—1, define
Y=27/e,Z x --- x Z/e,_, _. It follows from Proposition 1.14 in Artin/Winters [1]
that the existence of such an exact sequence is equivalent to having | Y'| I-bounded
by 2y. We show below that 1" satisfies the expected bound for many simple graphs.
Let us first generalize our statement to non simple graphs.

Let T:=2Z/e,Z x --- x ZJe,_,_ gif B=pck(G)<n—1. In the remainder of this
section, we show that | 7| is indeed I-bounded by 2g, — 8 — B for a large family
of graphs.

Remark 6.1. Artin and Winters have defined an integer B < J (see the proof of 1.16,
top of page 378 in [1]) and have shown that e,"----e,_, ; divides a constant c
depending only on the linear rank g,. Their constant is not effective.

Let us consider now the following class ¢ of arithmetical graphs (G, M, R):

1. Gis not a tree.
2. G contains a spanning tree T such that each of the B edges (i, j) in the
complement of T in sk (G) is an r-edge for some integer r.

% is “very large” in the following sense: given a simple arithmetical graph (G, M, R)
of linear rank g, which is not a tree, we can construct infinitely many dlstmct
arithmetical graphs with same linear rank and belonging to %.
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Construction: Take an edge (i, j) in the complement of a spanning tree T and
break the connecting chain at (j, j) as in 4.2. We get two new terminal chains with
terminal vertices D, and D, having both multiplicity f;;. For any integer m > 1,
we can link D, and D, by a simple chain of m vertices: the coefficient c;; of each
vertex is equal to 2 and each vertex has multiplicity f;;. Repeat this construction
for each edge in the complement of T.

It is worth noting that given an integer g, = 1, Artin and Winters have shown
in [1] that there are only finitely many arithmetical graphs “modulo chains of
vertices with ¢; = 2” that have linear rank equal to the given g,.

Theorem 6.2. Let (G, M, R) be an arithmetical graph belonging to 9. Then | T| is
l-bounded by 2g,— B — B.

Proof. Let T be a spanning tree of G such that its complement S in sk(G)
consists of r-edges only, say with multiplicities ry,...,r;. We assume for
simplicity that these B r-edges are (1,2),(3,4),...,(20—1,2p). We also let

Ciiv1= ( —;ci'i+‘ c‘;‘“ fori=1,...,2f — 1. We want to compare the matrices
Bi+1 —Cii+1

M(G)=M and M(T)= N as we did in 5.3. Let C be the matrix “direct sum of
Ci5---5Cp_ 155 1,55~ By construction, N = M + C. It is not hard to check that
if k= f+1, the determinant of any k-minor of N is a linear combination of
determinants of square (k — f)-matrices that are simultaneously minors of N and
M. This statement is true because det (C;;) = 0 for all (i, j)eS. Hence A, _3(M) divide
A (N). In particular

[Y|=A4,_,_#M) divides A, (N) = ¢(T).

We computed that Q(T):ﬁ(T)( I1 c,-j) in 2.3, 4.12; By construction,

el i<j

#(G) = &(T)(r, ---rﬁ)z. By definition, §(G) divides v(G) and this last number is an
integer. Hence I(| 7)) < H (cij—=D+1w(G) =B~ B+ 29, — 2.

i<je;#0,
Remark 6.3. We saw in the above proof that for simple graphs in 4, | Y| divides
v. We do not know if this is the case for simple graphs not belonging to 4. We
note that I" and 2g, — 2 are not invariant under blow-up.
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