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Plan of the talk

Definition of the index and examples.

A completely different perspective on the index.

Index in a local family.

Index in a global family.

Some moving lemmas.

The results in the talk are mostly joint work:

found in papers of Gabber-Liu-L.,
and papers of Liu-L.-Raynaud.
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Definition of the index

Let K be any field.
Let X/K be any algebraic variety
(or any scheme of finite type over K ).
Let

D(X/K ) := {deg(P),P closed point of X} ⊆ N.

Can one describe the set D(X/K ) explicitly?

Two interesting invariants:

µ(X/K ) := smallest element in the set D(X/K ).

δ(X/K ) := gcd of the elements of D(X/K ).

The integer δ(X/K ) is called the index of X/K .
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Definition without schemes

K : a fixed algebraic closure of K ,
K ⊆ L ⊆ K : a finite field extension,
[L : K ]: the degree of L/K.

f (x , y) ∈ K [x , y ],
X/K : the affine curve given by f (x , y) = 0.

A point (a, b) ∈ L2 with f (a, b) = 0 is called an L-rational
point of X . The set of L-rational point is denoted by X (L).

K (a, b): smallest subfield of K that contains K , a, and b.

Consider the subset

D(X/K ) := {[K (a, b) : K ], (a, b) a K -rational point of X}.

The index δ(X/K ) of X/K is the gcd of the set D(X/K ).
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First Examples

When K = C, then δ(X/K ) = 1.

When K = R, then δ(X/K ) = 1 or 2.

Example. Let f (x , y) = x2 + y2 + 1. Then X (R) = ∅, and
X (C) 6= ∅, so D(X/R) = {2}, and δ(X/R) = 2.

When K = Fp, then δ(X/K ) = 1 if X/K is geometrically
irreducible.

This follows from the Weil bounds, which imply the
existence of an integer n0 > 0 such that X has a Fpn -point
for all n ≥ n0, i.e.,

D(X/K ) ⊃ {n, n ≥ n0}.
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Index 1
Obvious remark. If X/K has a K -rational point (i.e.,
1 ∈ D(X/K )), then δ(X/K ) = 1.

The converse does not hold in general.

Example. Let p > 3 be a prime number. Let

f (x , y) = xp−1 + yp−1 + 1.

We have X (Fp) = ∅, since ap−1 = 0 or 1 for any a ∈ Fp.

Let K be any field. Let F (x1, . . . , xn) ∈ K [x1, . . . , xn] be a
homogeneous polynomial of degree d in n ≥ 3 variables. Let
XF/K denote the hypersurface of Pn−1/K defined by F .

Theorem (Springer, 1952). Assume d = 2. Then
δ(XF/K ) = 1 implies 1 ∈ D(XF/K ).

Conjecture (Cassels and Swinnerton-Dyer for n = 4,
Coray (1975)). Assume that d = 3. Then δ(XF/K ) = 1
implies 1 ∈ D(XF/K ).
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Fermat Curves
Let p ≥ 5 be prime.

The Fermat curve Fp/Q is given by xp + yp + 1 = 0, with

D(Fp/Q) = {1, 2, ∗?∗, p − 1, p, ?, . . . }.
Obvious: 1 ∈ D. Cauchy-Liouville: 2 ∈ D.

Intersect Fp with the line x + y + 1 = 0:

(x + 1)p − xp − 1 = x(x + 1)(x2 + x + 1)b · Ep(x),

with b = 1 or 2, and Ep(x) ∈ Z[x ].

Conjecture (Mirimanoff, 1903). Ep(x) is irreducible over
Q for all primes p > 3.

Conjecture (Klassen and Tzermias, 1997). The points on
Fp of degree at most p− 2 are all on the line x + y + 1 = 0.

This is proved by them for p = 5, and for p = 7 by T.

Putting these two conjectures together, we would find that

D(Fp/Q) = {1, 2, deg(Ep(x)), p − 1, p, ?, . . . }.
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Structure of D(X/K )

Theorem (Gabber-Liu-L.) Let K be a number field. Let
X/K be an irreducible smooth projective variety of positive
dimension, with index δ := δ(X/K ). Then there exists
n0 > 0 such that

D(X/K ) ⊇ {nδ, n ≥ n0}.

Can the smallest such n0 be bounded in terms of some

geometrical invariants of X/K?
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Modular curves

Let p > 3 be a prime, and consider the modular curve
X1(p)/Q. A point in X1(p)(K ) corresponds to an elliptic
curve E/K with a point P ∈ E (K ) of exact order p.

This curve has special points called cusps, of degree 1 and
(p − 1)/2. So

D(X1(p)/Q) = {1, ?, (p − 1)/2, ?, . . . }.

Theorem (Kamienny). If p ≥ 17, then 2 6∈ D(X1(p)/Q).

Theorem (Parent). If p ≥ 17, then 3 6∈ D(X1(p)/Q).

Theorem (Merel). Let d 6= 1, (p − 1)/2, be any integer.
Then there exists p0 = p0(d) such that for all primes
p ≥ p0(d), then d 6∈ D(X1(p)/Q).
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A different look at the index

A: a noetherian local ring of dimension d ,
M: maximal ideal of A,
k : residue field A/M,

I : an M-primary ideal (i.e.,
√
I =M),

`A(A/I n): length of the A-module A/I n,
fI (x): Hilbert-Samuel polynomial of I , with

fI (n) = `A(A/I n)

for all n large enough.

One shows that

fI (x) =
e(I ,A)

d!
xd + lower degree terms ∈ Q[x ].

e(I ,A) is an integer, the Hilbert-Samuel multiplicity of I .
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The set E(A)

Let A be a noetherian local ring of dimension d ≥ 1.

Consider

E(A) := {e(I ,A), I any M-primary ideal of A}.

The smallest element in E(A) is known: it is e(M,A), the
Hilbert-Samuel multiplicity of A.

The multiplicity of A is a measure of how singular A is: if A
is a domain, then e(M,A) = 1 if and only if A is a regular
local ring.

New invariant:

γ(A):= gcd of the elements of the set E(A).

The invariant γ(A) is also related to the singularity of A.
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Some properties of E(A)

It is easy to see that

e(I n,A) = nde(I ,A),

so the set E(A) is always infinite.

It is known that if I = (x1, . . . , xd), then E contains e(I ,A)
and any positive multiple of it.

If A/M is infinite, then E contains any positive multiple of
e(I ,A) for any M-primary ideal I .

When the residue field A/M is a number field, is it true that

E(A) ⊇ {nγ(A), n ≥ n0}

for some n0 > 0?

Is there an algorithm to compute γ(A)?



The Index of an
Algebraic Variety

Dino Lorenzini

Definition of the
index

First Examples

Index 1

Fermat Curves

Structure of
D(X/K)

Modular curves

A different look at
the index

The set E(A)

Some properties of
E(A)

Back to the index

Index and Cone

The index in local
families

The index in global
families

Two Holy Grails

Summary

Some properties of E(A)

It is easy to see that

e(I n,A) = nde(I ,A),

so the set E(A) is always infinite.

It is known that if I = (x1, . . . , xd), then E contains e(I ,A)
and any positive multiple of it.

If A/M is infinite, then E contains any positive multiple of
e(I ,A) for any M-primary ideal I .

When the residue field A/M is a number field, is it true that

E(A) ⊇ {nγ(A), n ≥ n0}

for some n0 > 0?

Is there an algorithm to compute γ(A)?



The Index of an
Algebraic Variety

Dino Lorenzini

Definition of the
index

First Examples

Index 1

Fermat Curves

Structure of
D(X/K)

Modular curves

A different look at
the index

The set E(A)

Some properties of
E(A)

Back to the index

Index and Cone

The index in local
families

The index in global
families

Two Holy Grails

Summary

Some properties of E(A)

It is easy to see that

e(I n,A) = nde(I ,A),

so the set E(A) is always infinite.

It is known that if I = (x1, . . . , xd), then E contains e(I ,A)
and any positive multiple of it.

If A/M is infinite, then E contains any positive multiple of
e(I ,A) for any M-primary ideal I .

When the residue field A/M is a number field, is it true that

E(A) ⊇ {nγ(A), n ≥ n0}

for some n0 > 0?

Is there an algorithm to compute γ(A)?



The Index of an
Algebraic Variety

Dino Lorenzini

Definition of the
index

First Examples

Index 1

Fermat Curves

Structure of
D(X/K)

Modular curves

A different look at
the index

The set E(A)

Some properties of
E(A)

Back to the index

Index and Cone

The index in local
families

The index in global
families

Two Holy Grails

Summary

Some properties of E(A)

It is easy to see that

e(I n,A) = nde(I ,A),

so the set E(A) is always infinite.

It is known that if I = (x1, . . . , xd), then E contains e(I ,A)
and any positive multiple of it.

If A/M is infinite, then E contains any positive multiple of
e(I ,A) for any M-primary ideal I .

When the residue field A/M is a number field, is it true that

E(A) ⊇ {nγ(A), n ≥ n0}

for some n0 > 0?

Is there an algorithm to compute γ(A)?



The Index of an
Algebraic Variety

Dino Lorenzini

Definition of the
index

First Examples

Index 1

Fermat Curves

Structure of
D(X/K)

Modular curves

A different look at
the index

The set E(A)

Some properties of
E(A)

Back to the index

Index and Cone

The index in local
families

The index in global
families

Two Holy Grails

Summary

Some properties of E(A)

It is easy to see that

e(I n,A) = nde(I ,A),

so the set E(A) is always infinite.

It is known that if I = (x1, . . . , xd), then E contains e(I ,A)
and any positive multiple of it.

If A/M is infinite, then E contains any positive multiple of
e(I ,A) for any M-primary ideal I .

When the residue field A/M is a number field, is it true that

E(A) ⊇ {nγ(A), n ≥ n0}

for some n0 > 0?

Is there an algorithm to compute γ(A)?



The Index of an
Algebraic Variety

Dino Lorenzini

Definition of the
index

First Examples

Index 1

Fermat Curves

Structure of
D(X/K)

Modular curves

A different look at
the index

The set E(A)

Some properties of
E(A)

Back to the index

Index and Cone

The index in local
families

The index in global
families

Two Holy Grails

Summary

Some properties of E(A)

It is easy to see that

e(I n,A) = nde(I ,A),

so the set E(A) is always infinite.

It is known that if I = (x1, . . . , xd), then E contains e(I ,A)
and any positive multiple of it.

If A/M is infinite, then E contains any positive multiple of
e(I ,A) for any M-primary ideal I .

When the residue field A/M is a number field, is it true that

E(A) ⊇ {nγ(A), n ≥ n0}

for some n0 > 0?

Is there an algorithm to compute γ(A)?



The Index of an
Algebraic Variety

Dino Lorenzini

Definition of the
index

First Examples

Index 1

Fermat Curves

Structure of
D(X/K)

Modular curves

A different look at
the index

The set E(A)

Some properties of
E(A)

Back to the index

Index and Cone

The index in local
families

The index in global
families

Two Holy Grails

Summary

Back to the index

Let X/K be a smooth plane projective curve defined by a
homogeneous polynomial

F (x , y , z) = 0

of degree d > 1.

Let Z/K be the affine cone in the affine 3-space A3/K
defined by the same equation F (x , y , z) = 0.

Since F is homogeneous of degree d > 1, the point
P := (0, 0, 0) is always a singular point on Z/K .

There is a canonical map

Z \ {P} −→ X ,

sending (a, b, c) 7→ (a : b : c).
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Index and Cone

Let A := OZ ,P denote the local ring of the cone Z at the
vertex P. In other words, A is the localization of
K [x , y , z ]/(F ) at the maximal ideal M := (x , y , z).

One can show that the multiplicity of A is equal to deg(F ).
So, for the set of multiplicities of M-primary ideals of A:

E(A) ⊆ [deg(F ),∞).

On the other hand, for the set D(X/K ) of degrees of
points on X/K , we could have 1 ∈ D(X/K ).

In particular, the sets D(X/K ) and E(A) are distinct in
general.

Theorem (GLL). Let X/K be a smooth projective curve of
degree d . Let A be the local ring at the vertex of the cone
Z/K . Then

δ(X/K ) = γ(A).

In other words, gcd(D) = gcd(E).
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The index in local families

Let now K be the field of fractions of a discrete valuation
ring OK with residue field k . Let S := Spec OK .

Let X → S be a proper flat morphism, with X regular and
connected.

Let X/K be the generic fiber of X/S .

The base S has dimension 1, and X → S is a
one-dimensional family of varieties, consisting in two fibers,
the generic fiber X/K and the special fiber Xk/k .

Pete Clark asked the following question, and gave a
conjectural answer for it:
Question. Is it possible to describe the index of the generic
fiber X/K only using data pertaining to the special fiber
Xk?

In many different geometric contexts, quantities are
sometimes easier to compute on a degeneration of the object
than on the initial object itself.
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Let X → S be a proper flat morphism, with X regular and
connected.

Let X/K be the generic fiber of X/S .

The base S has dimension 1, and X → S is a
one-dimensional family of varieties, consisting in two fibers,
the generic fiber X/K and the special fiber Xk/k .

Pete Clark asked the following question, and gave a
conjectural answer for it:
Question. Is it possible to describe the index of the generic
fiber X/K only using data pertaining to the special fiber
Xk?

In many different geometric contexts, quantities are
sometimes easier to compute on a degeneration of the object
than on the initial object itself.
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To answer this question positively, let us introduce the
following notation.

If Γ/k is any algebraic variety, then its regular locus Γreg/k is
an open subset.

If U is any open subset of Γ, then δ(U/k) is divisible by
δ(Γ/k).

Example Consider the curve Γ/R given by
f (x , y) = x2 + y2. It has a unique singular point (0, 0),
which is also the unique R-rational point on Γ. Thus,
δ(Γ/R) = 1, but δ(Γreg/R) = 2.

Write the special fiber Xk =
∑n

i=1 riΓi , where for each
i = 1, . . . , n, Γi is irreducible, of multiplicity ri in Xk .

Using the intersection of Cartier divisors with 1-cycles on the
regular scheme X , we easily find that gcdi{riδ(Γi/k)} divides
δ(X/K ). Our next theorem strengthens this divisibility.
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Summary

Let K be a discrete valuation field, and f : X → S be a
one-dimensional local family as above.

Theorem (GLL). Keep the above assumptions on X/S.

(a) Then gcd(riδ(Γreg
i /k), i = 1, . . . , n) divides δ(X/K )

.

(b) When OK is Henselian, then

δ(X/K ) = gcd{riδ(Γreg
i /k), i = 1, . . . , n}.
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The index in global families

k := Fq, with q = pa, p prime.
V /k : smooth proper geometrically connected curve.
K := k(V ): the function field of V .

X/K : smooth proper geometrically connected curve of
genus g ≥ 1.

f : X → V : regular model of X/K .

Xv/k(v): special fiber of f over v ∈ V , with residue field
k(v).

Xv ↪→ X ←− X
↓ ↓ ↓

Spec k(v) ↪→ V ←− Spec K

So f : X → V can be thought of as a 1-parameter family of
curves, parameterized by v ∈ V .
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Summary

Kv : completion of K at the place v ∈ V .

Example. If K = k(t) with V = P1/k, and v is the point 0,
then Kv = k((t)).

δ(X/K ): index of the generic fiber X/K .

δv : index δ(XKv /Kv ) of the curve XKv /Kv .

X ← X ← XKv

↓ ↓ ↓
V ← Spec(K ) ← Spec(Kv )

Note that δv | δ(X/K ).

Question. How do the integers δ(X/K ) and δ(XKv /Kv ),
v ∈ V , fit together?
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Two Holy Grails

Let k be a finite field. The scheme X/k as above is a
smooth proper surface over k .

Conjecture of Artin: Its Brauer group Br(X ) is finite.

Recall that X/K is the generic fiber of X → V .
A/K : the Jacobian of X/K .

Conjecture of Birch-Swinnerton-Dyer (as in Tate’s
1965 Bourbaki Seminar). The Shafarevich-Tate group
X(A) of A/K is finite.

Our next theorem generalizes the following:

Theorem (Milne, 1982). If |X(A)| is finite and δv = 1 for
all v , then |X(A)| = δ(X/K )2|Br(X )|.
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Theorem (Liu-L.-Raynaud).

Assume that |X(A)| is
finite. Then |X(A)|

∏
v δvδ

′
v = δ(X/K )2|Br(X )|.

Here δ′v is the period of XKv /Kv .

Lichtenbaum showed in 1969 that δv = δ′v or δv = 2δ′v .

Application: We provide the last ε towards:

Theorem (LLR). Let X/k be a smooth geometrically
connected surface. Assume that for some prime `, the `-part
of Br(X ) is finite. Then |Br(X )| is a square.

Remark. For about 30 years (1966-1996), this theorem was
thought to be false (error in an example of Manin, corrected
by Urabe).

During the same period, it was believed that the order of the
group X(A) was always a square (corrected by Poonen and
Stoll). In fact, the work of Poonen and Stoll shows that

|X(A)|
∏

v δvδ
′
v is always a square!
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Summary

• The index of a variety X/K can be computed solely in
terms of commutative algebra data in the local ring of the
singular point of the vertex of a cone over X .

• The index of the generic fiber in a local family can be
computed with data pertaining only to the special fiber.

• The indices of the fibers in a global family are expected to
satisfy |X(A)|

∏
v δvδ

′
v = δ(X/K )2|Br(X )|.
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THANKS!

Mahalo!
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