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Abstract. Let E/Q be an elliptic curve which has everywhere semi-stable reduction. We
first prove that if E(Q)tors contains an element of order N ≥ 3, then there exists a prime
p where E/Q has split multiplicative reduction modulo p, thereby establishing a conjecture
of Agashe. We consider then generalizations over number fields inspired by this result. Fix
a degree d, and consider all number fields K of degree d. Fix a prime N > 2d + 1, and
consider all elliptic curves which have a K-rational torsion point of order N and such that
the Tamagawa number c(E/K) is coprime to N . When d = 1, 2, 3, we show that there exist
only finitely many degree d fields K and finitely many such N -special elliptic curves E/K.
Partial results are also obtained for d = 4, 5, and we conjecture that the statement holds
when d = 6, 7. Fields K which support such elliptic curves are very structured, and we
show in particular that their Lenstra constant M(K) is bounded below by (N − 1)/2 when
N ≤ 23. We conjecture that this statement holds for any prime N .
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1. Introduction

Let K be a number field, and let E/K be an elliptic curve. We investigate in this article
how the presence of a non-trivial torsion point in E(K) affects the reduction properties of
the curve E/K.

When E/Q has everywhere semi-stable reduction, the number of primes where the reduc-
tion is split multiplicative is an important invariant considered already by several authors
(see, e.g., [44], Conjecture 4, [12] Theorem 3, or [65], Conjecture, page 30). Our first theorem
answers positively a conjecture of Agashe in [1], Conjecture 2.2.

Theorem 1.1. Let E/Q be an elliptic curve which has everywhere semi-stable reduction,
and assume that E(Q)tors contains an element of order N ≥ 3. Then there exists a prime p
where E/Q has split multiplicative reduction modulo p.

We explain in Theorem 2.7 how Theorem 1.1 implies in fact a slightly stronger form of
Agashe’s Conjecture 2.2. The difficult cases in the above theorem are the cases where N = 3
and 4. The curve with Cremona label 37a1 (resp. 102a1, 210d2) is an example of a semi-
stable elliptic curve with E(Q)tors trivial (resp. isomorphic to Z/2Z, Z/2Z×Z/2Z) and with
no place of split multiplicative reduction.

It is not immediately clear that a non-trivial generalization of Theorem 1.1 to elliptic curves
over a number field K/Q of degree d > 1 can be found if we only replace in the statement of
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Theorem 1.1 the hypothesis N ≥ 3 with N ≥ g(d) for some appropriate function g(d). We
discuss this point further in Remark 6.12. To be able to formulate a statement for general
number fields K/Q inspired by Theorem 1.1, we introduce the following terminology.

Let Kv be any discrete valuation field with ring of integers OKv , uniformizer πv, and
residue field kv of characteristic p ≥ 0. Let E/Kv be an elliptic curve. Let E/OKv denote
the Néron model of E/Kv. The special fiber Ekv/kv of E is the extension of a finite étale
group scheme Φ/kv, called the group of components, by a connected smooth group scheme
E0kv/kv, the connected component of 0. The elliptic curve E/Kv has multiplicative reduction
when E0kv/kv is a torus, and split multiplicative reduction when this torus is isomorphic to
the multiplicative group Gm,kv/kv. The order cv := |Φ(kv)| is called the Tamagawa number
of E/Kv.

Let us now return to the case where K is a global field, and let v be a non-archimedean
place of K, with completion Kv and residue field kv. Let E/K be an elliptic curve. For each
place v, let cv denote the Tamagawa number of EKv/Kv, and let c = c(E/K) :=

∏
v cv.

Given a prime N ≥ 5, we say that an elliptic curve E/K is N-special if

(a) E/K has a K-rational point of order N , and
(b) N does not divide c(E/K).

We note in our next lemma that any elliptic curve E/K with j(E) ∈ OK is N -special for
any prime N ≥ 5, and that if E/K is not N -special, then it has split multiplicative reduction
at some place v of K.

Lemma 1.2. Let K be a number field. Let E/K be an elliptic curve with a K-rational point
of prime order N ≥ 5.

(i) If N divides c(E/K), then E/K has split multiplicative reduction at some place v of
K.

(ii) If j(E) ∈ OK, then E/K is N-special.

Proof. (i) Let v be a place of K, and let kv denote an algebraic closure of kv. The lemma
follows immediately from the properties of the order |Φ(kv)| of the component group: since
N divides c(E/K), there exists a place v of K where |Φ(kv)| ≥ 5. When the reduction is
additive, |Φ(kv)| ≤ 4. In case of split multiplicative reduction, we have Φ(kv) = Φ(kv) and
this group is cyclic. When the reduction is multiplicative but not split, then |Φ(kv)| = 1 or
2, depending on whether |Φ(kv)| is odd or even (see, e.g., [34], 10.2.24).

(ii) If j(E) ∈ OK , then E/K has everwhere potentially good reduction. Thus at any place
v, the reduction is either good, or additive. In both cases, |Φ(kv)| ≤ 4, and so N cannot
divide cv. �

Remark 1.3 The ratio c(E/K)/|E(K)tors| is a factor appearing in the leading term of the
L-function of E/K in the conjecture of Birch and Swinnerton-Dyer (see, e.g, [17], F.4.1.6).
It is natural to wonder what are the possible denominators of this ratio. When K = Q,
c(E/Q)
|E(Q)tors| ≥ 1/5, with equality only when E = X1(11) ([40], 2.23). See also [71] for a related

question in a wider context. By definition, an N -special curve has a ratio c(E/K)/|E(K)tors|
whose denominator is divisible by N .
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Fix an integer d ≥ 1. Our goal in the remainder of this article is to find conditions on
N such that there exist only finitely many N -special elliptic curves E/K over only finitely
many number fields K of degree d. As is customary, Q(ζn) denotes the n-th cyclotomic field
generated by a primitive n-th root of unity ζn, and Q(ζn)+ denotes its maximal totally real
subfield.

Theorem. Let K/Q be a number field of degree d. Let N ≥ 5 be prime. Let E/K be an
N-special elliptic curve.

(a) (see 2.1) Assume that d = 1 and N ≥ 5. Then N = 5 and E/Q = X1(11)/Q.
(b) (see 3.3) Assume that d = 2 and N ≥ 7. Then N = 7 and E/K is one of four explicit

exceptions over the fields K = Q(ζ5)
+ and Q(ζ3).

(c) (see 6.1) Assume that d = 3 and N ≥ 11. Then N = 13 and K = Q(ζ7)
+, and E/K is

unique, with j-invariant −28672/3 and Cremona label 147b1.

Let us now state our results when d ≥ 4. Recall that in a number field K, a unit u ∈ O∗K
is called exceptional if 1− u is also a unit. The number of exceptional units in OK is finite,
and is bounded explicitly by 28(r+1), where r is the rank of the unit group O∗K of OK (see,
e.g., [3], 1.1).

A sequence u1, . . . , um of elements in K such that all differences ui − uj with i 6= j are
units in O∗K is called an exceptional sequence. We can always find such a sequence with
m = 2, taking u1 = 0 and u2 = 1. When m ≥ 2, we can find a new such sequence
vi := (ui − u1)/(u2 − u1) with v1 = 0 and v2 = 1, and such that vi ∈ O∗K when i ≥ 2. The
sequence 0, 1, u is exceptional if and only if u is an exceptional unit.

The integer m maximal with the property that there exists an exceptional sequence
u1, . . . , um in K is called the Lenstra constant M(K) of K. Any exceptional sequence
0, 1, u3, . . . , um reduces to m distinct elements modulo any maximal ideal P of OK . Thus,
m ≤ 2[K:Q] and, better, m ≤ L(K), where L(K) denotes the minimum of the norms |OK/P|
over all maximal ideals P of OK .

Theorem 1.4. Let K/Q be a quartic number field. Let N ≥ 11 be prime. Let E/K be an
N-special elliptic curve.

(a) Suppose that O∗K has rank at most 2. Then K is one of only three different fields, listed
in the table below. The possible N ’s are listed in the first column next to the defining
polynomial of the field.

N field K (degree 4) rk #exu M(K) disc(K)

11(2), 13(j = 0) x4 − x3 − x2 + x+ 1 1 20 6 117

11(4)∗ x4 − x3 + 2x− 1 2 54 9 −275

11(2) x4 − x− 1 2 54 7 −283

11(2), 13,17 x4 − x3 − 3x2 + x+ 1 3 162 10 or 11 725

(b) Suppose that K has unit rank 3. Assume the conjecture that if F/Q is a quartic field,
then M(F ) ≤ 4 except for finitely many explicit exceptions. Then K is the unique field
with unit rank 3 appearing in the table above, and the possible N ’s are listed next to its
defining polynomial.
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1.5 In the above table, we have listed the known quartic fields K where there exists at least
one N -special elliptic curve E/K with N ≥ 11. The first column lists all the N ’s for which
such an elliptic curve exists over the field K. A number field K of degree d and signature
(r1, r2) with r1 + 2r2 = d has unit rank r1 + r2 − 1. The column ‘rk’ in the table gives the
rank of the unit group O∗K . The column #exu gives the number of exceptional units in O∗K .
The last column gives the discriminant disc(K) of K. Its sign is given by (−1)r2 .

A notation of the form N(c) is used to denote that exactly c non-isomorphic N -special
elliptic curves were found over that field. The notation N(c)∗ indicates in addition that at
least one of them has integral j-invariant. In the case of 11(4)∗ above, exactly two of the four
have this property, and are conjugated. They do not have complex multiplication. When the
j-invariant of the curve is short to write down, we provide it, as in the notation 13(j = 0).

The reader will note that in the table above, the number of N -special elliptic curves E/K
when N = 11 is always even. This is a general fact proved in Proposition 5.8 when K does
not contain Q(ζ11)

+.
A completely analogous statement to Theorem 1.4 in the case of quintic fields can be

found in Theorem 6.6 and Conjecture 6.7. The proofs of Theorem 1.4 and Theorem 6.6 are
based on the following intrinsic property that a field K enjoys when there exists an N -special
elliptic curve E/K.

Let K/Q be a number field. Let N ≥ 7 be a prime. Let E/K be an N -special elliptic
curve. We conjecture under these hypotheses that M(K) ≥ (N − 1)/2, and we prove this
conjecture for N ≤ 23 in Theorem 4.3. When E/K has potentially good reduction, this
statement was proved by Mestre ([47], Théorème 1). When N = 11, the lower bound can
be slightly improved, and we show in Theorem 4.3 (ii) that in this case M(K) ≥ 6.

Theorem 4.3 can be made completely explicit. Recall that the modular curve X1(N)/Q is
birational to a plane curve given by an equation FN(r, s) = 0 called the raw form equation of
X1(N). Theorem 4.3 shows that when N ≥ 11, an N -special elliptic curve E/K corresponds
to a point (r0, s0) on the plane curve FN(r, s) = 0 where both r0 and s0 are exceptional
units in O∗K . This suggests the following algorithm for finding all the N -special curves over
a given field K of low degree d. First, given d, Proposition 3.1 gives an explicit upperbound
for N . For each allowed N , find all the points (r0, s0) with FN(r0, s0) = 0, where both r0
and s0 are exceptional units in O∗K .

This algorithm works well for sextic and septic number fields, and we are able to check,
using the tables of number fields in [21], that there are indeed surprisingly few N -special
elliptic curves with N ≥ 17 over such fields. We conjecture the finiteness of the number of
N -special curves over such fields in 7.1 and 7.8. The data obtained for fields of degrees 8
through 12 is found in [41].

In view of Theorem 4.3, to prove the finiteness of the number of N -special elliptic curves
E/K over all fields of degree d when N > 2d + 1, it would suffice to show that there are
only finitely many fields of degree d with M(K) ≥ d+ 1. This statement is true for d = 2, 3.
The data that we computed supports conjecturing that this statement is true when d = 4
or 5 (see 6.4 and 6.9). When d = 7, we prefer to call this statement a question (see 7.10).
When d = 6, and in general when d is not prime, the finiteness when M(K) ≥ d+1 does not
hold and the bound needs to be adjusted (see 7.6). In the proofs of Theorem 1.4 in degree
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4 and of Theorem 6.6 in degree 5, we use results of Leutbecher and Martinet on the Lenstra
constant M(K) when the unit rank is at most 2. We conclude this article in Section 8 with
a discussion of N -special abelian varieties of higher dimension.

It is our pleasure to thank Christian Wuthrich for some Sage [61] advice, and Skip
Garibaldi, David Krumm, Mentzelos Melistas, Jim Stankewicz, and Nicholas Triantafillou
for helpful conversations.

2. Elliptic curves over Q

Let E/Q be an elliptic curve with a Q-rational point of order N . Mazur [43] showed that
N = 1, . . . , 10, or 12. The proof of Theorem 1.1 proceeds through a case-by-case analysis of
each of the possible values of N .

Proposition 2.1. Let E/Q be an elliptic curve with a Q-rational point of order N .

(a) If N = 7, then 72 divides c(E/Q), except for the curve 26b1 in [8], which has 7 dividing
c(E/Q). In particular, E/Q is not N-special.

(b) If N = 5, then 5 divides c(E/Q), except for the curve 11a3 in [8] which has split multi-
plicative reduction at p = 11 but has c11 = 1. In particular, E/Q is N-special only when
E = X1(11).

Proof. (a) Follows directly from [40], 2.10. Part (b) follows immediately from [40], 2.7,
after verifying that the curve 11a3 in [8] has split multiplicative reduction at p = 11 with
c11 = 1. �

Note that it follows from Proposition 2.1 that if E/Q is an elliptic curve with integral j-
invariant, then it cannot have a Q-rational torsion point of order N = 5 or 7. This statement
was proved already in [16], page 6.

2.2 For our next two propositions, we will use the following notation. Let K be any field.
Let E/K be an elliptic curve and P ∈ E(K). We first translate so that P = (0, 0) and E/K
can be given by an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x.

Then [−1]P = (0,−a3), and P has order 2 if and only if a3 = 0. When a3 6= 0, we can make
the change of variables y = Y + a4/a3 and assume that we have an equation of the form

y2 + a1xy + a3y = x3 + a2x
2.

Since [2]P = (−a2, a1a2 − a3), we find that P has order 3 if and only of a2 = 0.
Assume that P has order 3, so that a2 = 0. Then c4 = a1(a

3
1−24a33) and ∆ = a33(a

3
1−27a33).

We find that either a1 = 0, in which case the j-invariant of E is 0, and thus E/K has
everywhere potentially good reduction, or a1 6= 0, and we can renormalize so that the
equation is

y2 + xy + λy = x3

for some λ ∈ K.
Assume now that P does not have order 2 or 3. Then we can renormalize so that the

equation has the form

(2.1) E(b, c) : y2 + (1− c)xy − by = x3 − bx2
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We have [−1]P = (0, b), [−2]P = (b, 0), [2]P = (b, bc), and [3]P = (c, b− c). We find that P
has order 4 if and only if b 6= 0 and (0, b) = (c, b− c) or, in other words, if c = 0.

The Weierstrass equation for E(b, c) is called Kubert E(b, c)-normal form in [48], section
3, page 111, as its first appearance in print is found in [24], Table 3, page 217.

Proposition 2.3 (Case N=4). Let E/Q be an elliptic curve with a Q-rational point of
order N = 4. Assume that E/Q has semi-stable reduction. Then there exists at least one
prime ideal (p) where E/Q has split multiplicative reduction.

Proof. Let K be any field. It follows from the above discussion in 2.2 that there exists λ ∈ K
such that an elliptic curve E/K with a point of order N = 4 can be given by a Weierstrass
equation of the form

Eλ : y2 + xy − λy = x3 − λx2

with P = (0, 0). The invariants of Eλ are:

∆(λ) = λ4(1 + 16λ),
c4(λ) = 16λ2 + 16λ+ 1.

Let now K be a number field. Assume that there exists a prime P such that m :=
ordP(λ) > 0. Then we immediately find from the computations of ∆ and c4 that the
reduction of E/K modulo P is of type I4m. It is split because the reduction of the equation
modulo P clearly has two distinct tangent lines at the singular point (0, 0).

We are now reduced to consider only the case where µ := 1/λ ∈ OK . The statement
of the proposition may fail to hold when Q is replaced by a number field K with infinitely
many units. Indeed, when µ ∈ O∗K , we find that the curve Eλ has multiplicative reduction
at each prime P which contains the discriminant λ4(1 + 16λ), since one easily checks that
in this case c4 /∈ P. It is possible to find examples where the reduction at all such P is not
split multiplicative. On the other hand, when K = Q, we need only consider µ = ±1. When
µ = 1, we obtain the curve 17a4, with split multiplicative reduction at p = 17, and when
µ = −1, we obtain the curve 15a8, with split multiplicative reduction at p = 5.

Let us return to the case where K is a general number field, and assume that there exists
a prime P such that m := ordP(µ) > 0. Let π denote a uniformizer of the local ring OK,P,
and write µ = uπm, with u ∈ O∗K,P. The Weierstrass equation Eλ is not integral at P, but
the following equations are:

(2.2)
If m = 2z : y2 + uπzxy − u2πzy = x3 − ux2,

If m = 2z + 1 : y2 + uπz+1xy − u2πz+2y = x3 − uπx2.

The discriminant of the second equation is u7π2z+7(uπ2z+1 + 16). We claim that the case
m = 2z+1 cannot happen when P is coprime to 2. Indeed, the second equation is such that
over K(

√
π), the change of variables X = x

√
π
−2

and Y = y
√
π
−3

produces a new equation

Y 2 + u
√
π
2z+1

XY − u2
√
π
2z+1

Y = X3 − uX2.

It is clear that since P is coprime to 2, reducing this equation modulo
√
π produces a plane

curve with a node, so that the reduction is multiplicative. One checks with Tate’s algorithm
[66] that this curve has in fact reduction of type I4z+2. It follows that over K, the reduction
of the elliptic curve is either of type I2z+1, or of type I∗n for some n > 0. The former case is
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not possible, since the discriminant of the Weierstrass equation over K is exactly divisible
by π2z+7. It follows that when m is odd, the reduction at P is not semi-stable, and this case
cannot happen under our hypotheses.

Let now K = Q. Our previous discussion implies that we can assume that we are in one
of the following cases (a), (b), or (c).

Case (a): Either µ = ±(2zu)2, with u > 1 odd and z ≥ 0, or µ = 22z with z > 0. In these
cases, µ = ±ν2 with ν ∈ Z, and the curve can be given by the integral Weierstrass equation

y2 + νxy − (±ν)y = x3 − (±x2).

Let p be an odd prime that divides u. If µ < 0, we find by reducing the above equation
modulo p that the reduction is split multiplicative. Assume now that µ = ν2 > 0. The
discriminant of the equation y2 + νxy − νy = x3 − x2 is µ(µ+ 16), with c4 = µ2 + 16µ+ 16.
Since the odd prime p divides µ, we find that there exists at least one odd prime q that
divides µ + 16. In case µ = 22z, we similarly find that there exists at least one odd prime
q that divides µ + 16, unless µ = 16. When µ = 16, the curve is 32a4 and has additive
reduction at 2.

We claim that the reduction at q is split. Indeed, since q cannot divide c4, we first find
that the reduction at q is multiplicative. Since P = (0, 0) and [2](P ) = (1, 0) do not reduce
to the singular point modulo q, we find that the connected component of zero of the Néron
model contains a k-point of order 4. On the other hand, any odd prime q dividing ν2 + 16
is such that −1 is a square modulo q. Thus, q ≡ 1 (mod 4). It follows that the connected
component of zero has order |k| − 1 if it has a point of order 4, and thus the reduction must
be split.

Case (b): µ = −22z for some z > 0. We claim that the reduction of such a curve is split
multiplicative at 2 when z ≥ 5. When z = 1 or 3, the curves are 24a4 and 24a3, and are
not semi-stable at 2. When z = 2, the equation does not define an elliptic curve, and when
z = 4, the curve is 15a7, and has split multiplicative reduction at 5 only.

Note that in this family of elliptic curves, there are examples where the curve has split
multiplicative reduction only at 2, such as the curve 42a4 when z = 5, and 2046g4 when
z = 7. This happens every time 22z−4 − 1 is divisible only by primes that are congruent to
3 modulo 4.

Let ν = 2z with z ≥ 5. We start with the equation y2− νxy− νy = x3 + x2 and following
Tate’s algorithm [66], we make the change of variables y = Y + x, giving us a new equation
Y 2 + (2− ν)xY − νY = x3 + νx2 + νx. This equation is not minimal, and we can now make
the change of variable v = Y/8 and u = x/4 to obtain the minimal equation at 2:

v2 + (1− ν/2)uv − (ν/8)v = u3 + (ν/4)x2 + (ν/16)x.

Since z ≥ 5, we find that the reduction modulo 2 is v2+uv = u3, showing split multiplicative
reduction at 2, as desired.

Case (c): µ = 22z+1u with u odd and z ≥ 0. We claim that the reduction of such a curve
is not semi-stable at (2). We start by recalling that

j(Eλ) =
(16λ2 + 16λ+ 1)3

λ4(1 + 16λ)
=

(16 + 16µ+ µ2)3

µ(µ+ 16)
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An explicit computation of the valuation at (2) of the j-invariant of E shows that if ord2(µ) >
8, then Eλ has potentially multiplicative reduction at (2) since ord2(j) < 0. In this case, we
apply Tate’s algorithm [66] starting with the equation (2.2) at Second Branch 7) on page 50,
and find that the reduction at (2) is of type I∗n for some n > 0 and is thus not semi-stable.

When 0 < ord2(µ) < 8, we find that ord2(j) > 0. In these cases where ord2(j) > 0, the
reduction at (2) is potentially good, and we argue as follows to show that at (2) the reduction
cannot be good and thus is additive. Assume that the curve has good reduction at (2). The
curve contains a K-rational torsion point of order 4, and modulo 2, this point cannot be
contained in the kernel of the reduction. Thus the reduction modulo (2) is a curve with a
k-rational torsion point of order 2 and, hence, it is ordinary. Over F2, only the curve with
j-invariant 0 is supersingular. Thus, we find that ord2(j(Eλ)) = 0, a contradiction. �

Proposition 2.4 (Case N=3). Let E/Q be an elliptic curve with a Q-rational point of
order N = 3. Assume that E/Q has semi-stable reduction. Then there exists at least one
prime ideal (p) where E/Q has split multiplicative reduction.

Proof. Let K be any field. Let E/K be an elliptic curve E/K with j-invariant not equal to
0 and with a point P of order 3. It follows from the discussion in 2.2 that there exists λ ∈ K
such that E/K can be given by a Weierstrass equation of the form

Eλ : y2 − xy − λy = x3

with P = (0, 0). The invariants of Eλ are:

∆(λ) = λ3(1− 27λ),
c4(λ) = 1− 24λ.

Let now K be a number field. Assume that there exists a prime P such that m := ordP(λ) >
0. Then we immediately find from the computations of ∆ and c4 that the reduction of E/K
modulo P is of type I3m. It is split because the reduction of the equation modulo P clearly
has two distinct tangent lines at the singular point (0, 0).

We are now reduced to consider only the case where µ := 1/λ ∈ OK . The Weierstrass
equation Eλ might not be integral, but the following one is:

(2.3) y2 − µxy − µ2y = x3.

The new discriminant is µ8(µ− 27), with c4 = µ3(µ− 24). The statement of the proposition
may fail to hold when Q is replaced by a number field K with infinitely many units. Indeed,
when µ ∈ O∗K , we find that the curve Eλ has multiplicative reduction at each prime P which
contains the discriminant µ8(µ − 27), since one easily checks that in this case c4 /∈ P. It is
possible to find examples where the reduction at all such P is not split multiplicative. On
the other hand, when K = Q, we need only consider µ = ±1. When µ = 1, we obtain the
curve 26a3, with split multiplicative reduction at p = 13, and when µ = −1, we obtain the
curve 14a4, with split multiplicative reduction at p = 7.

Let us return to the case where K is a general number field and assume now that there
exists a prime P such that m := ordP(µ) > 0. Let π denote a uniformizer of the local ring
OK,P, and write µ = uπm, with u ∈ O∗K,P. We claim that if m is not divisible by 3, then the
reduction modulo π is not semi-stable, and thus we need not consider this case any further.
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More precisely, it follows from Tate’s Algorithm [66] that when m ≡ 1 (mod 3), then the
reduction is of type IV, and when m ≡ 2 (mod 3), then the reduction is of type IV∗.

To prove this, write m = 3s + i, with i = 0, 1, or 2, and s ≥ 0. In general, the equation
(2.3) is not minimal, and we can make the following change of variables: Y := y/π6s and
X := x/π4s. The new equation is still integral, and has the form

(2.4) Y 2 − uπs+iXY − u2π2iY = X3.

When i = 2, the above equation is still not minimal, and we make the further change of
variables Y ′ := Y/π3 and X ′ := X/π2 to get

(2.5) Y ′2 − uπs+i−1X ′Y ′ − u2π2i−3Y ′ = X ′3.

When i = 1, the equation (2.4) is minimal and Tate’s algorithm [66] shows that the reduction
is of type IV. When i = 2, the equation (2.5) is minimal and Tate’s algorithm shows that
the reduction is of type IV∗.

Let us assume now that K = Q. We are reduced to consider the case where µ = t3 for
some t ∈ Z. The curve y2− µxy− µ2y = x3 can be given by the equation y2− txy− y = x3,
with discriminant (t3 − 27), and c4 = t(t3 − 24). Let τ be a prime that divides (t3 − 27). If
τ also divides c4, then τ divides 3t. It follows in this case that τ = 3. Thus, unless τ = 3,
we find that E/Q has multiplicative reduction at τ .

Suppose that there exists a prime τ 6= 3 which divides t2 + 3t + 9 = (t3 − 27)/(t − 3).
We claim that in this case the reduction at τ is split multiplicative. Indeed, in the residue
field Fτ , we find that we have a non-trivial third root of unity, since the class of τ/3 satisfies
the equation z2 + z + 1. It follows that 3 divides τ − 1. Now consider the reduction of the
3-torsion point (0, 0) modulo τ . The reduced Weiestrass equation shows that the reduction is
not singular. Thus the point (0, 0) reduces to a point of order 3 in the connected component
of the Néron model. The set of Fτ -rational points of the connected component has order
τ − 1 in the split case, and τ + 1 in the non-split case. Since 3 divides τ − 1, we find that
the connected component of the Néron model cannot have order τ + 1. In other words, the
connected component of the Néron model must be Gm/Fτ , as claimed.

When K = Q, and µ = t3 ∈ Z, we leave it to the reader to check that the solutions to
the equation t2 + 3t+ 9 = ±3s with t ∈ Z and s ∈ Z≥0, are (t, s) = (0, 2), (3, 3), (−3, 2), and
(−6, 3). The case where t = 3 does not correspond to an elliptic curve. The cases t = 0,
t = −3, and t = −6 produce the elliptic curves 27a3, 54a3, and 27a4, respectively, with
additive reduction at p = 3. Thus when the reduction of E/Q is everywhere semi-stable as
we assume, we always find a prime of split multiplicative reduction among the divisors of
t2 + 3t+ 9. �

Proof of Theorem 1.1. When N = 3, 4, Theorem 1.1 follows directly from 2.4 and 2.3. When
N = 5, 7, Theorem 1.1 follows from 2.1, using Lemma 1.2 (i). Finally, if N > 7 is prime,
and E/Q does not have a place of split multiplicative reduction, then Lemma 1.2 (i) shows
that E/Q is N -special. This contradicts Proposition 3.1. �

Before we give the proof of Agashe’s Conjecture in Theorem 2.7, we briefly consider the
elliptic curves over Q which have a Q-rational point of order N = 2 and prime conductor p.
When p 6= 2, 3, 17, such curves are studied in [62], Thm. 2. Such a curve exists if and only if
p = A2+64 for some integer A. When p is of that form and we choose A ≡ 1 (mod 4), exactly
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two such elliptic curves E/Q and E ′/Q exist, with E having equation y2 = x3 +Ax2 − 16x,
and E ′ is isomorphic to E/ < (0, 0) >, with equation y2 = x3−2Ax2 +px. As a complement
to Theorem 1.1, we note:

Proposition 2.5. Let E/Q be an elliptic curve with a Q-rational point of order N = 2 and
prime conductor p. Then E has split multiplicative reduction at p.

Proof. We use the modularity of elliptic curves over Q to find that there are no such curves
with conductor 2 or 3, and exactly four curves of conductor 17. One checks directly that for
these curves, the reduction is split at p = 17. When p 6= 2, 3 and 17, we apply the results of
[62] recalled above. When p = A2 + 64, it is clear that p ≡ 1 (mod 8), and the proposition
follows then from Lemma 2.6 (b) for the equation y2 = x3 + Ax2 − 16x. For the equation
y2 = x3− 2Ax2 + px, one can check directly that −2A is a square in Z/pZ, showing that the
reduction is split. �

Lemma 2.6. Let K be any number field, and let A ∈ OK and u ∈ O∗K. Consider the elliptic
curve E/K with equation y2 = x3 + Ax2 + 16ux. Let P denote a prime ideal of OK which
divides A2 − 64u and is coprime to (2). Write |OK/P| = pf . Then E/K has multiplicative
reduction at P. Moreover,

(a) If u = 1, then the reduction is split multiplicative at P if pf ≡ 1 (mod 4).
(b) If u = −1, then the reduction is split multiplicative at P if and only if pf ≡ 1 (mod 8).

Proof. Working in OKP
, we can make the change of variables X = x + A/2, and reducing

modulo P, we find an equation of the form y2 = X3 − A/2X2. Note that P is coprime to

(A). Hence, the reduction is multiplicative, and it is split multiplicative if and only if −A/2
is a square in OK/P.

(a) When P divides A2 − 64, it must divide either A − 8 or A + 8. Therefore, either
−(A/2) ≡ 22, or −(A/2) ≡ −22 modulo P. In the latter case, when pf ≡ 1 (mod 4), then

−1 is a square in OK/P and in that case also, −A/2 is a square in OK/P, as desired.
(b) We always have (A/2)2 ≡ 16u mod P. When u = −1, then −A/2 ≡ c2 implies that

(A/2)2 ≡ c4 ≡ −16. It follows that the equation x4 = −1 has a root in OK/P and, thus, 8
divides pf − 1. Assume now that 8 divides pf − 1, and let d be such that d4 ≡ −1. Then we
find that −A/2 ≡ (2d)2 or (2d3)2. �

Theorem 2.7. Agashe’s Conjecture 2.2 in [1] is true, even without the hypothesis that E/Q
be optimal.

Proof. Agashe’s Conjecture 2.2 in [1] is phrased in terms of root numbers as follows:
Let E/Q be an optimal elliptic curve with squarefree conductor. Assume that the odd part

of E(Q)tors is not trivial. Then the root number wp at p equals −1 for at least one prime p
that divides the conductor of E.

Let K be a number field, and let v denote a place of K. Recall that when EKv/Kv has
semi-stable reduction and v is non-archimedean, wv = 1 if the reduction is good or the torus
E0kv/kv is not split, and wv = −1 when E0kv/kv is split (see, e.g., [11], Thm 3.1).
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The hypothesis that E/Q be optimal is not needed to apply Theorem 1.1. The hypothesis
that E/Q has squarefree conductor is equivalent to the fact that E/Q has everywhere semi-
stable reduction. Thus Theorem 1.1 implies that there exists a prime p where E/Q has split
multiplicative reduction modulo p, i.e., that there exists a prime p with wp = −1. �

3. Elliptic curves over quadratic fields

Let N be prime. The condition that an elliptic curve E/K is N -special implies an upper-
bound for N in terms of d := [K : Q], as we now explain.

Proposition 3.1. Let N ≥ 5 be prime. Let K/Q be a number field of degree d. Let E/K

be an N-special elliptic curve. Then N ≤ 2d + 1 + 2
√

2d.
In particular, when d = 1, N ≤ 5, when d = 2, N ≤ 7, and when d = 3, N ≤ 13. If in

addition d = 4, then N ≤ 17. If d = 5, then N ≤ 19, or N = 31 or 41. If N = 23, then
d ≥ 7.

Proof. When N ≥ 5, the reduction of E/K cannot be additive at any prime P of OK above
a prime p, except possibly when p = N . Indeed, the component group in the presence
of additive reduction has order bounded by 4. Since a torsion point of order prime to p
reduces injectively in the special fiber of the Néron model, and since an additive group
in characteristic p contains only torsion points of order p, we find that if the reduction is
additive, we must have p = N .

When N does not divide c(E/K), the point of order N ≥ 5 cannot reduce injectively in the
component group at any place of bad reduction. Thus the order of the group of kP-rational
points on the connected component of the Néron model must be divisible by N . In case of
multiplicative reduction, we find that N ≤ |kP| + 1, and in the case of good reduction, we

can use the Weil bound N ≤ |kP|+ 1 + 2
√
|kP|. Thus, when N does not divide c(E/K) and

N ≥ 5, we can apply this discussion with p = 2 and we find that N ≤ 2d + 1 + 2
√

2d.
Assume now that d = 4. We have N ≤ 2d + 1 + 2

√
2d = 25, and thus we need to show

that the cases N = 19 or N = 23 cannot occur. If the reduction is multiplicative at any
prime above (2), the bound N ≤ 17 holds. Assume then that there exists a unique maximal
ideal P above (2) with residue field of size q := 24. An elliptic curve EFq/Fq cannot have an
Fq-rational point of order 19 or 23. This follows immediately from the list of possible orders
for |EFq(Fq)| given in [70], Theorem 4.1. Indeed, the order of |EFq(Fq)| can only be an integer
in the interval [9, 25] of the form 17 + a with either a odd, or a = 0,±4,±8.

When N = 23 and d = 5, 6 we argue in the same way. First we can check that there
exists a unique maximal ideal P above (2) with residue field of size q := 2d. An elliptic
curve EFq/Fq cannot have an Fq-rational point of order 23. Indeed, when d = 5, the order of
|EFq(Fq)| can only be an integer in the interval [22, 44] of the form 33 + a with either a odd,
or a = 0,±8. Thus the order of the group cannot equal 23 (and for later use, we note that
it cannot be equal to 37 or 43 either, but it might equal 17 or 19). When d = 6, the order of
|EFq(Fq)| can only be an integer in the interval [49, 81] of the form 65 + a with either a odd,
or a = 0,±8,±16. Thus the order of the group cannot equal 69 and N cannot equal 23.
Note that N could a priori equal 29, 31, 37, and 73, and as we show in Remark 7.3, N = 37
does occur when d = 6.
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Finally, assume that d = 5. It might be possible in this case to have N = 31 when (2) is
prime in OK and the reduction is split multiplicative at (2). When the reduction at (2) is
good, we already showed that N = 23 is not possible and noted at the same time that the
same argument also shows that N 6= 37, 43. �

Remark 3.2 Let E/K be an elliptic curve with a K-rational point of order N . When
[K : Q] = 3, Parent proved that the possible prime values of N are 2, 3, 5, 7, 11, and 13
([56], [57]). The same statement follows directly from Proposition 3.1 under the additional
hypothesis that E/K be N -special. When [K : Q] = 4, it is expected that a K-rational
torsion point of order N can exist only if N ≤ 17, even when the curve is not N -special.

Theorem 3.3. Let N ≥ 7 be prime. Let K be a quadratic number field, and let E/K be
an N-special elliptic curve. Then N = 7, and there exist only four N-special elliptic curves,
two conjugated curves over K = Q(

√
5), and two conjugated curves with potentially good

reduction over K = Q(
√
−3).

Proof. That N ≤ 7 follows immediately from Proposition 3.1. The determination of the
N -special curves follows immediately from [40], 2.10 (b) and (c), after listing all exceptions
over the two quadratic fields with exceptional units. Example 3.4 gives the complete list of
N -special curves over quadratic fields. �

Example 3.4 Let N = 7. We list in this example the four N -special elliptic curves E/K
when K is a quadratic field. Let K = Q(

√
5) and let u := (1 +

√
5)/2. Consider the elliptic

curve E/K given by

y2 − uy = x3 − ux2.

Then (0, 0) is a K-rational point of order 7. The curve E/K has prime conductor P,
one of the two primes of norm 41, and non-split multiplicative reduction of type I1 at P.
The conjugated elliptic curve has the same properties. Since these curves have different
conductors, they cannot be isomorphic.

Let K = Q(
√
−3) and let g := (1 +

√
−3)/2. Consider the elliptic curve E/K with j = 0

given by

y2 + gy = x3 + (g + 1)x2 + gx.

Then (0, 0) is a K-rational point of order 7. The curve E/K has additive reduction of type
II at one of the primes above 7. The conjugated elliptic curve has the same properties.

Remark 3.5 It follows from Theorem 3.3 that if E/K is an elliptic curve over a quadratic
field with integral j-invariant, then it cannot have a K-rational torsion point of prime order
N ≥ 7 except when K = Q(ζ3) and N = 7. This statement was proved already in [48],
Theorem 4 and Table 10. The same authors show that there are only finitely many quadratic
fields K each with finitely many elliptic curves E/K with integral j-invariant and a K-
rational point of order 5 ([48], Corollaries 1 and 2, and Table 8). When ‘integral j-invariant’
is replaced by ‘E/K is 5-special’, the corresponding result is likely to not hold for real
quadratic fields (see [40], Remark 2.8).
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4. Exceptional Units

Let FN(r, s) ∈ Z[r, s] denote the raw form equation1 of X1(N)/Q, as in [63], section 2. A
list of explicit formulas for FN(r, s) is given in [64] for N ≤ 101.

Example 4.1 It may be worth noting that the ‘size’ of the polynomial FN(r, s) grows rapidly
with N . For instance, in the case of N = 101, the file in [64] for FN(r, s) opens in Notepad
with 34516 lines. We list below some small examples of FN(r, s) which fit on one line.

F3 = r, F4 = s, F5 = r − 1, F6 = s− 1, F7 = r − s
F8 = rs− 2r + 1
F9 = r − s2 + s− 1
F10 = rs2 − 3rs+ r + s2

F11 = r2 − rs3 + 3rs2 − 4rs+ s
F12 = r2s− 3r2 + rs+ 3r − s2 − 1
F13 = r3 − r2s4 + 5r2s3 − 9r2s2 + 4r2s− 2r2 − rs3 + 6rs2 − 3rs+ r − s3

Let us consider again the E(b, c)-normal form (2.1) and set b := rs(r−1) and c := s(r−1),
to obtain a Weierstrass equation with coefficients in the polynomial ring Z[r, s]:

E(r, s) : y2 + (1− s(r − 1))xy − rs(r − 1)by = x3 − rs(r − 1)x2.

This equation defines an elliptic curve over the field of fractions of Z[r, s], with the ob-
vious point P := (0, 0). We can compute [n](P ) := (Xn(r, s), Yn(r, s)), where [n] is the
multiplication-by-n map on the elliptic curve. The rational function

xn = xn(r, s) := Xn(r, s)/b

is listed below for n = 1, . . . , 11.

4.2 In our next table, the entry corresponding to xi and xj, when i ≥ 3 and j ≥ 1, is
the factorization in Q(r, s) of the rational fraction xi − xj in terms of the polynomials
F3, F4, . . . , Fi+j, up to sign. More precisely, we have xi − xj = (−1)j−1(xi,xj)-entry. The
first column thus gives xi = xi − x1.

1The terminology raw form was introduced in [60]. The terminology exceptional unit was coined in 1969
by Nagell in [54], section 1. He might be the first author to relate the existence of K-rational torsion points
on some elliptic curve E/K to the existence of exceptional units in K (see, e.g., [51], Théorème I and II).
Nagell’s interest in exceptional units dates back to at least 1928 (see, e.g., [49], Hilfsatz IV, page 17).
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We can now state the main theorem of this section. The definitions of an exceptional
sequence and of the Lenstra constant M(K) were recalled in the Introduction. Note that if
0, 1, u3, . . . , un is an exceptional sequence, then so is 0, 1, u−13 , . . . , u−1n .

Theorem 4.3. Let K be a number field. Let N ≥ 7 be a prime. Let E/K be an N-special
elliptic curve, with a K-rational point P of order N . Let (r0, s0) ∈ K2 be the point with
FN(r0, s0) = 0 corresponding to the pair (E/K,P ). Then

(i) If N = 7, then r0 is an exceptional unit.
(ii) If N = 11, then 0, 1, r−10 , s−10 , s0−1

r0−1 ,
r0−1

r0(s0−1) , is an exceptional sequence in O∗K. In par-

ticular, M(K) ≥ 6.
(iii) If 13 ≤ N ≤ 23, then 0, 1, r−10 , s−10 , s0−1

r0−1 , x6(r0, s0), . . . , xN−1
2

(r0, s0), is an exceptional

sequence in O∗K. In particular, M(K) ≥ N−1
2

.
(iv) If 23 ≤ N ≤ 101, then M(K) ≥ 11.

4.4 We conjecture that Part (iii) of Theorem 4.3 holds for any prime N ≥ 13. The proof
of Theorem 4.3 is based on the following conjectural properties of the polynomials FN(r, s)
and of the rational functions x3(r, s), . . . , xN−1

2
(r, s).

(1) Let N ≥ 7 be prime. Consider FN(r, s) as a polynomial in r with coefficients in Z[s]
and let dr = dr(N) denote its degree in r. Write this polynomial as

FN(r, s) = gdr(s)r
dr + gdr−1(s)r

dr−1 + · · ·+ g1(s)r + g0(s).

Then gdr(s) = 1, and g0(s) = ±sa for some integer a = a(N) > 0.
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(2) Let N ≥ 11 be prime. Consider FN(r, s) as a polynomial in s with coefficients in
Z[r], and let ds = ds(N) denote its degree in s. Write this polynomial as

FN(r, s) = fds(r)s
ds + fds−1(r)s

ds−1 + · · ·+ f0(r).

Then fds(r) = ±rb for some integer b = b(N) > 0.
(3) For each i ≥ 3 and 1 ≤ j < i, the rational function xi− xj can be expressed in terms

of the polynomials F3, . . . , Fi+j only. In other words, the only irreducible polynomials
in Z[r, s] that can divide either the numerator or the denominator of xi − xj written
in reduced form are, up to sign, the polynomials F3, . . . , Fi+j. Table 4.2 verifies this
claim up to i = 11.

We conjecture that these properties always hold when N is prime. Properties (1) and (2)
can be checked for N ≤ 101 by inspection of the formulas given in [64]. Conjectural formulas
for dr(N), ds(N), a(N), and b(N), are given in 4.10 when N is prime. We further discuss
these conjectures and possible proof in 4.10, after we give the proof of Theorem 4.3.

4.5 Proof of Theorem 4.3. Let (r0, s0) ∈ K2 with FN(r0, s0) = 0 corresponding to the given
elliptic curve E/K with a K-rational point P of order N . In particular, (r0, s0) 6= (0, 0), (1, 1)
and (1, 0). Then E/K is isomorphic to the elliptic curve E(b, c) given in Weierstrass equation
by

y2 + (1− c)xy − by = x3 − bx2

where b = r0s0(r0− 1) and c = s0(r0− 1). The above isomorphism sends the point P to the
point P0 := (0, 0) in E(b, c).

For N prime with 7 ≤ N ≤ 101 as in the theorem, we start by proving the following four
claims:

(a) Let P denote a prime ideal of OK such that ordP(s0) > 0. Then ordP(r0) ≥ 0, and E/K
has reduction modulo P of split multiplicative type Im with m divisible by N .

(b) Let P denote a prime ideal of OK such that ordP(s0) < 0. Then ordP(r0) 6= 0 and E/K
has reduction modulo P of split multiplicative type Im with m divisible by N .

(c) If s0 is a unit in OK , then so is r0.
(d) Assume that r0 and s0 are both units in OK . Let P denote a prime ideal of OK such

that ordP(r0 − 1) > 0. Then E/K has reduction modulo P of split multiplicative type
Im with m divisible by N .

Assuming that (a) and (b) hold and that N does not divide c(E/K), we find that s0 is a unit.
From (c), it follows that r0 is also a unit. Claim (d) then shows that r0 is an exceptional
unit.

Proof of (a): Let P denote a maximal ideal of OK such that ordP(s0) > 0. As usual,
OK,P denotes the localization of OK at P, so that s0 ∈ OK,P. When FN(r, s) is written as a
polynomial in r with coefficients in Z[s], it is monic in r (4.4 (1)). Therefore, if s0 ∈ OK,P,
then so does r0. It follows that the equation E(b, c) has coefficients in OK,P. Reducing this
equation modulo P, we find the equation y2 + xy = x3, which shows that the reduction
is split multiplicative since the singular point (0, 0) has distinct tangent lines over OK/P.
Moreover, the point P0 reduces to the singular point in reduction. This implies when N is
prime that the point P0 reduces to a point of order N in the group of components of the
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special fiber of the Néron model of E(b, c) at P. Hence, the reduction is of type Im for some
m divisible by N .

Proof of (b): Assume that there exists a maximal ideal P of OK such that ordP(s0) < 0.
When N = 7, we have r0 = s0, and so ordP(r0) < 0. When N ≥ 11, the highest power
of s in FN(r, s) as a polynomial in s appears in exactly one monomial risj (4.4 (2)). This
shows that when ordP(s0) < 0, then ordP(r0) 6= 0. Let π denote a uniformizer of OK,P. Let
v := −ordP(s0). We consider now two separate cases.

Assume first that −u := ordP(r0) < 0. The Weierstrass equation for E/K given by the
coefficients [1 − c,−b,−b, 0, 0] is not integral since b = r0s0(r0 − 1) and c = s0(r0 − 1), but
the following coefficients define an integral equation for E/K:

[πu+v(1− c),−π2u+2vb,−π3u+3vb, 0, 0].

Moreover, it is easy to check that ordP(π2u+2vb) > 0, while ordP(πu+v(1−c)) = 0. The latter
fact uses explicitly that u > 0, and is the key to the reduction then being is of type Im for
some m divisible by N .

Assume now that ordP(r0) > 0. The equation for E/K given by [1− c,−b,−b, 0, 0] is not
integral, but the following equation is an integral equation for E/K:

[πv(1− c),−π2vb,−π3vb, 0, 0].

Moreover, it is easy to check that ordP(π2vb) > 0, while ordP(πv(1 − c)) = 0. Again, the
latter fact uses explicitly that ordP(r0) > 0, and is the key to the reduction then being split
multiplicative of type Im for some m divisible by N .

Proof of (c): For N as in the theorem, when FN(r, s) is written as a polynomial in r with
coefficients in Z[s], its constant term is a power of s (4.4 (1)). It follows immediately that
when s0 is a unit in OK , then so is r0.

Proof of (d): When both r0 and s0 are units and there exists a maximal ideal P of OK such
that ordP(r0− 1) > 0, then the equation E(b, c) is integral at P and reduces to y2 +xy = x3

modulo P. Again, the reduction is of split multiplicative type Im with N dividing m.

We have now proved that if N does not divide c(E/K), then 0, 1, r0 is an exceptional
sequence, and s0 is a unit. In particular, Part (i) where N = 7 is proved. We now assume
that N ≥ 11, and proceed with the proof that the sequence 0, 1, x3(r0, s0), . . . , xN−1

2
(r0, s0) is

exceptional when N ≤ 23, and that the sequence 0, 1, x3(r0, s0), . . . , x11(r0, s0) is exceptional
when 23 ≤ N ≤ 101. These two statements completely prove Parts (ii), (iii), and (iv), of the
theorem, except when N = 11 in Part (ii), since the statements prove only that M(K) ≥ 5
in this case. The proof of Part (ii) is completed by applying Proposition 5.5.

Claim: When r0 is an exceptional unit and s0 is a unit, then Fm(r0, s0) ∈ O∗K for all
m = 3, . . . , N − 1.

Proof of the claim. Let P be any maximal ideal of OK . Consider the projective scheme
X → SpecOK,P defined as the projective closure in P2

OK,P
of the plane curve E(b, c) ⊂ P2

K .
Since r and s are in OK , so are b and c. The scheme X is obtained as the closed subscheme
of P2

OK,P
defined by the homogenization

y2z + (1− c)xyz − byz2 − (x3 − bxz2) ∈ OK,P[x, y, z]
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of the equation of E(b, c). The generic fiber of X/OK,P is the curve E(b, c)/K. The scheme
X/OK,P is either smooth, or X has a single singular point Q, located on its special fiber.
The torsion point P = (0, 0) ∈ E(b, c)(K) reduces to the point P0 = (0, 0) on the special
fiber, and the key to our argument is that when r is an exceptional unit and s is a unit, b is
a unit, and thus P0 = (0, 0) is a regular point of the special fiber.

Let X sm/OK,P denote either the scheme X/OK,P if the latter is smooth, or the scheme
X ′/OK,P with X ′ := X \ {Q}, if X has a singular point. Then X sm/OK,P is always smooth.
It is well-known that when the Weierstrass equation y2 +(1−c)xy−by = x3−bx2 is minimal
(with respect to the discrete valuation ring OK,P), then the scheme X sm/OK,P is a group
scheme, isomorphic to “the connected component of the identity” subgroup scheme A0/OK,P
of the Néron model A/OK,P of the elliptic curve E(b, c)/K. The group law on E(b, c) can be
succinctly summarized by ‘three points on a line add to the identity’. This geometric feature
allows one to prove that the scheme X sm/OK,P is a group scheme even when the defining
equation is not minimal.

The following conditions are then satisfied: The point P is of prime order N , and reduces
to the point P0, which is not the identity on the special fiber of the group scheme X sm/OK,P.
Hence, the point P0 has order N in the special fiber. By virtue of the construction of the
group scheme X sm/OK,P, and of the definition of the polynomials Fm(r, s), we find that since
P0 has order N in the special fiber, we must have Fm(r0, s0) /∈ P for all m = 3, . . . , N − 1.
Since this statement is true for all maximal ideals P, the claim is true.

Suppose now that 11 ≤ N ≤ 101 and let us complete the proof of the theorem. We know
that r0 is an exceptional unit and s0 is a unit. We can therefore use the claim, and Part
(3) of 4.4 to conclude that 0, 1, x3(r0, s0), . . . , xm(r0, s0) is an exceptional sequence in OK for
any m ≤ min(11, (N − 1)/2). �

Remark 4.6 Given a number field K and a prime N ≥ 11, Theorem 4.3 suggests an al-
gorithm for finding all N -special elliptic curves E/K. First produce the finite list of all
exceptional units in O∗K (the current implementation for this in Magma requires that the
unit rank be at most 10). Then find all the points (r0, s0) on the curve FN(r0, s0) = 0 where
both r0 and s0 are exceptional units. Finally, check that the elliptic curve E(r0, s0)/K is
such that N does not divide c(E(r0, s0)/K).

We do not know if this final step is necessary. A priori, even though when both r0 and
s0 are exceptional units, the torsion point (0, 0) in E(r0, s0)(K) reduces to a smooth point
of the connected component of the identity in the special fiber of the Néron model, it is not
immediate that the group of components cannot have order divisible by N . Examples where
the group of components has order 2 or 3 when N = 19 are found in Remark 7.13.

Example 4.7 Let p be prime. The number of exceptional units of Q(ζp)
+ grows rapidly with

the degree. For instance, when p = 13, 17, 19 and 23, the fields Q(ζp)
+ have respectively

1830, 11700, 28398, and 130812 exceptional units. These values were obtained using the
command ExceptionalUnits() in Magma [5].

The fields Q(ζp) and Q(ζp)
+ are both totally ramified over (p) and so have a prime of norm

p. In particular, both M(Q(ζp)
+) and M(Q(ζp)) are bounded by p. Lenstra [28] determined

that M(Q(ζp)) = p. Leutbecher and Nicklash showed that M(Q(ζp)
+) ≥ p−1 ([32], Theorem

3), with strict inequality for instance when p = 7, 11, 13. Tables of fields along with lower
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bounds on their Lenstra constant can be found in Lenstra’s original paper [28], and in [29],
[30], [31], [32], and [42].

Example 4.8 Theorem 4.3 implies that if N = 11 or N = 13 and there exists an N -special
elliptic curve E/K, then M(K) ≥ 6. We note here that this bound M(K) ≥ 6 cannot be
improved in general. For instance, the quartic field of discriminant 117 in the table in 1.5
has M(K) = 6, and there are two N -special elliptic curves over K with N = 11 and one
N -special elliptic curve over K with N = 13. See also Remark 7.7 for the case N = 19.

Example 4.9 We did not consider in this article the case where N is not prime. We only
note in this example that when N = 72, there exist examples of fields K with an elliptic
curve E/K having a K-rational point of order N and c(E/K) not divisible by 7, and such
that M(K) ≤ 7.

For instance, when N = 49, the first point of X1(49) listed in [69] is over a totally
complex field K of degree 14 with discriminant 37712 having one prime P over (7) which
has ramification index 7 and residual index 1. It follows that M(K) ≤ 7. This first point
corresponds to an elliptic curve with j = 0 and complex multiplication which has a K-
rational point of order N , and with bad reduction only above P, of reduction type II.

The fourth example in [69] is over a field of degree 22, having one prime over (7) which
has ramification index 6 and residual index 1, so that again M(K) ≤ 7. There exists over
K an elliptic curve with everywhere good reduction (and no CM) and a K-rational point of
order N .

4.10 We end this section with some conjectural properties of the polynomial FN(r, s) when
N ≥ 11 is prime. Recall the degrees dr and ds defined in 4.4, as well as the associated
integers a and b. When N is prime, we conjecture that

dr(N) =

{
N2−1
60

if N ≡ ±1 (mod 10)
N2−1
60

+ 1
5

if N ≡ ±3 (mod 10),

ds(N) = N2−1
24
− dr(N),

a(N) =
∑

N
4
≤t≤N

3
,t∈N(4t−N),

b(N) =
∑

N
3
≤t≤ 2N

5
,t∈N(3t−N).

Moreover, let

c = c(N) :=
∑

N
5
≤t≤N

4
,t∈N(N − 4t),

d = d(N) :=
∑

N
4
≤t≤N

3
,t∈N(N − 3t).

We conjecture that the polynomial FN(r, s) ∈ Z[r, s] satisfies the following properties:

(1) FN(r, 1) = (r − 1)dr ,
(2) FN(1, s) = ±sc(s− 1)ds−c,
(3) FN(r, 0) = rd(r − 1)dr−d,

In particular, the points (0, 0) and (1, 1) are on the curve FN(r, s) = 0 if N ≥ 11, and (1, 1)
is singular. When N ≥ 13, the point (1, 0) is also on the curve, and these three points are
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the only points on the affine plane curve FN(r, s) = 0 with either r ∈ {0, 1} or s ∈ {0, 1}.
All three are singular as soon as N ≥ 23.

For N ≤ 101, the conjectures can be proved by inspection of the equations for FN(r, s)
listed in [64]. To check whether a given point is singular on the curve FN(r, s) = 0, we simply
look at the Taylor expansion of the curve at the point. Recall that we also conjecture that
F (0, s) = ±sa. We find that

(i) (0, 0) is singular if a > 1 and d > 1.
(ii) (1, 0) is singular if dr − d > 1 and c > 1.
(iii) (1, 1) is singular if ds − c > 1, and dr > 1.

It is possible that the above conjectures could be fully proved as follows. The function
field of X1(N)/C, when N ≥ 11, is isomorphic to C(W3,W4) ([20], Theorem 1), where W3

and W4 are explicit Weierstrass units (see [20], (1) on page 305 for the definition. See also
[25], Theorem 1, and [26], Chapter 2, Theorem 6.4. A related definition is found in [47], top
of page 125).

One might wonder whether

FN(W3,W4) = 0,

in view of the proof of Theorem 3 in [47], bottom of page 130, where a similar statement
is asserted but the computations needed to verify it are left to the reader. Assuming that
FN(W3,W4) = 0, the techniques of proof developed in [20] to describe the equation relating
the functions W3 and W5 ([20], Theorems 2 and 3) could possibly be used to establish the
conjectural properties of FN(r, s) discussed here.

Remark 4.11 In [20] and [27], the fact that the function field of X1(N)/C is isomorphic
to C(W3,W5) when N ≥ 11 is used to produce explicit equations for X1(N). The equation
given for X1(13) in [20], Example, page 316, has a sign error, giving a curve of genus 3.
The correct equation can be found in [27], middle of page 56. On page 317, just before
section 5, the authors of [20] state that our equations seem to correspond to the “raw form”
of Reichert. As discussed above, it is more likely that the raw form equation corresponds to
the polynomial associated with the pair (W3,W4).

Remark 4.12 In [2], one finds for each N a description of three different equations for
X1(N). In Table 1, page 2383, the middle polynomial denoted by ΦN(T, S) is related to
FN(r, s) by the formula FN(r, s) = ±ΦN(r,−s), at least when N ≤ 15. This fact does not
seem to be pointed out in [2].

Remark 4.13 Let N be prime. The formulas for dr(N) and ds(N) grow quadratically in N
and are upper bounds for the Q-gonality of X1(N). For comparison, we recall here that the

the genus of X1(N) is given by the formula g(X1(N)) = (N−6)2−1
24

([18], p. 161).

5. The curve X1(11)

In this section, we finish the proof of Theorem 4.3 (ii) in the case of N = 11 in Proposition
5.5. We also introduce in 5.1 a natural involution on X1(11)/Q which acts on the set of points
(r, s) on F11(r, s) = 0 where r, s are both exceptional units in OK (see 5.3). This involution
is used to prove Proposition 5.8.
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Let FN(r, s) denote the raw form equation for X1(N). Consider the change of variables

x = x(r, s) :=
(s− r)

(rs− 2r + 1)
= −F7

F8

,

and

y = y(r, s) :=
(rs− 2r + 1)

(s2 − s− r + 1)
= −F8

F9

.

This change of variable provides a birational isomorphism from the plane curve FN(r, s) = 0
to a plane curve fN(x, y) = 0. The equation fN(x, y) = 0 is called the alternative defining
equation of X1(N) in [64].

Example 5.1 The raw form equation of X1(11) is given by

F11(r, s) = r2 − rs3 + 3rs2 − 4rs+ s,

while f11(x, y) := x2y − xy2 + y − 1. We find that

f11(x(r, s), y(r, s)) =
(s− 1)(r − s)F11(r, s)

(s2 − s− r + 1)2(rs− 2r + 1)
.

The function y(r, s) is not defined on F11(r, s) = 0 when r = s2− s+ 1, which only happens
when s = 1. It turns out that the singular point (1, 1) is the only point where the map
(r, s) 7→ (x, y) is undefined on the curve F11(r, s) = 0.

After homogenizing f11 to x2y−xy2 +yu2−u3, we obtain a minimal Weierstrass equation
over Z for the elliptic curve X1(11)/Q, given by

v2 − v = u3 − u2,
by setting u = 1/y and v = x/y. Note that an equation for X1(11)/Q appears already in the
literature as early as 1908 ([33], page 160, Section 5., (7)), given as y2x−y2z−x2z+yz2 = 0.

Since the equation F11(r, s) is quadratic in r, we have an involution σ of the plane curve
F11(r, s) = 0 given by r 7→ −r+ (s3− 3s2 + 4s). For a point (r, s) 6= (0, 0) with F11(r, s) = 0,
we have (s3 − 3s2 + 4s) = r + s/r. Hence this involution reduces in this case to r 7→ s/r.
The involution fixes both points (0, 0) and (1, 1).

Lemma 5.2. Let r, s ∈ O∗K be non-trivial units. Suppose that 0, 1, r, s, (r − 1)/(s− 1) is an
exceptional sequence in O∗K. Then

(a) x(r, s) and y(r, s) are exceptional units.
(b) If N ≥ 11 is prime and FN(r, s) = 0, then 0, 1, x(r, s), y(r, s) is an exceptional sequence.

Proof. (a) We need to show that x, y, 1− x, and 1− y, are units. We have

1− x =
(r − 1)(s− 1)

(rs− 2r + 1)
,

and

1− y =
(s− 1)(s− r)

(s2 − s− r + 1)
.

By hypothesis, we know that s − 1, r − 1, and s − r, are all units. Thus to conclude the
proof of the lemma, it suffices to show that both (rs − 2r + 1) and (s2 − s − r + 1) are
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units. For this, we use the last relations implied by the exceptional sequence, namely that
s− (r − 1)/(s− 1) and r − (r − 1)/(s− 1) are also units. We find that

s− (r − 1)

(s− 1)
=
s2 − s− r + 1

s− 1

and

r − (r − 1)

(s− 1)
=
rs− 2r + 1

s− 1
,

and (a) follows
To prove (b), it suffices to show that x− y is a unit. We find that

x− y =
(s− 1)(r2s− 3r2 + rs+ 3r − s2 − 1)

(rs− 2r + 1)(s2 − s− r + 1)
=
F6F12

F8F9

.

In view of the proof of (a), x− y is a unit if and only if F12 is a unit, where

F12 = F12(r, s) := r2s− 3r2 + rs+ 3r − s2 − 1.

Assume that F11(r, s) = 0. Recall that F11(r, s) = r2 − rs3 + 3rs2 − 4rs + s, and note
that sF12 + F11 = (s − r)(rs2 − 3rs + r + s2). If the expression rs2 − 3rs + r + s2 is not
a unit, it must be in a maximal ideal P. Thus modulo P, we have r = −s2/(s2 − 3s + 1).
Substituting this expression for r in F11, we obtain

F11(s) =
s(s− 1)6

(s2 − 3s+ 1)2
,

leading to a contradiction since by hypothesis, both s and s− 1 cannot belong to P. So F12

is a unit.
Assume now that FN(r, s) = 0 for some prime N > 12. By hypothesis, r and s are

exceptional units, so we can use the Claim in the proof of Theorem 4.3 to deduce that
F12(r, s) is a unit in OK . �

Lemma 5.3. Let (r, s) be a point on the plane curve F11(r, s) = 0 such that r and s are
exceptional units in O∗K. Then 0, 1, r, s, (r − 1)/(s− 1) is an exceptional sequence, and

(a) The image of (r, s) under the map (r, s) 7→ (u, v) is a point where 0, 1, u, v is an excep-
tional sequence.

(b) The image of (r, s) under the involution (r, s) 7→ (s/r, s) is such that 0, 1, s/r, s is an
exceptional sequence.

Conversely, if (u, v) ∈ K2 is a point on the curve v2 − v = u3 − u2 and u is an exceptional
unit, then 0, 1, u, v is an exceptional sequence and the image (r, s) under the inverse map
(u, v) 7→ (r, s) is such that 0, 1, r, s is an exceptional sequence.

Proof. We can rewrite the equation F11 as F11 = (r − s)(r − 1) − r(s − 1)3. Since r, r − 1,
and s− 1 are units by hypothesis, it follows that r− s ∈ O∗K . This shows that 0, 1, r, s is an
exceptional sequence. To prove that 0, 1, r, s, (r − 1)/(s− 1) is an exceptional sequence, we
use the Claim in the proof of Theorem 4.3, and conclude as in the proof of this theorem.

(a) Consider the maps (r, s) → (x, y) → (u, v) introduced in Example 5.1. Any point
(r, s) with F11(r, s) = 0 where both r and s are exceptional units is sent to a point (u, v)
with v2 − v = u3 − u2 where both u and v are exceptional units. Indeed, we have x
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and y exceptional units by 5.2, and thus u = 1/y is also an exceptional unit. Moreover,
v(v−1) = u2(u−1), so v(v−1) is a unit and, hence, v is an exceptional unit. By definition,
u− v = 1/y − x/y = (1− x)/y is a unit.

(b) When r, s, and r− s are units, then s/r is a unit, and so is 1− s/r = (r− s)/r. Hence,
s/r is an exceptional unit. When r is an exceptional unit, then so is 1− 1/r. It follows that
the difference s/r − s is a unit, and so 0, 1, s/r, s is an exceptional sequence.

Suppose now that (u, v) is a point on v2 − v = u3 − u2 and u is an exceptional unit.
From v(v − 1) = u2(u − 1), we find that v is an exceptional unit. In K, the equation
z2−z−(u3−u2) = 0 has two roots v and v, and we find that (u−v)(u−v) = u2−u−(u3−u2) =
−u(u− 1)2. Since u is an exceptional unit, u− v is a unit. From this we find that y = 1/u
is an exceptional unit. Since x = v/u, we find that x is a unit, and since 1− x = (u− v)/u,
1−x is a unit and so x is an exceptional unit. The equation f11(x, y) := x2y−xy2+y−1 = 0
shows that x− y = (1− y)/(xy) is a unit. Consider the change of coordinates

r = (x2y − xy + y − 1)/(x2y − x) and s = (xy − y + 1)/(xy).

We leave it to the reader to check that r and s are exceptional units. It follows then from
the beginning of the proof that r − s is a unit. �

Lemma 5.4. Let r, s ∈ O∗K be non-trivial units. Suppose that 0, 1, r, s is an exceptional
sequence in O∗K. Let F8 := rs− 2r + 1 and F9 := −(s2 − s− r + 1). Then

(a) 0, 1, r, s, r(s−1)
r−1 is an exceptional sequence in O∗K if and only if F8 ∈ O∗K.

(b) 0, 1, r, s, r−1
s−1 is an exceptional sequence in O∗K if and only if F8, F9 ∈ O∗K.

Proof. For (a), the extended sequence is immediately exceptional as soon as r(s−1)
r−1 is an

exceptional unit, and this latter condition is equivalent to F8 ∈ O∗K . For (b), r−1
s−1 is au-

tomatically an exceptional unit, and the extended sequence is exceptional if and only if
F8, F9 ∈ O∗K . We leave the details to the reader. �

Proposition 5.5. Suppose that r, s ∈ O∗K are non-trivial units such that 0, 1, r, s, r−1
s−1 is an

exceptional sequence in O∗K. If F11(r, s) = 0, then

0, 1, r, s,
r − 1

s− 1
,
r(s− 1)

r − 1

is also an exceptional sequence in O∗K. In particular, M(K) ≥ 6.

Proof. In view of Lemma 5.4, we only need to show that the difference r−1
s−1 −

r(s−1)
r−1 is a unit.

We have
r − 1

s− 1
− r(s− 1)

r − 1
=
r2 − 3r − rs2 + 2rs+ 1

(r − 1)(s− 1)
.

Let us set u := r2 − 3r − rs2 + 2rs + 1, and note that it suffices to show that su is a unit.
Recall that F11(r, s) = r2 − rs3 + 3rs2 − 4rs+ s. Then

su− F11 = r(s− 1)(r − s)

and the proposition is proved. �
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Let K be a number field and let (r, s) ∈ K2. Let c := s(r − 1) and b := cr. Consider the
plane curve E(r,s) given by the equation

y2 + (1− c)xy − by = x3 − bx2.
Let N = 11 and set

∆N := s4r3(r − 1)5(r2s3 − 8r2s2 + 16r2s− 2rs3 + 5rs2 − 20rs+ s3 + 3s2 + 3s+ 1).

Assume that (r, s) ∈ K2 with FN(r, s) = 0. If ∆N 6= 0, then E(r,s)/K is an elliptic curve
with a K-rational point (0, 0) of order N . If ∆N = 0, we will call (r, s) a K-rational cusp of
the plane curve FN(r, s) = 0.

Lemma 5.6. The cusps of the plane curve F11(r, s) = 0 consists of (1, 1) and five conjugated
points whose coordinates are exceptional units in OQ(ζ11)+.

Proof. Magma computes the primary decomposition of the ideal I of Q[r, s] generated by ∆N

and FN using the command PrimaryDecomposition(). We find that I is contained in exactly
two prime ideals, (r− 1, s− 1), and (s5− 4s4− 9s3 + 27s2− 13s− 1, r− (−2s4 + 2s3 + 13s2−
26s+ 3)/11). The field Q[s]/(s5 − 4s4 − 9s3 + 27s2 − 13s− 1) is isomorphic to Q(ζ11)

+ and
the class s0 of s is an exceptional unit. The element r0 = (−2s40 + 2s30 + 13s20− 26s0 + 3)/11)
is also an exceptional unit. �

Let N ≥ 11 be prime. It is well-known that the complement of Y1(N)(Q) in X1(N)(Q)
consists of (N − 1)/2 rational points, and (N − 1)/2 conjugated points over Q(ζN)+ (see,
e.g., [72], page 7). We conjecture that the latter points correspond to (N − 1)/2 points
(r0, s0) on the plane curve FN(r, s) = 0 where both r0 and s0 are exceptional units in
OQ(ζN )+ . Moreover, 0, 1, r−10 , s−10 , s0−1

r0−1 , x6(r0, s0), . . . , xN−1
2

(r0, s0), is an exceptional sequence

in OQ(ζN )+ , as in Theorem 4.3.
Let SK denote the set of all points (r, s) such that FN(r, s) = 0 and both r and s are

exceptional units in O∗K . Let EK denote the set of all elliptic curves E(r,s)/K corresponding
to points in SK , up to isomorphism. When N = 11 and K = Q(ζ11)

+, our next example
shows that |EK | = 3. Proposition 5.8 shows that when N = 11, |EK | is even in general.

Example 5.7 Let K = Q(ζ11)
+. A computation with Magma finds that |SK | = 20. Five of

these twenty elements are cusps. The remaining 15 elements of SK give rise to only three
distinct elliptic curves E(r,s)/K, which have integral j-invariants j = −112, −11 · 1313, and
−215, and have additive reduction at the unique prime above (11). In particular, |EK | = 3.

Let A/Q denote the elliptic curve given in Weierstrass form by v2 − v = u3 − u2. This
curve is commonly denoted by X1(11)/Q. We described in 5.1 a birational Q-map from the
plane curve F11(r, s) = 0 to the curve A which produces a bijection between the points where
both coordinates are exceptional units (Lemma 5.3). A computer search for points (u, v) in
A(K) where v2 − v = u3 − u2 and both u and v are exceptional units produces exactly 20
such points, as expected. These points are all of order 25 in A(K). It is a classical result,
dating back at least to [4], Lemma 2, that A(Q) is finite of order 5, and is generated by
P := (0 : 0 : 1), with 2P = (1 : 1 : 1), 3P := (1 : 0 : 1), and 4P := (0 : 1 : 1). We have thus
found 25 explicit torsion points in A(K) of order dividing 25. It is known that the algebraic
rank of AK/K is 0, and that the torsion subgroup over K is isomorphic to Z/25Z (see [15],
Theorem 1). It follows that the torsion points of A(K) are completely determined.
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Proposition 5.8. Let K be a field that does not contain Q(ζ11)
+. Then |EK | is even.

Proof. Recall the involution σ of the plane curve F11(r, s) = 0 introduced in 5.1. We showed
in Lemma 5.3 (b) that σ induces an action on the set SK . Since we assume that K does
not contain Q(ζ11)

+, Lemma 5.6 shows that the set SK does not contain any cusp. Thus in
this case the proposition is proved if we can show that for any (r, s) ∈ SK , the j-invariant of
E(r,s) is not equal to the j-invariant of E(r/s,s), where as we noted in 5.1, σ(r, s) = (r/s, s).

Working in the field of fractions of the polynomial ring Q[r, s], we can write down explicit
expressions for j(E(r,s)) and j(E(r/s,s)). Let w denote the numerator of j(E(r,s))− j(E(r/s,s))
divided by its factor r2 − s. Magma can compute the primary decomposition of the ideal
I := (w,F11) in the ring Q[r, s]. It turns out that this primary decomposition has seven
prime ideals, consisting in (r, s), (r− 1, s− 1) and M,M1,M2,M3,M4 that we now describe.
In the end, none of these ideals correspond to points in SK . The ideal M corresponds to
a point on F11(r, s) = 0 defined over an extension of degree 25, and it can be checked that
this extension contains Q(ζ11)

+. The other four ideals M1,M2,M3,M4 have a more intrinsic
description.

Indeed, let A/Q denote the elliptic curve given in Weierstrass form by v2 − v = u3 − u2,
as in Example 5.7. The automorphisms of the curve A of genus 1 are well understood, and
each corresponds to the composition of an automorphism µ of the elliptic curve A with a
translation tP on A by a point P in A(Q). Since σ is an involution, the automorphism µ has
to be the inverse inv in the group law on A. Letting P := (0 : 0 : 1), the reader can verify
that the involution σ corresponds to the composition tP ◦ inv. The smooth point (0, 0) on
the plane curve F11(r, s) = 0 is fixed by σ, and is sent to the point 3P in A(Q) under the
map (r, s) 7→ (u, v). The set of points corresponding to the ideals M1,M2,M3,M4, when
mapped to the curve A, is of the form R,R+P,R+ 2P,R+ 4P , where R is a point of order
2 in A(Q). It can be checked that none of these points corresponds to points in SK . Note
that {R,R + P} and {R + 2P,R + 4P} are two orbits under the involution tP ◦ inv. �

Remark 5.9 We record below another explicit involution of the plane curve F11(r, s) = 0:

τ : (r, s) 7−→ (1− r, (s2 − s+ 1− r)/(s− 1)2).

The composition σ ◦ τ is a birational automorphism of the plane curve F11(r, s) = 0 of order
5, corresponding to an automorphism of X1(11) of the form Q 7→ Q + S, with S a rational
point of order 5.

6. The Lenstra constant

Let N ≥ 11 be prime. We use in this section results or conjectures on the Lenstra constant
of fields of small degrees, along with Theorem 4.3, to obtain applications to N -special elliptic
curves.

Theorem 6.1. Let N ≥ 11 be prime. Let K be a cubic number field, and let E/K be an
N-special elliptic curve. Then N = 13, the field K is Q(ζ7)

+, and there exits a unique such
curve E/K.

The curve E/K has j-invariant −28672/3 and Cremona label 147b1. It has prime con-
ductor (3), and its reduction at (3) is split multiplicative of type I1.
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Proof. Assume that E/K is N -special. Then Proposition 3.1 implies that N ≤ 13. That
no N -special elliptic curve exists when N = 11 was proved by Krumm in [23], 5.4.2. When
N = 13, the unique curve in the statement of Theorem 6.1 was found by Krumm in [23],
5.4.4. We now show the uniqueness of this 13-special elliptic curve, and also give a new proof
for the case N = 11.

Leutbecher and Martinet show in [30, Theorem 4.1.1] that for a cubic field K, either
M(K) ≤ 3, or K = Q(ζ7)

+ and M(K) = 7, or M(K) = 5 and K = Q(α) with α3−α−1 = 0.
The end of the proof is then machine-assisted: for both fields Q(ζ7)

+ and Q(α), make a list of
all the exceptional units in the field, and check whether the raw form equations F11(r, s) = 0
and F13(r, s) = 0 have any solutions with both r, s exceptional units. Such computation can
be done with Magma [5] and produces only six solutions, all of F13(r, s) = 0 over the field
K = Q(ζ7)

+. This leads to a single N -special elliptic curve E/K with N = 13, since the six
solutions corresponds to the orbit of (E,P ) under the Galois group of X1(13)/X0(13). �

Corollary 6.2. Let N ≥ 11 be prime. Let K be a cubic number field, and let E/K be
an elliptic curve with a K-rational torsion point of order N and everywhere semi-stable
reduction. Then E/K has a place of split multiplicative reduction.

Proof. The corollary follows immediately from Theorem 6.1, since Lemma 1.2 shows that
the statement is true once it is proved for N -special curves. �

The corollary partially generalizes Theorem 1.1 to cubic fields. The statement cannot be
modified to include the case N = 7. Indeed, over the smallest cubic field K = Q(α), with α
a root of x3−x2+1, of discriminant −23, the elliptic curve E/K labeled 167.1-A1 in [35] has
prime conductor over p = 167 and does not have a place of split multiplicative reduction.

Remark 6.3 It follows from Theorem 3.3 that if E/K is an elliptic curve over a cubic
field with integral j-invariant, then it cannot have a K-rational torsion point of prime order
N ≥ 11. This statement was proved already in [58] (see [73], Theorem 6). When N = 5,
it is shown in [73], Corollary, page 212, that there are infinitely many cubic fields K with
infinitely many elliptic curves E/K having integral j-invariant and such that E/K has a
K-rational torsion point of order N = 5.

We now turn to the case of quartic fields, and prove Theorem 1.4. The exceptional units in
fields of unit rank 1 were completely determined by Nagell ([50], [51], [52], [53], [54]). In the
case of quartic fields of unit rank 1 the Lenstra constant was determined by Lenstra in [28],
3.11. In particular, he shows that for such quartic field, M(K) ≤ 4 except when K = Q(ζ5)
with M(K) = 5, and when K is the quadratic extension of Q(ζ3) of discriminant 117 with
M(K) = 6. (We have used here that the tables [21] are complete and that there is a unique
quartic field of rank 1 and discriminant 117. It appears in the table in Conjecture 6.4).

Leutbecher and Martinet make a conjecture on the Lenstra constant of number fields of
unit rank at most 2 in [30], 6.1.7. Since the Leutbecher–Martinet conjecture does not cover
the case of unit rank 3 when [K : Q] = 4, we complement it below in 6.4 (b) so that all cases
are covered for quartic fields. The form of this conjecture was anticipated by Martinet (see
[42], Remarque on page 17-12).
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Conjecture 6.4. Let K/Q be a number field of degree 4. Then M(K) ≤ 4 except for finitely
many explicit exceptions. More precisely:

(a) Assume that the unit rank of K is 2. If K contains Q(ζ5)
+, then M(K) = 4. Except for

the fields of discriminants −275,−283,−331, and −475 in the table below, all the other
fields have M(K) ≤ 4.

(b) Assume that the unit rank of K is 3. Then M(K) ≥ 10 if K is the field of discriminant
725 in the table below, M(K) = 5 if K = Q(ζ15)

+, and for all other fields, M(K) ≤ 4.

N field K (degree 4) rk #exu M(K) disc(K)

11(2), 13(j = 0) x4 − x3 − x2 + x+ 1 1 20 6 117

None x4 − x3 + x2 − x+ 1, Q(ζ5) 1 18 5 125

11(4)∗ x4 − x3 + 2x− 1 2 54 9 −275

11(2) x4 − x− 1 2 54 7 −283

None x4 − x3 + x2 + x− 1 2 42 5 −331

None x4 − 2x3 + 2x2 − x− 1 2 30 5 −475

11(2), 13,17 x4 − x3 − 3x2 + x+ 1 3 162 10 or 11 725

None x4 − x3 − 4x2 + 4x+ 1, Q(ζ15)
+ 3 90 5 1125

The notation in the above table is described in 1.5. The reader will note that all fields
appearing in Theorem 1.4 also appear in the above table.

6.5 Proof of Theorem 1.4. Let N ≥ 11 be prime. Let K/Q be a quartic field, and let
E/K be an N -special elliptic curve. Then Proposition 3.1 shows that N ≤ 17. Theorem 4.3
implies that M(K) ≥ 6.

Conjecture 6.4 implies that there is only one quartic field of unit rank 3 with M(K) ≥ 6.
Thus the proof of Theorem 1.4 (b) reduces to finitely many computations: it suffices to make
a list of all the exceptional units in the field, and check whether the raw form equations
FN(r, s) = 0 for N = 11, 13, and 17, have any solutions with both r, s exceptional units.
Such computation can be done with Magma [5] and produces the solutions in Theorem 1.4
(b) (and recalled in the above table).

To prove Theorem 1.4 (a), where the unit rank is at most 2, we note that the quartic
fields of rank at most 2 which have M(K) > 5 have been completely described by Nagell
and Lenstra (in rank 1, see [28], 3.11) and by Leutbecher and Martinet (in rank 2, see [30],
5.1.1). The above discussion then can be applied and the proof of Theorem 1.4 (a) also
reduces to finitely many computations.

Let us now turn to the case of quintic fields.

Theorem 6.6. Let K/Q be a quintic field of unit rank 2. Let N ≥ 11 be prime. Let E/K be
an N-special elliptic curve. Then K is one of only three fields K/Q, listed below (notation
as in 1.5). The possible N ’s are listed in the first column next to the defining polynomial of
the field.
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N field K (degree 5) rk #exu M(K) discr(K)

13,17 x5 − x3 − x2 + x+ 1 2 78 ≥ 9 1609

11(2), 13 x5 − x4 + x2 − x+ 1 2 78 ≥ 8 1649

11(2) x5 − x4 + x3 − 2x2 + x− 1 2 72 7 1777

The information on M(K) in the table is found in [30], 5.3.

Conjecture 6.7. Let K/Q be a quintic field of unit rank greater than 2. Let N ≥ 11 be
prime. Let E/K be an N-special elliptic curve. Then K is one of only six fields K/Q, listed
below (notation as in 1.5). The possible N ’s are listed in the first column next to the defining
polynomial of the field.

N field K (degree 5) rk #exu M(K) discr(K)

13(2)∗,19 x5 − x3 − 2x2 + 1 3 228 ≥ 11 −4511

11(2) x5 − x4 − x3 + 2x2 − x− 1 3 198 9 −4903

11(2), 13 x5 − x4 − x3 + 3x2 − 1 3 180 7 −5519

11(2) x5 − 2x4 + x3 + 2x2 − 2x− 1 3 168 7 −5783

11(2) x5 − 2x4 + 3x2 − 2x− 1 3 132 7 −7367

None x5 − x4 − x2 − x+ 1 3 108 6 −8519

11(3)∗ Q(ζ11)
+ 4 570 11 114

None x5 − 5x3 + 4x− 1 4 240 7 38569

6.8 As in the case of quartic fields, we state below a conjecture on the Lenstra constant
of quintic fields which will imply Conjecture 6.7. Lenstra showed that one should expect
infinitely many quintic fields with M(K) ≥ 5 and, more generally, for any fixed degree d ≥ 5,
infinitely many fields K of degree d with M(K) ≥ 5. Indeed, it is shown in [28], 2.4, (c),
that if K = Q(α) is such that the minimal polynomial f(x) of α over Q has the form

f(x) = g(x)(x2 − x+ 1)(x− 1)x± 1

for some monic g(x) ∈ Z[x], then M(K) ≥ 5. As soon as deg(g) ≥ 1, we should expect to
find infinitely many pairwise not isomorphic such fields.

We propose the following conjecture for quintic fields, extending a theorem of Leutbecher
and Martinet for the fields of unit rank 2 ([30], 5.2.1).

Conjecture 6.9. Let K/Q be a quintic field. Then M(K) ≤ 5 unless K is one of the fields
listed in the tables in Theorem 6.6 and Conjecture 6.7.

6.10 Proof of Theorem 6.6. We note here that Conjecture 6.9 implies Conjecture 6.7, and we
prove Theorem 6.6. Indeed, let N ≥ 11 be prime, and assume that E/K is N -special. Then
Proposition 3.1 shows that N ≤ 19 or N = 31 or 41. Theorem 4.3 implies that M(K) ≥ 6.
Conjecture 6.9 reduces the verification of Theorem 6.6 to finitely many computations, since
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there are only finitely many explicit quintic fields with M(K) ≥ 6. For each such field, it
suffices to make a list of all the exceptional units in the field, and check whether the raw
form equations FN(r, s) = 0 for N = 11, 13, 17, 19, 31, 41, have any solutions with both r, s
exceptional units. Such computation can be done with Magma [5] and produces the solutions
listed in Conjecture 6.7.

To prove Theorem 6.6, where the unit rank is 2, we note that the quintic fields of rank 2
which have M(K) > 5 have been completely described by Leutbecher and Martinet ([30],
5.2.1). The above discussion then can be applied.

Remark 6.11 When [K : Q] = 4 and N = 17, and when [K : Q] = 5 and N = 19, Theorem
1.4 (b) and Conjecture 6.7 imply that there exists only a single N -special elliptic curve
E/K. These curves were found by Krumm already in [23], 5.5.2 and 5.6.2, by a different
method using an algorithm developed in [13]. We used the more targeted search suggested
by Theorem 4.3 in 4.6 and found examples of N -special curves with the following pairs
(N, [K : Q]):

N [K : Q] N [K : Q] N [K : Q]

19 6,7,8,9,10,11,12 29 9,10,11 37 6,10,12

23 7,8,9,10,11,12 31 9,10 43 12

Explicit examples with N = 31 are also known with [K : Q] = 11 and unit rank 6 or
7: they were found in [68] using a different method. The list of examples up to degree 13
where the elliptic curves have in addition complex multiplication was found earlier in [7]. In
particular, when (N − 1)/3 is an integer, then there exists an N -special curve with j = 0
over a field of degree (N − 1)/3 ([6], Theorem 1 a)).

Let dmin(N) denote the smallest integer d such that the modular curve X1(N)/Q has
infinitely many closed points of degree d. The following are known values of dmin(N) (see
[10], Table 1, and Theorem 3), along with bounds coming from dmin(N) ≤ gonQ(X1(N)).

N 11 13 17 19 23 29 31 37

dmin(N) 2 2 4 5 7 ≤ 11 ≤ 12 ≤ 18

Remark 6.12 Let K/Q be a number field of degree d > 1. We return here to a question
raised in the introduction: is it possible to find a non-trivial g(d) such that if E/K is a
semi-stable elliptic curve with a K-rational torsion point of order N ≥ g(d), then there
exists a place of K where E/K has split multiplicative reduction? Lemma 1.2 shows that if
such an elliptic curve E/K is not N -special, then it always has a place of split multiplicative
reduction. On the other hand, an N -special elliptic curve need not always have a place of
split multiplicative reduction.

Let f(d) denote the largest prime N such that there exist a field K/Q of degree d and an
elliptic curve E/K with everywhere good reduction and a K-rational point of order N . It is
clear that such an elliptic curve has no places of multiplicative reduction. Let h(d) denote
the largest prime N such that there exist a field K/Q of degree d and an elliptic curve E/K
with a K-rational point of order N . That h(d) is well-defined follows from a famous theorem

of L. Merel [46]. In fact, h(d) < d3d
2

[46], refined to h(d) < (3d/2 + 1)2 by J. Oesterlé [59],
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Remark 1. For our question to have a non-trivial positive answer, we need to impose that
f(d) < g(d) ≤ h(d). We do not know whether f(d) < h(d) in general.

Let d = 4, where it is expected that h(4) = 17. The 17-special elliptic curve over the
quartic field of discriminant 725 in Theorem 1.4 has prime conductor (2) and does not have
a place of split multiplicative reduction. Thus conjecturally, our question cannot have a
non-trivial positive answer for any value g(4).

Let d = 5, where it is expected that h(5) = 19. The 19-special elliptic curve over the
quintic field of discriminant −4511 in Conjecture 6.7 has prime conductor (above p = 37)
and does not have split multiplicative reduction at this place.

7. Sextic and septic fields

For sextic number fields, we propose the following conjecture.

Conjecture 7.1. Let N ≥ 17 be prime. Then there exist only finitely many sextic fields
K/Q with an N-special elliptic curve E/K.

7.2 In the following table, we include all sextic fields K found to have at least one N -special
elliptic curve E/K with N ≥ 17. We keep the notation introduced in 1.5. In addition, the
notation 19(2)∗∗ indicates that both curves found have everywhere good reduction (the two
curves in the table over Q(ζ13)

+ are discussed for instance in [9], Example 6.8, page 168.
They are linked by an isogeny of degree 3 [35]). As before, the notation 19(2)∗ indicates that
at least one of the curves has integral j-invariant. In the instance below, only one curve has
integral j-invariant, with j = 0.

N field K (degree 6) rk #exu M(K) discr(K)

13(4),19(2)∗ x6 − x5 + x4 − 2x3 + 4x2 − 3x+ 1 2 110 9 −9747

11(2),17∗,19 x6 − 2x5 + x4 + x3 − 2x2 + x+ 1 3 282 ≥ 10 29189

11(2), 13,17 x6 − x5 + 2x3 − 2x2 + 1 3 252 ≥ 10 31709

11(6), 13(2),37∗∗ Q(
√

5)Q(ζ7)
+ 5 2700 ≥ 18 300125

11(6)b,19(2)∗∗ Q(ζ13)
+ 5 1830 13 135 = 371293

Remark 7.3 The field K = Q(
√

5)Q(ζ7)
+ supports an N -special elliptic curve E/K with

N = 37. The technique of proof of Theorem 4.3 shows that K contains an exceptional
sequence of length (N − 1)/2, so that M(K) ≥ 18. This fact was noted by Mestre already
in [47], page 127. It is suggested in [36], page 577, that M(K) might in fact equal 18. We
do not know if there exists a sextic field F with M(F ) > 18.

Remark 7.4 Recall that over K0 = Q(ζ7)
+ there exists an N -special elliptic curve E/K0

with N = 13. Thus over any quadratic extension K of K0, the base change EK/K has the
same property. It is natural to wonder whether the statement of Conjecture 7.1 still holds
when N = 11, and still holds when N = 13 when one considers only the sextic fields that do
not contain Q(ζ7)

+.

bThe analytic rank of X1(11) over Q(ζ13)+ is 3, with torsion subgroup reduced to Z/5Z. Over

Q(
√

5)Q(ζ7)+, the analytic rank is 2.
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The data that we computed does not support conjecturing an answer to these questions
when the unit rank is 4 or 5. In fact, when N = 11, Nicholas Triantafillou informed us [67]
that he can parameterize the sextic fields K and the points (r0, s0) ∈ K2 on the Weierstrass
equation y2 − y = x3 − x2 of X1(11) where both r0 and s0 are exceptional units in O∗K . He
found 80 families of polynomials f(x, k) ∈ Z[x, k] such that when k is an integer, a root r0
of f(x, k) is an exceptional unit in the number field Lk = Q(r0), and there exists an explicit
exceptional unit s0 such that (r0, s0) is a point on y2−y = x3−x2. The first such polynomial
on his list is

f(x, k) = x6 + (2k − 18)x5 + (k2 − 4k + 33)x4 + (−2k2 + 2k − 20)x3 + k2x2 + 4x− 1

with the corresponding coordinate

y :=
−x3 + (−k + 1)x2 + (k + 2)x− 1

4x− 2
.

The number fields Lk defined by a root of f(x, k) are likely to have unit rank 4 or 5. In view
of these examples and Lemma 5.3, the extended statement of Conjecture 7.1 that includes
N = 11 is unlikely to hold.

Remark 7.5 Consider the natural morphism X1(13) → X0(13) of degree 6. Since the
curve X0(13) is rational, Hilbert’s Irreducibility Theorem shows that the curve X1(13) has
infinitely many points P defined over a cyclic Galois extension K(P ) of degree 6. It would
be interesting to determine whether infinitely many such points P correspond to N -special
elliptic curves E/K(P ) with N = 13.

We present below two totally real (non-Galois) sextic fields K/Q where we found an N -
special elliptic curve E/K with N = 13, and where the discriminant of K is several orders of
magnitude larger than the largest ones currently found in the available tables of sextic fields.
We do not know if the construction described below could be used to generate infinitely
many such examples.

Start with a curve A/Q with an isogeny of degree 13 defined over Q. For instance, consider
the curve 9025.a1 in [35], with the j-invariant j = 2045023375454208. This curve has a point
of order 13 over a degree 12 extension. This degree 12 extension contains a totally real sextic
subextension K given by adjoining a root of the polynomial

f(x) := x6 − 435x5 + 61557x4 − 3899227x3 + 116234341x2 − 1451842437x+ 4630649791.

The field K has discriminant 6048409381625 = 53135194 and 126 exceptional units, with
class number 6. It has M(K) = 6. The search for a solution to F13(r, s) = 0 with r, s
exceptional units in O∗K is successful, and there exists an N -special elliptic curve E/K
with N = 13, and same j-invariant. A similar example can be obtained starting with
j = −738044630625096380416/3 and the elliptic curve 31827b1, giving a point over the field
of discriminant 41789354259133 = 1351034.

It is possible that Conjecture 7.1 might be proved by first giving a positive answer to the
following question on the Lenstra constant of sextic fields.

Question 7.6 Let K/Q be a sextic field. Is it true that M(K) ≤ 7 except for finitely many
explicit exceptions?
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Remark 7.7 Leutbecher and Martinet prove in [30], 6.1.1, that a sextic field with unit rank
2 has M(K) ≤ 9 except for two explicit fields. In particular, the field K of discriminant
−9747 in 7.2 is not one these two fields, showing that Theorem 4.3 is sharp when N = 19:
the field K must have M(K) = 9.

As we mentioned in 6.8, there are infinitely many sextic fields K/Q with M(K) ≥ 5. It is
straightforward to prove that there are in fact infinitely many sextic fields with M(K) ≥ 7.
Indeed, the cubic field K0 := Q(ζ7)

+ has M(K0) = 7, and thus any quadratic extension K
of K0 has M(K) ≥ M(K0). There is in addition at least one other infinite family of sextic
fields with M(K) ≥ 7 discovered by Leutbecher ([42], top of page 17-15, or [30], 3.2, A).

Having noted in the data a number of sextic fields with large discriminants and 126 excep-
tional units, we wonder whether there exist infinitely many such fields. Initial computations
with the Leutbecher family indicate that there may be infinitely many sextic fields with at
least 96 exceptional units.

For septic number fields, we propose the following conjecture.

Conjecture 7.8. Let N ≥ 17 be prime. There there exist only finitely many septic fields
K/Q with an N-special elliptic curve E/K.

7.9 In the following table, we include all septic fields K found where there exists at least
one N -special elliptic curve E/K with N ≥ 17. The notation is as in 1.5 and 7.2.

N field K (degree 7) rk #exu discr(K)

11(2), 13,19 x7 − x6 + x3 − x+ 1 3 336 −199559

11(2), 13,17 x7 − 2x6 + 4x5 − 4x4 + 3x3 − x2 − x+ 1 3 270 −250367

11(6),23 x7 − 3x5 − x4 + 3x3 + 1 4 960 612569

11(6),23 x7 − x6 − x4 + 3x2 − 1 4 906 649177

11(2),17 x7 − x6 − x5 + 2x3 + x2 − 2x− 1 4 882 661033

11(2),23 x7 − 3x6 + 5x5 − 6x4 + 3x3 − x2 − x+ 1 4 864 674057

13(3),19 x7 − x6 − x5 + 3x4 − 2x3 + 2x− 1 4 768 788857

11(6),17 x7 − x6 − 4x3 + 2x2 + 2x− 1 5 1908 −2932823

17∗∗ x7 − x6 − 2x5 + 5x4 − 6x2 + x+ 1 5 1464 −3998639

It is possible that Conjecture 7.8 might be proved by first answering positively the following
question on the Lenstra constant of septic fields.

Question 7.10 Let K/Q be a septic field. Is it true that M(K) ≤ 7 except for finitely
many exceptions?

Remark 7.11 A septic field with M(K) ≥ 15 is given in [29], page 103, Table 3. This field
might be the only known septic field with M(K) ≥ 15. The field K in the table in 7.9 of
discriminant −2932823 is mentioned in [29], page 105, as having M(K) ≥ 13.

The reader will find in [41] the results of our search for N -special elliptic curves E/K
when K/Q has degree 8 through 12. We note below the following two examples in degree
12.
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Remark 7.12 Consider the fieldK of degree 12 with discriminant 42553255797 = 361331632,
defined by the polynomial x12 − x9 + 5x8 − 2x7 − x6 − 7x5 + 8x4 − 4x3 + 5x2 − 4x+ 1, with
5204 exceptional units. This field contains the subfields Q(ζ3) and the quartic field of dis-
criminant 117 appearing in 1.5. There exists an explicit N -special elliptic curve E/K with
N = 43, and we find using the technique of proof in Theorem 4.3 that there is in K an
exceptional sequence of units of length (N − 1)/2. In particular, M(K) ≥ 21. The ideal of
OK of smallest norm has norm 37, so that M(K) ≤ 37. To our knowledge, this field K is
the field of degree 12 with the largest known lower bound for its Lenstra constant. Some
fields F of degree 12 with M(F ) ≥ 18 are given in [19], Table 6.

Remark 7.13 Let K denote the totally complex field K of degree 12 defined by the poly-
nomial x12− 2x11 + 5x10− 10x9 + 16x8− 22x7 + 30x6− 31x5 + 28x4− 27x3 + 19x2− 7x+ 1.
This field has discriminant 48737056617 = 39195, and 4622 exceptional units. It contains
the sextic field having discriminant −9747 = −33192 in 7.2. In OK , the ideal (19) has a
factorization in maximal ideals of the form (19) = M6M1M2M3.

There are four N -special elliptic curves E/K with N = 19. Three have integral j-invariant.
One of them has j = 0 and a K-rational point of order 57, and reduction modulo M of
type IV. This curve is found in [7], page 531. The other two curves do not have complex
multiplication and have a point of order 38, with reduction modulo M of type III. It is shown
in [45], Theorem 1.2, that the possible additive reduction types of a curve E/K with a K-
rational point of order N modulo a prime above N are quite restricted, and only reduction
of type II is allowed in addition to the two examples above with reduction III and IV.

8. Higher dimension

It would be interesting to determine whether some of the results of this article have
generalizations to abelian varieties A/K of dimension g > 1. It is straighforward to generalize
our definitions to higher dimensional abelian varieties: Given a place v of a number field
K/Q, we let again Kv denote the completion of K at v, and kv denote the residue field of
OKv . Given an abelian variety A/K, the local Tamagawa number cv of A/K is the order
|Φv(kv)| of the group of kv-rational points of the component group Φv/kv of the special
fiber Akv/kv of the Néron model A/OK of AKv/Kv. The Tamagawa number c(A/K) is the
product

∏
v cv. Let N be prime. We say that A/K is N-special if A/K has a K-rational

point of order N and N does not divide c(A/K).
Let E/K be an elliptic curve. When N ≥ 5 and N divides c(E/K), Lemma 1.2 shows

that E/K has a place of split multiplicative reduction. This fact is expected to generalize
as follows.

Lemma 8.1. Let A/K be an Jacobian variety of dimension g, and let N be prime. When
N > 2g+1 and v is a place of K where N divides cv, then the reduction of A at v has positive
toric rank. The same result holds when A/K is a principally polarized abelian variety and
N 6= char(kv).

Proof. When the abelian variety A/K is principally polarized, its group of components
Φv(kv) is expected to contain a subgroup Θ whose order is bounded be a constant depending
only on the unipotent rank of the special fiber Akv , and such that Φv(kv)/Θ has a number
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of generators bounded by the toric rank of Akv . This statement is true for the prime-to-p
part of Φv(kv), where p =char(kv). In this case it is further known that the primes ` which
divide |Θ| satisfy ` ≤ 2g+ 1 (use [39], Theorem 3.21, with Θ isomorphic to the product over
all primes ` of the groups denoted by ΘK,`(A) in Part (ii)). Hence, when N > 2g+ 1 and N

divides cv and N 6= p, we find that Φv(kv)/Θ cannot be trivial, and so the toric rank of Akv
cannot be 0.

When A/K is a Jacobian with toric tank 0 at v, we can use the bound for |Φv(kv)| given
in [37], Theorem 2.4, to show that only primes ` with ` ≤ 2g + 1 can divide |Φv(kv)|. �

Let A/Q be an abelian surface. The full list of primes N that can divide the order
of the torsion subgroup of A(Q) is not yet known. In particular, N = 31 or 37 are not
known to divide |A(Q)tors| for some A/Q. Examples of N -special abelian surfaces A/Q with
N = 11, 13, and 19 are given in [40], 3.14 to 3.17. When the base field is not Q, we do not
know of any explicit example beyond the following examples of an abelian surface with large
prime torsion (not defined already over Q).

Example 8.2 Let K := Q(ζ7)
+, the totally real cubic field of smallest discriminant. This

field has M(K) = 7. We present below a hyperelliptic curve X/Q of genus 2 whose Jacobian
A/Q is such that AK/K is N -special with N = 31. We also present an N -special abelian
surface A′/K with N = 37.

Consider the curve X/Q given by the affine equation y2 = 5x6−4x5 + 20x4−2x3 + 24x2 +
20x+5. This curve was found by Noam Elkies [14]. He mentions that X has three K-rational
points Pm = (zm, 7z

2
m), where zm = ζm7 + ζ−m7 ∈ K, m = 1, 2, 3. He states that the Jacobian

A/Q of X/Q has a Q-rational subgroup of order 31. Magma can work with this Jacobian
using the command Jacobian() and can check that the point Q of A(K) determined by the
divisor P1 − P2 has exact order N = 31. Magma further checks that the point Q′ of A(K)
determined by the divisor P3 − P2 has exact order N = 31, with Q′ = 26Q.

Elkies mentions that the curve has good reduction at p = 2. Sage computes the reduction
of X/Q at each odd prime p using the command genus2reduction(), and finds that the
conductor of this curve over Q is 5274 = (245)2. It is easy to see directly that the reduction
modulo 5 has equation y2 = x2(x+ 1)(x+ 2)2 and so is stable with two F5-rational ordinary
nodes at (0, 0) and at (−2, 0). The given equation in fact can be used to construct the regular
model of XQ5/Q5. The reduction of the equation modulo 7 is y2 = (x + 5)6 and so defines
the union of two rational curves meeting at one point. Sage indicates that the reduction of
X/Q modulo 7 is of type [III] page 155, in [55].

We now turn to showing that N = 31 does not divide c(AK/K). For this, we use the
information above on the reduction of X/Q and infer from it information on the reduction
of XK/K. The prime (5) of Z is inert in OK . Therefore, the reduction modulo (5) does not
change when passing from Q to K. The component group of the Néron model over (OK)(5)
is trivial.

Recall that the extension K/Q is ramified only above (7) with (7) = (α)3 and α =
2 − ζ7 − ζ−17 . We claim that the curve XK/K has good reduction modulo (α), so that the
component group above (α) of the Néron model of AK/K is again trivial. To verify this
claim, it suffices to use that the extension of degree 3 that we are making from Z(7) to (OK)(α)
is tame. This allows for an explicit calculation of the reduction type of the special fiber of
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the regular model over (OK)(α) from the knowledge of the special fiber of the regular model
over Z(7) (see, e.g., [38], 1.8, for more details on this). The new special fiber over (OK)(α) is
a curve of genus 2 with an automorphism of order 3 inducing a morphism of degree 3 to a
projective line ramified over 4 points.

Let L := Q(
√

5)K, and consider the N -special elliptic curve E/L in 7.2 with N = 37. Let
A′/K denote the Weil restriction of E/L to K. Lemma 8.3 shows that A′/K is an N -special
abelian surface.

We can use the following lemma to construct N -special abelian varieties A/Q using the
examples of N -special elliptic curves produced in this article.

Lemma 8.3. Given a number field L/Q with a subfield K and an abelian variety B/L,
let A/K denote the Weil restriction of B/L from L to K. Then the abelian variety A/K
has dimension [L : K]dim(B), and comes with a natural isomorphism A(K) = B(L). In
particular, if B/L has a L-rational torsion point of prime order N , then A/K has a K-
rational torsion point of order N . Moreover, A/K is N-special if and only if B/L is N-
special.

Proof. Most of the statements simply recall standard properties of the Weil restriction. For
the last statement use [40], 3.19, to obtain that c(A/K) = c(B/L). �

Let N ≥ 7 be prime. It is natural to ask if there are any constraints on the field K when
there exists an N -special abelian variety A/K. In the case of elliptic curves, Theorem 4.3
shows that these hypotheses produce information on the Lenstra constant M(K). Given an
N -special elliptic curve E/L with M(L) ≥ (N−1)/2, it is not always the case that a subfield
K of L still has a large Lenstra constant. Lemma 8.3, on the other hand, lets us obtain from
E/L an abelian variety A/K which is always N -special. Given an N -special abelian variety
A/K of dimension g such that the N -torsion subgroup of A(K) has order at least N g, one
may wonder whether it is true that M(K) ≥ (N − 1)/2.

Example 8.4 Let K denote the cubic field of smallest discriminant −23 (in absolute value),
with K = Q(α) and α a root of x3−x2 +1. We present below an N -special abelian threefold
A/K with N = 23 and N = 31. The field K has M(K) = 5 [30, Theorem 4.1.1].

Let L denote the field of degree 9 and unit rank 5 defined by the polynomial x9 − 2x8 +
x6− x5 + 14x4− 28x3 + 19x2− 2x− 1. The field L has discriminant −114479303 = −233972

and contains the field K. It has 3246 exceptional units. There exists a 31-special elliptic
curve E/L. We can thus consider the Weil restriction A/K from L to K of the elliptic curve
E/L, and use Lemma 8.3 to obtain that A/K is 31-special.

There exists a 23-special elliptic curve E ′/L′ defined over the field L′ of degree 9 and
unit rank 4 given by the polynomial x9 − 2x8 + 2x7 − 2x5 + 2x4 − x + 1. The field L′ has
discriminant 33860761 = 112234 and contains the field K. As above, we can consider the
Weil restriction A′/K from L′ to K of the elliptic curve E ′/L′.

Example 8.5 Consider the decic field K of discriminant 995628125 = 55318601 and rank 5
given by the polynomial x10− 3x9 + 5x8− 6x7 + 6x6− 4x5 + 3x4− 2x3 +x2−x− 1. The field
K has 3270 exceptional units. We present below an N -special abelian threefold A/K with
N = 67. Note that in this example, M(K) ≥ 9 by Theorem 4.3, since the field K supports
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an N -special elliptic curve E0/K with N = 19. The smallest norm of a prime ideal of K is
19, so that M(K) ≤ 19.

The field K has a Galois extension L/K of degree 3 such that over L, there exists an elliptic
curve E/L with everywhere good reduction and an L-rational point of order N = 67. The
j-invariant of this curve belongs to K, and the curve does not have complex multiplication.
This curve was found by van Hoeij (see [69], second given point on X1(67), over a field of
degree 30). We can thus consider the Weil restriction A/K from L to K of the elliptic curve
E/L, and use Lemma 8.3 to obtain that A/K has the desired properties.
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J. Number Theory 31 (1989), no. 1, 54–63.
[28] H. Lenstra, Euclidean number fields of large degree, Invent. Math. 38 (1976/77), no. 3, 237–254.
[29] A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier 35 (1985), no. 2,

83–106.
[30] A. Leutbecher and J. Martinet, Lenstra’s constant and Euclidean number fields, Arithmetic Conference
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(1981), no. 2, 123–137.
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(2003), no. 3, 831–838.

[58] A. Pethö, T. Weis, H. Zimmer, Torsion groups of elliptic curves with integral j-invariant over general
cubic number fields, Internat. J. Algebra Comput. 7 (1997), no. 3, 353–413.

[59] M. Rebolledo, Merel’s theorem on the boundedness of the torsion of elliptic curves, Arithmetic geometry,
71–82, Clay Math. Proc., 8, Amer. Math. Soc., Providence, RI, 2009.

[60] M. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic
number fields, Math. Comp. 46 (1986), no. 174, 637–658.

[61] SageMath, The Sage Mathematics Software System, The Sage Developers, 2021,
https://www.sagemath.org.

[62] B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. (2) 10 (1975), 367–378.
[63] A. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion, Math. Comp. 81

(2012), no. 278, 1131–1147.
[64] A. Sutherland, Alternative defining equations for X1(N), https://math.mit.edu/~drew/X1_

altcurves.html, Defining equations for X1(N) in raw form, http://math.mit.edu/~drew/X1_

rawcurves.html

[65] H. Swinnerton-Dyer and B. Birch, Elliptic curves and modular functions, Modular functions of one
variable, IV, Edited by B. J. Birch and W. Kuyk. Lect. Notes in Math. 476, Springer-Verlag, 1975,
2–32.

[66] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions
of one variable, IV, Edited by B. J. Birch and W. Kuyk. Lect. Notes in Math. 476, Springer-Verlag,
1975, 33–52.

[67] N. Triantafillou, 80 one-parameter families of sextic integral points on y2 − y = x3 − x2 minus its 5
integral points, private communication, January 2022.

[68] M. van Hoeij, Low Degree Places on the Modular Curve X1(N), https://arxiv.org/abs/1202.4355.
[69] M. van Hoeij, https://www.math.fsu.edu/∼hoeij/files/X1N, and

https://www.math.fsu.edu/∼hoeij/files/X1N/LowDegreePlaces 61 80.
[70] W. Waterhouse, Abelian varieties over finite fields Ann. Sci. ENS (4) 2 (1969), 521–560.
[71] H. Wiersema and C. Wuthrich, Integrality of twisted L-values of elliptic curves, Preprint 2021. https:

//arxiv.org/abs/2004.05492

[72] A. Wiles, Modular curves and the class group of Q(ζp), Invent. Math. 58 (1980), no. 1, 1–35.
[73] H. Zimmer, Torsion groups of elliptic curves over cubic and certain biquadratic number fields, Arithmetic

geometry (Tempe, AZ, 1993), 203–220, Contemp. Math., 174, AMS, Providence, RI, 1994.

Department of mathematics, University of Georgia, Athens, GA 30602, USA
Email address: lorenzin@uga.edu

https://math.mit.edu/~drew/X1_altcurves.html
https://math.mit.edu/~drew/X1_altcurves.html
http://math.mit.edu/~drew/X1_rawcurves.html
http://math.mit.edu/~drew/X1_rawcurves.html
 https://arxiv.org/abs/2004.05492
 https://arxiv.org/abs/2004.05492

	1. Introduction 
	2. Elliptic curves over Q
	3. Elliptic curves over quadratic fields
	4. Exceptional Units
	5. The curve X1(11)
	6. The Lenstra constant
	7. Sextic and septic fields
	8. Higher dimension
	References

