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Abstract. In characteristic 2 and dimension 2, wild Z/2Z-actions on k[[u, v]] ramified
precisely at the origin were classified by Artin, who showed in particular that they induce
hypersurface singularities. We introduce in this article a new class of wild quotient singu-
larities in any characteristic p > 0 and dimension n ≥ 2 arising from certain non-linear
actions of Z/pZ on the formal power series ring k[[u1, . . . , un]]. These actions are ramified
precisely at the origin, and their rings of invariants in dimension 2 are hypersurface sin-
gularities, with an equation of a form similar to the form found by Artin when p = 2. In
higher dimension, the rings of invariants are not local complete intersection in general, but
remain quasi-Gorenstein. We establish several structure results for such actions and their
corresponding rings of invariants.
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1. Introduction

Given a smooth quasi-projective algebraic variety X over a field k and a finite subgroup
G of automorphisms of X, the quotient X/G exists, and a precise understanding of the
singularities of X/G is often crucial in many problems in algebraic geometry, including in
the geography of surfaces of general type, and in the study of the automorphisms of K3
surfaces and Enriques surfaces. The initial study of a quotient singularity on X/G is local,
and consists in the analysis of the action of the isotropy subgroup of a point x ∈ X on the
completion of the regular local ring OX,x.

In characteristic zero, the action of a finite group G on the power series ring A =
k[[u1, . . . , un]] is always linearizable, an observation going back to H. Cartan [14]. The
ring of invariants AG has then good algebraic properties, such as being Cohen–Macaulay
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[25], and the singularity of SpecAG is even rational ([10], [12]). Watanabe gave in [64] and
[65] an explicit criterion for AG to be Gorenstein.

When k has positive characteristic p and the order of G is divisible by p, an action of G on
k[[u1, . . . , un]] is called wild. Such actions are much more delicate to study. Most wild actions
of G on k[[u1, . . . , un]] are not linearizable, in which case the group G acts via true power
series substitutions. The resulting rings AG are usually not Cohen–Macaulay when n ≥ 3
(3.2). The elements of order p in the group Autk(k[[u1, . . . , un]]) are completely understood
only when n = 1 and k is finite ([31], [37]). In this article, we will focus on the geometric
case where the action is ramified precisely at the origin (3.1). This type of wild action is
never induced by a linear action on the variables (3.3), and thus the large body of results in
modular invariant theory is not immediately applicable to their study.

The starting point of our article is a result of Artin [4], who analyzed all wild actions
of G = Z/2Z, ramified precisely at the origin, in dimension n = 2 when k is algebraically
closed, and showed that

AG = k[[x, y, z]]/(z2 − abz − ya2 + xb2)

for some system of parameters a, b ∈ k[[x, y]]. In particular, this explicit description of AG

shows that it is a complete intersection and, hence, Gorenstein. Artin noted in [4] that it
would be interesting to extend his result to wild Z/pZ-actions when p > 2. Peskin [47]
subsequently described an explicit class of wild Z/3Z-actions ramified precisely at the origin
with ring of invariants also described by an explicit equation when n = 2. In general, though,
most wild Z/pZ-actions on k[[u1, u2]] ramified precisely at the origin do not have Gorenstein
rings of invariants (see 9.5).

In this article, inspired by the work of Artin, we introduce a new class of wild Z/pZ-actions
on k[[u1, . . . , un]] ramified precisely at the origin, for all n ≥ 2 and all primes p, whose rings
of invariants are complete intersection when n = 2, and quasi-Gorenstein (9.6) in general.
Our main motivation for introducing these actions, in addition to their intrinsic interest as
new explicit elements in the mysterious group of automorphisms of k[[u1, . . . , un]], lies in the
fact that already in dimension n = 2, we believe that this class of actions is rich enough to
potentially solve two open problems concerning resolutions of singularities of Z/pZ-quotient
singularities of surfaces: determine whether in the class of minimal resolutions of Z/pZ-
quotient singularities, there is no bound on the number of vertices of valency at least 3 that
the minimal resolution graph can have; and determine whether every power of p occurs as
the determinant of the intersection matrix of a resolution of some Z/pZ-quotient singularity
when p > 2. We address the latter problem in [36].

An analysis of Artin’s arguments in [4] for p = n = 2 shows that it is possible to formulate
five axiomatic conditions on a Z/pZ-action, such that any Z/pZ-action satisfying all five
of these axioms can be described in a particularly simple way, similar to the description
obtained by Artin in the case p = n = 2. We call such Z/pZ-actions moderately ramified.
As a byproduct, we also obtain a class of (Z/pZ)n−1-actions on k[[u1, . . . , un]] whose rings of
invariants are local complete intersections (7.2).

Our new class of wild Z/pZ-actions can be described as follows. Start with an action
of G := Z/pZ on A := k[[u1, . . . , un]] which is ramified precisely at the origin. We call
xi :=

∏
σ∈G σ(ui) a norm element, and we show in 2.9 that it is always possible to find a

regular system of parameters u1, . . . , un in A such that A is finite of rank pn over the norm
subring R := k[[x1, . . . , xn]]. Our axioms ensure that the ring A comes with a norm subring
R such that Frac(A)/Frac(R) is Galois with elementary abelian Galois group H of order
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pn, and that n distinguished subgroups G⊥
i of index p yield intermediate rings of invariants

R ⊂ AG⊥

i ⊂ A that result in a decomposition A = AG⊥

1 ⊗R . . .⊗RA
G⊥

n . Our description then
relies on an analysis of the resulting schemes Yi := SpecAG⊥

i → S := SpecR endowed with
the natural action of H/G⊥

i .
Extending to base schemes S of dimension bigger than one a construction of Raynaud

[49], which was already further extended in dimension one by Romagny [53] to groups which
are not necessarily finite and flat over S, we attach to the action of H/G⊥

i on Yi a finite flat
group scheme Gi/S and a natural action Gi ×S Yi → Yi. In keeping with the terminology
introduced by Romagny, we call the action Gi ×S Yi → Yi the effective model of the action
of the constant group scheme H/G⊥

i on Yi. Our final axiom imposes that Yi/S be a torsor
under the action of Gi/S, for i = 1, . . . , n. We then use the Tate–Oort classification of such
group schemes Gi/S [62], and obtain explicit equations describing a moderately ramified
G-action on A in Theorem 6.11.

Our terminology “moderately ramified G-action on A” refers to the fact that the ramifi-
cation of the associated morphism SpecA→ SpecAH is “as small as possible”. Moderately
ramified actions are in some sense “as free as possible” outside ramification at the closed
point. When p = n = 2, all five axioms are automatically satisfied when k is algebraically
closed. For arbitrary p ≥ 2, we obtain in dimension n = 2 a description in 7.7 of the ring of
invariants AG which generalizes Artin’s description when p = 2 in [4].

In dimension n > 2, the ring AG is never a complete intersection since it is known that
this ring is not Cohen–Macaulay when the action is ramified precisely at the origin. Thus
an explicit description of AG by generators and relations is in general out of reach in higher
dimensions. When n = 3, we are able to provide generators for AG in 8.5 when the system of
parameters associated with the G-action consists of polynomials rather than general power
series. We are also able to provide a formula for the embedding dimension. Using methods
from non-commutative algebra, we show for all n ≥ 2 in 9.6 that AG is quasi-Gorenstein,
that is, that the dualizing module KAG is trivial in the class group Cl(AG).

The paper is organized as follows. In Section 2 we study general properties of norm
subrings R inside A = k[[u1, . . . , un]]. Section 3 focuses on wild G-actions on A that are
ramified precisely at the origin, and presents a criterion for the extension Frac(A)/Frac(R)
to be Galois in terms of the extension Frac(AG)/Frac(R). The proof of this criterion uses
results on fundamental groups. Section 4 deals with extensions of group schemes and torsors,
and proves the existence of the effective model of a group action over higher-dimensional
bases. These concepts are further developed explicitly in dimension 1 in Section 5. Section
6 introduces the central notion of moderately ramified action and the main structure results
for such action. In Section 7 we study various auxiliary invariant rings that are attached
to moderately ramified actions. We treat the case n = 3 in Section 8, where we present a
set of generators for the ring AG for certain moderately ramified actions. We show that the
canonical class [KAG ] ∈ Cl(AG) is trivial in Section 9.
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Collaboration Grant 245522, and the research training group GRK 2240: Algebro-geometric
Methods in Algebra, Arithmetic and Topology of the Deutsche Forschungsgemeinschaft.
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2. Norm subrings

Let A denote a complete local noetherian ring that is regular, of dimension n ≥ 1, and
with maximal ideal mA. Recall that a field of representatives for A is a subfield k of A such
that the composition k ⊂ A → A/mA is an isomorphism of fields. When A/mA is perfect,
such a subfield is unique. We will always in this article assume that A contains a field, and
we fix a field of representatives k ⊂ A and regard it as ground field. A set of n elements
x1, . . . , xn ∈ A which generate an mA-primary ideal in A is called system of parameters. The
following facts are well-known.

Lemma 2.1. If x1, . . . , xn ∈ A is a system of parameters, then the ensuing homomorphism
of complete local k-algebras R := k[[x1, . . . , xn]] → A is finite and flat. Its degree is the
length of A/(x1, . . . , xn)A.

Proof. The ring A, viewed as an R-module is finite, according to [68], Corollary 2 and
Remark on page 293. Since R is regular and A is Cohen–Macaulay, the R-module A is free
of finite rank, by [57], Proposition 22, page IV-37. This rank is the vector space dimension of
A/(x1, . . . , xn)A over k = R/(x1, . . . , xn), which coincides with the length ofA/(x1, . . . , xn)A.

�

A set of n elements u1, . . . , un in A which generate mA is called a regular system of
parameters. The resulting homomorphism k[[u1, . . . , un]]→ A is then bijective.

LetG ⊂ Aut(A) be a finite group of automorphisms such that k lies in the ring of invariants
AG. Clearly, mA ∩A

G is a maximal ideal with residue field k. It follows from [42], Théorème
2, that AG is a complete noetherian local ring and that A is an AG-module of finite type.
Choose a regular system of parameters u1, . . . , un ∈ A, and consider the norm elements

xi := NA/AG(ui) =
∏

σ∈G

σ(ui), 1 ≤ i ≤ n.

These elements are obviously G-invariant, and we can consider the complete local k-subalgebra
R ⊂ AG generated by x1, . . . , xn. Let us call R a norm subring of A. The ring extensions
R ⊂ AG ⊂ A play a crucial role in this article. In this section, we determine under what
conditions the extension R ⊂ A is finite.

Definition 2.2. A regular system of parameters u1, . . . , un ∈ A is called weakly admissible
(resp. admissible) with respect to the G-action if, for each (σ1, . . . , σn) ∈ Gn, the elements
σ1(u1), . . . , σn(un) ∈ A form a system of parameters (resp., form a regular system of param-
eters).

The main justification for introducing this notion is the following result:

Proposition 2.3. Let u1, . . . , un be a regular system of parameters of A. Then the associated
norm elements x1, . . . , xn form a system of parameters in A if and only if the elements
u1, . . . , un are weakly admissible with respect to the action of G. If the above equivalent
conditions hold, then the homomorphism of k-algebras k[[x1, . . . , xn]] → A is finite and flat
of degree at least |G|n, with equality when the regular system is admissible.

Proof. Let g := |G|. Choose an enumeration σ1, . . . , σg of the elements of G such that σ1 := e
is the neutral element. Define fi,j := σj(ui), with 1 ≤ j ≤ g and 1 ≤ i ≤ n. In particular,
fi,1 = ui and xi =

∏g
j=1 fi,j. Let X := Spec(A) and consider the closed subsets V (fi,j) ⊂ X.
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Clearly,

V (x1, . . . , xn) =

n⋂

i=1

(
g⋃

j=1

V (fi,j)

)

.

Let J := {1, . . . , g}. Using the distributive properties of ∩ and ∪, we find that

(2.4) V (x1, . . . , xn) =
⋃

(j1,...,jn)∈Jn

(
n⋂

i=1

V (fi,ji
)

)
=

⋃

(j1,...,jn)∈Jn

V (f1,j1, . . . , fn,jn).

If the elements x1, . . . , xn ∈ A form a system of parameters, then V (x1, . . . , xn) contains only
the closed point and, thus, each V (f1,j1, . . . , fn,jn) consists only of the closed point. Hence,
for each tuple (j1, . . . , jn), the elements fi,j1, . . . , fi,jn ∈ A form a system of parameters.
In other words, the elements u1, . . . , un ∈ A are weakly admissible. Conversely, when the
elements u1, . . . , un ∈ A are weakly admissible, it immediately follows from (2.4) that the
elements x1, . . . , xn ∈ A form a system of parameters.

Now suppose that the regular system of parameters u1, . . . , un ∈ A is weakly admissible,
such that the associated norm elements x1, . . . , xn form a system of parameters in A. Ac-
cording to Lemma 2.1, the ring A is a finite and flat module over R = k[[x1, . . . , xn]]. To
determine its rank, we need to compute the length of A/I, where I := (x1, . . . , xn)A. We now
establish the inequality length(A/I) ≥ gn using general facts on the Hilbert–Samuel multi-
plicity e(I, A) of I. Since we assume that the elements u1, . . . , un ∈ A are weakly admissible,
the ideal I ⊂ A is generated by a system of parameters. Since the ring A is Cohen–Macaulay,
the formula length(A/I) = e(I, A) holds ([5], Proposition 5.9). For any mA-primary ideal
J ⊂ A, we have e(Js, A) = sne(J,A) ([41], page 108). Applying this to J := m

g
A and using

the fact that e(mA, A) = 1 since A is regular, we find that e(J,A) = gn. Finally, the inclusion
I ⊂ J gives e(I, A) ≥ e(J,A) ([41], page 109), and the desired inequality follows.

Finally, assume that the regular system of parameters u1, . . . , un ∈ A is admissible. To
proceed, it is convenient to consider the slightly more general situation where we omit the
precise definition of the element fi,j, and keep only the following hypothesis: for each element
(j1, . . . , jn) ∈ Jn, the elements f1,j1, . . . , fn,jn form a regular system of parameters of A. In
particular, fi,j ∈ mA \ m2

A for each i ∈ [1, n] and j ∈ [1, g]. Letting ui := fi,1, we find that
u1, . . . , un form a regular system of parameters of A.

For each ` ∈ [1, n] and r ∈ [1, g], define g`,r :=
∏r

j=1 f`,j, and denote as previously
x` := g`,g. When 2 ≤ ` ≤ n− 1, consider the ideal

I`,r := (x1, . . . , x`−1, g`,r, u`+1, . . . , un) ⊂ A.

Define similarly the ideals I1,r = (g1,r, u2, . . . , un) and In,r = (x1, . . . , xn−1, gn,r) for each r ∈
[1, g]. With respect to the lexicographic ordering on the set of all pairs (`, r) in [1, n]× [1, g],
the gn ideals I`,r form a decreasing sequence

I`,r = (x1, . . . , x`−1, g`,r, u`+1, . . . , un) ⊇ (x1, . . . , x`−1, g`,r+1, u`+1, . . . , un) = I`,r+1

between I1,1 = (u1, . . . , un) and In,g = (x1, . . . , xn). Note that this sequence of ideals contains
the repetitions I`,g = I`+1,1.

Since the module I`,r/I`,r+1 is generated by g`,r, and because g`,r+1 = g`,rf`,r+1, we find
that I`,r/I`,r+1 is annihilated by

J`,r+1 := (x1, . . . , x`−1, f`,r+1, u`+1, . . . , un).
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It follows that length(A/J`,r+1) ≥ length(I`,r/I`,r+1). We claim that

length(A/J`,r+1) ≤ g`−1

for all r ∈ [0, g − 1] and ` ∈ [1, n]. Assuming this claim, we find the upper bound

(2.5)
length(A/(x1, . . . , xn)) = 1 +

∑n
`=1

∑g−1
r=1 length(I`,r/I`,r+1)

≤ 1 +
∑n

`=1(g − 1)g`−1 = gn.

To verify the claim, we proceed by induction on n = dim(A). Assume that n = 1. By con-
struction, J1,r+1 = (f1,r+1). By hypothesis, f1,r+1 ∈ mA \m2

A. Hence, f1,r+1 is a uniformizer
and A/(f1,r+1) has length one, as desired.

Assume now that n > 1, and that the assertion holds for n − 1. Since f`,r+1 is part of a
regular system of parameters, we find that the ring A := A/(f`,r+1) is a complete regular
local ring of dimension n− 1. When a ∈ A, denote by a its class in A. When 2 ≤ ` ≤ n− 1,
we have

(2.6) length(A/J`,r+1) = length(A/(x1, . . . , x`−1, u`+1, . . . , un)).

Similarly, A/J1,r+1 andA/(u2, . . . , un)) have the same length, andA/Jn,r+1 andA/(x1, . . . , xn−1)
also have same length. We now observe that we can apply our induction hypothesis to bound
the right-hand side of (2.6). Indeed, the set of elements f i,r ∈ A with i ∈ [1, n] and i 6= `,

and with r ∈ [1, g], inherits the property that every sequence f1,j1, . . . , fn,jn
of n−1 elements

(where no term f `,j`
appears) is a regular system of parameters in A. In case ` < n, we can

view u`+1 as f `+1,1 and conclude by induction. In the boundary case ` = n, it suffices to

show that length(A/(x1, . . . , xn−1) ≤ gn−1. To prove this inequality we use the argument in
(2.5) and use induction to justify each inequality found in that argument. �

Recall that a G-action on A = k[[u1, . . . , un]] is called linear if each σ ∈ G acts as
a substitution of variables uj 7→

∑n
i=1 λ

σ
ijui for some linear representation G → GLn(k),

σ 7→ (λσ
ij). For instance, the Z/2Z-action on k[[u, v]] which permutes u and v is linear, and

our next lemma implies that u, v is not weakly admissible for this action.

Lemma 2.7. Suppose that the G-action on A = k[[u1, . . . , un]] is linear. If there is an
element σ ∈ G whose matrix (λσ

ij) has a zero on the diagonal, then the regular system of
parameters u1, . . . , un ∈ A is not weakly admissible with respect to the action of G.

Proof. After reordering the u1, . . . , un ∈ A, we may assume that the non-zero diagonal entry
is λσ

11 = 0. For the tuple (σ, e, . . . , e) ∈ Gn, where e ∈ G denotes the neutral element, the
resulting elements σ(u1), u2, . . . , un ∈ A do not form a system of parameters, because they
generate the ideal (u2, . . . , un) ⊂ A. �

Any regular system of parameters u1, . . . , un ∈ A induces a basis u1, . . . , un of the cotan-
gent space mA/m

2
A. Fixing this basis of mA/m

2
A, we obtain an induced linear representation

G→ GL(mA/m
2
A) = GLn(k).

Lemma 2.8. Let u1, . . . , un ∈ A be a regular system of parameters with induced linear
representation G → GL(mA/m

2
A) = GLn(k). If the image of G is contained in the Borel

subgroup of upper triangular matrices, then u1, . . . , un is admissible with respect to the action
of G.
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Proof. Given (σ1, . . . , σn) ∈ Gn, we need to show that the elements σ1(u1), . . . , σn(un)
form a regular system of parameters of A. For this, it suffices to show that the images
σ1(u1), . . . , σn(un) in mA/m

2
A form a basis. That they form a basis is clear from the assump-

tion that each σi induces in the basis u1, . . . , un a matrix which is upper triangular. �

Note in particular that it follows from Lemma 2.8 that if the induced representation of
G on the cotangent space is trivial, then any regular system of parameters is automatically
admissible.

Proposition 2.9. If the ring A has characteristic p > 0 and the group G is a finite p-group,
then A contains an admissible regular system of parameters.

Proof. Let u1, . . . , un be any regular system of parameters of A with induced linear repre-
sentation G → GL(mA/m

2
A) = GLn(k). Since G is a finite p-group, it is possible to change

basis in mA/m
2
A so that in the new basis, every element in the image of G is an upper tri-

angular matrix whose diagonal coefficients are all 1 ([59], Proposition 26 on page 64). The
proposition then follows from 2.8. �

3. Actions ramified precisely at the origin

Let A be a complete local noetherian ring that is regular, of dimension n ≥ 2, and
characteristic p > 0, with maximal ideal mA and field of representatives k. Let G be a finite
cyclic group of order p, and assume that A is endowed with a faithful action of G so that
k lies in the ring of invariants AG. For each prime ideal p ⊂ A, we write Ip ⊂ G for the
inertia subgroup consisting of all σ ∈ G with σ(p) = p and such that the induced morphism
σ : A/p→ A/p is the identity.

3.1. We say that the G-action is ramified precisely at the origin if ImA
= G and Ip = {id}

for every non-maximal prime ideal p.

We discuss in this section several algebraic properties of the ring of invariants AG and of
the field extension Frac(A)/Frac(R) induced by a norm subring R ⊂ A. Let us start by
recalling the following well-known facts.

Proposition 3.2. Suppose that the G-action on A is ramified precisely at the origin.

(i) The ring of invariants AG is a complete local noetherian domain that is normal, with
dim(AG) = n and depth(AG) = 2.

(ii) The ring extension AG ⊂ A is local, finite of degree p, but not flat. The induced map
on residue fields is an isomorphism.

(iii) The singular locus of Spec(AG) consists of the closed point mAG. The morphism
Spec(A) \ {mA} → Spec(AG) \ {mAG} is a G-torsor.

Proof. It is standard that AG is an integrally closed domain, and that the ring extension
AG ⊂ A is integral. In light of the Going-Up Theorem, the ring AG must be local, the ring
extension AG ⊂ A is local, and dim(AG) = dim(A).

Let us show that AG is noetherian (see also [42], Théorème 2). According to 2.9, there
exists a regular system of parameters u1, . . . , un ∈ A that is admissible with respect to the
G-action. Let R = k[[x1, . . . , xn]] be the resulting norm subring. Then the extension R ⊂ A
if finite of degree pn (2.3). It follows that AG is also a finitely generated R-module and,
hence, AG is noetherian.
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Now that we know that AG is noetherian, Proposition 2 and Proposition 4 in [16] show
that AG has depth 2 (see also [15], 2.4, or [47], Corollary 1.6). Since A is complete, the
completion B of AG with respect to its maximal ideal maps to A, and the image of B in A
is AG. Thus, AG is complete since it is the image of a complete ring. This completes the
proof of (i).

By our overall assumption we have k ⊂ AG, so the inclusion AG ⊂ A has trivial residue
field extension. If AG is regular, then A would be flat over AG ([41], Theorem 23.1). But then
the Zariski–Nagata Theorem on the Purity of the Branch Locus ([2], Chapter VI, Theorem
6.8) would imply that the branch locus is pure of codimension 1, which would contradict
our hypothesis that AG ⊂ A is ramified precisely at the origin. Hence, the ring AG is not
regular, and it follows from [20], IV.6.5.1 (i), that AG ⊂ A is not flat. This shows (ii). Part
(iii) follows from [21], Exposé V, Proposition 2.6. �

The following lemma will be used in 6.15.

Lemma 3.3. Suppose that the G-action on A is ramified precisely at the origin. Then no
element v ∈ mA r m2

A is G-invariant. In particular, the action of G on A is not linear.

Proof. Suppose that there exists v ∈ mA r m2
A which is G-invariant. Extend v to a regular

system of parameters u1, . . . , un of A, with u1 = v. Let σ denote a generator of G, and
consider the ideal a ⊂ A generated by the elements σ(ui)−ui, i = 1, . . . , n. Since any prime
ideal p of A which contains a is such that Ip 6= (0), we find that V (a) = {mA}. In particular,
dim(A/a) = 0. On the other hand, by construction, the ideal a is generated by at most n−1
elements because σ(u1) − u1 = 0. Thus, since dim(A) = n, we find that dim(A/a) > 0, a
contradiction.

It follows that an action of G on A which is ramified precisely at the origin is never
linear, because a matrix of order p always has an eigenvector for the eigenvalue λ = 1 in
characteristic p. Note that this statement about non-linearity was noted already in [47],
Proposition 2.1. �

Our next theorem is used in 6.20.

Theorem 3.4. Assume that the G-action on A is ramified precisely at the origin.

(i) Choose a regular system of parameters u1, . . . , un ∈ A which is admissible with respect
to the G-action, and consider the corresponding norm subring R = k[[x1, . . . , xn]]. Then
the extension Frac(AG)/Frac(R) is not purely inseparable.

(ii) Assume that the field k has no Galois extension of degree p. Then any k-automorphism
ϕ : AG → AG extends to an automorphism ϕ′ : A→ A. Furthermore, if AG contains a
subring R such that the extension R ⊂ AG is finite and Frac(AG)/Frac(R) is Galois,
then the extension Frac(A)/Frac(R) is Galois as well.

Proof. (i) Consider the local schemes X := Spec(A), Y := Spec(AG), and S := Spec(R), and
write U ⊂ X, V ⊂ Y , and W ⊂ S for the complements of their closed points. Suppose that
Frac(R) ⊂ Frac(AG) is purely inseparable, so that the finite morphism Y → S is a universal
homeomorphism. According to [21], Exposé IX, Theorem 4.10, the étale covering U → V
would be the base-change of an étale covering W ′ → W . The latter is the restriction of
some étale covering S ′ → S by the Zariski–Nagata Purity Theorem. Consequently, U → V
is the restriction of some étale covering Y ′ → Y . Since the schemes X and Y ′ are normal,
both restriction maps Γ(Y ′,OY ′) → Γ(U,OU) ← Γ(X,OX) are bijective, whence Y ′ = X,
contradicting the fact that X → Y is not étale.
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(ii) In order to extend ϕ : AG → AG to A, let τ : V → V be the morphism induced by ϕ.
Define the scheme τ ∗(U) by requiring that the following diagram be Cartesian:

τ ∗(U) −−−→ U
y

y

V −−−→
τ

V.

Our task is to show the existence of a V -isomorphism U → τ ∗(U). Composing this isomor-
phism with the given morphism τ ∗(U)→ U produces an extension of the morphism τ , giving
the desired automorphism ϕ′ of A = Γ(U,OU).

Choose a separable closure Frac(AG) ⊂ Ω. In turn, we get a geometric point b : Spec(Ω)→
V . Recall that the algebraic fundamental group π1(V, b) is defined as the group of automor-
phisms for the fiber functor (Cov/V ) → (Set) that sends a finite étale V ′ → V to the
underlying set of the base-change V ′ ⊗V Ω. Here (Cov/V ) denotes the category of all finite
étale V -schemes, which thus becomes equivalent to the category of finite sets endowed with
a continuous action of π1(V, b) ([21], Exposé V, Section 7). By abuse of notation, we also
write π1(V,Ω) for the fundamental group with respect to the base-point b : Spec(Ω)→ V .

Up to isomorphism, the two finite étale G-coverings U1 = U and U2 = τ ∗(U) correspond
to the finite set G, endowed with actions via group homomorphisms hi : π1(V,Ω) → G for
i = 1, 2. Let Hi ⊂ π1(V,Ω) be their kernels. The task is to show that the two actions on G
are isomorphic, in other words, that H1 = H2. To proceed, choose a lifting of the geometric
point b : Spec(Ω) → V along Ui → V . This gives an identification Hi = π1(Ui,Ω). Clearly,
Γ(Ui,OUi

) is a complete local noetherian ring that is regular. Let Xi be its spectrum. The
commutative diagram

Ui −−−→ V
y

y

Xi −−−→ Spec(k)

induces a commutative diagram of fundamental groups

π1(Ui,Ω) −−−→ π1(V,Ω)
y

y

π1(Xi,Ω) −−−→ π1(k,Ω).

The map on the left is bijective, because Xi is regular and Xi rUi has codimension two ([21],
Exposé X, Corollary 3.3). The lower map is bijective as well, because Xi is local henselian
([21], Exposé X, Théorème 2.1). It follows that the kernel N ⊂ π1(V,Ω) for the map on the
right is isomorphic to G, and that both Hi = π1(Ui,Ω) are sections for π1(V,Ω)→ π1(k,Ω).
Any two sections differ by a homomorphism π1(k,Ω) → N . The latter must be zero, by
assumption on the field k. In turn, H1 = H2.

Now suppose that R ⊂ AG is finite and Frac(R) ⊂ Frac(AG) is Galois, say of degree
d ≥ 1. To check that Frac(R) ⊂ Frac(A) is Galois, it suffices to extend each Frac(R)-
automorphism ϕ : Frac(AG) → Frac(AG) to an automorphism ϕ′ : Frac(A) → Frac(A).
Indeed, the group H of automorphisms of Frac(A) over Frac(R) then contains at least dp
elements, obtained as products of extension ϕ′ and σ ∈ G. Since [Frac(A) : Frac(R)] = dp,
we find that Frac(R) ⊂ Frac(A) is Galois. The desired extensions ϕ′ do exist, because then
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the morphism ϕ extends to the integral closure AG of R with respect to R ⊂ AG, and thus
to A. �

Remark 3.5. (i) We do not know whether the conclusion of Theorem 3.4 (ii) holds without
the additional hypothesis on the field of representatives k.

(ii) We do not know of an example of an action of G = Z/pZ on A = k[[u1, . . . , un]]
ramified precisely at the origin where Frac(AG)/Frac(R) is not separable. When the action
is not ramified precisely at the origin, it is easy to find examples where Frac(AG)/Frac(R)
is not separable. Indeed, if σ(ui) = ui, then ui ∈ A

G and xi := Norm(ui) = up
i ∈ R.

4. The effective model of a group action

Let R := k[[x1, . . . , xn]], and let L/Frac(R) be a Galois extension of degree p. Let B denote
the integral closure of R in L. It is natural to wonder what conditions can be imposed on the
Galois extension L/Frac(R) to guarantee that the ring B is simple, say B ' R[u]/(f(u)) for
some easily described f(u) ∈ R[u]. To give an answer to this question that will be useful in
6.8 in our study of normal forms of Z/pZ-actions on A = k[[u1, . . . , un]], we introduce below
the notion of effective model of a group action.

Let G denote the Galois group of L/Frac(R). Clearly, G also acts on B. Letting S =
SpecR and Y := SpecB, we obtain an action of the constant group scheme GS/S on Y/S.
Assume now that Y/S is flat. Then, associated with this action on Y/S is a uniquely
defined group scheme G/S with an S-action G ×S Y → Y . The group scheme G/S is called
the effective model of the action of G on Y . It was considered first by Raynaud in [49],
Proposition 1.2.1, in cases where R is a discrete valuation ring. This theory was extended,
still in the case where R is a discrete valuation ring, to cases where GS is not constant, and
even not finite over S, in [52] and [53]. In the case where GS is constant, some cases where
the base scheme S is not of dimension 1 are considered in [1], 2.2. The main result in this
section is Theorem 4.3 below, which proves the existence of the effective model when GS/S
is constant but the base S is not necessarily of dimension 1.

Fix a noetherian base scheme S and some prime number p > 0. Let Y → S be a finite flat
morphism of degree p. Denote by Aut(Y/S) the group of S-automorphisms of Y . Consider
the group-valued functor AutY/S, with AutY/S(T ) := Aut(YT/T ) for any S-scheme T . Using
the existence of Hilbert schemes ([19], 221-19), such functor is shown to be representable, by
a scheme denoted AutY/S/S. In our situation, we will need to use the fact that the structure
morphism AutY/S → S is affine. For convenience, we recall a proof of this fact below. This
proof can be easily modified to also give a proof of the existence of AutY/S/S.

Lemma 4.1. The structure morphism AutY/S → S is affine.

Proof. The question is local in S, so it suffices to treat the case where the schemes S =
Spec(R) and Y = Spec(B) are affine. Furthermore, we may assume that B admits a basis
b1, . . . , bp ∈ B as R-module, and that b1 = 1B. Let GL(B) = GLp,R be the group scheme of
R-linear automorphisms. Its underlying scheme is the spectrum of the localization R[Tij ]det,
where T11, . . . , Tpp are p2 indeterminates and det = det(Tij) is the determinant of the matrix
(Tij)1≤i,j≤p. We have a canonical monomorphism AutY/S ⊂ GLp,R. To show that the scheme
AutY/S → S is affine, it suffices to show that the monomorphism is a closed embedding.

Let τ = (τij) be an R-linear map B → B. Write µ : B ⊗B → B for the algebra multipli-
cation, with µ(bi ⊗ bj) =

∑
µkijbk. Then the linear map τ is an algebra homomorphism if

and only if µ ◦ (τ ⊗ τ) = τ ◦ µ and τ(b1) = b1. The latter means τ21 = . . . = τp1 = 0.
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As to the former condition, we have (µ ◦ (τ ⊗ τ)) (bi ⊗ bj) =
∑

k(
∑

r,s τriτsjµkrs)bk and

(τ ◦ µ) (bi⊗ bj) =
∑

k(
∑

t µijtτkt)bk. Comparing coefficients gives
∑

r,s τriτsjµkrs =
∑

t µijtτkt

for all 1 ≤ k ≤ n. Replacing the scalars τri by the indeterminates Tij , we obtain equations
that define a closed subscheme inside GLp,R. Applying the above computations over arbitrary
R-algebras R′, we infer that this closed subscheme represents the functor AutY/S. �

Let now G be an abstract group of order p acting on Y via S-automorphisms. In other
words, G is endowed with a group homomorphism G → AutS(Y/S). The quotient scheme
Y/G exist, and we assume that the structure map Y/G→ S is an isomorphism. Write GS/S
for the constant group scheme associated to G. The action of G on Y/S yields a natural
homomorphism of group schemes

(4.2) f : GS → AutY/S .

Since AutX/S → S is separated andGS → S is proper, the morphism GS → AutY/S is proper,
and its schematic image f(GS) ⊂ AutY/S is finite over S (use [20], Chapter II, Corollary
5.4.3).

Let s ∈ S be any point, and consider the natural morphism SpecOS,s → S. We denote
by f(GS)⊗OS,s the base change of f(GS)→ S by Spec OS,s → S. Both the construction of
AutY/S and of the schematic closure of f(GS) commute with the base change by Spec OS,s →
S. Let now s ∈ S be a regular point of codimension 1, so that OS,s is a discrete valuation ring.
We are in a position to apply a theorem of Romagny ([53], Theorem 4.3.4) to obtain that the
scheme f(GS)⊗ OS,s is in fact a subgroup scheme of the group scheme AutY/S ⊗OS,s. The
group scheme f(GS)⊗OS,s over Spec OS,s is called the effective model for the G-action at the
point s ∈ S. Our next theorem slightly extends this result. Note that Theorem 4.3.4 in [53] is
stated for group schemes G → Spec OS,s that need not be finite. The hypothesis in Theorem
4.3.4 that G/ Spec OS,s is universally affinely dominant (see [53], 3.1.1) is automatically
satisfied in our situation where we require G → Spec OS,s to be finite and flat. The same is
true for the hypothesis that G → Spec OS,s is pure (see [53], 2.1.1 and 2.1.3).

Let ζ ∈ Zp denote a primitive (p − 1)-th root of unity, and define Λp to be the subring
Z[ζ, 1/p(p − 1)] ∩ Zp of Qp. Note that all schemes S → Spec Fp of characteristic p are in
fact schemes over Spec Λp in a unique way, after composing with the natural homomorphism
Λp ⊂ Zp → Fp.

Theorem 4.3. Let p > 0 be prime. Let S be a noetherian locally factorial scheme over
Λp. Keep the above notation. In particular, let Y → S be a finite flat morphism of degree
p. Let G be an abstract group of order p acting on Y via S-automorphisms. Then there is
a finite flat S-group scheme G of degree p and a S-homomorphism h : G → AutY/S such
that, given any point s ∈ S of codimension at most 1, the base change of h over Spec(OS,s),
G ⊗ OS,s → AutY/S ⊗OS,s, induces an isomorphism of Spec(OS,s)-group schemes

G ⊗ OS,s −→ f(GS)⊗ OS,s.

The pair (G , h) is unique up to unique isomorphism. Moreover, Y/S is a torsor for the
G -action if and only if the fiber Y ⊗k(s) is a torsor for the action of G ⊗κ(s) for each point
s ∈ S of codimension at most 1.

Extending Romagny’s terminology, we call the finite flat S-group scheme G , together
with its action on Y , the effective model for the G-action on Y . The proof of Theorem 4.3
is postponed to 4.13. We start with several preliminary propositions.
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Lemma 4.4. Let S be a noetherian scheme. Let U ⊂ S be a dense open subscheme which
contains all points of S which do not satisfy Serre’s Condition (S1). Let G1 → S and G2 → S
be two finite and flat morphisms. Let ϕ : G1 → G2 and ψ : G1 → G2 be two S-morphisms
such that ϕ|U and ψ|U are equal as morphisms from G1 ×S U to G2 ×S U . Then ϕ = ψ.

Proof. The equality can be checked locally on the base. Thus we may assume that S =
SpecR is affine, in which case Gi = Spec(Ai) for some R-algebra Ai which are free of finite
rank as R-module, and the two given morphisms corresponds to morphisms ϕ∗, ψ∗ : A2 → A1

of R-algebras. Since S is noetherian, the set Ass(R) is finite. Thus the Prime Avoidance
Lemma lets us find f ∈ R such that Ass(R) is contained in the special open set D(f) of S,
and such that D(f) ⊆ U . Then f ∈ R is regular ([20], Chapter IV, Corollary 3.1.9). Since
A1/R and A2/R are free, the localization map

HomR(A2, A1) −→ HomR(A2, A1)f = HomRf
((A2)f , (A1)f)

is injective. It follows that ϕ∗ = ψ∗. �

Let (FFG/S) denote the category of finite flat group schemes over S.

Proposition 4.5. Let S be a noetherian scheme. Let U ⊂ S be a dense open subscheme
and consider the restriction functor (FFG/S)→ (FFG/U).

(i) If U contains all points of S which do not satisfy Serre’s Condition (S1), then the
restriction functor is faithful.

(ii) If U contains all points of S which have codimension at most 1 and all points which do
not satisfy Serre’s condition (S2), then the restriction functor is full.

Proof. (i) Follows immediately from 4.4.
(ii) Let G1, G2 be two finite flat group schemes over S, and ϕU : (G1)U → (G2)U be

a homomorphism over U . We have to extend it to S. Since S is noetherian, there is a
maximal open subset over which ϕU extends. It suffices to treat the case where U ⊂ S itself
is maximal. Seeking a contradiction, we assume U 6= S and choose a generic point s in the
closed subset S r U . One easily sees that if (ϕU)U∩Spec(OS,s) extends over Spec(OS,s), then
it extends to some ϕV over some open neighborhood V of s ∈ S. Using (i), we may shrink
V so that ϕU and ϕV coincide on the overlap U ∩ V . Hence, ϕU extends to U ∪ V , which
is a contradiction. This reduces us to the case where S = Spec(R) is local, and U ⊂ S is
the complement of the closed point s ∈ S. Then Gi = Spec(Ai) for some Hopf R-algebra
Ai, such that the underlying R-modules are free of finite rank. The morphism ϕ that we
seek corresponds to an R-linear Hopf algebra map A2 → A1. Consider the free R-module
M = HomR(A2, A1) of finite rank and the corresponding coherent sheaf M . The long exact
sequence of local cohomology yields

(4.6) Γs(S,M ) −→ Γ(S,M ) −→ Γ(U,M ) −→ H1
s (S,M ).

By assumption, the local ring R has depth ≥ 2. Whence the outer terms vanish, and the
homomorphism of Hopf algebras ϕU extends to a homomorphism of R-modules ϕ : A2 → A1.
Arguing in the same way as for Lemma 4.4, one sees that the morphism ϕ is compatible
with the Hopf structures. �

Proposition 4.7. Let S be a noetherian scheme. Let G be a finite flat S-group scheme,
and let Y be a finite flat S-scheme. Assume that there exists an open subscheme U of S
such that YU is endowed with a U-group scheme action µU : GU ×U YU → YU of GU . If U
contains all points of S that are of codimension at most 1 and all points of S which do not
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satisfy Serre’s Condition (S2), then the given U-group scheme action µU extends to a unique
S-group scheme action µ : G ×S Y → Y of G on Y .

Proof. As in the proof for Proposition 4.5, it suffices to treat the case that S = Spec(R) is
local, and U ⊂ S is the complement of the closed point. Then Y = Spec(B) and G = Spec(A)
are given by R-algebras that are free of finite rank as R-modules. The desired group scheme
action µ : G × Y → Y corresponds to a linear map B → A⊗R B satisfying certain axioms.
Consider the free R-module M = HomR(B,A⊗RB); arguing with a short exact sequence in
local cohomology like (4.6), we see that the desired homomorphism exists. The uniqueness
of the extension follows from Lemma 4.4. �

Proposition 4.8. Let S be a noetherian scheme. Let G be a finite flat S-group scheme, and
let Y be a finite flat S-scheme endowed with a S-group scheme action µ : G ×S Y → Y . If
for each point s ∈ S of codimension at most 1, the fiber Y ⊗ κ(s) is a torsor over G ⊗ κ(s),
then Y is a G -torsor.

Proof. We have to show that the canonical map µ×pr2 : G×SY → Y ×SY is an isomorphism.
The question is local, so we may assume that S = Spec(R) is the spectrum of a local ring,
and write Y = Spec(B) and G = Spec(A). Let f : B ⊗R B → A ⊗R B be the resulting
map between free modules of finite rank, and consider its determinant det(f) ∈ R. Suppose
the latter is not a unit, and choose a minimal prime ideal p ⊂ R annihilating R/ det(f)R.
Replacing R by the localization Rp, we arrive at the situation that det(f) is invertible
precisely outside the closed point s ∈ S = Spec(R). By Krull’s Principal Ideal Theorem,
the point s ∈ S is of codimension at most 1. By assumption, the class of det(f) in κ(s) is
nonzero, contradiction. �

Remark 4.9. The above propositions might be known to the experts, but we did not find
an appropriate reference for them in the literature. Lemme 2 in [43], stated without proof,
asserts that the restriction functor induces an equivalence of categories between the category
of torsors under G /S and the category of torsors under GU/U , for any dense open set U of a
regular noetherian scheme S which contains all points of codimension 1 in S. This statement
is proved in [39], 3.1.

4.10. Denote by (FFGp/S) the full subcategory of (FFG/S) consisting of all finite flat S-
group schemes of degree p. According to [62], Theorem 1, such group schemes G/S take
as values commutative groups annihilated by p. To apply further results of [62], we assume
now that the base scheme S is a scheme over Spec Λp.

Certain elements wi ∈ Λp, 1 ≤ i ≤ p are introduced in [62] on page 9, with the property
that wi ≡ i! modulo p. When S → Spec Λp is given, we also denote by wi the image of wi in
Γ(S,OS). Consider now triples (L , α, β), where L is an invertible sheaf on the scheme S,
endowed with global sections α ∈ Γ(S,L ⊗(p−1)) and β ∈ Γ(S,L ⊗(1−p)) so that α⊗ β = wp.
Here the equality is obtained after identifying in the natural way L ⊗(p−1) ⊗L ⊗(1−p) with
OS.

An abelian sheaf G L
α,β, annihilated by p, is associated to such triple (L , α, β) as follows.

For any T/S, let

G
L

α,β(T ) :=
{
x ∈ Γ(T,L ⊗OS

OT ) | x⊗p = α⊗ x
}
,

and the group law is given by the formula

x ? x′ := x+ x′ +
β

wp−1
Dp(x⊗ 1, 1⊗ x′),
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where Dp is a certain polynomial in two variables described in [62], page 14. It satisfies

Dp(X1, X2) ≡
∑p−1

i=1
(p−1)!
i!(p−i)!

X i
1X

p−i
2 modulo p. The sheaf G L

α,β is representable by a finite flat

S-group scheme of degree p, denoted by the same letter G L
α,β. We can assemble a category

(Trp/S) whose objects are triples (L , α, β) as above, and whose morphisms are homomor-
phisms between invertible sheaves respecting the sections. According to [62], Theorem 2, we
have:

Proposition 4.11. The functor (Trp/S) → (FFGp/S), given by (L , α, β) 7→ G L
α,β, is es-

sentially surjective.

From this one deduces:

Proposition 4.12. Suppose that S is a locally factorial scheme over Λp, and let U ⊂ S
be an open subscheme containing all points of codimension at most 1. Then the restriction
functor (FFGp/S)→ (FFGp/U) is an equivalence of categories.

Proof. The restriction functor is fully faithful by Proposition 4.5, and we have to check that
it is essentially surjective. In light of Proposition 4.11, it suffices to extend an invertible sheaf
LU and the sections αU , βU ∈ Γ(U,LU) corresponding to a triple in (Trp/U) to a triple in
(Trp/S). Write LU = OU(DU) for some Cartier divisor DU . Since S is locally factorial, we
can view DU as a Weil divisor and write it as a difference DU = AU − BU of effective Weil
divisors. Denote by A and B the closures in S of AU and BU . These Weil divisors over S
correspond to invertible sheaves, giving the desired extension of the invertible sheaf OU(DU).
The sections are extended as in the proof of Proposition 4.5. �

4.13. Proof of Theorem 4.3. Since S is a disjoint union of integral schemes, it suffices to
prove the theorem when S is irreducible. Let f : GS → AutY/S be the morphism introduced
in (4.2). Let f(GS) ⊆ AutY/S denote the schematic image, which is finite over S. According
to [20], Chapter IV, Theorem 11.1.1, the set W ⊂ f(GS) of all points where the morphism
f(GS)→ S is flat is open. Let V ′ be the complement in S of the image under f of the closed
set f(GS) r W . Since f is finite, V ′ is open. Then the induced map f(GS)V ′ → V ′ is flat.
Consider now

V :=
{
s ∈ S | f(GS)⊗OS

OS,s ⊂ AutY/S ⊗OS
OS,s is a subgroup scheme

}
.

We claim that V is open in S, and that f(GS)V is a subgroup scheme of (AutY/S)V . This
is a local question, and we may assume that S = Spec(R) is affine, with f(GS) = Spec(A)
and AutY/S = Spec(B) (we use here the fact noted in 4.1 that AutY/S → S is affine).
Write A = B/I, and let p ⊂ R be the prime ideal corresponding to a point s ∈ V . The
comultiplication map B → B ⊗ B → A ⊗ A factorizes over A = B/I when localized at p.
Since I is finitely generated, there is an element a ∈ Rr p so that the map factorizes when
inverting a. Then Spec(Ra) ⊂ S defines an open neighborhood over which the group law for
AutY/S defines a composition f(GS) × f(GS) → f(GS). In a similar way one construct an
open neighborhood over which the inversion map for AutY/S maps f(GS) to itself. Summing
up, V ⊂ S is open.

Now consider the open subset U := V ∩V ′ of S. Define GU := f(GS)U . Then the structure
morphism GU → U is finite and flat, and the inclusion GU ⊂ (AutY/S)U is a subgroup scheme,
necessarily closed. We claim that GU → U has degree p. Since U is integral, it suffices to
check this over the generic point η ∈ U . By construction of the effective model, Gη = G is
the constant group of order p.
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According to Romagny’s result ([53], Theorem A), U contains each point s ∈ S of codi-
mension one. Using Proposition 4.12, we extend GU to a finite flat group scheme G over
S. The canonical inclusion GU ⊂ Aut Y/SU gives an action on YU . By Proposition 4.7, this
action extends to an action of G on Y . This shows the existence of G and h : G → AutY/S.

The uniqueness also follows from Proposition 4.12 and 4.7, because for any other G ′ and
h′ : G → AutY/S as in the assertion, there is an open subset U0 ⊂ U containing all points of
codimension one with G ′|U0 = f(GS)|U0. If the fibers Ys are Gs-torsors for each point s ∈ S
of codimension one, then Y is a G -torsor, by Proposition 4.7. �

Now let R be a noetherian domain of characteristic p > 0 and write S := Spec(R). Fix
some elements a, b ∈ R with a 6= 0, and consider the R-algebra

B := R[u]/(up − ap−1u− b),

endowed with the automorphism u 7→ u + a of order p. This automorphism induces an
action of G = Z/pZ on the S-scheme Y := Spec(B). Let G /S denote the group scheme
Ga,0 = SpecR[z]/(zp − ap−1z) in the Tate–Oort classification.

Lemma 4.14. There is a natural S-action G ×S Y → Y of G /S on Y/S such that Y/S is
a torsor under G /S. Moreover, any torsor Z/S under G /S is isomorphic to a torsor of the
form Y/S.

Proof. Indeed, the p-polynomial P (z) = zp − ap−1z defines an isogeny of the additive group
scheme, and yields a short exact sequence

0 −→ G −→ Ga,S
P
−→ Ga,S −→ 0

in the fppf-topology. In turn, we get a long exact sequence

(4.15) H0(S,OS)
P
−→ H0(S,OS)

δ
−→ H1(S,G ) −→ H1(S,Ga,S) −→ H1(S,Ga,S).

The element b ∈ R = H0(S,OS) yields, via the coboundary map δ, a G -torsor. According
to [18], Chapter III, Definition 3.1.3, the torsor is defined as the fiber for the G -torsor
P : Ga → Ga over the section b : S → Ga. We thus see that Y is the G -torsor coming from
b ∈ R via the coboundary map. The group scheme action G ×S Y → Y is just induced by
the addition in Ga, hence given by the homomorphism u 7→ z + u.

The etale cohomology group H1(S,Ga,S) is isomorphic to the coherent sheaf cohomology
group H1(S,OS), and since S is affine, this latter group is trivial. Hence, since torsors under
G are in bijection with the elements of H1(S,G ), any torsor Z/S under G /S is isomorphic
to a torsor of the form Y/S. �

Proposition 4.16. Suppose that R is a locally factorial noetherian domain of characteristic
p > 0. Then G /S and the S-action G ×S Y → Y in 4.14 is the effective model for the action
of G = Z/pZ on Y/S.

Proof. Since the G -action on the torsor Y is faithful, the canonical map G → AutY/S is
a monomorphism. The structure morphism G → S is finite, and AutY/S → S is affine
(4.1). It follows that G → AutY/S is proper, hence a closed embedding by [20], Chapter IV,
Proposition 18.12.6. Being flat, the morphism G → S has the going-down property, hence
the generic fiber Gη is dense in G . By assumption, the scheme S = Spec(R) is normal, whence
contains no embedded component, and the same holds for G , because it is the spectrum of
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R[z]/(zp−ap−1z), whose underlying R-module is free. It follows that G = Gη is schematically
dense in G .

Our assumption that S is locally factorial and Theorem 4.3 show that the effective model
for the G-action exists. Theorem 4.3 also shows that the closed subscheme G of AutY/S is
the effective model if we show that when S has dimension 1, then G is equal to the schematic
image G ′ := f(GS) of the canonical homomorphism f : GS → AutY/S. Since GS is reduced
and Gη ⊂ GS is dense, the same properties hold for G ′. Both G and G ′ are the closures of
their generic fibers inside AutY/S. Hence, G = G ′. �

5. Wild actions in dimension one

We further discuss in this section the notion of effective model for a group action in the
case where the base scheme S has dimension 1. The main result of this section is Theorem
5.1.

Let A := k[[u]] be a formal power series ring over a field k of characteristic p > 0. Let
σ : A → A be a k-linear automorphism of order p, generating a cyclic group G ⊂ Autk(A)
of order p. Let x := NA/AG(u) =

∏
σ∈G σ(u) be the norm element of the uniformizer u ∈ A.

It is obviously invariant under the action of G, so that k[[x]] ⊂ AG. Samuel’s Theorem [55]
ensures that this canonical inclusion k[[x]] ⊂ AG is an equality.

Since the field k contains only ζ = 1 as p-th root of unity, we find that σ(u) = u +
(higher order terms). It is standard to define the ramification break of the action as the
largest integer m > 0 such that the induced action of σ on A/mm+1

A is trivial. In particular,
σ(u) = u + um+1(unit), and m > 0 completely determines the higher ramification groups
G = G1 = G2 = · · · = Gm % Gm+1 = (0).

Let now Y := SpecA and S := SpecAG. Using the G-action on A, we associate an action
of the constant group scheme GS on Y , given by the morphism GS×S Y → Y corresponding
to the ring homomorphism A→ A⊗AG AG[s]/(sp − s) defined by

a 7−→

p−1∑

i=0



σi(a)⊗
∏

j∈Fp, j 6=i

(s− j)

(i− j)



 .

Consider now the effective model G /S for the action of GS on Y , as recalled in Section 4.
Since dim(S) = 1, the existence of the effective model is proved already in [53], Theorem
4.3.4, where one finds that G /S is a finite flat group scheme of degree p with an S-action
G ×S Y → Y . It is natural to ask when Y/S is a torsor for this action. The answer to this
question is given in our next theorem, which is the main result of this section.

Theorem 5.1. Keep the above notation. Let G /S be the effective model for the action of
GS on Y . The following are equivalent:

(i) The scheme Y/S is a torsor for the action of G /S.
(ii) The integer m+ 1 is divisible by p.
(iii) There exists a uniformizer u ∈ A and an invariant element a ∈ AG such that σ(u) =

u+ a.

Let ρ := (m+ 1)(p− 1)/p. When these equivalent conditions are satisfied, the group scheme
G is isomorphic to the group scheme Gxρ,0 in the Tate–Oort classification [62].

Note that in characteristic p = 2, the equivalent conditions in Theorem 5.1 automatically
hold, because the ramification break m is known to be always odd in this case (the proof of
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this fact is recalled in 5.5). Theorem 5.1 illustrates the fact that the geometric condition Y/S
is a torsor for the action of G /S implies an interesting condition on the equation defining the
automorphism σ. When the three equivalent conditions in Theorem 5.1 are satisfied, we call
the action of G on A moderately ramified. We consider the case where dim(A) > 1 in 6.10
and impose an analogous geometric condition (MR5) in our general definition of moderately
ramified action. The proof of Theorem 5.1 is postponed to 5.6. We start by reviewing the
relevant parts of the Tate–Oort classification [62].

5.2. Let R be any ring of characteristic p > 0, with Pic(R) = 0. Set S := SpecR. The Tate–
Oort classification [62], which we already discussed in 4.10, now takes the following simpler
form: a group scheme G /S whose structure sheaf is locally free of rank p is isomorphic to
Gα,β := Spec(R[T ]/(T p−αT )) for some elements α, β ∈ R with αβ = 0. As abelian sheaves,

Gα,β(T ) := {s ∈ Γ(T,OT ) | sp = αs} ,

with group law given by the formula s ? s′ = s + s′ + β
∑p−1

i=1
1

i!(p−i)!
sis′p−i. Moreover, two

group schemes Gα,β/S and Gα′,β′/S are isomorphic if and only if there exists ε ∈ R× such
that α′ = εp−1α and β ′ = ε1−pβ.

Proposition 5.3. Suppose that R is a domain. Then the generic fiber of Gα,β is étale if and
only if α 6= 0 and β = 0. Assume in addition that R is normal. Then the generic fiber of
Gα,β is constant if and only if β = 0 and α = ap−1 for some non-zero a ∈ R.

Proof. Taking the derivative of T p−αT , we see that α defines the locus where the structure
morphism Gα,β → Spec(R) is not smooth. Suppose that the generic fiber of Gα,β is étale.
Then α 6= 0. Since R is a domain, the condition αβ = 0 ensures β = 0. The converse is also
clear.

Now assume that R is normal. Suppose that α = ap−1 for some non-zero a ∈ R. Then we
have a factorization T p−αT =

∏p−1
i=0 (T − ia). The roots ia are pairwise different. Thus the

generic fiber of Gα,β must be constant. Conversely, suppose that Gα,β is generically constant.
Then the polynomial T p−αT is separable, and its roots are contained in the field of fractions
F = Frac(R). In particular, there is a non-zero element a ∈ F with ap−1 = α. Again it
follows that β = 0. Since R is normal, we already have a ∈ R. �

Corollary 5.4. Let G /S be a finite flat group scheme of degree p that is generically constant.
Then G /S is isomorphic to Gxr(p−1),0/S for some unique integer r ≥ 0.

Proof. According to Proposition 5.3, the group scheme G is isomorphic to Gα,0 for some
power series of the form α = ap−1 with a ∈ R. Write α = ε ·xe for some unit ε ∈ R and some
exponent e ≥ 0. Taking valuations of both sides, we see that e = (p− 1)r for some r, so xe,
and whence the unit ε, are (p− 1)-th powers. Since α is unique up to invertible (p− 1)-th
powers, we may assume α = xr(p−1), so that

G = Gxr(p−1),0 = SpecR[s]/(sp − xr(p−1)s).

The integer r ≥ 0 is unique, because it is the length of the intersection, inside the scheme
G , of the zero-section (defined by s = 0) and any non-zero section (defined by s = ixr for
some i ∈ F×

p ). �

We now return to the initial set-up of this section where A = k[[u]] and R = AG = k[[x]].
Recall that since Frac(A)/Frac(AG) is a Galois extension of degree p, we can find z ∈
Frac(A), a power series f(x) =

∑∞
i=0 λix

i ∈ k[[x]]×, and an integer µ, such that Frac(A) =
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Frac(AG)(z) and z satisfies the Artin–Schreier equation zp−z = x−µf(x). Since the extension
A/AG is totally ramified, we find that µ > 0. It is well-known that there exists such z with
µ coprime to p. Indeed, write µ = pr − i for some uniquely defined non-negative integers
r and 0 ≤ i < p. The ring A contains the element s := zxr, which satisfies the equation
sp − xr(p−1)s = xif(x). If i = 0, then the residue field of A contains the class of s, and
since the residue field extension is trivial, we find that λ0 is a p-th power modulo (x), say
λ0 = `p for some ` ∈ k. It follows that we can consider z′ := z + `/xr, which satisfies
z′p − z′ = x−µf(x) − λ0/x

µ + `/xr. After possibly finitely many similar steps, we obtain a
generator z for Frac(A) whose associated integer µ > 0 is coprime to p. The following lemma
is well-known, and the notation introduced in its proof will be used in 5.6.

Lemma 5.5. Write as above Frac(A) = Frac(AG)(z) such that z satisfies the Artin–Schreier
equation zp − z = x−µf(x) with µ > 0 coprime to p. Then µ = m.

Proof. Write µ = pr − i with 0 < i < p. Let 0 < c < p be the unique integer such that
ci is congruent to 1 modulo p, and let d := (ci − 1)/p, so that ci − dp = 1. The element
s = zxr ∈ Frac(A) satisfies the integral equation

sp − xr(p−1)s = xif(x).

Recall that A = k[[u]], so that ordu(s) = ordu(z) + pr = −µ + pr = i. Consequently,
the element sc/xd has valuation ordu(s

c/xd) = ci − pd = 1. Thus the element sc/xd is a
uniformizer in A, and hence k[[sc/xd]] = A. The group action z 7→ z + 1 sends s to s + xr.
To determine the ramification break m, it remains to compute the valuation of

(s+ xr)c

xd
−
sc

xd
=

c−1∑

n=0

(
c

n

)
snxr(c−n)−d,

and we leave this computation to the reader. �

5.6. Proof of Theorem 5.1. The implication (iii)⇒(ii) is immediate: Suppose that σ(u) =
u + a for some invariant a. Then m + 1 := valu(σ(u) − u) = valu(a), and the latter is a
multiple of p since AG ⊂ A has degree p.

(ii)⇒(i): Suppose that m = pr− 1. As above, we can find z ∈ Frac(A) and a power series
f(x) =

∑∞
i=0 λix

i ∈ k[[x]]× such that Frac(A) = Frac(AG)(z) and z satisfies the Artin–
Schreier equation zp − z = x−mf(x). With the notation from the proof of Lemma 5.5, we
have i = c = 1 and d = 0, and we see that s := zxr ∈ A is a uniformizer, satisfying the
equation

sp − xr(p−1)s− xf(x) = 0.

Moreover, the G-action is given by s 7→ s + xr. In light of the exact sequence (4.15), the
scheme Y = Spec(A) is a torsor for the group scheme Gxr(p−1),0. By Proposition 4.16, the
group scheme Gxr(p−1),0 and its associated action on Y is the effective model for the action of
G on Y .

(i)⇒(iii): Suppose that Y is a G -torsor. Corollary 5.4 shows that since G /S is a finite flat
group scheme of degree p that is generically constant, then it is isomorphic to Gxr(p−1),0/S
for some unique integer r ≥ 0. The case r = 0 is impossible, for then the closed fiber of G

is étale, whereas the closed fiber of Y → S is non-reduced. Since Y is a G -torsor, Lemma
4.14 allows us to write that

A = k[[x]][s]/(sp − xr(p−1)s− g(x))
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for some power series g(x) ∈ k[[x]]. The induced G-action is given by s 7→ s + xr. Using
the hypothesis that A is formally smooth over k, we infer that the partial derivative of
sp − xr(p−1)s − g(x) with respect to x is a unit, and we deduce from the Implicit Function
Theorem that one may express x as a formal power series in s. In turn, the canonical map
k[[s]]→ A is bijective. Setting u = s and a = xr, we see that (iii) holds. �

We can generalize the last statement of Theorem 5.1 as follows.

Proposition 5.7. Let G and A be as at the beginning of this section. In particular, AG =
R = k[[x]], Y = SpecA, and S = Spec k[[x]]. Let m > 0 be the ramification break, and write
m + 1 = pr + i with some unique integers r ≥ 0 and 0 ≤ i < p. Then the effective model
G /S of the action of the constant group scheme GS on Y is isomorphic to Gxr(p−1),0/S.

Proof. According to Corollary 5.4, the effective model of the G-action is of the form

G = Gx`(p−1),0 = SpecR[s]/(sp − x`(p−1)s)

for some integer ` ≥ 1. We have to prove that ` = r. In the group scheme Gx`(p−1),0/S, the

zero-section is given by the ideal (s). Let P denote the section defined by the ideal (s− x`).
By definition of the effective model when dim(S) = 1 (see proof of 4.3 in 4.13), we have a
closed immersion G = Gx`(p−1),0 ⊂ GLS(OY ). Thus the section P gives an S-automorphism

P0 : Y → Y , and this automorphism becomes the identity after tensoring with R/m`
R, but

is not the identity when tensoring with R/m`+1
R .

Consider now the morphism GS → G . Since this morphism is an isomorphism after
tensoring with Frac(R), we find that P ∈ G (S) lifts to a generator of GS(S). By definition
of the ramification break m ≥ 0, any generator of GS(S) corresponds to an automorphism
Y → Y such that this automorphism becomes the identity after tensoring with A/mm+1

A over
A, but is not the identity when tensoring with A/mm+2

A . It follows that this automorphism
becomes the identity after tensoring with R/mr

R over R, but is not the identity when tensoring
with R/mr+1

R . Applying this to the automorphism P0 shows that ` = r. �

6. Moderately ramified actions

Let A be a complete local noetherian ring that is regular, of dimension n ≥ 2 and char-
acteristic p > 0, with maximal ideal mA and field of representatives k. Let G be a finite
cyclic group of order p, and assume that A is endowed with a faithful action of G ramified
precisely at the origin (3.1), such that k ⊂ AG. Choose an admissible regular system of pa-
rameters u1, . . . , un ∈ A with respect to the G-action (2.9). Write as before xi := NA/AG(ui),
i = 1, . . . , n, for the norm elements, and consider the norm subring R := k[[x1, . . . , xn]] of
A = k[[u1, . . . , un]]. The ring extension R ⊂ A is flat and finite of degree pn (2.3).

In this section, we introduce five cumulative assumptions on the G-action and on the
choice of parameters, which ensure that the ramification in Spec(A)→ Spec(R) is “as small
and simple as possible”. This will lead to the notion of moderately ramified G-action in 6.10,
for which we shall obtain structure results in 6.11 and 6.19. We show in 6.20 that when
n = 2 and p = 2, and k has no separable quadratic extensions, then every G-action that is
ramified precisely at the origin is moderately ramified. The first condition on the G-action
that we want to consider is:

(MR1) The field extension Frac(A)/Frac(R) is Galois.
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As we note in Theorem 3.4, this condition often reduces to checking that the smaller extension
Frac(AG)/Frac(R) is Galois. Assuming from now on that (MR 1) holds, we write H for the
Galois group of Frac(A)/Frac(R), which has order pn and contains G. Given p ∈ SpecA,
the notation Ip always refers in this section to the inertia group inside H .

Proposition 6.1. If (MR 1) holds, then the Galois group H is generated by the inertia
subgroups Ip ⊂ H , where p runs through the height one prime ideals in A.

Proof. Consider the subgroup H ′ ⊂ H generated by the inertia subgroups Ip for all height
one prime ideals p of A. Set R′ := AH′

and consider the morphism SpecR′ → SpecR.
Seeking a contradiction, we assume H ′ 6= H , so that R′ 6= R. Let q ⊂ R be a prime ideal
of height one. Then there exists a prime ideal p ⊂ A of height one such that q = R ∩ p.
It follows that the morphism SpecR′ → SpecR is unramified over q. On the other hand,
the morphism is ramified at the maximal ideal of R′, because the morphism is finite and
the residue field extension at the maximal ideal is trivial. Since R′ is normal and R is
regular and the morphism is finite, we can apply the Zariski–Nagata Purity Theorem to
SpecR′ → SpecR and find that the non-empty branch locus is pure of codimension one in
SpecR. This is a contradiction. �

A similar argument appears in [58], Théorème 2’, and we discuss this result further in 6.21.
The next condition ensures that the inertia groups for the quotient map Spec(A)→ Spec(R)
are as small and uniform as possible:

(MR2) The inertia group Ip of every ramified prime ideal p ⊂ A of height one is cyclic
of order p, and normal in H.

Our next lemma shows that this condition is automatic in dimension two.

Lemma 6.2. If (MR 1) holds and n = 2, then Condition (MR 2) also holds, and H is
elementary abelian of order p2.

Proof. When n = 2, we find that |H| = p2 and so H is abelian. By the Zariski–Nagata
Purity Theorem applied to the ramified morphism SpecA → SpecR, there is at least one
prime ideal p of height one in A whose inertia group Ip ⊂ H is non-trivial. The group Ip
cannot be the whole group H , otherwise the morphism SpecA→ SpecAG is ramified at p, a
contradiction. Hence, all non-trivial inertia subgroups Ip are cyclic of order p. Note that the
group H cannot be cyclic, since otherwise, it contains only one subgroup of order p, which
must coincide with G. This is not possible, since then G = Ip, contradicting the assumption
that G acts freely outside the closed point. Hence, H is elementary abelian of order p2. �

Proposition 6.3. If (MR 1) and (MR 2) hold, then the Galois group H is elementary abelian
of order pn.

Proof. We use here Proposition 6.1 and the fact that if H1 and H2 are two abelian subgroups
of H such that H1 ∩ H2 = (0) and such that both H1 and H2 are normal in H , then the
subgroup of H generated by H1 and H2 is also abelian and normal in H . To see this, simply
note that a commutator h1h2h

−1
1 h−1

2 with hi ∈ Hi belongs to both H1 and H2. �

Assume that (MR 1) and (MR 2) hold. Since H is elementary abelian of order pn, it
contains exactly (pn−1)/(p−1) distinct subgroups of order p. Proposition 6.1 let us choose
n distinct such cyclic subgroups G1, . . . , Gn that are equal to the inertia subgroup of some
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ramified prime ideal of height one in A and such that the natural map

G1 × . . .×Gn −→ H

is an isomorphism. Each subgroup Gi ⊂ H has a canonical complement, namely the sub-
group G⊥

i of H generated by the subgroups Gj, j 6= i.

Consider the corresponding ring of invariants AG⊥

i ⊂ A. Then Frac(AG⊥

i )/Frac(R) is a
cyclic extension of degree p, with Galois group H/G⊥

i , which we identify with the group
Gi. By hypothesis, Gi is the inertia group of a prime pi of A. It follows that the morphism
Spec(AG⊥

i )→ Spec(R) is ramified at pi ∩A
G⊥

i . By the Zariski–Nagata Purity Theorem, the

branch locus of SpecAG⊥

i → SpecR is of the form V (ai) for some non-invertible element
ai ∈ R = k[[x1, . . . , xn]].

Consider the canonical homomorphism of R-algebras:

(6.4) f : AG⊥

1 ⊗R · · · ⊗R A
G⊥

n −→ A.

Lemma 6.5. Keep the above notation, and assume that (MR 1) and (MR 2) hold. If the

above map f is an isomorphism, then the extension R ⊂ AG⊥

i is flat and the ring AG⊥

i is
regular for i = 1, . . . , n. Moreover, the elements a1, . . . , an form a system of parameters of
R.

Proof. Let di denote the dimension of AG⊥

i ⊗R/mR as an R/mR-vector space. By Nakayama’s

Lemma, there exists a surjective homomorphism ϕi : R⊕di → AG⊥

i of R-modules. Tensoring
with Frac(AG⊥

i ), which has degree p over Frac(R), we find that di ≥ p. Since A is free
of rank pn and f is an isomorphism, we have

∏n
i=1 di = pn, which implies that di = p for

all 1 ≤ i ≤ n. Since the R-module R⊕p is torsion-free, we conclude that the morphism
ϕi : R⊕p → AG⊥

i is an isomorphism for each i = 1, . . . , n. Hence, the extension R ⊂ AG⊥

i is

flat for all i = 1, . . . , n. It follows that the finite ring extensions AG⊥

i ⊂
⊗n

j=1A
G⊥

j are flat.

Since A is regular, [20], IV.6.5.1 ensures that the rings AG⊥

i are regular.
If a1, . . . , an does not form a system of parameters in R, then the ideal (a1, . . . , an) of R is

contained in some non-maximal prime ideal q of R. Let s ∈ Spec(R) be the corresponding

non-closed point. Since s belongs to the branch locus of each morphism Spec(AG⊥

i )→ SpecR

by hypothesis, the preimage of s in each Spec(AG⊥

i ) is a singleton, with purely inseparable
(possibly trivial) residue field extension. Since by hypothesis, Spec(A) is the fiber product

of the Spec(AG⊥

i ), we find that the preimage t of s in Spec(A) is also a singleton with purely
inseparable residue field extension. Hence, the inertia group at t for the action of G is not
trivial, contradicting the hypotheses that the action of G on A is ramified precisely at the
origin. �

Remark 6.6. Let Yi := Spec(AG⊥

i ) and S := Spec(R). When n = 2, the morphism Yi → S
is flat since Yi is normal and, hence, Cohen–Macaulay. When n > 2, Condition (MR 4)
discussed below will imply that Yi → S is flat. Note that the flatness would be automatic if
the order of the group were prime to the residue characteristic. Indeed, it is proved in [51]
that if R is a regular local ring and L/Frac(R) is a Galois extension with abelian Galois group
H of order coprime to the residue characteristic p of R, then the integral closure B of R in L
is Cohen–Macaulay. It follows then that B/R is flat. An example is given in [51] that shows
that the hypothesis gcd(|H|, p) = 1 is needed in the proof of the statement. We note here
that this hypothesis is also needed for the statement to hold in the equicharacteristic case.
For this, let G = Z/pZ, and consider a moderately ramified G-action on A = k[[u1, . . . , un]],
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with norm ring R, as in 6.19. Then the extension Frac(AG)/Frac(R) is elementary abelian
with Galois group H of order pn−1, and AG is the integral closure of R in Frac(AG). But AG

is not Cohen–Macaulay when dim(A) > 2, in view of the facts reviewed in 3.2.
We do not know a counter-example to the Cohen–Macaulayness of the integral closure

B when H is cyclic of order p > 3. When p = 3, such a counter-example is presented in
[32], 2.4, in the mixed characteristic case. In 8.6, we exhibit such a counter-example when
R is only assumed to be Cohen–Macaulay and H is generated by a generalized reflection
(definition recalled in 6.21). Under such weaker assumption on R, the case where |H| is
coprime to the residue characteristic of R is treated in [25], Propositions 13 and 15.

Our third condition below requires that the set of inertia subgroups for the morphism
Spec(A) → Spec(R) be as small as possible. This condition is motivated by the statement
of Proposition 6.7.

(MR3) There are only n subgroups G1, . . . , Gn ⊂ H which are equal to the inertia
subgroup of a ramified prime ideal of height one in A.

When (MR 3) holds, up to the enumeration of the subgroups, the morphism (6.4) does not
anymore depend on the choice of subgroups.

Proposition 6.7. Keep the above notation, and assume that (MR 1) – (MR 3) hold. If the

rings AG⊥

i are Cohen–Macaulay for 1 ≤ i ≤ n, then the morphism f is an isomorphism.

Proof. First, we verify that the ring A′ := AG⊥

1 ⊗R · · · ⊗R A
G⊥

n is normal: Since R is regular
and AG⊥

i is Cohen–Macaulay, the extension R ⊂ AG⊥

i is flat for all i = 1, . . . , n ([40], (21.D)
Theorem 51). In turn, A′ is free as an R-module, hence Cohen–Macaulay. It remains to
check that A′ is regular in codimension one. Let q ⊂ R be a prime of height one. We claim
that all but possibly one of the extensions R ⊂ AG⊥

i are unramified over q. If this holds, we
may assume without restriction that Rq ⊂ (AG⊥

i )q is unramified for i = 2, . . . , n. Then A′
q is

étale over (AG⊥

1 )q and the latter ring is normal, which ensures that A′
q is normal too ([40],

(21.E) (iii)). Summing up, A′ is normal.
To verify the claim, let us assume ab absurdo that there exist two indices i 6= j such that

R ⊂ AG⊥

i and R ⊂ AG⊥

j are ramified over q. Upon renumbering if necessary, we may assume
that i = 1 and j = 2. Since Frac(AG⊥

i )/Frac(R) is cyclic of degree p, there is only one prime

ideal p1 ⊂ AG⊥

1 and p2 ⊂ AG⊥

2 lying over q. Choose some prime ideal p ⊂ A lying over q.
Clearly, p lies over both p1 and p2. The extension R ⊂ A is ramified at p since R ⊂ AG⊥

1 is
ramified at p1. In particular, the inertia group Ip is non-trivial. By Condition (MR 3), we
have Ip = Gj for some index j ∈ [1, n]. Thus we can always assume that either Ip 6= G1 or
Ip 6= G2. Let us consider the case where Ip 6= G1, the other one being similar. Since Ip = Gj

for some index j ∈ [2, n], we find that by definition Ip ⊂ G⊥
1 . Hence, AG⊥

1 ⊂ AIp . Since

R ⊂ AIp is unramified at p ∩ AIp , we find that R ⊂ AG⊥

1 is unramified at p1, which is a
contradiction.

We proceed by proving that the localized morphism fq is bijective for the minimal prime
q = 0 inside R. We need to show that the map

Frac(A)G⊥

1 ⊗Frac(R) . . .⊗Frac(R) Frac(A)G⊥
n = A′

q −→ Aq = Frac(A)

is an isomorphism. It follows from the Galois correspondence that the image of this map is
the subfield of Frac(A) fixed by the subgroup G⊥

1 ∩ . . . ∩ G
⊥
n . By construction, this latter
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subgroup is trivial so the map is surjective. Since both source and targets are vector spaces
over Frac(R) of the same dimension, the map is an isomorphism, as desired.

Since A′ is a free R-module, the canonical map A′ → A′
q is injective, and we conclude that

f : A′ → A is injective. In particular, A′ is integral, and we saw in the preceding paragraph
that Frac(A′) → Frac(A) is bijective. Since A′ is normal, the finite extension A′ ⊂ A must
be an equality. �

Proposition 6.7 motivates our next condition.

(MR4) The rings AG⊥

i are Cohen–Macaulay, for all 1 ≤ i ≤ n.

When (MR 4) holds, we can use f to identify A with AG⊥

1 ⊗R · · · ⊗R A
G⊥

n .

6.8. Let Yi := Spec(AG⊥

i ) and S := Spec(R). Recall that we identify H/G⊥
i with Gi through

the canonical bijection Gi → H/G⊥
i , so that we get a Gi-action on AG⊥

i and Yi/S. Let Gi/S
be the effective model of the Gi-action on Yi, as introduced in Theorem 4.3. This effective
model is a finite flat group scheme over S, and comes with an S-action Gi ×S Yi → Yi. We
can now formulate the last of our cumulative conditions.

(MR5) The scheme Yi/S is a torsor for Gi/S, for all 1 ≤ i ≤ n.

When dim(S) = 1, a similar condition is considered in Theorem 5.1. Our next lemma shows
that Condition (MR 5) is automatic when p = 2.

Lemma 6.9. If (MR 1) – (MR 4) hold and p = 2, then Condition (MR 5) also holds.

Proof. Set B = AG⊥

i for convenience. Condition (MR 4) ensures that the extension R ⊂ B
is flat. Thus B is a free R-module of rank 2, and since R is local, we can find a basis for B
as an R-module of the form 1, u, where 1 is the unit element in R and u ∈ B. It follows that
there exist a, ξ ∈ R such that u2 = au+ ξ. Then B = R[u]/(u2 − au− ξ), and the action of
G/G⊥

i is given by u 7→ u+ a. Proposition 4.16 describes the effective model Gi of the action
of Z/2Z on Yi = Spec(B), and shows that the latter scheme is a torsor under Gi. �

Definition 6.10. We say that aG-action onA is moderately ramified if it is ramified precisely
at the origin, and there exists an admissible regular system of parameters u1, . . . , un ∈ A
with associated norm subring R such that the five conditions (MR 1) – (MR 5) hold.

Theorem 6.11 below is our main structure result for moderately ramified actions, and
shows that such actions are easily described by explicit equations. Its converse in 6.19 shows
in addition that moderately ramified actions are abundant.

Theorem 6.11. Let A be a complete local ring that is regular of dimension n ≥ 2, with field
of representatives k and endowed with a moderately ramified action of the cyclic group G of
order p. Then A, as a k-algebra with G-action, is isomorphic to

k[[x1, . . . , xn]][u1, . . . , un]/(u
p
1 − a

p−1
1 u1 − x1, . . . , u

p
n − a

p−1
n un − xn),

where x1, . . . , xn are indeterminates, the elements a1, . . . , an ∈ k[[x1, . . . , xn]] form a system
of parameters of k[[x1, . . . , xn]], and the natural automorphism σ of order p, which sends
ui to ui + ai for i = 1, . . . , n and fixes k[[x1, . . . , xn]], induces under this isomorphism a
generator of G.

The elements u1, . . . , un form an admissible regular system of parameters for the action of
〈σ〉, and the subring R := k[[x1, . . . , xn]] is identified with the norm subring for the action of
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G. The Galois group H of the extension Frac(A)/Frac(R) is generated by the automorphisms
σi, i = 1, . . . , n, where σi(uj) = uj if i 6= j, and σi(ui) = ui + ai. Let G⊥

i be the subgroup

generated by the elements σj with j 6= i. Then the invariant subring AG⊥

i introduced in 6.5

is isomorphic to R[ui]/(u
p
i − a

p−1
i ui − xi).

Before we give the proof of Theorem 6.11 in 6.15, let us review the notion of fixed scheme
of the action and mention two corollaries. Let a finite group G act on a ring A. The fixed
point scheme of the G-action is the closed subscheme SpecA/I of SpecA, where I is the
ideal of A generated by the elements of the form σ(a) − a, for all a ∈ A and all σ ∈ G.
Assume now that A = k[[u1, . . . , un]] and G acts by k-automorphisms. Then I is the ideal
of A generated by the elements σ(ui)− ui, for i = 1, . . . , n and σ ∈ G. When the action of
G = 〈σ〉 on k[[u1, . . . , un]] is linear, with σ(ui) := ζiui for i = 1, . . . , n and ζi is a non-trivial
m-th root of unity for some m coprime to the characteristic of k, we find that the fixed point
scheme is smooth, with ideal I = (u1, . . . , un). Let us record now the following immediate
consequences of Theorem 6.11.

Corollary 6.12. Let A of dimension n be endowed with a moderately ramified G-action, as
in 6.11. Let I be the ideal of A defining the fixed point scheme of the action. Then I ⊆ m

p
A

and the length of A/I is a multiple of pn.

Proof. Consider the normal form for the ring A obtained in Theorem 6.11. It is clear from the
explicit form of the action ofG that I = (a1, . . . , an)A. Since ai ∈ mR and up

i−a
p−1
i ui−xi = 0,

we see that xi ∈ m
p
A, so that I ⊆ m

p
A. We computed in 2.3 that the length of A/(x1, . . . , xn)A

is equal to pn. It follows from the facts that a1, . . . , an ∈ R belong to mR = (x1, . . . , xn)R
and that A/R is flat, that the length of A/(a1, . . . , an)A as an A-module is a multiple of the
length of A/(x1, . . . , xn)A ([45], 19.1). �

The proof for the following consequence is left to the reader:

Corollary 6.13. Let A1 and A2 be two regular complete local rings of positive dimension
n1 and n2, respectively, of characteristic p > 0, and field of representatives k. Consider two
moderately ramified actions of G := Z/pZ, on A1 and A2. Then the natural diagonal action
of G on the completed tensor product A1⊗̂kA2 is also moderately ramified.

Next we explain how the torsor condition on Yi → S in (MR 5) leads to a simple equation
for Yi.

Lemma 6.14. Consider a moderately ramified G-action on A and keep the notation intro-
duced in this section. Suppose that Yi → S is a Gi/S-torsor. Then AG⊥

i is isomorphic to
R[ri]/(fi) for some polynomial fi(ri) = rp

i − a
p−1
i ri − ξi with coefficients ai, ξi ∈ mR.

Proof. It follows from the Tate–Oort classification recalled in 4.11 and 5.2 that Gi/S is
isomorphic to the group scheme Gαi,βi

/S, with Gαi,βi
= R[T ]/(T p − αiT ) for some elements

αi, βi ∈ R with αiβi = 0 (since wp = 0 when R has characteristic p). By construction, the
generic fiber of Gi → S is a constant group scheme. Since R is a normal domain, we conclude
from Proposition 5.3 that βi = 0, αi 6= 0, and αi is a (p − 1)-th power in R, say αi = ap−1

i

with ai ∈ R.
It follows from 4.14 and 4.16 that the torsor Y → S is isomorphic to the spectrum of

R[ri]/(fi) for some polynomial fi(ri) = rp
i−a

p−1
i ri−ξi. The coefficient ai is not a unit, because

R ⊂ AG⊥

i is ramified at the origin. The element ξi becomes a p-th power in the residue field
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k = R/mR, because the extension R ⊂ AG⊥

i has trivial residue field extension. Changing ξi
by such p-th power from the field of representatives k ⊂ R, we obtain ξi ∈ mR. �

6.15. Proof of Theorem 6.11. Suppose that the G-action on A = k[[u1, . . . , un]] is moderately
ramified, that is, Conditions (MR 1) – (MR 5) hold. We find from Proposition 6.7 that the

map f : AG⊥

1 ⊗R · · · ⊗R AG⊥
n → A introduced in (6.4) is an isomorphism, and that each

AG⊥

i is in fact regular (6.5). We may then apply 6.14 to write AG⊥

i = R[ri]/(fi) for some
polynomial fi(ri) = rp

i − a
p−1
i ri − ξi with coefficients ai, ξi ∈ mR.

Lemma 6.16. Keep all the preceding assumptions. Then the following hold:

(a) The elements a1, . . . , an form a system of parameters of R.
(b) The elements ξ1, . . . , ξn form a regular system of parameters of R.
(c) The elements r1, . . . , rn form a regular system of parameters of A.

Proof. Part (a) is immediate from 6.5. To proceed, note that the canonical map

R[r1, . . . , rn]/(f1, . . . , fn) −→ R[[r1, . . . , rn]]/(f1, . . . , fn)

from polynomial rings to power series rings is bijective. This is because the polynomials
fi(ri) are monic, so both sides are free R-modules of the same rank, with corresponding
bases of monomials. Write a ⊂ R[[r1, . . . , rn]] for the ideal generated by the polynomials
f1, . . . , fr. Using Proposition 6.7 we get an identification A = R[[r1, . . . , rn]]/a. The partial
derivatives are

∂

∂xj
(rp

i − a
p−1
i ri − ξi) =

∂ai

∂xj
ap−2

i ri −
∂ξi
∂xj

, and

∂

∂rj

(rp
i − a

p−1
i ri − ξi) = ap−1

i .

(6.17)

Consider the Jacobian matrix J ∈ Matn×2n(k[[x1, . . . , xn, r1, . . . , rn]]) of partial derivatives.
Since A is regular, this matrix has maximal rank when its entries are reduced modulo the
maximal ideal (use the Jacobian Criterion as in [46], Theorem on page 429, and Remark
1 on page 431). So the same holds for the n × n-matrix (∂ξi/∂xj)1≤i,j≤n ∈ Matn×n(R),
because ai ∈ mR. By the Implicit Function Theorem ([8], Chapter IV, §4, No. 7, Corollary
to Proposition 10), the elements x1, . . . , xn can be expressed as formal power series in the
ξ1 . . . , ξn, which proves (b). Using the relation rp

i − a
p−1
i ri − ξi = 0, the elements x1, . . . , xn

can be expressed as formal power series in the r1, . . . , rn. Thus r1, . . . , rn for a regular system
of parameters of A, and (c) is proved. �

6.18. We can now conclude the proof of Theorem 6.11. We use the identification

k[[x1, . . . , xn]][r1, . . . , rn]/(f1, . . . , fn) −→ A

to obtain an explicit isomorphism (Z/pZ)n → H : Define an injective group homomorphism

(Z/pZ)n −→ AutR(A) ⊆ Gal(Frac(A)/Frac(R)) = H,

(h1, . . . , hn) 7−→ (ri 7→ ri + hiai)1≤i≤n .

In the definition above, we identify Z/pZ with the prime subfield of k. Since |H| = pn, we
find then that this homomorphism is an isomorphism.

The subgroup G of H corresponds under this isomorphism to a subgroup of order p
generated by some (h1, . . . , hn) ∈ (Z/pZ)n. Lemma 3.3 shows that every coefficient hi is
non-zero. We thus have hp−1

i = 1 for i = 1, . . . , n. After replacing our choice of ai ∈ R
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by hiai, we can assume that the subgroup G of H corresponds under the above bijection
with the diagonal subgroup, generated by (1, . . . , 1). With such choice, the generator of G
corresponding to (1, . . . , 1) acts via

ri 7−→ ri + ai.

It is easy to compute the norms of ri ∈ A:

NA/AG(ri) =

p−1∏

`=0

(ri + `ai) = rp
i − a

p−1
i ri = ξi.

We replace our original regular system of parameters u1, . . . , un by the regular system of
parameters r1, . . . , rn. The norm elements x1, . . . , xn ∈ R for the initial regular system of
parameters are then replaced by ξ1, . . . , ξn. Both regular systems of parameters produce
the same norm subring R ⊂ A. After this change of parameters, we can write that A =
k[[u1, . . . , un]] and R = k[[x1, . . . , xn]], with

A = R[u1, . . . , un]/(up
1 − a

p−1
1 u1 − x1, . . . , u

p
n − a

p−1
n un − xn).

Moreover, the elements (h1, . . . , hn) ∈ (Z/pZ)n = H act on A via ui 7→ ui + hiai and G is
generated by the element corresponding to (1, . . . , 1). �

We now state the expected converse to Theorem 6.11.

Theorem 6.19. Let n ≥ 2. Let k be a field of characteristic p > 0. Let R := k[[x1, . . . , xn]]
and let a1, . . . , an ∈ mR \ {0}. Consider the ring

A := R[u1, . . . , un]/(u
p
1 − a

p−1
1 u1 − x1, . . . , u

p
n − a

p−1
n un − xn).

(a) Then A is a regular complete local ring with maximal ideal (u1, . . . , un). The extension
Frac(A)/Frac(R) is Galois with Galois group H isomorphic to (Z/pZ)n, generated by
the automorphisms σi, i = 1, . . . , n, with σi(uj) := uj if j 6= i, and σi(ui) := ui + ai. We
have R = AH .

(b) Assume now that the elements a1, . . . , an form a system of parameters in R. Let σ be
the automorphism of order p of A which sends ui to ui + ai, for i = 1, . . . , n and fixes R
(in other words, σ = σ1 · · ·σn). Then the action of 〈σ〉 on A is moderately ramified.

Proof. (a) Clearly, R ⊂ A is a finite flat extension of degree pn, so dim(A) = dim(R) = n by
Going-Up and Going-Down. The fiber ring for this extension isA/mRA = k[u1, . . . , un]/(u

p
1, . . . , u

p
n),

which is local, so A is local by Hensel’s Lemma. Furthermore, the residue classes of the xi

vanish in the cotangent space mA/m
2
A, so the latter is generated by the residue classes of the

ui. Hence edim(A) ≤ dim(A), so A is regular.
It is clear that we can exhibit pn automorphisms ofA leaving R fixed: for each (c1, . . . , cn) ∈

(Z/pZ)n, define σ(c1, . . . , cn) to be the R-automorphism of order p of A which sends ui to
ui + ciai, for i = 1, . . . , n. Hence, Frac(A)/Frac(R) is Galois, and we obtained an explicit
group homomorphism H := (Z/pZ)n → Gal(Frac(A)/Frac(R)).

Let us denote by Gi the subgroup generated by σi, with σi(ui) := ui + ai and σi(uj) := uj

if j 6= i. Let G⊥
i denote the subgroup of H generated by the groups Gj, j 6= i. Clearly, the

ring of invariants AG⊥

i contains ui, and we obtain a natural ring homomorphism R[ui]/(fi)→

AG⊥

i , which sends the class of ui to the class of ui. As in the preceding paragraph, one sees
that the source ring is a regular complete local ring with field of fractions of degree p over
Frac(R). It follows that this natural homomorphism is an isomorphism.
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(b) Let G := 〈σ〉. The fixed scheme of the G-action on X = Spec(A) is defined by the
ideal (a1, . . . , an) ⊂ A. Since we assume in (b) that a1, . . . , an ∈ R = k[[x1, . . . , xn]] is a
system of parameters, it follows that the action of G is ramified precisely at the origin. The
regular system of parameters u1, . . . , un ∈ A is admissible since the group G induces the
trivial representation on the cotangent space mA/m

2
A (2.8). Clearly, xi = NA/AG(ui), so that

R is indeed the norm subring of A associated with the admissible system of parameters
u1, . . . , un. It follows from (a) that Frac(A)/Frac(R) is Galois, showing that (MR 1) holds.

Let us show now that each Gi is the inertia group of a height one prime ideal of A. Indeed,
let p be minimal prime ideal in A which contains ai. This ideal p has height one, and it is
clear that Gi ⊆ Ip. Since a1, . . . , an, is a system of parameters of A, we find that p cannot
contain aj , for any j 6= i. It follows that no automorphism in H but those in Gi can induce
the identity on A/p. Hence, Gi = Ip, as desired.

Consider now a prime ideal p of height one in A with Ip 6= {id}. We are going to show that
Ip = Gj for some j, which in particular implies that Conditions (MR 2) and (MR 3) hold.
Let τ ∈ Ip be a non-trivial element. Then the ideal I(τ) of the fixed scheme is contained
in p. Since p has height one, it follows that I(τ) can contain at most one of a1, . . . , an. We
find using our explicit description in (a) of the automorphisms of Frac(A) over Frac(R) that
the ideal I(τ) is not trivial and contains at least one of of a1, . . . , an since τ is not trivial.
It follows that we can assume that ai ∈ I(τ). Considering again the descriptions of the
automorphisms, we see that this implies that τ ∈ 〈σi〉 = Gi. It follows that Ip = Gi.

Consider now the isomorphism R[ui]/(fi) → AG⊥

i found in (a). It is clear that R ⊂ AG⊥

i

is finite and flat, so (MR 4) holds. The scheme SpecAG⊥

i → SpecR is a torsor under the
group scheme Gi := SpecR[z]/(zp − ap−1

i z) and this group scheme is the effective model of

the action on SpecAG⊥

i , according to Proposition 4.16. Thus (MR 5) holds. �

There is one situation in which every action ramified precisely at the origin is moderately
ramified, namely when n = 2 and p = 2, and k does not admit any separable quadratic
extension. That Z/2Z-actions on k[[x, y]] are very structured was already recognized by
Artin in [4], leading to a description of the ring of invariants AG that we recall in 7.7.

Proposition 6.20. Let k be a field of characteristic p = 2 which does not admit any separable
quadratic extension. Then, in dimension n = 2, any G-action on A that is ramified precisely
at the origin is moderately ramified.

Proof. Proposition 2.9 shows that A contains an admissible regular system of parame-
ters u1, u2, with norm ring k[[x1, x2]]. According to Theorem 3.4 (i), the field extension
Frac(AG)/k((x1, x2)), which has degree pn−1 = 2, is not purely inseparable. Hence it must be
Galois. We use our hypothesis on k with 3.4 (ii) to find that the extension Frac(A)/k((x1, x2))
must be Galois as well. So Condition (MR 1) holds. Then 6.2 shows that (MR 2) holds.
Hence, the Galois group H of order pn = 4 is Z/2Z × Z/2Z, and this group has precisely
three nontrivial cyclic subgroups, one of which must be G. Since the action of G is ramified
precisely at the origin, we find that G cannot be the inertia group in H of a prime of height
1. Proposition 6.1 shows that H is generated by cyclic groups which are inertia groups of
primes of height 1. Thus H contains exactly two subgroups which are inertia groups of
primes of height 1, and Condition (MR 3) holds. In dimension 2, Condition (MR 4) is always
satisfied. Lemma 6.9 ensures that (MR 5) holds. �

Remark 6.21. Let B be any noetherian local ring. A ring automorphism σ : B → B of
finite order is called a generalized reflection if (σ− id)(B) ⊆ (xB) for some regular non-unit
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x ∈ B. In other words, the scheme of fixed points of σ in Spec(B) contains an effective
Cartier divisor. The automorphism σ is called a pseudo-reflection if (σ − id)(B) = (xB) for
some regular non-unit x ∈ B. In this case, the scheme of fixed points of σ in Spec(B) is
an effective Cartier divisor. When the order of σ is invertible in B, this latter definition is
equivalent to the more classical definition where one requires that σ acts on the cotangent
space mB/m

2
B through pseudo-reflections in the sense of linear algebra (see [6], (12) on page

168).
Note that if σ : B → B is a generalized reflection (resp., a pseudo-reflection), then

the conjugates gσg−1 and powers σm 6= id, are also generalized reflections (resp., pseudo-
reflections), where g : B → B is any automorphism. Indeed, I(gσg−1) = g(I(σ)), and when
n ≥ 2 is the order of σ, we have I(σn−1) ⊆ · · · ⊆ I(σ2) ⊆ I(σ). Considering the same chain
of inclusions with σ replaced by σ−1, we find that all these inclusions are in fact equalities.

Let now A be a complete regular local ring of dimension n ≥ 2 endowed with a moderately
ramified action of Z/pZ, as in Theorem 6.11. Let u1, . . . , un ∈ A be as in the statement
of 6.11, and let R := k[[x1, . . . , xn]]. As in 6.11, Frac(A)/Frac(R) is Galois of order pn,
with Galois group H generated by elements σi, i = 1, . . . , n, such that σi(ui) = ui + ai, and
σi(uj) = uj if i 6= j. It is clear from this expression for σi that the ideal I(σi) is equal to (aiA),
and is thus principal. Since we assume that (a1, . . . , an) is a system of parameters in R, each
of these ideals is proper. It follows that the group H is generated by pseudo-reflections. The
next proposition shows that when only Condition (MR 1) holds (i.e., when Frac(A)/Frac(R)
is Galois), then it is still possible to show that H is generated by generalized reflections.
This proposition is nothing but a reformulation of a result of Serre ([58], Théorème 2’).

Proposition 6.22. Let B be a regular noetherian local ring with maximal ideal mB. Let
H be a finite group of ring automorphisms of B, and let R := BH . Assume that B is a
finitely generated R-module. The ring R is then a noetherian local ring with maximal ideal
mR, and we assume also that the natural map R/mR → B/mB is an isomorphism. Then H
is generated by generalized reflections if R is regular.

Remark 6.23. Conjecture 9 in [30] strengthens Proposition 6.22 in certain cases. Indeed,
let B be a regular local ring with char(B/mB) = p > 0, and let G = 〈σ〉 be a cyclic group of
order p acting on B by local automorphisms. With the definition of pseudo-reflection given
in this article, [30], Conjecture 9, states that: If BG is regular, then σ is a pseudo-reflection.
The authors of [30] prove this conjecture when p = 2 and p = 3.

Theorem 2, (a) implies (d), in [30] proves the converse of the statement of Conjecture 9
above: If σ is a pseudo-reflection, then BG is regular. We note below an example where σ
is a generalized reflection, but BG is not regular (see also 8.6). We do not have an example
of a generalized reflection acting on a regular ring B such that BG is not Cohen–Macaulay,
and it would be interesting to determine whether such example exists. In the case where
the order of σ is coprime to the residue characteristic of B, the invariant ring BG is always
Cohen–Macaulay ([25], Proposition 13).

Theorem 7.14 lets us consider an action of G on A := k[[u, v]] which is not ramified
precisely at the origin, but such that the ring AG can still be completely described. Indeed,
let R := k[[x, y]]. Let a, b ∈ mR with (a, b) a mR-primary ideal. Let µ ∈ mR such that (a, µ)
and (b, µ) are mR-primary ideals. Consider the ring

A := R[u, v]/(up − (µa)p−1u− x, vp − (µb)p−1v − y).
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Then A is a regular complete local ring with maximal ideal (u, v) (6.19 (a)). The extension
Frac(A)/Frac(R) is Galois with Galois group H isomorphic to (Z/pZ)2, generated by the
automorphisms σ1 and σ2, with σ1(u) := u + µa and σ1(v) = v, and σ2(v) := v + µb and
σ2(u) = u. We have R = AH . The morphisms σ1 and σ2 are both pseudo-reflections, but
the composite σ := σ1σ2 is only a generalized reflection: I(σ) = (µa, µb). Let G := 〈σ〉.
It follows that every prime ideal p of A containing µ is ramified over p ∩ AG. We claim
that the ring AG is not regular. Indeed, consider z := bu − av, with the relation f(z) :=
zp − (µab)p−1z − apy + bpx = 0. Then AG = k[[x, y]][z]/(f), and this latter ring is singular
at (x, y, z) (7.14). Preliminary computations seem to indicate that the graph of the minimal
desingularization X → SpecAG does not depend on µ.

7. Complete intersection subrings

Let as usual A be a complete regular local noetherian ring of dimension n ≥ 2, character-
istic p > 0, with field of representatives k, and endowed with the action of a cyclic group G
of order p. The main result in this section is Theorem 7.7, which shows that for the class of
moderately ramified actions introduced in 6.10, the ring AG can be described when n = 2 in
terms of generators and relations.

7.1. Let R := k[[x1, . . . , xn]]. Let a1, . . . , an ∈ mR be such that ai and aj are coprime if
i 6= j. Let µ ∈ R \ {0} be such that µ and ai are coprime, for i = 1, . . . , n. Consider the ring

A := R[u1, . . . , un]/(u
p
1 − (µa1)

p−1u1 − x1, . . . , u
p
n − (µan)

p−1un − xn).

Theorem 6.19 (a) shows A is a regular complete local ring with maximal ideal (u1, . . . , un).
The extension Frac(A)/Frac(R) is Galois with Galois groupH isomorphic to (Z/pZ)n, gener-
ated by the automorphisms σi, i = 1, . . . , n, with σi(uj) := uj if j 6= i, and σi(ui) := ui +µai.
We have R = AH .

Let σ be the automorphism of order p of A which sends ui to ui + µai, for i = 1, . . . , n
and fixes R (in other words, σ = σ1 · · ·σn). When (µa1, . . . , µan) is a system of parameters
of R, then the action of G := 〈σ〉 on A is moderately ramified (6.19 (b)). Theorem 6.11
shows that any moderately ramified action of G corresponds to a ring A as above with µ = 1
and (µa1, . . . , µan) a system of parameters of R. When µ /∈ R∗, the action is not ramified
precisely at the origin. Our goal is to describe the ring of invariants AG explicitly in all cases
when n = 2.

Identify the Galois group H of Frac(A)/Frac(R) with the elementary abelian p-group
(Z/pZ)n, where an element (ν1, ν2, . . . , νn) corresponds to the R-algebra automorphism given
by uj 7−→ uj + νjµaj . Under our identification, (1, . . . , 1) corresponds to the generator σ of
G.

Let s = (s1, . . . , sn) ∈ (Z/pZ)n be a non-zero element, and consider the subgroup Hs of
H of all elements of H perpendicular to s. In other words,

Hs := {(ν1, ν2, . . . , νn) |

n∑

i=1

νisi = 0}.

Let

zs := (
∏

{i|si 6=0}

ai)(s1
u1

a1
+ . . .+ sn

un

an
) ∈ A.
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It is easy to verify that zs satisfies the following relation:

zp
s − (µ

∏

{i|si 6=0}

ai)
p−1zs − (

∏

{i|si 6=0}

ai)
p(s1

x1

ap
1

+ . . .+ sn
xn

ap
n
) = 0.

The reader will check that h ∈ H is such that h(zs) = zs if and only if h ∈ Hs. In particular,
Frac(AHs) = Frac(R)(zs) has degree p over Frac(R).

For convenience, let α :=
∏

{i|si 6=0} ai, and when si 6= 0, let αi := α/ai. By definition,

α ∈ R, and αi ∈ R when si 6= 0. With this notation, define f(z) ∈ R[z] by

f(z) := zp − (µα)p−1z −
∑

{i|si 6=0}

siα
p
ixi.

Since f(zs) = 0 and the degree of zs over R is p, we find that f(z) is irreducible in Frac(R)[z],
and also in R[z] by Gauss’ Lemma. Since R[z] is factorial because R is, we find that
R[z]/(f(z)) is a domain. We have a natural ring homomorphism j : R[z]/(f(z)) → AHs ,
which sends the class of z to zs. After tensoring with Frac(R), the resulting homomorphism
is surjective. It is thus also bijective, since the source and target have the same dimension
over Frac(R). Since both rings R[z]/(f(z)) and AHs are integral domains, the map j is
injective.

Theorem 7.2. Let A be as in 7.1. Let H denote the Galois group of the associated extension
Frac(A)/Frac(R). Let Hs denote a subgroup of order pn−1 in H. Then the extension AHs

is isomorphic to the ring R[z]/(f(z)), where f(z) ∈ R[z] is given above. In particular, it is
flat over R. The group H/Hs acts on the ring AHs through pseudo-reflections.

Proof. Since R[z]/(f(z)) is finitely generated and free over R, it is Cohen–Macaulay and,
hence, satisfies the property S2. We show below that R[z]/(f(z)) is regular in codimension
1. Then from Serre’s criterion, R[z]/(f(z)) is normal, and injects into AHs , which is also
normal, with same field of fractions. It follows that R[z]/(f(z))→ AHs is an isomorphism.

Since R is complete, we can identify R[z]/(f) with k[[x1, . . . , xn, z]]/(f). Consider the
partial derivatives of f :

fz = −(µα)p−1 and fxi
= (µα)p−2z(µα)xi

− siα
p
i , i = 1, . . . , n.

Suppose that p is a prime ideal in R[z] containing (f). Assume that the localization of
R[z]/(f) at the prime ideal p/(f) is not regular. Then, according to the Jacobian Criterion,
all the derivatives of f belong to p. In particular, fz ∈ p, and so µα ∈ p. We want to show
that the prime p/(f) has height at least 2 in R[z]/(f).

Assume first that p ≥ 3, and that si 6= 0. Then the condition fxi
∈ p immediately implies

that αi ∈ p. In particular, αi is not a unit. Since α = aiαi =
∏

{j|sj 6=0} aj , and so there exists

` 6= i such that s` 6= 0 and a` ∈ p. But then from s` 6= 0 and fx`
∈ p, it follows that α` ∈ p.

Hence, among the factors of α`, we can find am ∈ p for some m 6= `. By hypothesis, the
ideal (a`, am) has height at least 2 since a` and am are coprime and, thus, ht(p) ≥ 2.

Assume now that p = 2. In view of the fact that µα ∈ p, we will consider two cases: when
α ∈ p, and when µ ∈ p. Let us start with the case where α ∈ p. If two or more of the aj ’s
that divide α belong to p, then as before ht(p) ≥ 2 and we are done. Thus we are reduced
to consider only the case where ai ∈ p for some i with si 6= 0 and aj /∈ p for all j 6= i such
that sj 6= 0. We show now that this case cannot happen. Recalling that α = αiai, we find
using the product rule that fxi

= z(µα)xi
− siα

2
i = z(µαi)xi

ai + z(µαi)(ai)xi
− siα

2
i . From
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fxi
, ai ∈ p and αi /∈ p, we obtain that

(7.3) zµ(ai)xi
+ siαi ∈ p.

We conclude in particular from this last expression that z /∈ p.
Since ai divides αj when j 6= i and sj 6= 0, we find that sjα

2
jxj ∈ p. By hypothesis,

f(z) := z2 − (µα)z −
∑

{j|sj 6=0} sjα
2
jxj belongs to p, and so

(7.4) z2 + siα
2
ixi ∈ p.

We are now ready to conclude as follows. First, (7.3) shows that (zµ(ai)xi
+siαi)

2 ∈ p. Using
that si = 1 = s2

i and (7.4), we obtain that z2(1 + (µ(ai)xi
)2xi) ∈ p. This is a contradiction,

since (1 + (µ(ai)xi
)2xi) is a unit, and we noted above that z /∈ p.

Consider now the case where µ ∈ p. If ai belongs to p for some i, then ht(p) ≥ 2 by our
hypothesis that µ is coprime to ai. So let us assume that ai /∈ p for all i with si 6= 0. From
fxi
∈ p and αi /∈ p, we conclude that zµxi

ai + siαi ∈ p whenever si 6= 0. In particular,
z /∈ p. From the relation f = 0 we find that z2 +

∑
{i|si 6=0} siα

2
ixi ∈ p. It follows that

z2(1+
∑

{i|si 6=0}(µxi
ai)

2xi) ∈ p. This is a contradiction as before, since (1+
∑

{i|si 6=0}(µxi
ai)

2xi)

is a unit, and z /∈ p. This concludes the proof that R[z]/(f(z))→ AHs is an isomorphism.
Pick any standard basis vector ei of (Z/pZ)n which does not belong to Hs (i.e., such that

si 6= 0). Then the group H/Hs is cyclic of order p, generated by the image ei of ei, and acts
on AHs. It is easy to check that ei(zs) − zs = siµ

∏
sj 6=0 aj , so that the ideal of the fixed

scheme of ei is I(ei) = µ(
∏

sj 6=0 aj)A
Hs, showing that ei is a pseudo-reflection as defined in

6.21. �

In the definition of a moderately ramified action on a complete local regular noetherian
ring A of dimension n ≥ 2, Condition (MR 5) imposes some structure requirement on n

subrings of AG, denoted AG⊥

i in 6.8, of rank p over R. Our next corollary implies that all
subrings of the form AHs of rank p over R satisfy the same structure requirement.

Corollary 7.5. Let A be a complete local regular noetherian ring of dimension n ≥ 2 and
characteristic p > 0, with field of representatives k. Assume that A is endowed with a
moderately ramified action of a cyclic group G of order p. Let H denote the Galois group
of the associated extension Frac(A)/Frac(R). Let Hs denote a subgroup of order pn−1 in
H. Then the extension AHs is isomorphic to a ring of the form R[z]/(f(z)), where f(z) =
zp − αp−1z − β, with α, β ∈ R. In particular, it is flat over R. The group H/Hs acts on the
ring AHs through pseudo-reflections.

Proof. Theorem 6.11 lets us identify A with a ring of the form

R[u1, . . . , un]/(u
p
1 − a

p−1
1 u1 − x1, . . . , u

p
n − a

p−1
n un − xn),

where R := k[[x1, . . . , xn]] and a1, . . . , an ∈ R is a system of parameters of R. Theorem 7.2
can then be applied. �

Keep the notation introduced in 7.1. Recall that xi := NA/AG(ui) = up
i − (µai)

p−1ui is a
norm element. In light of the G-action ui 7→ ui + µai, the elements

zij := aiuj − ajui, i 6= j

are also clearly G-invariant. We call these elements minor elements. Denoting by e1, . . . , en

the standard vectors of (Z/pZ)n and setting s = ej − ei, we find that zij = zs (notation as
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in 7.1). The minor elements satisfy the obvious relations:

(7.6)
zp

ij − (µp−1ap−1
i ap−1

j zij + ap
ixj − a

p
jxi) = 0, 1 ≤ i < j ≤ n, and

aizjk − ajzik + akzij = 0, 1 ≤ i < j < k ≤ n.

When n = 2, there is only one interesting element zij, namely z12, and Theorem 7.2
shows that it generates AG. Our next theorem shows that AG in this case can be explicitly
described.

Theorem 7.7. Let A be a complete local regular noetherian ring of dimension two and
characteristic p > 0, with field of representatives k. Assume that A is endowed with a
moderately ramified action of a cyclic group G of order p. Then there exists a system of
parameters a, b in k[[x, y]] such that AG is isomorphic to the domain

k[[x, y, z]]/(zp − ap−1bp−1z − apy + bpx).

Conversely, for any system of parameters a, b ∈ k[[x, y]], the above ring is the ring of invari-
ants of a moderately ramified G-action on some complete regular local noetherian ring A of
dimension two.

Proof. The first part of the statement follows immediately from 7.5. For the converse, we
use the ring A := k[[x, y]][u, v]/(up − ap−1u − x, vp − bp−1v − y) and apply 6.19 to find that
A is regular. �

Remark 7.8. When p = 2 and n = 2, we noted in 6.20 that every action ramified precisely
at the origin is in fact already moderately ramified when k has no separable quadratic
extensions. Putting this result together with Theorem 7.7, we recover Artin’s description in
[4] of the ring AG when n = 2, p = 2, and k has no separable quadratic extensions. Note
that this hypothesis on k does not appear in Artin’s description in [4], and we have not been
able to provide a proof of this description without such hypothesis on k.

Remark 7.9. Let A be a complete local regular noetherian ring of dimension two and
characteristic p > 0, with field of representatives k. Assume that A is endowed with a
moderately ramified action of a cyclic group G of order p, and consider the ring AG as
described in Theorem 7.7. Let I denote the ideal of AG generated by x and y. Then
I 6= IA∩AG. Indeed, the element z ∈ AG does not belong to I since AG/I is isomorphic to
k[z]/(zp). On the other hand, since (a, b) ⊆ I and z = av − bu, we find that z ∈ IA ∩ AG.
This example generalizes Example 2 in [17]. Note that it follows that AG is not a direct
summand of the AG-module A (see [24], Proposition 1, or [25], Proposition 10).

Remark 7.10. Axioms (MR 1) and (MR 2) in the definition of moderately ramified action
specify the existence of a regular system of parameters u1, . . . , un in the complete regu-
lar local ring A such that the associated norm subring R := k[[x1, . . . , xn]] is such that
Frac(A)/Frac(R) is a Galois extension of degree pn with elementary abelian Galois group
(see 6.3). In particular, any moderately ramified action σ : A → A comes equipped with a
subgroup of Autk(A) isomorphic to (Z/pZ)n. We note below that when p = 2 = n, much
more is true.

Assume that n = p = 2 and that k is algebraically closed. Let σ : A→ A be a moderately
ramified action. Consider a regular system of parameters u, v such that A = k[[u, v]], R :=
k[[x, y]] is the norm subring, and a, b ∈ k[[x, y]] are such that σ(u) = u+ a and σ(v) = v+ b.
Clearly, there are then two non-trivial involutions in Autk(A) which commute with σ, namely
the involution which fixes v and sends u to u+a, and the involution which fixes u and sends
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v to v + b. We show below that in fact, the centralizer of 〈σ〉 in the group Autk(A) contains
infinitely many non-trivial involutions.

For each c ∈ k∗, consider the regular system of parameters u + cv, v, with norms X and
Y = y with respect to σ, where

X := (u+ cv)(σ(u) + cσ(v)) = x+ c2y + c(uσ(v) + vσ(u)).

For the regular system of parameters u + cv, v, the norm subring is k[[X, Y ]]. Since u, v is
an admissible regular system of parameters (2.2) and a, b ∈ (u, v)2, one checks that u + cv,
v, is also an admissible regular system of parameters, so the homomorphism k[[X, Y ]]→ A
has degree 4. Theorem 3.4 (i) shows that the field extension Frac(AG)/k((X, Y )), which has
degree pn−1 = 2, is not purely inseparable. Hence it must be Galois. Since k is algebraically
closed, 3.4 (ii) implies that the extension Frac(A)/k((X, Y )) must be Galois as well. We find
that k[[x, y]] = k[[X, Y ]] if and only if (uσ(v)+vσ(u)) ∈ k[[x, y]]. In our case, we can compute
explicitly that uσ(v) + vσ(u) = av + bu, which is nothing but the minor element z = z12
generating AG over k[[x, y]]. Hence, the extension Frac(A)/Frac(R) and Frac(A)/k((X, Y ))
are distinct, and thus correspond to two distinct elementary abelian subgroups H0 and Hc

in Autk(A) of order 4, intersecting in 〈σ〉. It is not hard to check that the groups Hc, c ∈ k,
are pairwise distinct.

7.11. Let Aci denote the R-subalgebra of AG generated by the n − 1 minor elements
z12, . . . , z1n. We show in 7.14 that this subring is a complete intersection which gives us
a useful approximation of AG. Call the R-subalgebra generated by all minor elements zij ,
1 ≤ i < j ≤ n, the minor subring Amnr of AG. This subring captures the regular locus of
Spec(AG) (7.15).

For the definition of the ring homomorphism below, regard zij as an indeterminate, and
set rij := zp

ij − (µaiaj)
p−1zij − ap

ixj + ap
jxi, viewed as an element of the polynomial ring

R[zij ]. Set B := R[z12, . . . , z1n]/(r12, . . . , r1n). Then we have a natural homomorphism of
R-algebras:

(7.12) B = R[z12, . . . , z1n]/(r12, . . . , r1n) −→ A,

whose image is Aci. We show in Theorem 7.14 that the homomorphism B → Aci is an
isomorphism.

Lemma 7.13. The ring B is a complete intersection, free of rank pn−1 over R. The ring
B[1/(µa1)] is normal.

Proof. Consider the natural isomorphism
n⊗

j=2

R[z1j ]/(r1j) −→ B := R[z12, . . . , z1n]/(r12, . . . , r1n)

Since the polynomial rings R[z1j ] are domains and each r1j is non-zero, each tensor factor on
the left and, hence, also B, is a complete intersection ([38], Theorem 2). Each tensor factor
is free of rank p over R, so B is free of rank pn−1 over R.

Consider now the fibers of the map Spec(R[z1j ]/(r1j))→ Spec(R). The Jacobian Criterion
tells us that the fibers over points outside of the closed subset V (µa1aj) are etale. Theorem
7.2 shows that Spec(R[z1j ]/(r1j)) is regular in codimension 1. Let q be a prime ideal of
height 1 in B that does not contain µa1. Then q can contain at most one aj with j 6= 1.
When q does not contain any aj , j 6= 1, the map SpecB → SpecR is etale at q, and thus
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Bq is regular. When q contains aj for some j 6= 1, let Bj denote the natural subring of B
isomorphic to R[z1j ]/(r1j). The map SpecB → SpecBj is etale at q, and thus Bq is regular
since Bj is regular in codimension 1. We conclude that B[1/(µa1)] is regular in codimension
1. Since B is a complete intersection, it is Cohen–Macaulay and, hence, satisfies Condition
S2. It follows that B[1/(µa1)] is normal. �

Theorem 7.14. The homomorphism B → Aci induced by (7.12) is an isomorphism. The
ring Aci is a complete intersection domain, with Aci[1/(µa1)] = AG[1/(µa1)]. When n = 2,
Aci = AG. When n ≥ 3, the ring Aci is not regular in codimension one, and Aci 6= AG.

Proof. Let us show first that the morphism B → A is injective. For this, let Bij :=
R[zij ]/(rij). We will show that both natural maps

B12 ⊗R · · · ⊗R B1n −→ Frac(B12)⊗Frac(R) · · · ⊗Frac(R) Frac(B1n)

and

Frac(B12)⊗Frac(R) · · · ⊗Frac(R) Frac(B1n) −→ Frac(A)

are injective. The first map is injective because each B1j is free (and thus flat) over R. To
show that the second map is injective, we consider its source and target as finitely generated
vector spaces over Frac(R). We find that the dimension of the source is pn−1, and that the
image is the smallest subfield of Frac(A) generated by Frac(R) and z12, . . . , z1n. It is easy to
check that this subfield has dimension pn−1, since H12 ∩ · · · ∩H1n = 〈σ〉.

Since A is a domain and B → A is injective, we find that B is a domain. The injection
B ⊂ AG induces a bijection on field of fractions. As AG and B[1/µa1] are both normal
(7.13), we find that the inclusion B[1/µa1]→ AG[1/µa1] is an isomorphism.

The case n = 2 is treated in Theorem 7.2. To prove the last statement in 7.14, suppose
that n ≥ 3. Then Proposition 3.2 shows that AG is not Cohen–Macaulay. Being a com-
plete intersection, the ring B is Cohen–Macaulay. If B were regular in codimension one,
then it would be normal since it is S2, and the inclusion B ⊂ AG would be an equality, a
contradiction. �

Corollary 7.15. The morphism of schemes Spec(AG) → Spec(Amnr) is an isomorphism
outside the closed points.

Proof. By definition, we have Aci ⊂ Amnr ⊂ A. Using Theorem 7.14, we infer that Amnr

becomes normal after inverting a1. But it also contains the other complete intersection
subrings, defined with zi1, . . . , ẑii, . . . , zin for 1 ≤ i ≤ n. Whence Amnr becomes normal after
inverting any of the ai. Since a1, . . . , an ∈ R is a system of parameters, we conclude that
the localizations (Amnr)p are normal for any non-maximal prime ideal p. It follows that
Spec(AG)→ Spec(Amnr) is an isomorphism outside the closed points. �

8. The invariant ring in higher dimension

Let k be a ground field of characteristic p > 0, and consider the polynomial ring in 2n
variables

B := k[u1, . . . , un, a1, . . . , an],

endowed with the action of the cyclic group G of order p given by identifying a generator of
G with the k-linear automorphism σ of order p defined by

ui 7−→ ui + ai and ai 7−→ ai, 1 ≤ i ≤ n.
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The subring BG of B is an object extensively studied in modular representation theory.
In this section, we review some known results on the structure of BG in 8.1, and use
them to obtain information on the invariant subring AG for certain moderately ramified
group actions on complete local rings A obtained as quotients of the completion B̂ of B at
(u1, . . . , un, a1, . . . , an). We also provide in 8.6 an example where the integral closure of a
Cohen–Macaulay local ring R in a Galois extension L/Frac(R) generated by a generalized
reflection of prime order p is not Cohen–Macaulay (see 6.6 for a related example).

Generators for the invariant ring BG have been determined. As in the previous section,
the norm elements and the minor elements

xi := NB/BG(ui) = up
i − a

p−1
i ui, 1 ≤ i ≤ n,

zij := aiuj − ajui, 1 ≤ i < j ≤ n

are clearly G-invariant. Additional natural G-invariant elements are the traces

tε := TrB/BG(uε1
1 · . . . · u

εn

n ) =

p−1∑

ν=0

(
n∏

i=1

(ui + νai)
εi),

where ε = (ε1, . . . , εn) ∈ Nn. For the purpose of generating BG, we recall below that it
suffices to consider only the n-tuples (ε1, . . . , εn) subject to the conditions

0 ≤ εi ≤ p− 1 and
n∑

i=1

εi > 2p− 2.

Let us call such a tuple relevant. Note that there are no relevant tuples when n = 2. When
n = 3 and p = 2, there is only one relevant tuple, namely ε = (1, 1, 1). The element tε ∈ B

G

attached to a relevant tuple ε is called trace element.

Write B̂ for the formal completion of the polynomial ring B with respect to the maximal

ideal m = (u1, . . . , un, a1, . . . , an). Then B̂G coincides with the formal completion of BG with
respect to m ∩BG. Recall that the embedding dimension of a local noetherian ring C is the
vector space dimension of the cotangent space mC/m

2
C over the residue field κ = C/mC .

Proposition 8.1. The ring BG is generated as a k-algebra by the indeterminates ai, the
norm elements xi, the minor elements zij, and the trace elements tε. These elements yield
a basis for the cotangent space m bBG/m2

bBG
, which has dimension

(8.2) edim(B̂G) = 2n+

(
n

2

)
+ pn −

(
2p+ n− 2

n

)
+ n

(
p+ n− 2

n

)
.

Furthermore, the ring B̂G has depth n + 2.

Proof. First note that the grading on the polynomial ring B induces a grading on the ring
of invariants BG ⊂ B. According to [28], Proposition 2.1, together with Lemma 2.2, these
gradings ensure that the minimal number of generators for the k-algebra BG coincides with

edim(B̂G).
Richman conjectured that the indeterminates together with the norms, minors and traces

generate the ring of invariants ([50], page 32). This was established in full generality by
Campbell and Hughes [13]. Later, Shank and Wehlau showed that the elements form a
minimal set of generators, if one discards the non-relevant traces ([60], Corollary 4.4). In
turn, these yield a basis for the cotangent space m bBG/m2

bBG
.
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The indeterminates ai, together with the norm elements xi and minor elements zij con-
tribute 2n+

(
n
2

)
members of the basis. It remains to count the number of monomials uε1

1 . . . u
εn
n

corresponding to relevant tuples ε ∈ Nn. There are pn monomials that have degree ≤ p−1 in
each variable, and there are

∑2p−2
d=0

(
d+n−1

n−1

)
=
(
2p+n−2

n

)
monomials with total degree ≤ 2p−2.

Among the latter one sees that there are
∑p−2

d=0

(
d+n−1

n−1

)
=
(

p+n−2
n

)
excess monomials that have

degree ≥ p in a fixed variable ui. Our formula for edim(B̂G) follows.
The statement about the depth of the local ring of BG at the origin is proved by Ellingsrud

and Skjelbred ([15], Theorem 3.1), under the assumption that the ground field k is alge-
braically closed. In the notation of their result, we interpret F−1 to be the empty set, and
note that F0 is the closed set V (a1, . . . , an) in SpecB, which as dimension n. Since depths
are invariant under ground field extensions and formal completions, the formula holds in
general. �

Recall that xi denote the norm from B to BG of the element ui. We now write B̂ =
k[[u1, . . . , un, a1, . . . , an]] and identify the norm of ui from B̂ to B̂G with xi. Thus, B̂ contains
R := k[[x1, . . . , xn]] as subring. Choose α1, . . . , αn ∈ mR, and consider the elements

bi := ai − αi ∈ B̂.

Since (u1, . . . , un, a1, . . . , an) = (u1, . . . , un, b1, . . . , bn) we conclude that the b1, . . . , bn are part

of a regular system of parameters of B̂ (use [41], 17.4). Let b denote the ideal of B̂ generated

by b1, . . . , bn. It follows from the equality of ideals just mentioned that the ring A := B̂/b is
regular of dimension n, with maximal ideal generated by the classes of u1, . . . , un. Clearly,

bi ∈ B̂
G. The ring A = B̂/b has thus an induced action of G.

Lemma 8.3. The ring A is isomorphic to the ring k[[x1, . . . , xn]][u1, . . . , un]/I, where the
ideal I is generated by up

i − αp−1
i ui − xi for 1 ≤ i ≤ n. When α1, . . . , αn is a system of

parameters in R, then the G-action on A is moderately ramified.

Proof. Follows from the Implicit Function Theorem, the definition of a moderately ramified
action and Theorem 6.19. �

The elements b1, . . . , bn are G-invariant, so they define ideals in both B̂G and B̂. We have
a natural homomorphism

ϕ : B̂G/(b1, . . . , bn)B̂G −→ (B̂/(b1, . . . , bn)B̂)G = AG.

Under suitable assumptions, this map is bijective, as we now show.

Proposition 8.4. Keep the above notation and assumptions. Assume that b1, . . . , bn is a

regular sequence in B̂G, and that at least one αi ∈ mR is non-zero. Then the following holds.

(i) The map ϕ : B̂G/(b1, . . . , bn)B̂G → AG is an isomorphism.
(ii) We have edim(AG) = n+

(
n
2

)
+ pn −

(
n+2p−2

n

)
+ n
(

n+p−2
n

)
.

Proof. (i) The ring B̂G has dimension 2n and, according to 8.1, it has depth n + 2. Hence,

the quotient ring B̂G/(b1, . . . , bn) acquires dimension n and depth 2. Since the ring extension
BG ⊂ B is finite, the induced map on affine schemes Spec(B) → Spec(BG) is surjective.
This continues to hold for

Spec(B̂/(b1, . . . , bn)) −→ Spec(B̂G/(b1, . . . , bn)).
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The scheme on the left is irreducible, whence the same holds for the scheme on the right.
Now consider the exact sequence

0 −→ N −→ B̂G/(b1, . . . , bn)
ϕ
−−→ AG −→ F −→ 0

defining the kernel N and cokernel F for our map in question. Clearly, the image of ϕ
contains the norm and minor elements, thus the cokernel F has finite length, by Proposition

7.15. Moreover, its kernel N contains only nilpotent elements, because B̂G/(b1, . . . , bn) is
n-dimensional with only one minimal prime ideal. We conclude that N equals this minimal
prime ideal. If we could show that N = 0, then the morphism of schemes

Spec(AG) −→ Spec(B̂/(b1, . . . , bn))

is an isomorphism outside the closed points. Since B̂/(b1, . . . , bn) has depth 2, this ring must
be normal, and the map ϕ is bijective by Zariski’s Main Theorem.

To see that N = 0, we regard the ring of invariants BG as a finite algebra over the
polynomial ring k[x1, . . . , xn, a1, . . . , an] generated by the norms xi and the variables ai. The
scheme Spec(BG) is regular outside the image of the fixed scheme in Spec(B), the latter
being defined by the ideal generated by a1, . . . , an. It follows that

Spec(BG)→ A2n = Spec(k[x1, . . . , xn, a1, . . . , an])

is finite and flat, of degree pn−1, at least over the complement of the subscheme defined by
ai, 1 ≤ i ≤ n. The subscheme defined by bi = ai − αi, 1 ≤ i ≤ n is not contained in this,

because some αi is non-zero, and it follows that B̂G/(b1, . . . , bn) has degree pn−1 as module
over

R = k[[x1, . . . , xn]] = k[[x1, . . . , xn, a1, . . . , an]]/(b1, . . . , bn).

The same holds for AG. Tensoring with the fraction field of R, we deduce that N ⊗R

Frac(R) = 0 by counting vector space dimensions. Since B̂G/(b1, . . . , bn) has no embedded
components, this already ensures N = 0.

(ii) In light of (i), we merely have to check that the bi = ai − αi, 1 ≤ i ≤ n are linearly
independent in the cotangent space of BG. This indeed holds, because the xi = up

i − aiui

vanish and the ai are linearly independent in the cotangent space of the ring B. �

In dimension n = 3, we obtain the following unconditional result when the formal power
series α1, α2, α3, are polynomials.

Theorem 8.5. Let n = 3. Choose polynomials αi = αi(x1, x2, x3) ∈ k[x1, x2, x3], i = 1, 2, 3,
such that α1, α2, α3 form a system of parameters in R = k[[x1, x2, x3]]. Then the induced G-

action on A := B̂/b is moderately ramified and the natural homomorphism B̂G/(b1, b2, b3)→
AG is bijective. In particular, AG is generated as a complete local k-algebra by the norm
elements x1, x2, x3, the minor elements z12, z13, z23 and the (p3−p)/6 trace elements tε ∈ A

G.
Moreover, we have edim(AG) = 6 + (p3 − p)/6.

Proof. In view of Proposition 8.4, we start by proving that b1, b2, b3 ∈ BG form a regular
sequence. Using the case r = 1 of Theorem 1.4 in [27], we have to check that the map

B −→ B⊕3, x 7−→ (b1x, b2x, b3x)

induces an injective map H1(G,B) → H1(G,B⊕3) on group cohomology. Using the de-
composition H1(G,B⊕3) = H1(G,B)⊕3 and symmetry, is suffices to verify that the map
b3 : H1(G,B)→ H1(G,B) is injective.



MODERATELY RAMIFIED ACTIONS 38

Let B[ ⊂ B be the k[a1, a2, a3]-submodule generated by all monomials un1
1 u

n2
2 u

n3
3 with

exponents n1, n2, n3 ≤ p− 1. Clearly, B[ ⊂ B is G-invariant. According to [60], Proposition
6.2, the canonical map

k[x1, x2, x3]⊗k H
1(G,B[) −→ H1(G,B)

is bijective (in loc. cit. the symbols k[W ][ are defined at the end of Section 2 on page
310, and the symbol B is defined on page 318 before Lemma 6.1). Multiplication by the
element b3 = a3 − α3(x1, x2, x3) on the right corresponds to the k-linear mapping f =
id⊗ a3 − α3(x1, x2, x3)⊗ id on the left. Let Fili ⊂ k[x1, x2, x3] by the vector subspace of all
polynomials of total degree≤ i. This is an ascending filtration that is exhaustive and discrete,
in the sense that

⋃
i Fili = k[x1, x2, x3] and Fili = 0 for i = −1. By abuse of notation we

denote the induced filtration Fili ⊂ k[x1, x2, x3]⊗k H
1(G,B[) by the same symbol. Clearly,

f(Fili) ⊂ Fili+d, where d ≥ 1 is the total degree of α3(x1, x2, x3). Moreover, the induced map
f : Gri → Gri+d on the associated graded coincides with the multiplication by α3(x1, x2, x3)⊗
id, and the latter is injective because α3 ∈ k[x1, x2, x3] is a regular element. It follows that
our original multiplication map b3 : H1(G,B)→ H1(G,B) is injective (compare for example
[61], Lemma 1 (e)). This shows that b1, b2, b3 ∈ B

G form a regular sequence. In turn, they

form a regular sequence in the flat extension B̂G.

Now it follows from Proposition 8.4 that the map B̂G/(b1, b2, b3)B̂
G → AG is bijective,

with indicated embedding dimension. The generators of B̂G are given in Proposition 8.1.

According to Lemma 8.3, the ring A := B̂/b equals

k[[x1, x2, x3, u1, u2, u3]]/(u
p
1 − α

p−1
1 u1 − x1, u

p
2 − α

p−1
2 u2 − x2, u

p
3 − α

p−1
3 u3 − x3),

and the G-action given by ui 7→ ui + αi is moderately ramified. �

Example 8.6. Let A denote a complete noetherian regular local ring of dimension n and
characteristic p > 0, endowed with a moderately ramified action of a cyclic group G of order
p. Then the ring AG is endowed with a group of automorphisms of order pn−1 generated by
generalized reflections of order p. Indeed, A is endowed with an elementary abelian group of
automorphisms H , and by construction, H/G acts on AG. In the presentation of A given in
6.11, we find that the ideal I(σi) of the fixed scheme of the pseudo-reflection σi : A→ A is
aiA. Thus the image σi : AG → AG of σi in H/G has an ideal I(σi) contained in aiA

G (since
ai ∈ A

G). In particular, σi is a generalized reflection of order p. We note in the example
below that the ideal I(σi) is not principal in general.

Consider the case where n = 3. In this case, AG is not Cohen–Macaulay (use 3.2 (i)),
and Theorem 8.5 gives us a set of generators that we can use to obtain information about
the ideal I(σ1). We find that σ1(z12) − z12 = −a1a2 and σ1(z13) − z13 = −a1a3, so that
(a1a2, a1a3) ⊆ I(σ1). From the relation zp

23 − (a2a3)
p−1z23 − ap

2x3 + ap
3x2, we find that

a1z
p
23 ∈ (a1a2, a1a3). Note now that I(σ2σ3) = (a2, a3)A. Since σ1 = (σ2σ3)

−1, we find that
I(σ1) ⊆ (a1)A ∩ (a2, a3)A ∩ A

G (with (a2, a3)A ∩ A
G ⊇ (a2, a3, z23)A

G).
Assume now that in addition p = 2. By considering the last generator of AG found in 8.5,

namely t := u1u2u3 + σ(u1u2u3), we find that σ1(t)− t = a1z23 + a1a2a3. Thus in this case
I(σ1) = (a1)(a2, a3, z23), which shows that I(σ1) is not principal.

We note that Theorem 7.2 shows that the invariant ring (AG)〈σ1〉 is a complete intersection
and, thus, is Cohen–Macaulay. Consider a Cohen–Macaulay local ring R and a Galois
extension L/Frac(R) of prime order. Let B denote the integral closure of R in L. When
the Galois group of L/Frac(R) is generated by a generalized reflection σ : B → B, one
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may wonder whether B is always Cohen–Macaulay. This question is given a partial positive
answer when the order of σ is coprime to the residue characteristic of R in [25], Proposition
15. The above example with (AG)〈σ1〉 ⊂ AG shows that the answer to this question is negative
in general. We note however that (AG)〈σ1〉 is Gorenstein, and that AG is shown in Theorem
9.6 to be quasi-Gorenstein.

9. Class group and canonical class

Let A be a complete local noetherian ring that is regular of dimension n ≥ 2 and char-
acteristic p > 0, with a field of representatives k, and endowed with an action of a cyclic
group G of order p that is ramified precisely at the origin. Let AG be the ring of invariants,
and denote by Cl(AG) its class group of Weil divisors modulo linear equivalence. Since AG

is normal, the group Cl(AG) is trivial if and only if AG is factorial.
The canonical module KAG of AG is reflexive of rank one. Since Cl(AG) is naturally

isomorphic to the rank one reflexive class group, we obtain using this isomorphism a canonical
class [KAG ] ∈ Cl(AG). The main result of this section, Theorem 9.6, states that the canonical
class [KAG] is trivial when the G-action is moderately ramified.

Let us start with a description of the group Cl(AG), which follows from a result of Water-
house [66], generalizing work of Samuel [56], Théorème (1).

Proposition 9.1. Let A be as above, endowed with a G-action ramified precisely at the
origin. Let U1 denote the kernel of the map A∗ → k∗. Then Cl(AG) is isomorphic to
H1(G,A∗), and there is a short exact sequence

0 −→ UG
1 /(U

G
1 )p −→ (U1/U

p
1 )G −→ Cl(AG) −→ 0.

Proof. That Cl(AG) is isomorphic to H1(G,A∗) follows from [66], Corollary 1, page 545,
applied to the Galois extension Frac(A)/Frac(AG) of degree p with Galois group G. Indeed,
it is clear that A is the integral closure of AG in Frac(A), and that every minimal prime of AG

(and by this, [66] means the primes in AG of height 1, see proof of Theorem 1) are unramified
in A, since we assume that the G-action is ramified precisely at the origin. The definition of
P(AG, A) as the kernel of the natural map Cl(AG) → Cl(A) is given in the abstract of the
paper, and we find that since A is regular and, hence, factorial, P(AG, A) = Cl(AG).

Recall that the G-action is k-linear. Hence 1→ U1 → A∗ → k∗ → 1 is an exact sequence
of G-modules, and induces an exact sequence

1 −→ H1(G,U1) −→ H1(G,A∗) −→ H1(G, k∗).

Since the action on k∗ is trivial, H1(G, k∗) = Hom(G, k∗) = (0). It follows that H1(G,U1)→

H1(G,A∗) is bijective. The short exact sequence (1) → U1
p
→ U1 → U1/U

p
1 → (1) of G-

modules gives an exact sequence

H0(G,U1)
p
−→ H0(G,U1) −→ H0(G, (U1/U

p
1 )) −→ H1(G,U1)

p
−→ H1(G,U1).

The map on the right is the trivial map, because the cohomology group H1(G,U1) is anni-
hilated by ord(G) = p. The assertion follows. �

The group Cl(AG) is expected to be frequently non-trivial. When n = 2, this expectation
is implied by Theorem 25.1 in [33]. A direct proof that Cl(AG) is not trivial for certain
moderately ramified actions is presented in our next lemma. When n > 2, examples of non-
Cohen–Macaulay unique factorization domains are known (see [34], section 4, for a survey
on this matter, and [44]). In the context of ring of invariants for an action of G := Z/pZ on
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A := k[[x1, . . . , xn]], Theorem 1.3 in [7] exhibits examples of complete local rings AG with
n ≤ p which are not unique factorization domains.

Let n = 3. Choose polynomials α1, α2 ∈ k[x1, x2], and α3 ∈ k[x1, x2, x3] such that α1, α2, α3

form a system of parameters in R = k[[x1, x2, x3]]. Consider the associated action of G on
A := k[[u1, u2, u3]] as in Theorem 8.5. We obtain from Theorem 8.5 a description of a
minimal set of generators x1, x2, x3, w1, . . . , ws for AG, which includes the minor element
z12 := α1u2 − α2u1. Write AG = k[[x1, x2, x3, w1, . . . , ws]]/I, where I is the ideal of relations
between the generators of AG. Since we are considering a minimal set of generators, we find
that I ⊂ J2, where J = (x1, x2, x3, w1, . . . , ws). Recall (7.6) that z12 satisfies the relation

zp
12 − (α1α2)

p−1z12 − α
p
1x2 + αp

2x1 = 0.

Lemma 9.2. Keep the above notation. Suppose that αp
1x2−α

p
2x1 can be factored in k[[x1, x2]]

into a product of at least p+ 1 non-units. Then the ring AG is not factorial.

Proof. In the ring AG, we have a factorization

(9.3) αp
1x2 − α

p
2x1 =

∏

i∈Fp

(z12 − iα1α2).

We claim that each factor z12− iα1α2 is irreducible in AG. Indeed, if z12− iα1α2 is reducible,
there exists power series f, g, h ∈ k[[x1, x2, x3, w1, . . . , ws]] such that

z12 − iα1α2 = fg + h,

with f, g ∈ J and h ∈ I ⊆ J2, since the images of x1, x2, x3, w1, . . . , ws form a minimal system
of generators. It follows from this expression for z12 that z12 ∈ J

2, which is a contradiction.
Now assume that AG is factorial. Then the elements z12 − iα1α2 ∈ A

G, i ∈ Fp, are prime
elements, and the existence and uniqueness of prime factorization shows that αp

1x2 − α
p
2x1

does not factor into more than p non-units. �

It is easy to produce examples of elements a, b ∈ k[[x, y]] such that apy − bpx factors into
a product of p + 1 elements. For instance, set a = x and b = y, to obtain apy − bpx =
yxp − xyp = xy

∏
i∈F∗

p
(x − iy). When k contains a primitive p + 1-root of unity ζ , we can

take a = y and b = x, to obtain apy − bpx = yp+1 − xp+1 =
∏

i(y − ζ
ix).

We now briefly review some facts regarding canonical modules. Let S be any complete
local noetherian ring of dimension n with maximal ideal m and residue field k := S/m. Let
ES(k) be the injective hull of the residue field k. If M is any S-module, let H i

m(M) denote
the i-th local cohomology group. Then the functor

M 7−→ HomS(Hn
m(M), ES(k))

is representable by a module KS. This module is called the canonical module of S [23], or the
dualizing module [9]. By Yoneda’s Lemma, it is unique up to isomorphism. The S-module
KS is finitely generated, of dimension dim(KS) = n, and satisfies Serre’s Condition (S2).
These statements are proved for instance in [23], 5.2, and 5.16. Note that these hold without
the requirement that the ring be Cohen–Macaulay.

When S is Cohen–Macaulay, the canonical module is isomorphic to S if and only if S is
Gorenstein ([23], 5.9). In particular, if S = k[[x1, . . . , xn]], then KS is isomorphic to S.
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9.4. Suppose that T is a complete local ring and φ : S → T is an injective local homomor-
phism of local rings, such that T is finite over S. Then KT := HomS(T,KS) is the canonical
module of T ([23], 5.14).

Assume now that P ∈ SpecS is such that dimS = dimS/P + height(P ). Then KSP
is

isomorphic to (KS)P ([23], 5.22). The prime ideal P belongs to the support of KS if and
only if dimS = dimS/P +height(P ) ([3], 1.9). In particular, if S is normal and P has height
one, we find that SP is regular and, thus, KSP

is trivial. Hence, (KS)P is free of rank 1 for
every prime P of height one. The module KS satisfies Serre’s condition S2 ([3], 1.10).

Let M be a finitely generated S-module, and recall the functor M 7→M∗ := HomS(M,S).
The module M is called reflexive if the natural map M → (M∗)∗ is an isomorphism. It
follows from the facts in the previous paragraph and [22], Theorem 1.9, that when S is
normal, then KS is reflexive.

Recall that a prime ideal p of height 1 in a normal ring S is reflexive, and that there is
a natural isomorphism of groups between the class group Cl(S) and the rank one reflexive
class group, which sends the class of p to the class of p ([67], Theorem 1).

We return now to the ring A with a G-action as at the beginning of this section, and
denote by KAG the canonical module for the complete local ring AG. Since it follows from
above that KAG is reflexive, we can consider the element

[KAG] ∈ Cl(AG),

called the canonical class of AG.

Remark 9.5. In general, the canonical class [KAG ] need not be trivial. Indeed, it is possible
to exhibit in dimension n = 2 diagonal actions on products of ordinary algebraic curves over
an algebraically closed field k such that the associated quotient singularities are rational
singularities ([35], 4.1). In general, these singularities are not Gorenstein since the only
Gorenstein rational singularities are the double points ([63], 2.5).

Our next theorem shows that when AG is obtained from a moderately ramified action,
then its canonical class is trivial.

Theorem 9.6. Let A be a complete local regular noetherian ring of dimension n ≥ 2,
characteristic p > 0, and endowed with a moderately ramified action of a cyclic group G of
order p. Then the canonical class [KAG] is trivial in Cl(AG).

The proof of Theorem 9.6 uses some methods from non-commutative algebra and is pre-
sented after the proof of Proposition 9.11. Recall that the free A-module on the elements
of G can be endowed with an associative multiplication, turning it into a ring called the
skew group ring A ∗G. On elements of the form aσ and bη with a, b ∈ A and σ, η ∈ G, the
multiplication is

aσ · bη := (aσ(b))(ση),

and this multiplication is extended to all elements by bilinearity. Since G is abelian, the
center of this associative algebra is AG∗G. Using the inclusion AGe ⊂ AG∗G, where e ∈ G is
the neutral element, we may regard the associative ring A ∗G as an algebra over the central
subring AG, or over any subring R of AG.

The ring A is endowed with the structure of a left A ∗ G-module as follows: for c, a ∈ A
and σ ∈ G, let (cσ)a := cσ(a). The following injective homomorphism of AG-algebras

(9.7) AG −→ EndA∗G(A), a 7−→ (x 7→ ax),
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is easily seen to be an isomorphism. Indeed, given ϕ : A → A in EndA∗G(A), we have
ϕ(σ · 1) = σ(ϕ(1)) = ϕ(σ(1)), so that ϕ(1) ∈ AG. We also have ϕ(a) = aϕ(1) for all a ∈ A.
We show below in Proposition 9.9 that in the case of moderately ramified actions the natural
homomorphism of AG-algebras

(9.8) A ∗G −→ EndAG(A), aσ 7−→ (x 7→ aσ(x)),

is also an isomorphism.
Let R ⊂ AG be a normal noetherian subring such that AG is a finite R-algebra. Let

p ∈ SpecR. Let M be a finitely generated left A ∗ G-module. Then Mp and (A ∗ G)p

are well-defined Rp-modules. It turns out that (A ∗ G)p is in fact an Rp-algebra when
endowed with the natural multiplication (λ/s) · (λ′/s′) := (λλ′)/(ss′), where λ, λ′ ∈ A ∗ G
and s, s′ ∈ R \ p. In addition, Mp is a left (A ∗ G)p-module. Recall that the A ∗ G-module
M is projective if the functor N 7→ HomA∗G(M,N) is exact, and that homological algebra
in module categories is the same over any ring, commutative or not (see for instance [54]).

Proposition 9.9. Keep the above notation. Assume that the G-action on A is unramified
in codimension one. Let R ⊂ AG be a normal noetherian subring such that AG is a finite
R-algebra.

(i) The R-modules AG, A, A ∗G, and EndAG(A) are reflexive.
(ii) The homomorphism A ∗G→ EndAG(A) in (9.8) is an isomorphism.
(iii) For each p ⊂ R of height one, the left (A ∗G)p-module Ap is projective.

Proof. (i) According to [22], Theorem 1.9, a finitely generated R-module M 6= 0 is reflexive
if and only if it satisfies Serre’s Condition (S2). Since R is local, this means depth(M) ≥ 2.
It follows that the reflexivity of M does not depend on the chosen subring R, as remarked in
[26], page 1094. Applying this principle to R ⊂ A, we see that the R-module A is reflexive,
and it follows that A ∗G is reflexive as well. To proceed, let g1, . . . , gr ∈ A

G be a system of
module generators over R. Then we have a short exact sequence

0 −→ EndAG(A) −→ EndR(A) −→
r⊕

i=1

EndR(A),

where the map on the right sends an R-linear map f : A→ A to the tuple of commutators
fgi − gif . The two terms on the right are reflexive R-modules, that is, satisfy Serre’s
Condition (S2). Using local cohomology, we infer that the term on the left satisfies (S2),
whence is reflexive. Analogous arguments apply to EndA∗G(A).

(ii) For this, we regard A ∗ G, EndAG(A) and AG as modules over AG. These modules
are reflexive by (i). Hence Theorem 1.12 in [22] shows that it suffices to check that the
maps are bijective after localizing at each prime ideal p ⊂ AG of height one. So we may
replace AG by the localization (AG)p. By faithfully flat descent we even may replace it by
the strict henselization (AG)p ⊂ C. Since the G-action is free in codimension one, we get
an isomorphism A ⊗AG C ' C × G = Cp of C-algebras, with the permutation action of
G = Z/pZ.

The first map in question takes the form (C × G) ∗ G → EndC(C × G). Since domain
and range are free C-modules of rank p2, it suffices to check that the map is surjective, by
Nakayama’s Lemma. Let σ, η ∈ G. Since matrix rings are generated by elementary matrices,
it suffices to check that the endomorphism that is zero on all standard basis vectors except
that (1, σ) 7→ (1, η) lies in the image. Indeed, it is the image of (1, η)σ−1 ∈ (C ×G) ∗G.
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(iii) We have to show that Ext1(Ap,M) vanishes for each module M over the ring (A ∗
G)p. This Ext group can be computed with injective resolutions of M , or alternatively
with free resolutions of Ap. Being a finitely generated Rp-module, the associative ring (A ∗
G)p is noetherian, whence we may choose a free resolution with finitely generated terms.
Consequently, the formation of Ext1(Ap,M) commutes with flat base-change in Rp. Thus
we can reduce to the strict henselization Rp ⊂ D. Let p1, . . . , pr ⊂ AG be the prime
ideals lying over p ⊂ R. Then C = (AG) ⊗R D decomposes as C = C1 × . . . × Cr, where
(AG)pi

⊂ Ci are the strict henselizations. As above, we get A ⊗R D = C × G = Cp, and
(C ×G) ∗ G = EndC(Cp). As a left module, Cp is a direct summand of EndC(Cp), whence
a projective module. �

Let S be a commutative ring, and let Λ be an associative S-algebra. Then the S-module
Λ carries the structure of a Λ-bimodule via a · x · b := axb, for all a, b, x ∈ Λ. Similarly, the
dual S-module HomS(Λ, S) becomes a Λ-bimodule, via

(a · φ · b)(x) := φ(bxa),

for all φ ∈ HomS(Λ, S) and a, b, x ∈ Λ. Any homomorphism of left Λ-modules Λ →
HomS(Λ, S) is of the form y 7−→ yφ for some φ ∈ HomS(Λ, S). We leave the proof of
our next lemma to the reader.

Lemma 9.10. Any homomorphism Λ→ HomS(Λ, S) of Λ-bimodules is of the form y 7→ yφ
for some element φ ∈ HomS(Λ, S) with φ(xy) = φ(yx) for all x, y ∈ Λ.

As in [26], page 1095, the S-algebra Λ is called symmetric if the Λ-bimodules HomS(Λ, S)
and Λ are isomorphic. In other words, the S-algebra Λ is symmetric if there exists some
φ ∈ HomS(Λ, S) such that φ(xy) = φ(yx) for all x, y ∈ Λ, and such that Λ → HomS(Λ, S),
y 7→ yφ, is bijective.

Proposition 9.11. Let k be a field of characteristic p > 0, and let R := k[[x1, . . . , xn]]. Let
a1, . . . , an ∈ mR be arbitrary elements, not all zero. Let A be the regular (see 6.19) complete
local noetherian ring given by

A := R[u1, . . . , un]/(u
p
1 − a

p−1
1 u1 − x1, . . . , u

p
n − a

p−1
n un − xn).

Let G denote the subgroup of automorphisms of A fixing R generated by the natural auto-
morphism of order p which sends ui to ui + ai for i = 1, . . . , n. Then the R-algebra A ∗G is
symmetric.

Proof. We abused notation in the above statement and did not distinguish between ui ∈
R[u1, . . . , un] and its class in A. We will continue to do so in the proof below to lighten
our notation. First observe that the skew group ring A ∗G is a free R-algebra of rank pn+1

because the group G has order p and the R-algebra A is free of rank pn. In fact, the elements

ui1
1 · · ·u

in
n σ

i ∈ A ∗G, 0 ≤ i1, . . . , in, i ≤ p− 1,

form an R-basis. Following Braun [11], who studied the linear case, we consider the element
φ ∈ HomR(A ∗G,R) given on the basis elements by

ui1
1 · · ·u

in
n σ

i 7−→

{
1 if i1 = . . . = in = p− 1 and i = 0;

0 else.

Consider the map

(9.12) A ∗G −→ HomR(A ∗G,R), y 7−→ yφ.
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We claim this map is an isomorphism of A ∗ G-bimodules. Let us start by showing that it
is a homomorphism of bimodules. For this, it suffices to verify that φ(xy) = φ(yx) for all
x, y ∈ A ∗G (9.10).

Obviously it suffices to show that for any x ∈ A∗G and any basis element y = uj1
1 · · ·u

jn
n σ

j ,
we have φ(xy) = φ(yx). We proceed using induction on j1 + · · ·+ jn + j. Assume that the
conclusion holds for j1 + · · · + jn + j < t and let us prove it for j1 + · · · + jn + j = t.
When t > 1, it is always possible to write y = y1y2, where y1 and y2 are two basis vectors
to which we can apply the induction hypothesis. Then φ(xy) = φ(x(y1y2)) = φ(y2(xy1)) =
φ(y1(y2x)) = φ(yx). It remains to prove the case where j1 + · · ·+ jn + j = 1. This means
y = σ or y = us for some 1 ≤ s ≤ n. To show that φ(xy) = φ(yx), it is easy to see that it
suffices to treat the case where x := ui1

1 · · ·u
in
n σ

i is itself a basis vector.
Consider first the case y = σ. We have σ(ur) = ur + ar, which implies that

xy = ui1
1 · · ·u

in
n σ

i+1 and yx = (u1 + a1)
i1 · · · (un + an)inσi+1.

Expanding the factors of yx shows that yx = xy + h with h a linear combination of basis

vectors u
i′1
1 · · ·u

i′n
n σi+1 with 0 ≤ i′r < ir for r = 1, . . . , n. In particular 0 ≤ i′1, . . . , i

′
n < p− 1.

Consequently φ(h) = 0, and we find that φ(yx) = φ(xy).
Now let y = us for some 1 ≤ s ≤ n. Using σi(us) = us + ias, we get

xy = ui1
1 · · ·u

in
n (us + ias)σ

i and yx = ui1
1 · · ·u

is+1
s · · ·uin

n σ
i.

By definition, both φ(xy) and φ(yx) vanish if i 6= 0. In the remaining case where i = 0, one
gets xy = yx, and we again find that φ(xy) = φ(yx).

It remains to check that the homomorphism (9.12) is bijective. Since the domain and
range are both finitely generated free R-modules of the same rank, it suffices to verify that
this map of R-modules is surjective. By Nakayama’s Lemma, it is enough to show that the
induced map

(9.13) (A ∗G)⊗R R/mR −→ HomR(A ∗G,R)⊗R R/mR

is surjective. Let A := A ⊗R R/mR = k[[u1, . . . , un]]/(u
p
1, . . . , u

p
n). Since the action of G is

given by σ(us) = us+as with as ∈ mR, we find thatG acts trivially on A, and (A∗G)⊗RR/mR

is isomorphic to the commutative algebra

A ∗G = k[u1, . . . , un, σ]/(up
1, . . . , u

p
n, σ

p − 1).

The right-hand side of (9.13) is isomorphic to the k-vector space Homk(A ∗ G, k), because
the R-module A ∗G is finitely generated. Let φ̄ ∈ Homk(A ∗G, k) denote the class of φ.

Let x := ui1
1 · · ·u

in
n σ

i be any basis vector, and consider the linear form ϕx : A∗G→ k such
that ϕx(x) = 1 and ϕx(z) = 0 for any other basis vector z. We exhibit now an element y such

that yφ̄ = ϕx. Consider the element y := uj1
1 · · ·u

jn
n σ

j with the complementary exponents

j1 := p− 1− i1, . . . , jn := p− 1− in, and j = p− i.

Then (yφ̄)(x) = φ̄(xy) = 1 by definition of φ. For every other basis vector z = u
j′1
1 · · ·u

j′n
n σj′,

we have (yφ̄)(z) = φ̄(zy) = 0. It follows that A ∗G→ Homk(A ∗G, k) is surjective. �

Proof of Theorem 9.6. By hypothesis, A is a complete regular local domain of dimension
n ≥ 2 with field of representatives k and endowed with a moderately ramified action of the
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cyclic group G of order p. Then Theorem 6.11 shows that the ring A, as a k-algebra with
G-action, is isomorphic to

k[[x1, . . . , xn]][u1, . . . , un]/(u
p
1 − a

p−1
1 u1 − x1, . . . , u

p
n − a

p−1
n un − xn),

where x1, . . . , xn are indeterminates, the elements a1, . . . , an ∈ k[[x1, . . . , xn]] form a system
of parameters of k[[x1, . . . , xn]], and the natural automorphism of order p which sends ui to
ui + ai and fixes k[[x1, . . . , xn]] induces under this isomorphism a generator of G. As usual,
we let R := k[[x1, . . . , xn]]. Clearly R ⊂ AG ⊂ A, and we may thus consider the skew group
ring A ∗G as an R-algebra.

Using 9.4 and the fact thatKR = R because R is regular, we find thatKAG = HomR(AG, R).
To prove Theorem 9.6, it thus suffices to show that there exists an isomorphism of AG-
modules AG → HomR(AG, R). For this we need the following fact (Proposition 2.4 (3) in
[26]):

9.14. Suppose that S is a normal noetherian ring, and Λ is an associative S-algebra that
is finitely generated as S-module. Let M be a finitely generated left Λ-module such that M
is reflexive as an S-module, and such that given any prime ideal p ⊂ S of height one, Mp

is a projective Λp-module. If the S-algebra Λ is symmetric, then the S-algebra EndΛ(M) is
symmetric as well.

Let us now check that we can apply 9.14 to the case where S := R, Λ := A∗G andM := A.
Clearly R is normal since it is regular, and A∗G is a finitely generated R-module. According
to Proposition 9.9, the R-module A is reflexive, and for each prime ideal p ⊂ R of height
one, the (A ∗ G)p-module Ap is projective. Finally, Proposition 9.11 shows that A ∗ G is a
symmetric R-algebra. Thus 9.14 can be applied and we find that the R-algebra EndA∗G(A)
is symmetric: In other words, we have an isomorphism of EndA∗G(A)-bimodules between
EndA∗G(A) and HomR(EndA∗G(A), R). Using (9.7), we find an isomorphism of AG-algebras
AG → EndA∗G(A). Hence, the AG-modules AG and KAG = HomR(AG, R) are isomorphic,
as desired. �

Remark 9.15. Recall that when a complete local ring is Cohen–Macaulay, its canonical
module is free of rank 1 if and only if the ring is Gorenstein ([23], 5.9). Local rings with trivial
canonical class are called quasi-Gorenstein by Platte and Storch ([48], page 5). Theorem 9.6
provides a rich supply of quasi-Gorenstein rings which are not Cohen–Macaulay when they
have dimension bigger than 2 (use 3.2 (i)).

Recall also that if a finite group G acts on a Cohen–Macaulay ring A and |G| is invertible
in A, then the ring AG is Cohen–Macaulay ([25], Proposition 13). A necessary and sufficient
condition for AG to be Gorenstein when A is regular is given in [65], Theorem 2. Theorem 4
in [64] shows that AG is Gorenstein if the image of the associated map λ : G→ GL(mA/m

2
A)

is in SL(mA/m
2
A). See also Conjecture 5 in [29] when |G| is not invertible in A = k[V ], where

V is a k-vector space with an action of G.
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