SOME COMPUTATIONS AND REMARKS RELATED TO OUR PAPER "NEW POINTS ON CURVES"

QING LIU AND DINO LORENZINI

1. July 24, 2021

We note that in the paper [4], Matsuno proves the existence of a new point over the field $\mathbb{Q}(\zeta_{64}^+)$ of degree 16 for infinitely many elliptic curves over \mathbb{Q} . The general results in our paper [3] do not imply Matsuno's result.

The special case treated by Matsuno in [4] has now be generalized by Suresh [6], 1.11. Indeed, [5], 3.1.7, can be applied to show that there exist infinitely many elliptic curves E/\mathbb{Q} with a new point over any extension L/\mathbb{Q} of degree 12, 14, or 16 as soon as L contains a subextension F with [L:F] = 2.

2. March 25, 2019

Given a number field L and an elliptic curve E/K, it is sometimes possible to conjecturally determine that E/K has a new point over L as follows. For every proper maximal subfield L_0 of L/K, compute the analytic rank of E over L_0 . If, for each such maximal proper subfield, the analytic rank of E over L is strictly larger than the analytic rank over L_0 , then the Birch and Swinnerton-Dyer Conjecture would imply that the algebraic rank of E over L is larger than the algebraic rank of E over L_0 and, thus, that E/K has a new point over L. (We use here that the \mathbb{Q} -vector space $E(L) \otimes \mathbb{Q}$ cannot be the union of finitely many proper subspaces.)

In the table below, for a given field L/\mathbb{Q} , we list the Cremona labels of the first elliptic curves E/\mathbb{Q} with a (conjectural) new point over L found by this method: we used Magma [1] to test the analytic ranks over relevant subfields of each curve in Cremona's table [2] up to a certain conductor. This table complements 5.2 in [3].

Date: October 21, 2022.

	E/\mathbb{Q}
Cyclic subfield of degree 11 in $\mathbb{Q}(\zeta_{23}), \mathbb{Q}(\zeta_{23})^+$	89a1, 197a1, 794b1, 954h1
$\mathbb{Q}(\zeta_{23})$	89a1, 954h1
Cyclic subfield of degree 11 in $\mathbb{Q}(\zeta_{67})$	$389a1$ (First curve of rank 2 over \mathbb{Q}), $2155a1$, $2256f1$
Cyclic subfield of degree 22 in $\mathbb{Q}(\zeta_{67})$	389a1
Cyclic subfield of degree 33 in $\mathbb{Q}(\zeta_{67})$	2256f1
Cyclic subfield of degree 11 in $\mathbb{Q}(\zeta_{89})$	1485a1
Cyclic subfield of degree 22 in $\mathbb{Q}(\zeta_{89})$	1485a1
Cyclic subfield of degree 11 in $\mathbb{Q}(\zeta_{121})$	$651\mathrm{d}1,813\mathrm{b}1,1028\mathrm{a}1$ (curve of rank 2 over $\mathbb{Q})$
Cyclic subfield of degree 22 in $\mathbb{Q}(\zeta_{121})$	651d1, 813b1, 1028a1
Cyclic subfield of degree 13 in $\mathbb{Q}(\zeta_{53})$	4025g1
Cyclic subfield of degree 13 in $\mathbb{Q}(\zeta_{169})$	1304a1
Cyclic subfield of degree 17 in $\mathbb{Q}(\zeta_{103})$	173883a1 (thanks to Bill Allombert and gp-pari)
Cyclic subfield of degree 17 in $\mathbb{Q}(\zeta_{137})$	5445b1 (thanks to Bill Allombert and gp-pari)
Cyclic subfield of degree 19 in $\mathbb{Q}(\zeta_{191})$	none found in Cremona's tables (thanks to B.A.)
Cyclic subfield of degree 19 in $\mathbb{Q}(\zeta_{229})$	none found in Cremona's tables (thanks to B.A.)
Cyclic subfield of degree 23 in $\mathbb{Q}(\zeta_{47})$, $\mathbb{Q}(\zeta_{47})^+$	none found in Cremona's tables (thanks to B.A.)
Cyclic subfield of degree 23 in $\mathbb{Q}(\zeta_{139})$	none found in Cremona's tables (thanks to B.A.)
Cyclic subfield of degree 23 in $\mathbb{Q}(\zeta_{277})$	none found in Cremona's tables (thanks to B.A.)
$\mathbb{Q}(\zeta_{37})$ (found all ranks in [12,17] and 22)	(66a1 r=17) (195b1 r=12) (862a1 r=22)

We note that when the analytic rank of a given elliptic curve E/K is larger than 3, AnalyticRank(E) in Magma only returns an integer that is 'probably' the analytic rank of E/K.

Correction. Two computations for $\mathbb{Q}(\zeta_{47})^+$ reported in the print version of our paper ([3], 5.2) are incorrect. Indeed, these computations were made in 2016 with the Magma function AnalyticRank(E) and produced a value of L(E/K)(1) which was zero. The Magma function AnalyticRank(E) was upgraded in a 2017 release and in the new release, the estimated value of L(E/K)(1) is very small, but not zero, and thus indicates that there is no change of rank. Indeed, for 204b1, AnalyticRank(ChangeRing(E,K)) produces the value 4.22004855456E - 9, and for 786m1, AnalyticRank(ChangeRing(E,K)) produces the value 3.518727308E - 7.

Remark. The totally real cyclotomic subfield $\mathbb{Q}(\zeta_{81})^+$, of degree 27, has a defining equation of a particular shape

$$f(x) = x^{27} - 27x^{25} + 324x^{23} - 2277x^{21} + 10395x^{19} - 32319x^{17} + 69768x^{15} - 104652x^{13} + 107406x^{11} - 72930x^9 + 30888x^7 - 7371x^5 + 819x^3 - 27x + 1,$$

where all monomials in f(x) are odd except for the constant term. This fact can be used to produce a curve X/\mathbb{Q} of genus 5 with a new point over $\mathbb{Q}(\zeta_{81})^+ = \mathbb{Q}(\alpha)$, with $\alpha := \zeta_{81} + \zeta_{81}^{-1}$ a root of f(x). The general method of the paper [3] produces only (infinitely many) curves of genus 6 with a new point over $\mathbb{Q}(\zeta_{81})^+$.

Indeed, write $xf(x) - x = g(x^2)$ for some polynomial g(x) of degree 14. Find the square root approximation of g(x): $g(x) = h(x)^2 + \ell(x)$ for some polynomial $\ell(x)$ of degree 6. Then the hyperelliptic curve $y^2 = -\ell(x^2) - x$ has a new point over $\mathbb{Q}(\zeta_{81})^+$ with $x = \alpha$, and a \mathbb{Q} -rational point with x = 0. To compute the genus of this hyperelliptic curve, no general method for doing so was found, except for explicitly computing $\ell(x)$ and verifying that $-\ell(x^2) - x$ is squarefree.

Lemma. The totally real cyclotomic subfield $\mathbb{Q}(\zeta_{3^{m+1}})^+$, of degree 3^m , has a defining equation of a particular shape. Indeed, the minimal polynomial of $\zeta_{3^{m+1}} + (\zeta_{3^{m+1}})^{-1}$ is of the form $1 + xs(x^2)$.

When $m \ge 3$ is odd, $3^m + 1$ is divisible by 4. The general method of the paper [3] produces infinitely many curves of genus g_0 with $2g_0 + 1 = (3^m + 1)/2 - 1$ with a new point over $\mathbb{Q}(\zeta_{3^{m+1}})^+$. One could try to use the idea in the case m = 3 described above to produce a curve of genus $2g + 2 = (3^m + 1)/2 - 2$, so that $g = g_0 - 1$ would be an improvement on [3].

References

- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. http://magma.maths.usyd.edu.au/magma/
- [2] J. Cremona, Algorithms for modular elliptic curves, Second edition, Cambridge University Press, Cambridge, 1997.
- [3] Q. Liu and D. Lorenzini, New points on curves, Acta Arith. 186 (2018), no. 2, 101–141.
- [4] K. Matsuno, Mordell-Weil ranks of elliptic curves in the cyclotomic Z₂-extension of the rationals, Int. J. Number Theory 13 (2017), no. 2, 429–438.
- [5] A. Suresh, Realizing Galois Representations in Abelian Varieties by Specialization, Doctoral Dissertation, UGA, 2022
- [6] A. Suresh, Realizing Galois representations in abelian varieties by specialization, preprint

UNIVERSITÉ DE BORDEAUX, INSTITUT DE MATHÉMATIQUES DE BORDEAUX, 33405 TALENCE, FRANCE

SCHOOL OF MATHEMATICAL SCIENCES, XIAMEN UNIVERSITY, 361005 XIAMEN, CHINA *Email address*: Qing.Liu@math.u-bordeaux.fr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GA 30602, USA *Email address*: lorenzin@uga.edu