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Abstract. Let p be prime. We describe explicitly the resolution of singularities of several
families of wild Z/pZ-quotient singularities in dimension two, including families that generalize
the quotient singularities of type E6, E7, and E8 from p = 2 to arbitrary characteristics. We
prove that for p odd, any power of p can appear as the determinant of the intersection matrix
of a wild Z/pZ-quotient singularity. We also provide evidence towards the conjecture that in
this situation one may choose the wild action to be ramified precisely at the origin.

Contents

Introduction 1
1. Intersection matrices 5
2. Computation of self-intersections 8
3. Blowing up non-reduced centers 10
4. Some weighted homogeneous singularities 14
5. Brieskorn singularities 22
6. Analogues of the E6 singularities 25
7. Analogues of the E8 singularities 30
8. Analogues of the E7 singularities 35
9. D4 and Ap−1 39
10. Numerically Gorenstein intersection matrices 42
References 44

Introduction

The goal of this paper is to study wild quotient singularities which arise from actions of
G := Z/pZ on the formal power series ring A := k[[u, v]] when k is an algebraically closed field
of characteristic p > 0. Here the term “wild” refers to the fact that the order of the group
G is not coprime to the characteristic exponent of the ground field k. The resulting quotient
singularity is the ring of invariants AG or, more precisely, the closed point of Spec(AG).

Let X → Spec(AG) be a resolution of the singularity. Let Ci, i = 1, . . . , r, denote the
irreducible components of the exceptional divisor, and form the intersection matrix

N := ((Ci · Cj)X)1≤i,j≤r ∈ Matr(Z).

This matrix is negative-definite. The discriminant group ΦN := Zr/NZr attached to N is a
finite group of order |det(N)|, independent of the resolution. The group ΦN appears as a natural
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quotient of the class group Cl(AG) (5.7). Attached to the resolution is its dual graph ΓN , with
vertices v1, . . . , vr, where vi and vj are linked by (Ci · Cj)X distinct edges when i 6= j. Our
ultimate, long term, goal is to characterize the intersection matrices N , discriminant groups
ΦN , and dual graphs ΓN , that can arise from such wild quotient singularities.

The fixed point scheme of the action of G on SpecA is defined by the ideal I := (σ(a)− a |
a ∈ A, σ ∈ G). We say that the action is ramified precisely at the origin if the radical of I is the
maximal ideal (u, v); in this case, the closed point of Spec(AG) is singular. Otherwise, we say
that the action is ramified in codimension 1. When I is principal, AG is regular ([22], Theorem
2), and when AG is regular, I is conjectured to be principal ([22], Conjecture 9).

It is known that when the exceptional divisor has smooth components with normal crossings,
all components Ci are smooth projective lines and the dual graph ΓN is a tree ([29], Theorem
2.8). It is also known that the discriminant group ΦN is an elementary abelian p-group ([29],
Theorem 2.6), so that in particular we may write

|ΦN | = |det(N)| = ps

for some integer s ≥ 0. In this article, we consider which exponents s ≥ 0 can arise in this
way. By studying diagonal actions on products of curves, the first author ([31], Theorem 3.15)
produced wild quotient singularities with |ΦN | = ps for all exponents s ≥ 2 with s 6≡ 1 modulo
p. Mitsui [34] later explicitly resolved all wild quotient singularities arising from product of
curves, and showed that the previous list is the complete list of exponents arising from product
of curves. The missing exponents are then s = 0, as well as all s with s ≡ 1 mod p.

0.1. We conjecture that for p odd, all exponents s ≥ 0 arise in this way from wild Z/pZ-quotient
singularities associated with an action that is ramified precisely at the origin.

In this article, we prove this conjecture for s = 0 and s = 1 by explicitly resolving certain wild
quotient singularities of independent interest. We also exhibit singularities as in the conjecture
that are likely to produce a group ΦN with |ΦN | = ps for all other missing values s > 1 (0.3).
When the condition that the action be ramified precisely at the origin is relaxed, we can prove
the following result.

Theorem (see 5.5). For p odd, all missing exponents s ≥ 0 arise from wild Z/pZ-quotient
singularities associated with an action that is ramified in codimension 1.

Let c, d, e ≥ 2 be integers. Recall that the equation xc + yd + ze = 0 is said to define a
Brieskorn surface singularity. The missing exponents s are exhibited to arise from wild quotient
singularities with the help of well-chosen Brieskorn singularities, as in our next theorem.

Theorem (see 5.1 and 5.3). Let B := k[[x, y, z]]/(zp+xc+yd). Assume that p does not divide
cd. Let g := gcd(c, d). Any resolution of SpecB has an intersection matrix whose associated
discriminant group has order pg−1 and is killed by p. When c = pm + 1 and d = pn + 1 for
some m,n ≥ 1, then SpecB is a wild Z/pZ-quotient singularity.

The resolutions of the Brieskorn singularities in the previous theorem are found in Theorem
5.1, and coincide with the known resolutions in characteristic 0 ([19], Theorem, page 232, and
[38]). The theorem is valid when p = 2, but in this case, the order pg−1 is always an even power
of 2, and thus provides no examples of missing odd exponents. The theorem shows that when
p = 2 and gcd(p, cd) = 1, all singularities zp + xc + yd = 0 are wild Z/pZ-quotient singularities.
It would be of interest to determine whether this fails to be the case when p > 2.
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Let now Cn denote the n-th Catalan number, and let p ≥ 3. To produce singularities
associated with an action that is ramified precisely at the origin and which have |ΦN | = p, we
expand on the work of Peskin [42] and consider the ring Bµ := k[[x, y, z]]/(h), where µ ∈ k[y]
and

h := zp + 2yp+1 − x2 +

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn.

When µ = 1, this equation defines a wild quotient singularity that can be regarded as an ana-
logue of the E1

6 -singularity (notation as in Artin’s classification in [4]). We compute explicitly
its resolution in our next theorem. When p = 3, the graph ΓN below reduces to the Dynkin
diagram E6. When drawing a dual graph, we adopt in this article the usual convention that
a vertex is adorned with the associated self-intersection number, unless this self-intersection
number is −2, in which case it is suppressed.

Theorem (see 6.3). Let p be an odd prime. Let Bµ be as above. Then SpecBµ has a resolution
of singularities with dual graph ΓN independent of µ of the following form:

p−1

−(p+1)/2

p−1

The associated discriminant group ΦN has order p.

0.2. To treat the case where ΦN is the trivial group in Conjecture 0.1, we use a family of
hypersurface singularities introduced in [32] and which is of independent interest. Fix a system
of parameters a, b in k[[x, y]]. Let µ ∈ k[[x, y]], and consider the equation

(0.1) zp − (µab)p−1z − apy + bpx = 0,

and the associated ring

Bµ = B := k[[x, y, z]]/(zp − (µab)p−1z − apy + bpx).

(a) Assume that µ is a unit in k[[x, y]]. It is shown in [32], 7.1, that B is isomorphic to the
ring of invariants AG of an explicit wild action of Z/pZ on A := k[[u, v]] ramified precisely at
the origin. More precisely, after identifying A with the ring

k[[x, y]][u, v]/(up − (µa)p−1u− x, vp − (µb)p−1v − y),

the action is determined by the automorphism σ with σ(u) = u + µa and σ(v) = v + µb. The
morphism SpecA → SpecAG is ramified only at the maximal ideal m, and we find that the
étale fundamental group πloc

1 (AG) of the punctured spectrum U := SpecAG \{m} is isomorphic
to Z/pZ. Such actions are called moderately ramified in [32], and we refer the reader to [32] for
further information on these actions.

(b) Assume that µ is not a unit in k[[x, y]], that µ 6= 0, and that it is coprime to both a and b.
Then B is again isomorphic to the ring of invariants AG for the action on A := k[[u, v]] described
above. However, in this case the morphism SpecA → SpecAG is ramified in codimension 1
and the group πloc

1 (AG) is trivial.
In this article, we restrict our attention to the case where a = yn and b = xm. The case

µ = 0 is then also of interest:
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(c) Assume that µ = 0, with a = yn and b = xm. The resulting hypersurface is a Brieskorn
singularity of type zp − ypn+1 + xpm+1.

In the specialized case where a = yn and b = xm, preliminary computations with Magma [7]
and Singular [12] suggest that the resolution of singularities in all three cases above might have
the same combinatorial type, independent of µ. We prove that this is indeed the case in two
instances in this article, when a = y and b = x in Theorem 9.2, and when a = y2 and b = x
in Theorem 7.1. In the latter case, Artin [4] (see also [41]) shows when p = 2 that the values
µ = 0, µ = 1, and µ = y produce the rational double points E0

8 , E2
8 , and E1

8 , respectively. These
singularities are not isomorphic but have the same resolution graph, the Dynkin diagram E8.
Our generalization of these singularities to any odd prime p has a resolution with the following
dual graph.

Theorem (see 7.1). Let p be an odd prime. Let Bµ be as in 0.2. Assume that a = y2 and
b = x. Then SpecBµ has a resolution of singularities with dual graph ΓN independent of µ of
the following form:

−(p+1)/2 −4

p−1p

The associated discriminant group ΦN is trivial.

0.3. Let p be odd. Recall that when µ = 1, the associated quotient singularity SpecBµ=1 is
induced by an action that is ramified precisely at the origin. It is likely that by varying the
exponents m and n in a = yn and b = xm, one will obtain examples of resolutions of SpecBµ=1

with associated discriminant group ΦN of order ps for any power s with s 6≡ −1 mod p. In
particular, we exhibit in 5.6 the appropriate exponents m and n that would cover all remaining
open cases in our conjecture 0.1 (that is, all values of s with s ≡ 1 mod p).

Peskin’s singularity with µ = 1 introduced above, and all the singularities considered in [31]
or [34], are also induced by an action that is ramified precisely at the origin. When p = 2,
none of the known explicit resolutions for examples in these classes of singularities produce
an associated discriminant group ΦN with order 2s and s odd. This lack of examples might
indicate that there is a serious obstruction to exhibiting such examples. It is natural to wonder
whether such examples in fact do not exist for actions ramified precisely at the origin.

Let p = 2. The Dynkin diagram E7, with discriminant group ΦE7 of order 2, might be
the most ubiquitous graph with discriminant group of order 2s with s odd. Many other such
examples are exhibited in 8.2. Artin [4] showed that there exists a wild Z/2Z-action on A :=
k[[u, v]], ramified in codimension 1, such that SpecAZ/2Z is a rational double point of type E7.
He also showed that any such surface singularity must have a trivial local fundamental group.
In other words, there cannot exist a wild Z/2Z-action on A = k[[u, v]], ramified precisely at
the origin, such that SpecAZ/2Z has a resolution of combinatorial type E7.

Inspired by Artin’s considerations, we define in Section 8 some explicit wild Z/pZ-actions
on A = k[[u, v]] ramified in codimension 1. When p = 2, we exhibit for each s odd an explicit
example conjectured to have discriminant group of order 2s. In Section 9, for any prime p,
we exhibit a wild Z/pZ-action on A = k[[u, v]] ramified in codimension 1 which results in an
Ap−1-singularity.
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Theorem (see 9.4). Let k be a field of characteristic p > 0. Let A := k[[u, v]]. Then there
exists an automorphism σ : A→ A of order p such that SpecA〈σ〉 is a rational double point of
type Ap−1, which has discriminant group ΦAp−1 of order p. Any such automorphism induces a

morphism SpecA→ SpecA〈σ〉 that must be ramified in codimension 1.

It is natural to wonder whether the same result holds for any Hirzebruch–Jung chain whose
discriminant group has order p (definition recalled in 1.1). The last statement in the above
theorem follows from a result of Ito and Schröer [20], which states that if the action is ramified
precisely at the origin, then the resolution of the resulting quotient singularity has a dual graph
ΓN which must have a vertex of valency at least 3.

Artin shows in [3] that in characteristic p = 2, all wild quotient singularities AG with
SpecA → SpecAG ramified precisely at the origin can be described by an equation of the
form (0.1) with µ = 1. In particular, all such singularities are complete intersection. We
show in Proposition 10.1 that when p = 2, any wild quotient singularity AG is a complete
intersection, even when SpecA→ SpecAG ramifies in codimension 1. When AG is a complete
intersection, it is then also Gorenstein, with an intersection matrix which is numerically Goren-
stein. The purely linear algebraic definition of numerically Gorenstein is recalled in 10.2, and it
is natural to wonder whether this condition imposes a new restriction on intersection matrices
associated with Z/2Z-quotient singularities. The answer to this question is negative, and we
show in Proposition 10.5 that any intersection matrix N such that ΦN is killed by 2 is always
numerically Gorenstein.

The paper is organized as follows. Section 1 contains several useful facts concerning the linear
algebra of intersection matrices N , in particular formulas for the order of ΦN when the dual
graph ΓN is star-shaped. Sections 2 and 3 are preparatory sections, where we recall basic facts
regarding how to compute self-intersection numbers on a resolution of a singularity using data
coming from intermediate blow-ups. This will be applied in later sections to the resolution of
SpecBµ, where we found it useful, instead of starting the resolution process by blowing up the
maximal ideal, to first blow up an ideal naturally related to the ideal defining the fixed scheme
of the action. We provide in Section 4 the explicit resolution of certain weighted homogeneous
singularities of the form W q − UaV b(V d − U c) = 0, with p, q, a, b, c, d subject to certain mild
restrictions. Over C, such resolution has already been obtained by Orlik and Wagreich ([38],
[39], [40]) in full generality. The proofs of the theorems presented in this introduction are found
in Sections 5 to 10.

Acknowledgement. The authors gratefully acknowledge funding support from the Research
and Training Group in Algebraic Geometry, Algebra, and Number Theory at the University of
Georgia, from the National Science Foundation RTG grant DMS-1344994 and from the Simons
Collaboration Grant 245522, as well as from the Research and Training Group GRK 2240:
Algebro-geometric Methods in Algebra, Arithmetic and Topology, funded by the Deutsche
Forschungsgemeinschaft. The authors also heartily thank the referee for a thorough reading
and detailed report.

1. Intersection matrices

Let B be a complete noetherian local ring that is two-dimensional and normal. Let Ci,
i = 1, . . . , n, denote the irreducible components of the exceptional divisor of a resolution of
singularities of SpecB, with associated intersection matrix N := ((Ci ·Cj))1≤i,j≤n. This section



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 6

collects some facts that depend only on the linear algebra of the matrix N and which are used
in later sections.

An n × n intersection matrix N = (cij) is a symmetric negative-definite integer matrix
with negative coefficients on the diagonal, and non-negative coefficients off the diagonal. The
discriminant group Φ = ΦN is defined as the finite abelian group Zn/NZn, which has order
| det(N)|. The associated graph Γ = ΓN arises as follows: Introduce vertices v1, . . . , vn corre-
sponding to the standard basis vectors in Zn. Two vertices vi 6= vj are linked by exactly cij ≥ 0
edges. If not stated otherwise, we tacitly assume that Γ is connected.

The degree or valency of a vertex v ∈ Γ is the number of edges attached to v. A vertex v
with valency at least three is called a node, and a vertex v with valency one is called terminal.
A graph is a chain if it is connected and does not contain any node. It is called star-shaped if
it is a tree with a unique node. Given a star-shaped graph Γ with node v0, we can consider the
subgraph Γ r {v0} obtained by removing the vertex v0 and all the edges containing v0. This
complement is the disjoint union of m ≥ 3 chains ∆1, . . . ,∆m that we call the terminal chains
of Γ.

1.1. Suppose that N is an intersection matrix whose graph ΓN is a chain, with ` ≥ 1 consecutive
vertices v1, . . . , v`. For convenience, we label the diagonal entries of N by cii = −si, and we
assume below that si ≥ 2 for i = 1, . . . , `, unless ` = 1, in which case we also allow s1 = 1.
We associate to N with this ordering of the vertices a unique sequence of positive integers
1 = r` < · · · < r1 < r0 such that the following matrix equality holds, where the square matrix
on the left is N : 

−s1 1

1 −s2
. . .

. . . . . . 1
1 −s`




r1
...

r`−1

r`

 =


−r0

0
...
0

 .

When needed, we will denote R = RN the transpose of the vector (r1, . . . , r`), so that NR is
the transpose of (−r0, 0, . . . , 0). It is known that | det(N)| = r0, and that ΦN is cyclic of order
r0 ([29], 3.13). To be able to refer to r0 and r1 without indices, we will relabel them as r0 = a
and r1 = b. Note that by construction, gcd(a, b) = 1, and that we can express the reduced
fraction a/b completely in terms of s1, . . . , s` as a continued fraction

(1.1)
a

b
= [s1, s2, . . . , s`] := s1 −

1

s2 −
1

. . . −
1

s`

.

Clearly, any reduced fraction a/b with a > b determines an intersection matrix N as above.
The reduced fraction a/b = 1/1 determines the matrix N = (−1). We note that −a/b =
det(N)/ det(N ′), where N ′ is obtained from N by removing its first line and first column
(recall that the determinant of the empty matrix is 1 by convention).

As is customary, the vertices of the graph ΓN of an intersection matrix N = (cij) are labeled
with the self-intersection numbers −si := cii, and self-intersection numbers −si = −2 are
usually omitted. For a chain ΓN as above, we get the following drawing:

−s1 −s2 −s`−1 −s`
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We call such chain a Hirzebruch–Jung chain. Recall that p/(p − 1) = [2, . . . , 2] and that the
corresponding intersection matrix of size p− 1 and determinant (−1)p−1p is denoted by Ap−1.
This intersection matrix will be shown to arise in the context of Z/pZ-singularities in 9.4.

1.2. Let m ≥ 3. Let a1/b1, . . . , am/bm be reduced fractions with ai/bi ≥ 1 for i = 1, . . . ,m. Let
s0 ≥ 1 be any integer. We denote by N = N(s0 | a1/b1, . . . , am/bm) the following matrix. Its
graph Γ = ΓN = Γ(s0 | a1/b1, . . . , am/bm) is star-shaped with m terminal chains attached to a
central node v0 having self-intersection number −s0. Let ∆1, . . . ,∆m be the Hirzebruch–Jung
chains determined by the fractions a1/b1, . . . , am/bm. The graph Γ is obtained by attaching
to v0 with a single edge the initial vertex of each chain ∆i. In this article, when referring
to a matrix of the form N = N(s0 | a1/b1, . . . , am/bm), we will always assume that it is an
intersection matrix, i.e., that N is negative-definite.

Proposition 1.3. Let N = N(s0 | a1/b1, . . . , am/bm) be an n×n intersection matrix as above,
with star-shaped graph ΓN . Then s0 >

∑m
j=1 bj/aj, and the following hold:

(i) We have det(N) = (−1)n(
∏

j aj)(s0−
∑

j bj/aj). In particular, there is an integer factor-
ization

| det(N)| =
( ∏

j aj

lcm(a1, . . . , am)

)(
lcm(a1, . . . , am)(s0 −

∑
j

bj/aj)

)
.

(ii) In the discriminant group ΦN , the class of the standard basis vector ev0 ∈ Zn corresponding
to the central node v0 has order lcm(a1, . . . , am)(s0 −

∑
j bj/aj).

(iii) Let wj denote the terminal vertex in ΓN of the chain ∆j. Then ΦN is generated by the
classes of ewj

, j = 1, . . . ,m. Moreover, the class of ev0 is equal to the class of ajewj
, and

the group ΦN is killed by lcm(a1, . . . , am)2(s0 −
∑

j bj/aj).

(iv) If aj is a prime p for all j and ps0−
∑

j bj = 1, then ΦN is killed by p and has order pm−1.

(v) Assume that ΦN is killed by a prime p. If p divides aj for some j, then the class of ev0 is
trivial in ΦN .

Proof. Without loss of generality, we may assume that N equals the block matrix

N =


−s0 ∗ · · · ∗
∗ N1
...

. . .
∗ Nm

 ∈ Matn(Z),

whereNi is the intersection matrix with graph ∆i, with vertices numbered consecutively starting
from the vertex adjacent to the node v0. The ∗’s in the above matrix stand for sequences of
appropriate size, starting with 1 followed by zeros. Let Ri denote the positive integer vector
associated to Ni, such that

NiRi = t(−ai, 0, . . . , 0).

Form the block column integer vector R in Zn given as

R := lcm(a1, . . . , am) t(1, tR1/a1, . . . ,
tRm/am).

By construction, the greatest common divisor of the entries in R is 1, since, given a prime p
such that ps exactly divides lcm(a1, . . . , am), there exists at least one index i such that ai is
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exactly divisible by ps. In particular, the coefficient of R corresponding to the last vertex on
the chain ∆i is coprime to p. Let x := s0 −

∑
j bj/aj. Then

NR = lcm(a1, . . . , am) t(−x, 0, . . . , 0).

Note that x > 0, because N is negative-definite, so the integer tRNR must be negative. By
negative-definiteness, we also know that det(N) has sign (−1)n. Using [29], Theorem 3.14, with
the matrix N and the vector R, we get

det(N) = (−1)n(s0 −
∑
j

bj/aj) · (
∏
j

aj)

and the assertion (i) follows. The assertion in (ii) follows immediately from the equality

NR = lcm(a1, . . . , am) t(−x, 0, . . . , 0)

and the fact that the greatest common divisor of the coefficients of R is 1. For (iii), to show that
ev0 − ajewj

is in the image of N , consider the unique positive vector Sj whose first component
is 1 and such that NjSj is equal to the transpose of (0, . . . , 0,−aj). Extend this vector to a
vector Sj ∈ Zn by setting all other components to 0. Then NSj = ev0 − ajewj

. The proof
that for any vertex w on the chain ∆j, there exists an integer cw such that ew − cwewj

is in the
image of N is similar, and is left to the reader. Using (ii) to find the order of the class of ev0 ,
it follows immediately that the class of ewj

is killed by lcm(a1, . . . , am)2(s0 −
∑

i bi/ai), for all
j. Part (iv) is immediate from (i) and (iii). In Part (v), assume that p divides aj. As the class
of ewj

is killed by p by hypothesis, we find from (iii) that the class of ev0 is trivial.
�

2. Computation of self-intersections

Let B be a complete local noetherian ring that is two-dimensional and normal. It is known
that a resolution of singularities X → Spec(B) exists, and that it can be obtained from the
sequence

X = Yt −→ Yt−1 −→ · · · −→ Y1 −→ Y0 = Spec(B),

where each Yi → Yi−1 is the normalization of the blow-up of the finitely many singular points
of Yi−1 (see, e.g., [27], Theorem on page 151 and Remark B on page 155). In this section we
develop a method for computing the self-intersection of particular irreducible components of
the exceptional divisor on X. This information is needed in the proofs of each of our explicit
computation of resolutions in Theorems 4.4, 6.3, 7.1, and 9.2. For the sake of exposition, we
assume that the residue field k = B/mB is algebraically closed.

Note that the process described above usually does not produce the minimal desingulariza-
tion, as some irreducible components of the exceptional divisor on X might be (−1)-curves,
and thus contract to smaller resolutions of singularities. This may even happen for the strict
transforms of the exceptional divisors on the first blow-up Y1 (see Example in [26], page 205).

2.1. LetX → Spec(B) be any resolution of singularities, and write C1, . . . , Cn for the irreducible
components of the exceptional divisor. We then have intersection numbers

cij = (Ci · Cj)X := χ(OCj
(Ci))− χ(OCj

) = deg(OCj
(Ci)),

and can form the resulting intersection matrix N = (cij)1≤i,j≤n. Associated with N is the
connected graph Γ = ΓN with vertices v1, . . . , vn, and a pair of vertices vi 6= vj is linked by
exactly cij edges. We call Γ the resolution graph or the dual graph attached to X → SpecB.



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 9

Now consider a factorization X → Y → SpecB, where π : X → Y is the contraction of
certain exceptional curves, say Cs+1∪ . . .∪Cn. We regard the induced morphism Y → Spec(B)
as a partial resolution of singularities, and by definition of contraction, Y is normal. Write
D1, . . . , Ds ⊂ Y for the images in Y of the non-contracted curves C1, . . . , Cs ⊂ X. These images
are Weil divisors which are not necessarily Cartier. Following Mumford [37], page 17 (see also
[15], 7.1.16, or [47], Theorem 1.2), one has rational intersection numbers (Di·Dj)Y ∈ Q obtained
as follows: First define the rational pull-back π∗(Di) := Ci+

∑
k>s λkCk, where λs+1, . . . , λn ∈ Q

are the fractions uniquely determined by the conditions (π∗(Di) · Ck)X = 0 for all s < k ≤ n.
One then sets

(Di ·Dj)Y := (π∗(Di) · Cj)X = (π∗(Di) · π∗(Dj))X .

These numbers actually do not depend on the choice of resolution π : X → Y .
Suppose now that π : X → Y is the contraction of all but the first curve C1. Assume

furthermore that Γ is a tree. Let v be the vertex corresponding to C1, and consider the graph
Γ r {v} obtained from Γ by removing the vertex v and all the edges attached to v. The graph
Γ r {v} decomposes into connected components Γ r {v} = ∆1 ∪ . . . ∪∆r, with corresponding
intersection matrices N1, . . . , Nr for each component. Since Γ is a tree, there exists a unique
vertex wi ∈ ∆i which is adjacent to v in Γ. Define ∆′i := ∆i r {wi}, with intersection matrix
N ′i . We call

δi := −det(N ′i)

det(Ni)
∈ Q>0

the correction term at wi (recall that the determinant of the empty matrix is 1, and we use
this convention if ∆i is reduced to the single vertex wi). The correction terms δi are indeed
positive, since the signs of det(Ni) and det(N ′i) are given by (−1)ri and (−1)ri−1, where ri is
the number of vertices of ∆i. When ∆i is a chain as in 1.1 corresponding to a fraction ai/bi,
we have δi = bi/ai. The geometric meaning of the correction terms is as follows:

Proposition 2.2. In the above situation, the integral self-intersection and the rational self-
intersection are related by the formula

(C1 · C1)X = (D1 ·D1)Y −
r∑
i=1

δi.

Proof. For ease of notation, we let in this proof C = C1 and D = D1. Let N0 denote the
lower-right principal submatrix of N . Recall from our earlier description that N0 is a block
diagonal matrix with det(N0) =

∏r
i=1 det(Ni). Then

(λ2, . . . , λn) = −((C · C2)X , . . . , (C · Cn)X)N−1
0 .

It follows that

(D ·D)Y = (π∗(D) · C)X = (C · C)X +
n∑
j=2

λj(Cj · C)X .

Since ΓN is a tree, we find that if (C ·Cj)X 6= 0, then (C ·Cj)X = 1. We only need to compute
explicitly λj when (C · Cj)X 6= 0. According to our definitions, there are r such indices j and,
renumbering the components if necessary, we find that in each case, the coefficient λj is the top
left corner of the corresponding matrix N−1

j , that is, det(N ′j)/ det(Nj), as desired. �

We will use Proposition 2.2 in the following situation. Let b be an ideal in B, and let
Z → SpecB denote the blowing-up with center V (b). Denote by E ⊂ Z the schematic
preimage of the center. Let ν : Y → Z be the normalization map and denote by D = ν−1(E)
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the schematic preimage of E. Assume that D, and hence E, are irreducible. Let Dred denote
the support of D endowed with its induced reduced structure. Letting Dred play the role of D1

in Proposition 2.2, we find a formula for the rational intersection number (Dred ·Dred)Y in term
of data from a resolution X → Y . Our next proposition shows how to obtain (Dred · Dred)Y
from data associated with the blowing-up Z → SpecB.

The exceptional divisor E ⊂ Z is given by the sheaf of ideals OZ(1) ⊂ OZ . The reduction
Ered is a projective curve over the residue field k, allowing us to define the integral intersection
number

(E · Ered)Z := χ(OEred
(E))− χ(OEred

) = deg OEred
(−1).

In practice, (E · Ered)Z can often be computed, and such computation is done for instance in
Proposition 3.6.

Let η denote the generic point of E, and set m := length(OE,η). When Z is normal, we
have the equality of Weil divisors E = mEred. When Z is not normal, the abuse of notation
E = mEred should be interpreted to mean that the length of the local ring OE,η is m.

Proposition 2.3. In the above situation where D, and hence E, are assumed irreducible, let
m := length(OE,η) and let d ≥ 1 be the degree of the induced map ν : Dred → Ered. Then we
have

(Dred ·Dred)Y =
d2

m
(E · Ered)Z .

Proof. First, we check that (D · ν−1(F ))Y = (E · F )Z for every effective Cartier divisor F ⊂ Z
that does not contain the support of E. The two intersection numbers are the k-degrees of
the finite schemes D ∩ ν−1(F ) and E ∩ F , respectively. Fix a point z ∈ E ∩ F , consider the
local ring A := OF,z and choose an element t ∈ mA defining F ∩ E ⊂ F locally. Then A is
a local noetherian ring of dimension one without embedded components, and M := Oν−1(F ),z

is a finite A-module of rank one for which the multiplication map t : M → M is injective.
According to [18], Chapter IV, Lemma 21.10.13, the modules A/tA and M/tM have the same
A-length, hence also the same k-vector space dimension. Applying this with a difference F −F ′
of effective Cartier divisors that are linearly equivalent to E, we conclude (D ·D)Y = (E ·E)Z .

To simplify notation write E ′ = Ered and D′ = Dred. Since Y us normal, we can write
D = hD′ for some h ≥ 1, and we get

(2.1) h2(D′ ·D′)Y = (D ·D)Y = (E · E)Z = m(E · E ′)Z .

We now use Kleiman’s theory of rational degrees deg(V ′/V ) ∈ Q≥0 for morphisms V ′ → V
between irreducible proper schemes that are not necessarily integral ([23], Definition on page
277). According to [23], Lemma 2, the commutative diagram

D′ −−−→ Dy y
E ′ −−−→ E

gives the equation deg(D′/E ′) · deg(E ′/E) = deg(D′/D) · deg(D/E), and furthermore we have
deg(E ′/E) = 1/m and deg(D′/D) = 1/h. Thus deg(D′/E ′) = m/h. Inserting this into (2.1)
yields the assertion. �



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 11

3. Blowing up non-reduced centers

We begin this section with some general facts on the computation of blowing-ups, needed
for instance to fully justify the explicit computations done in Proposition 3.6. Let B be a
noetherian ring, and let b ⊂ B be an ideal. Endow the associated Rees ring

B[bT ] := B ⊕ bT ⊕ b2T 2 ⊕ . . . ⊂ B[T ]

with the grading induced by the standard grading on B[T ]. The morphism Proj(B[bT ]) →
SpecB is called the blowing-up of Spec(B) with center Spec(B/b). We denote Proj(B[bT ]) by
Blb(B) or, when no confusion may ensue, simply by Z. Let E denote the schematic preimage
in Z of the center of the blowing-up.

Assume now that R is a noetherian ring with a surjection R → B. Let a denote the
preimage in R of the ideal b. Consider the blowing-up Z ′ := Bla(R) with center V (a), and the
commutative diagram induced by the surjection R[aT ]→ B[bT ] of Rees rings:

Z −−−→ Z ′y y
SpecB −−−→ SpecR.

The horizontal morphisms are closed immersions.
Recall that an element f ∈ R is called regular if multiplication by f on R is an injective

map. Assume now that the kernel of R → B is generated by a regular element f ∈ R. Then
Spec(B) is an effective Cartier divisor in Spec(R), and our next proposition provides a criterion
for checking whether the closed subscheme Z is an effective Cartier divisor in Z ′, when Z ′ and
V (a) are ‘nice’. This criterion is explicit and in general not very difficult to verify.

Each element g ∈ a defines a basic open set D+(g) := SpecR[aT ](gT ) of Z ′ called the g-chart.
When a = (g1, . . . , gr), the union ∪ri=1D+(gi) is an affine open cover of Z ′.

Proposition 3.1. Let R be a noetherian ring, locally of complete intersection1. Let g1, . . . , gr ∈
R be a regular sequence, and set a := (g1, . . . , gr). Let f ∈ R be a regular element contained
in a, and set B := R/(f) and b := aB. Consider as above the blowing-ups Z → SpecB and
Z ′ → SpecR.

For each i = 1, . . . , r, choose a factorization f/1 = (gi/1)sihi in R[aT ](giT ), with si ≥ 0
and hi ∈ R[aT ](giT ). Assume that for each i, the closed subscheme V (hi, gi/1) of D+(gi) has
codimension two in D+(gi). Then

(a) The closed subscheme Z of Z ′ is an effective Cartier divisor. Its restriction to the gi-chart
D+(gi) is the closed subscheme V (hi).

(b) The scheme Z is locally of complete intersection.

Proof. Part (a) follows from Proposition 3.2. Part (b) follows from Proposition 3.4. �

Proposition 3.2. Keep the notation introduced at the beginning of this section. Let g ∈ a.
Suppose that we have a factorization f/1 = (g/1)sh in R[aT ](gT ), for some s ≥ 0 and some
element h ∈ R[aT ](gT ). Suppose also that the following two assumptions hold:

(i) The closed subscheme V (h, g/1) of D+(g) has codimension at least two.

1Recall that g1, . . . , gd ∈ R is called a regular sequence if the class of gi is a regular element in the ring
R/(g1, . . . , gi−1), for each 1 ≤ i ≤ d. The ring R is called locally of complete intersection if for each p ∈ SpecR,
the completion of Rp is isomorphic to a ring of the form A/(a1, . . . , as), where A is a regular complete local
ring, and a1, . . . , as is a regular sequence.
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(ii) The basic open set D+(g) ⊂ Z ′ satisfies Serre’s Condition (S2).

Then Z ∩D+(g) = V (h) as closed subschemes of the g-chart D+(g).

Proof. By hypothesis, g/1 and h define two closed subschemes V (g/1) and V (h) in D+(g). All
schemes below are viewed as subschemes in Z ′ := Bla(R). The conclusion of the proposition is
implied by the following two claims:

(a) The subsets D+(g) ∩ (Z \ E) and V (h) \ V (g/1), which are open in Z, are equal.
(b) The subscheme V (h) ∩ V (g/1) is an effective Cartier divisor on V (h).
Indeed, on one hand the schematic closure of the inclusion D+(g) ∩ (Z \E)→ D+(g) ∩ Z is

equal to D+(g)∩Z by Lemma 3.3, and on the other hand the schematic closure of the inclusion
V (h) ∩ V (g/1)→ V (h) is equal to V (h), also by Lemma 3.3.

We leave it to the reader to verify (a). To prove (b), note that since f is regular in R, the
element f/1 is regular in R[aT ](gT ). Thus V (h) and V (g/1) are two Cartier divisors in D+(g).
We need to show that the image of g/1 is not a zero-divisor in R[aT ](gT )/(h). Assumption (ii)
implies that any effective Cartier divisor on D+(g) satisfies Serre’s Condition (S1). In particular,
the ring R[aT ](gT )/(h) has no embedded primes, and thus the zero divisors in R[aT ](gT )/(h) are
contained in the minimal primes ideals. Krull’s Principal Ideal Theorem shows the irreducible
components of V (h) all have codimension one in D+(g). Assumption (i) implies then that
g/1 cannot be contained in a minimal prime ideal of R[aT ](gT )/(h). Thus g/1 is regular in
R[aT ](gT )/(h). �

Lemma 3.3. Let V be the complement of an effective Cartier divisor F on a noetherian scheme
Y . Then the schematic image in Y of the open embedding V → Y coincides with Y .

Proof. The assertion is local, so we may assume that Y = Spec(A) and F = V (g), where g ∈ A
is a regular element. The schematic image is defined by the kernel of the localization map
A→ Ag, with a 7→ a/1. Since g is regular, this kernel is the zero ideal. �

In the context of Proposition 3.2, we say that the equation h = 0 is the strict transform of
f = 0 on the g-chart. One easily sees that condition (i) ensures that the exponent s ≥ 0 is the
maximal exponent. Note that in any case there is a factorization f/1 = (g/1)sh with maximal
s ≥ 0, by Krull’s Intersection Theorem, and the resulting factor h is unique because g/1 is
regular. In light of Krull’s Principal Ideal Theorem, when V (h, g/1) has codimension at least
two in D+(g), it has codimension exactly two. This condition depends only on the radical ideal√

(h, g/1), a remark which usually substantially simplifies the computations.

Proposition 3.4. Suppose that the ideal a ⊂ R is generated by a regular sequence g1, . . . , gd ∈
R. If the scheme S := Spec(R) satisfies Serre’s Condition (Sm), or is locally of complete
intersection, the same holds for the blowing-up Bla(R).

Proof. The canonical module surjection R⊕d → a coming from the regular sequence yields a
closed embedding Bla(R) ⊂ Pd−1

R . Consider the short exact sequence

0 −→ F −→ O⊕dP
(giT )−→ OP (1) −→ 0

of locally free sheaves on P := PrR. The kernel has rank(F ) = d − 1. Let F → OP be the

composition of the inclusion F ⊂ O⊗dP followed by O⊕dP
(gi)→ OP . According to [5], Exposé VII,

Proposition 1.8, the image is the quasicoherent ideal corresponding to the closed subscheme
X := Bla(R). Moreover, for each point x ∈ X, the image of any basis in Fx in the local ring
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OP,x is a regular sequence contained in the maximal ideal mx. More explicitly, we have

(3.1) R[aT ](Tgj) = R[S1, . . . , Sd]/(S1gj − g1, . . . , Sdgj − gd),
where the identification is given by Si = giT/gjT , and the generators in the above ideal form
a regular sequence in the polynomial ring. This result is due to Micali ([33], Theorem 1). It
follows that the scheme Bla(R) is locally of complete intersection if this holds for the ring R.

Note that the relation Sjgj − gj = 0 is equivalent to Sj = 1, because gj is regular. In other
words, in (3.1) one may simply omit the indeterminate Sj. Also note that if R is integral, so
is the Rees ring, and we may regard (3.1) as the R-subalgebra in Frac(R) generated by the
fractions g1/gj, . . . , gd/gj.

Fix a point x ∈ X and consider the local ring A := OX,x. It remains to show that depth(A) ≥
m or depth(A) = dim(A) < m. For this we may assume that S = Spec(R) is local, and
that x lies over the closed point s ∈ S. Set c := d − 1. The local ring A′ := OP,x has
dim(A′) = dim(R) + c and depth(A′) = depth(R) + c. Moreover, the residue class ring A
has dim(A) = dim(A′) − c and depth(A) = depth(A′) − c, the former by Krull’s Principal
Ideal Theorem, the latter by [18], Chapter 0, Proposition 16.4.6. The assertion on the Serre
Condition is immediate. �

3.5. Let us return now to the wild quotient singularities recalled in 0.2. Let R := k[[x, y, z]] be
a formal power series ring over a field k of characteristic p > 0, and consider the element

f := zp − (µab)p−1z − apy + bpx.

Here a, b ∈ k[[x, y]] is a system of parameters, and µ ∈ k[[x, y]]. Let B := R/(f).
Let a := (a, b, z) ⊂ R. We call Z := BlaB(B) → SpecB the initial blowing-up. In Theorem

7.1 and Theorem 9.2, we will later compute a complete resolution X → Z → SpecB of this
initial blowing-up in two special cases. Recall that the exceptional divisor E ⊂ Z is given by
the sheaf of ideals OZ(1) ⊂ OZ . Our next proposition computes the term (E · Ered)Z , needed
for instance when applying Proposition 2.3.

Proposition 3.6. Keep the assumptions of 3.5. Then the following holds:

(i) The reduction Ered is isomorphic to the projective line P1
k.

(ii) The z-chart on Z is disjoint from the exceptional divisor, and thus is regular.
(iii) The scheme Z is locally of complete intersection.
(iv) We have (E · Ered)Z = −1.
(v) The local ring OE,η at the generic point η of E has length p · dimk k[[x, y]]/(a, b).

Proof. The blowing-up Bla(R) is covered by the a-chart, the b-chart and the z-chart. We start
by examining the a-chart, which is the spectrum of the ring

R[aT ](aT ) = R[b/a, z/a]/(b/a · a− b, z/a · a− z).

Consider the factorization f = aph with

h :=
(z
a

)p
− µp−1ap−1

(
b

a

)p−1 (z
a

)
− y +

(
b

a

)p
x.

The radical J of the ideal generated by h and a in R[aT ](aT ) clearly contains b. It thus also
contains x and y, because a, b is a system of parameters in k[[x, y]]. Hence, J also contains z/a
and z. It follows that the subscheme V (h, a) of the a-chart is one-dimensional. According to
Proposition 3.1, the scheme BlaB(B) coincides on the a-chart with the effective Cartier divisor
defined by the equation h = 0. The exceptional divisor is given by the additional equation
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a = 0, and thus equals SpecA, where A is the quotient of k[[x, y, z]][b/a, z/a] modulo the ideal
generated by a, b, z, and (z/a)p − y + (b/a)px. Let Q := (x, y, z/a) ⊂ A. Since the classes of
x, y, z/a are nilpotent, and since the quotient A/Q is isomorphic to the domain k[b/a], we find
that Q is the minimal prime ideal of A.

One easily sees that the z-chart on Bla(R) is disjoint from the exceptional divisor. The situ-
ation for the b-chart is similar to the a-chart, and it follows that BlaB(B) is locally of complete
intersection. Moreover, the reduced exceptional divisor Ered = Spec k[b/a] ∪ Spec k[a/b] is a
copy of P1

k.
The restriction to Ered of the invertible sheaf OZ(1) = OZ(−E) is generated by the elements

aT/1 and bT/1 on the two charts, respectively. Viewing a/b ∈ k[a/b, b/a]× as a cocycle, one
deduces that OZ(1) has degree 1 on Ered, so that (E · Ered)Z = −1.

It remains to compute the length of OE,η. The coordinate ring of the exceptional divisor E
on the a-chart is given by

R[b/a, z/a]/(b/a · a− b, z/a · a− z, h, a).

Clearly, the ideal on the right is also generated by b, z, h, a. In turn, the above ring is isomorphic
to k[x, y, b/a, z/a]/(a, b, h). Regard the latter as Λ[z/a]/(h), where Λ is the polynomial ring in
the indeterminate b/a over the local Artin ring k[x, y]/(a, b). The ring extension Λ ⊂ Λ[z/a]/(h)
is finite and free, because h is a monic in z/a. All coefficients of h except the leading one are
nilpotent in Λ, consequently z/a becomes nilpotent modulo h. It follows that Λ ⊂ Λ[z/a]/(h)
induces bijections on all residue fields. Clearly, the minimal prime p ⊂ Λ is generated by x and
y. In turn, the local Artin ring Λp has length dimk k[x, y]/(a, b), whereas the local Artin ring
OE,η = Λp[z/a]/(h) has length deg(h) · length(Λp) = p · dimk k[x, y]/(a, b). �

Remark 3.7. Keep the notation recalled in 3.5. Let µ ∈ k[[x, y]] and assume that it is a
unit, or that it is non-zero and coprime to both a and b. The ring B = k[[x, y, z]]/(f) can
be identified with the ring of invariants AG for an action of the group G := Z/pZ on the ring
A := k[[u, v]], as recalled in 0.2, where the generator acts via u 7→ u + µa and v 7→ v + µb.
Under this identification, the element z corresponds to ub− va. We note below that the initial
blowing-up BlaB(B)→ Spec(B) considered in 3.6 is canonically associated to the action.

Indeed, the fixed scheme of the action is by definition the largest closed subscheme of SpecA
on which the action is trivial, and we find that for the above action it corresponds to the ideal
I := (σ(u) − u, σ(v) − v) = (µa, µb) in A. Under the above identification B = AG we have
z = ub−va, and therefore µz ∈ I. We find that (µa, µb, µz) ⊆ I∩B. The reverse inclusion also
holds since A is flat over k[[x, y]] (same proof as in [46], Lemma 1.5, when p = 2 and a similar
choice of initial blow-up was also used). Thus the ideals I ∩ B and aB = (a, b, z) coincide up
to the factor µ and, hence, the total spaces of the resulting blowing-ups coincide.

4. Some weighted homogeneous singularities

Let k be an algebraically closed field of characteristic exponent p ≥ 1. The goal of this
section is to describe a resolution of the singularity at the origin on the hypersurface given by
the equation

W q − UaV b(V d − U c) = 0

when the integers p, q, a, b, c, d ≥ 1 are subject to certain mild restrictions. This is achieved in
Theorem 4.4. Note that this singularity is not necessarily isolated. The above polynomial is
weighted homogeneous, and resolutions of such singularities were already studied by Orlik and
Wagreich in [38], [39] and [40], exploiting Gm-actions corresponding to the weights. The former
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two papers rely on transcendental methods, and the latter mainly treats the case of isolated
singularities. Our method is completely algebraic, and relies on the theory of toric varieties
and Hirzebruch–Jung singularities.

To compute a resolution of our surface singularity, we first make an initial blow-up that
separates the irreducible components of the plane curve UaV b(V d − U c) = 0. We then pass to
certain nicer subrings of the charts, and identify their formal completions with suitable monoid
rings. This necessitates taking roots of power series along the way, requiring some restrictions
on the integers p, q, a, b, c, d as in 4.3.

Let us start with a brief review of the theory of Hirzebruch–Jung singularities. Suppose that
t, r ≥ 1 and s ≥ 0 are integers such that ρ := gcd(t, r, s) is prime to p. Consider the ring

R := k[U, V,W ]/(W t − U rV s).

We have a factorization W t − U rV s =
∏

(W t/ρ − ζU r/ρV s/ρ), where the product runs over the
ρ-th roots of unity ζ in k. The corresponding minimal primes p1, . . . , pρ ⊂ R define a partial
normalization R ⊂

∏
R/pi, and it usually suffices to understand the rings R/pi.

4.1. Assume from now on that ρ = 1, so that R is an integral domain. Let R′ be its normal-
ization. To describe the resolution of the singularity of SpecR′ at the maximal ideal (U, V,W )
when SpecR′ is singular at this point, it is standard to first express R′ as the normalization of
a different domain R0, as we now recall. Given the triple (t, r, s), we describe below its fraction
type, which can be 0, and when the fraction type is not 0, it is equal to (t′ − s′)/t′, where
(t′, 1, s′) is the unique triple with 0 < s′ < t′ and s′ coprime to t′ such that R′ can be identified
with the normalization of the ring R0 := k[u, v, w]/(wt

′ − uvs′).
Let DU and DV denote the preimages in SpecR′ of the closed subsets of SpecR defined by

U = W = 0 and V = W = 0, respectively. The identification of R′ as the normalization of
R0 is such that the closed subsets DU and DV on SpecR′ are again equal to the preimages
under the new normalization map SpecR′ → SpecR0 of the closed subsets of SpecR0 defined
by u = w = 0 and v = w = 0, respectively. We leave it to the reader to check this claim, for
instance using the explicit description of R0 recalled below.

Write r = r0 + ct and s = s0 + dt for some integers r0, s0, c, d ≥ 0 with r0, s0 < t. Then the
fraction W/(U cV d) is integral over R since it satisfies the equation (W/(U cV d))t = U r0V s0 . We
can thus replace R by R[W/(U cV d)]. In particular, if either r or s is divisible by t, then R′ is
regular above (U, V,W ). We define in this case the fraction type of R or R′ to be 0. If R′ is not
regular, then upon replacing R with R[W/(U cV d)] we may assume that 0 < r, s < t.

Let h := gcd(t, r) and h′ := gcd(t, s). Since gcd(t, r, s) = 1, we find that gcd(r, h′) =
gcd(s, h) = 1. Thus we can write ar = 1 + bh′ and cs = 1 + dh for some non-negative integers
a, b, c, d. Let U1 := W at/h′/(U (ar−1)/h′V as/h′) and V1 := W ct/h/(U cr/hV (cs−1)/h). We find that

Uh′
1 = U and V h

1 = V . In the integral extension R[U1, V1], we find that W t/(hh′) = U
r/h
1 V

s/h′

1 .
If r divides t/h′, or if s divides t/h, we find that R′ is regular above (U, V,W ), and we define
again in this case the fraction type of R or R′ to be 0.

Assume then that R′ is not regular. Replacing R with R[U1, V1], we may assume now that
h = h′ = 1, and upon replacing R by a larger integral extension if necessary, we can also assume
that 0 < r, s < t. In this process, t has been replaced by t/hh′.

There exists a unique integer e with 0 < e < t and er = s+ ct for some integer c. Since s < t
by assumption, we find that c ≥ 0. Consider the ring R1 := k[U, V, Z]/(Zt−U rV s+ct). We find
that this ring has two natural integral extensions. Indeed, R1[Z/V c] is isomorphic to the ring R.
Writing rρ = 1+ft for some integers ρ, f ≥ 0, we find that w := Zρ/(UV e)f is such that wr = Z
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and wt = UV e. Thus R1[w] is integral over R1 and isomorphic to R0 := k[U, V,W ]/(W t−UV e).
We define in this case the fraction type of R or R′ to be (t − e)/t, with 0 < (t − e)/t < 1 and
gcd(e, t) = 1. This concludes our description of how to compute the fraction type of the ring
R.

Given a resolution of singularities X → SpecR′, we write C ⊂ X for the exceptional curve,
and CU and CV for the strict transforms in X of the Weil divisors DU and DV on SpecR′,
respectively. We endow all these closed subsets with the induced reduced structure of scheme.
The following theorem is well-known (see, e.g., the pictures in [21], page 37, or [9], Theorem
2.4.1), but we did not find a suitable reference in the literature which also proved the statement
regarding the divisors CU and CV . We include a sketch of proof below, with references, for the
convenience of the reader.

Theorem 4.2. Let s and t be coprime integers with 0 < s < t. Let R := k[U, V,W ]/(W t−UV s)
and denote by R′ its normalization. There is a resolution of singularities X → SpecR′ such
that CU ∪ C ∪ CV is a divisor with simple normal crossings having the following dual graph:

−s1 −s2 −s`−1 −s`
CU CV

The integer ` ≥ 1 and the self-intersection numbers −si are computed from the continued
fraction expansion t/(t − s) = [s1, . . . , s`] as described in (1.1). Moreover, the irreducible
components of C are isomorphic to P1

k.

Proof. The proof relies on the theory of toric varieties, and we refer the reader to the mono-
graphs [10], [11], or [21] for the general theory. The book [10] assumes from the onset that the
characteristic of k is 0, but the proofs of the results quoted below are valid in all characteristics
and can be applied to our purposes. We identify Z := SpecR as an explicit (non-normal) toric
variety, and use the general theory of toric varieties to describe the normalization Y → Z and
the toric resolution XΣ → Y attached to an explicit fan Σ.

Consider the lattices N := Z2 and M := Hom(N,Z). Write e1, e2 ∈ N for the standard
basis of N , and e∗1, e

∗
2 ∈ M for the dual basis. Let σ ⊂ NR := N ⊗Z R be the closed convex

cone generated by the vectors e2 and te1 − (t− s)e2. The dual cone σ∨ ⊂ MR is generated by
α := (t− s)e∗1 + te∗2 and β := e∗1. Let γ := e∗1 + e∗2, and let S ⊂M be the submonoid generated
by α, β, γ. We have the relation tγ = α+ sβ, and can identify k[U, V,W ]/(W t−UV s) with the
monoid ring k[S] via U 7→ α, V 7→ β, and W 7→ γ.

Let S ′ := σ∨ ∩ M . Clearly, the abelian group M is generated by β and γ. It follows
that α ∈ M and, hence, S ⊆ S ′. Since S ′ is always saturated, S ′ is equal to the saturation
of the monoid S. It follows that the normal toric variety Y attached to N and σ, namely
Y := Spec k[σ∨ ∩M ], is the normalization of the non-normal toric variety Z := Spec k[S].

The cone σ is in normal form, and since t > s > 0, [10], Theorem 10.2.3, provides an
explicit description of a refinement fan Σ of σ such that the induced morphism XΣ → Y is
a toric resolution of singularities. Using the Hirzebruch-Jung continued fraction [s1, . . . , s`] of
t/(t− s), one constructs a sequence of vectors u0 := e2, u1, . . . , u`, u`+1 := te1 − (t− s)e2 such
that σ = ∪`+1

i=1σi with σi the cone generated by ui−1 and ui. The fan Σ consists of the cones σi
and their faces.

Using the Orbit-Cone Correspondence ([10], Theorem 3.2.6), we find that the ray generated
by ui, i = 0, . . . , ` + 1, corresponds to a curve Ci on XΣ. Since Σ is a simplicial fan, the
intersection products (Ci · Cj)XΣ

with 0 ≤ i 6= j ≤ `+ 1 can be computed as in [10], Corollary



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 17

6.4.3, and are found to equal 1. The self-intersections (Ci ·Ci)XΣ
for i = 1, . . . , ` are computed

to equal −si using [10], Theorem 10.2.5, along with [10], Theorem 10.4.4.
The curve C1 ∪ · · · ∪ C` is the exceptional divisor of the toric desingularization XΣ → Y .

Using the Orbit-Cone Correspondence for the surface Y , we let D and D′ denote the curves
on Y corresponding to the rays in the cone σ generated e2 and te1 − (t − s)e2, respectively.
The natural properties of the map XΣ → Y implies that D is the image of C0, and D′ is the
image of C`+1. The proof is concluded by the fact that D is the reduced preimage of the Weil
divisor U = W = 0 on Z, and that similarly, D′ is the reduced preimage of the Weil divisor
V = W = 0 on Z. �

4.3. Let q, a, b, c, d ≥ 1 be integers. Set

m := ad+ bc+ cd and g := gcd(c, d).

Noting that m/g is an integer, we further set

h := gcd(q,m/g), ha := gcd(q,m/g, a), and hb := gcd(q,m/g, b).

In our main result below on the resolution of the hypersurface singularity W q−UaV b(V d−U c) =
0, we assume that

(4.1) gcd(a, c/g) = gcd(b, d/g) = 1 and gcd(p, hg) = 1.

Note that the latter condition automatically holds when p = 1. The reader will easily check
that the condition gcd(a, c/g) = 1 is equivalent to the condition gcd(m/g, c/g) = 1. Similarly,
gcd(b, d/g) = 1 if and only if gcd(m/g, d/g) = 1.

Denote by α, β, γ ∈ Q<1 the fraction types (see 4.1) of the normal Hirzebruch–Jung singu-
larities associated with the triples (t, r, s) given by

(
qc

gha
,
m

gha
,
a

ha
), (

qd

ghb
,
m

ghb
,
b

hb
), and (q,

m

g
, 1),

respectively. Finally, set

(4.2) s0 :=
h2g2

qcd
+ haα + hbβ + gγ.

We are now ready to state the main result of this section. Three complements to Theorem 4.4
are given in 4.7, 4.8, and 4.9.

Theorem 4.4. Set B := k[U, V,W ]/(W q − UaV b(V d − U c)), and assume that the conditions
(4.1) hold. With the above notation, we have the following:

(i) The fraction s0 > 0 is an integer.
(ii) The hypersurface singularity has a resolution of singularities X → Spec(B) where,

using the notation in 1.2, the exceptional divisor C ⊂ X has star-shaped dual graph

Γ = Γ(s0 | α−1, . . . , α−1︸ ︷︷ ︸
ha

, β−1, . . . , β−1︸ ︷︷ ︸
hb

, γ−1, . . . , γ−1︸ ︷︷ ︸
g

)

when α, β, γ > 0. When α (resp. β, resp. γ) equals 0 (e.g., when q divides m/g),
the graph Γ is as above except that the corresponding ha (resp. hb, resp. g) chains are
removed.

(iii) The curve C has simple normal crossings. All irreducible components of C are copies
of P1

k, except possibly for the central node. When h = 1, the central node is also
isomorphic to P1

k.
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Proof. Since our ground field k is algebraically closed, we can rewrite the defining polynomial
for our hypersurface singularity as

f = W q − UaV b
∏
ζ

(V d/g − ζU c/g),

where the product runs over the g-th roots of unity ζ ∈ k. Assumption (4.1) ensures that we
have exactly g ≥ 1 distinct factors in the product.

To construct the desired resolution of singularities X → Spec(B), we first make an initial
blowing-up Z := BlaB(B) → Spec(B), for the ideal a := (U c/g, V d/g) in the polynomial ring
R := k[U, V,W ]. The ambient blowing-up Bla(R) has two charts, the U c/g-chart and the V d/g-
chart. The former is given by four generators U, V,W, V d/g/U c/g subject to the single relation

(4.3)

(
V d/g

U c/g

)
· U c/g = V d/g,

as recalled in Proposition 3.4. On this chart we rewrite the defining polynomial as

(4.4) f = W q − Ua+cV b ·
∏
ζ

(V d/g/U c/g − ζ).

Clearly, the radical of the ideal generated by f and U c/g contains U, V, and W . Hence, its
zero-locus is one-dimensional, and according to Proposition 3.1 the blowing-up Z = BlaB(B)
on the U c/g-chart of Bla(R) is the effective Cartier divisor with equation f = 0. In other words,
write A′ for the coordinate ring of the blowing-up Z = BlaB(B) on the U c/g-chart. Then this
ring is generated by four indeterminates U, V,W, V d/g/U c/g subject to the two relations (4.3)
and f = 0 with f as in (4.4).

4.5. The exceptional divisor E ⊂ Z is given by f = U c/g = 0 on this chart. The reduction
Ered is defined by U = V = W = 0, and V d/g/U c/g can be regarded as a coordinate function.
The situation on the V d/g-chart is symmetric, and we conclude that Ered = P1

k is a projective
line. This description also yields the intersection number: Recall that the ambient Bla(R) is
the homogeneous spectrum of the Rees ring R[aT ], so the invertible sheaf OZ(1) is generated
by TU c/g and TV d/g on our two charts. In turn, the restriction to Ered = P1

k is given by the
cocycle U c/g/V d/g, and it follows that (E · Ered)Z = −1.

4.6. Let us note here also that the multiplicity of E is qcd/g2. This can be seen as follows. On
the U c/g-chart, the scheme Ered is defined by the ideal Q := (U, V,W ). Thus the multiplicity
of E can be computed as the length of the ring (A′/(U c/g))Q. It is easy to verify that the ring
A′/(U c/g) is k-isomorphic to the ring

(
k[U, V,W ]/(U c/g, V d/g,W q)

)
[V d/g/U c/g], and the claim

follows.

The ring A′ is locally of complete intersection, but usually fails to be normal. Let ν :
Y → Z = BlaB(B) denote the normalization morphism. To understand the normalization and
minimal resolution of the singularities of the chart SpecA′ of Z, we pass to a subring A of A′

with only three generators and one relation that has the same normalization as A′. It turns out
that on formal completions, the resolution of singularities of A is given by the theory of toric
surface (i.e., Hirzebruch–Jung) singularities. This formal passage to toric varieties requires
the existence of certain roots of formal power series. When p > 1, their existence follows
from Hensel’s Lemma together with the conditions (4.1), which imply that gcd(m/g, c/g) and
gcd(m/g, d/g) are coprime to p.
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We proceed as follows: Let A be the k-subalgebra of A′ generated by the three elements U,W ,
and V d/g/U c/g. The ring extension A ⊂ A′ is finite, because A′ = A[V ] and the generator V
satisfies the integral equation V d/g − U c/g(V d/g/U c/g) = 0 in (4.3). Clearly, V d/g ∈ A, and the
relation (4.4) shows that V b ∈ Frac(A). Since we assume that gcd(b, d/g) = 1 in (4.1), we find
that V can be written as rational function in V b and V d/g and, hence, V ∈ Frac(A). It follows
that the rings A and A′ have the same integral closure in Frac(A). The reduced exceptional
divisor on Spec(A′) is defined by the ideal (U, V,W ), and the restriction of Spec(A′)→ Spec(A)
to it is a closed embedding, because V d/g/U c/g ∈ A and thus the map A → A′/(U, V,W ) =
k[V d/g/U c/g] is surjective.

It turns out that the subring A has a much nicer description than A′, in particular when
passing to formal completions along the exceptional divisor. Recall that m := ad + cd + bc.
Taking the d/g-power of (4.4) and using equation (4.3) we get a single relation

(4.5) W qd/g = Um/g

(
V d/g

U c/g

)b
·
∏
ζ

(V d/g/U c/g − ζ)d/g.

Since b and d/g are coprime by assumption (4.1), we find that wqd/g = um/gzb
∏

ζ(z − ζ)d/g is

an irreducible polynomial in k[u,w, z]. By abuse of notation, we will also say that the equation
(4.5) is irreducible. Using Krull’s Principal Ideal Theorem, we conclude that the algebra A is
generated by U,W, V d/g/U c/g subject to the single relation (4.5).

To understand the normalization of A, we pass to formal completions Âm with respect to
maximal ideals m of the form (U,W, V d/g/U c/g − ξ) for various scalars ξ ∈ k. Note that these
maximal ideals correspond to points on the exceptional divisor.

Let us start with the simplest case where ξ is neither zero nor a g-th root of unity; here it

turns out that the normalization of Âm is regular. Indeed, the relation (4.5) now takes the form

(4.6) W qd/g = Um/g · δ

for some unit δ ∈ Âm. To proceed, we first verify that gcd(qd/g,m/g, p) = 1. This is clear when
p = 1, so let us assume that p ≥ 2 is prime. Suppose that p divides both qd/g and m/g. Since p
does not divide h = gcd(q,m/g) by hypothesis, we have p - q and, hence, p | d/g, contradicting
gcd(d/g,m/g) = 1, which we also assume in (4.1).

We conclude that there exist positive integers r and s such that ` := r(m/g) − s(qd/g) is

coprime to p ≥ 1. With Hensel’s Lemma we find roots δ1 := δr/` and δ2 := δs/` in Âm, and

obtain a factorization δ = δ
m/g
1 /δ

qd/g
2 . It follows that Âm is isomorphic to the complete local

ring described by the same three generators, but with a modified relation (4.6) in which δ = 1.

This shows that Âm is isomorphic to a complete local ring for a point on the product of a
plane curve with the affine line. Consequently, the normalization is indeed regular. Note that
the plane curve is usually reducible, and the number of irreducible components is our integer
h = gcd(q,m/g) = gcd(qd/g,m/g).

Next, assume that ξ = ζ is one of the g-th root of unity. Rewrite (4.5) as

(4.7) W qd/g = Um/g

(
V d/g

U c/g
− ζ
)d/g

· δ

for some unit δ ∈ Âm. As in the preceding paragraph, one reduces the situation to δ = 1. Since
we noted in 4.3 that gcd(d/g,m/g) = 1, the above relation is then irreducible.



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 20

Consider the triple (t, r, s) = (qd/g,m/g, d/g). We identify Âm with k[[u, v, w]]/(wt − urvs).
Using the results reviewed in 4.1 and 4.2 regarding the desingularization of Spec k[u, v, w]/(wt−
urvs), we find that the singularity on Âm is a Hirzebruch–Jung singularity of fraction type γ.

Finally, assume that ξ = 0. Our relation becomes

W qd/g = Um/g

(
V d/g

U c/g

)b
· δ

for some unit δ ∈ Âm, and again we reduce to the situation δ = 1. The above equation is usually
not irreducible, and the number of irreducible factors is our integer hb = gcd(q,m/g, b), which

also equals gcd(qd/g,m/g, b) since we noted in 4.3 that gcd(d/g,m/g) = 1. Let p1, . . . , phb ⊂ Âm

be the resulting minimal prime ideals.

Consider the triple (t, r, s) = (qd/(ghb),m/(ghb), b/hb). We identify Âm/pi with k[[u, v, w]]/(wt−
urvs). Using the results reviewed in 4.1 and 4.2 regarding the desingularization of Spec k[u, v, w]/(wt−
urvs), we find that the singularity on Âm/pi has the resolution of a Hirzebruch–Jung singularity

of fraction type β. The number of such singularities on the normalization of Âm is hb ≥ 1.
The situation on the V d/g-chart is symmetric, where ha ≥ 1 Hirzebruch–Jung singularities

of fraction type α appear. Summing up, we have described the singularities appearing on the
normalization ν : Y → Z = BlaB(B).

Recall from 4.5 that the exceptional divisor E ⊂ Z has reduction Ered = P1
k, with coordinate

rings k[V d/g/U c/g] and k[U c/g/V d/g]. Write D := ν−1(E) for the preimage of the exceptional
divisor under the map ν. We now analyze the induced morphism Dred → Ered. This morphism
is flat, because Ered is regular. The formal description of the normalization ν : Y → Z via
inclusions k[[S]] ⊂ k[[S ′]] of monoid rings shows that Dred is regular. Equation (4.6) implies
that

(4.8) deg(Dred/Ered) = gcd(q,m/g) = h.

In a similar way, Equation (4.7) tells us that Dred → Ered is completely ramified over the points
where V d/g/U c/g = ξ is a g-th root of unity. Hence, the curve Dred is connected. Since it is also
regular, it is in fact irreducible. We can then apply Proposition 2.3 along with 4.5 and 4.6 and
obtain that

(Dred ·Dred)Y =
h2

(qcd/g2)
(E · Ered)Z = −h2g2/qcd.

Let X → Y be the resolution of singularities obtained by resolving the Hirzebruch–Jung
singularities of fraction types α, β and γ occurring on Y . The resulting dual graph Γ is star-
shaped, with the central node corresponding to the strict transform C0 ⊂ X of Dred ⊂ Y . When
γ > 0, there are g terminal chains obtained from the continued fraction development of 1/γ =

[s1, . . . , s`]. Using the identification of Âm with the completion of k[u, v, w]/(wqd/g − um/gvd/g)
at (u, v, w) discussed above, as well as Theorem 4.2 and the identifications reviewed in 4.1, one
sees that the vertex of the terminal chain adjacent to the central node has self-intersection −s1.
The situation for the other Hirzebruch–Jung singularities is similar.

It is now an easy matter to compute the self-intersection (C0 · C0)X using Proposition 2.2,
which asserts that (C0 · C0)X = (Dred · Dred)Y −

∑
i δi. There are ha correcting terms α, hb

correcting terms β, and g correcting terms γ (see just before 2.2 for the correcting term of a
chain). Hence, −(C0 ·C0)X = s0 (see (4.2)), as desired. Since (C0 ·C0)X is the self-intersection
of a curve on a regular surface, we find that it must be a negative integer, proving (i). To
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complete the proof of Theorem 4.4 it remains to show in (iii) that the central node C0 is a
rational curve when h = 1. This is done using the following proposition. �

Proposition 4.7. Keep the hypotheses of Theorem 4.4. Let v0 ∈ Γ be the central node, and
let C0 ⊂ X be the corresponding curve on the resolution X → SpecB. We have h1(OC0) =
(g(h− 1) + 2− ha − hb)/2. In particular, when h = 1, h1(OC0) = 0.

Proof. Consider the ramified covering C0 → Ered = P1
k induced from the morphism X → Z. It

follows from (4.8) that the degree of this map is h. Assumption (4.1) ensures that this degree is
coprime to the characteristic exponent, so that the map is separable. Let us regard the closed

points on P1
k as elements ξ ∈ k ∪ {∞}. The description of the normalization of the rings Âm in

the preceding proof shows that C0 → P1
k is totally ramified over each of the g-th roots of unity

in k, and therefore the ramification indices are coprime to p. Furthermore, there are ha points
in C0 over ξ = 0 and all these points have the same ramification index h/ha. Similarly, there
are hb points in C0 over ξ =∞ with ramification index h/hb. Applying the Riemann–Hurwitz
Formula 2h1(OC0) − 2 = h(2h1(OP1

k
) − 2) +

∑
x(ex − 1), we get the desired formula (where ex

denotes the ramification index of the morphism at x). �

Keep the hypotheses of Theorem 4.4. The scheme Spec(B) contains two copies of the affine
line, given by the equations U = W = 0 and V = W = 0. Write CU and CV for their respective
strict transforms in X with respect to the resolution X → Spec(B). For a later application in
Theorem 7.1, we explicitly determine below how these curves intersect the exceptional divisor
C ⊂ X when h = 1. Under this additional hypothesis, the partial resolution Y → SpecB
contains exactly one Hirzebruch–Jung singularity of fraction type α and one of type β. Let ∆α

and ∆β be the terminal chains of Γ resulting from resolving these two singularities. Write Cα
and Cβ for the irreducible components of C corresponding to the terminal vertices of Γ lying
on ∆α and ∆β, respectively.

Proposition 4.8. Keep the hypotheses of Theorem 4.4. Assume that h = 1. Then the strict
transform CV intersects the exceptional divisor C only in Cβ, with intersection number (CV ·
Cβ)X = 1. Likewise, CU intersects C only in Cα, with (CU · Cα)X = 1.

Proof. By symmetry, it suffices to verify the first assertion. Let us first work with the effective
Cartier divisor on Spec(B) given by V d/g = 0. Its strict transform C ′V ⊂ X has the same
support as CV . Using the notation from the proof of Theorem 4.4, we see that its image on
Spec(A) is given by V d/g/U c/d = 0. Using Theorem 4.2 one infers that C ′V intersects only Cβ,
and that its reduction has intersection number (CV · Cβ)X = 1. �

Proposition 4.9. Keep the hypotheses of Theorem 4.4, and suppose furthermore that p = q.
Set ap := 1 if p | a, and ap := 0 otherwise. Similarly, set bp := 1 if p | b, and bp := 0 otherwise.
Let N denote the intersection matrix of the resolution of the hypersurface singularity

W p − UaV b(V d − U c) = 0

described in Theorem 4.4. Then |ΦN | = pg+1−ap−bp, and the group ΦN is killed by p.

Proof. First note that for q = p = 1, the assertion is trivially true, because then our hypersurface
singularity is actually regular. So we may assume that q = p ≥ 2 is a prime number. From
our assumptions (4.1), one easily sees that m/g is coprime to p, pc/g and pd/g. In particular,
we have h = ha = hb = 1. The triples (t, r, s) in 4.3 specialize to (pc/g,m/g, a), (pd/g,m/g, b),
and (p,m/g, 1), respectively. Furthermore, the resulting reduced fractions α, β, γ ∈ Q have as
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denominators the integers p1−apc/g, p1−bpd/g, and p, respectively. According to Theorem 4.4,
the graph ΓN is star-shaped. Thus we may compute the determinant of the intersection matrix
with Proposition 1.3 and obtain

| det(N)| = (p1−apc/g)(p1−bpd/g)pg(s0 − α− β − gγ).

The last factor is g2/pcd in light of the formula (4.2) for the self-intersection −s0 of the central
node in Theorem 4.4. Thus |ΦN | = | det(N)| = pg+1−ap−bp .

The group structure of ΦN can be obtained by computing the Smith Normal Form of the
matrix N , using a row and column reduction of N . Reducing the intersection matrix of each
terminal chain as in [28], Lemma 2.5, we find that the matrix N is equivalent to a block diagonal
matrix with two blocks, a square matrix A of size (g+ 3)× (g+ 3) that we describe below, and
an identity matrix:

A :=



−s0 ∗ ∗ ∗ . . . ∗
1 −p1−apc/g 0 0 0
1 0 −p1−bpd/g 0 0
1 0 0 −p 0
...

. . .
...

1 −p

 .

The matrix A ⊗ Fp has g + ap + bp rows equal to (1, 0, . . . , 0), and we see that the rank of A
is at most r := 1 + bp + ap + 1. In turn, the vector space dimension of the cokernel is at least
g + 3− r = g + 1− ap − bp. It follows that ΦN = ΦN ⊗ Fp. �

Remark 4.10. The explicit resolution of W p − UV (V − Up) = 0 is needed in the proof of
Theorem 7.1. In this case, the intersection matrix is N = N(2 | p/(p−1), p/(p−1), p2/(2p−1)),
with |ΦN | = p2. When p is odd, we do not know if this intersection matrix can occur as the
intersection matrix of the resolution of a Z/pZ-quotient singularity. When p = 2, this equation
defines the singularity D0

6 with trivial local fundamental group [4]. The singularity D1
6 is a wild

Z/2Z-quotient singularity (8.5).
More generally, one might wonder whether every intersection matrix arising in Proposition

4.9 can occur as the intersection matrix of the resolution of a Z/pZ-quotient singularity. We
discuss the case of W p − UpV p(V pm+1 − Upn+1) and W p − UV (V pm−1 − Upn−1) in Theorem
5.3. We note in 8.5 how the intersection matrix of the resolution of the singularity defined
by W p − UV (V pm − Upn−1) = 0 might occur as the intersection matrix of the resolution of a
Z/pZ-quotient singularity.

Remark 4.11. The resolution X → Y → SpecB provided in Theorem 4.4 is not always
minimal. This can be seen already in the case where q = 1, in which case SpecB is regular,
but the exceptional divisor C on X is not reduced to a point. The graph Γ consists in this
case of a central node of self-intersection −1 with two terminal chains obtained by resolving
Hirzebruch–Jung singularities associated with the triples (c/g,m/g, a) and (d/g,m/g, b). The
fraction types of these triples are independent of a and b. Indeed, let ρ, σ > 0 be the unique
positive integers such that ρ(d/g) + σ(c/g) = 1 + (c/g)(d/g). Then the triple (c/g,m/g, a)
reduces to (c/g, 1, ρ), and (d/g,m/g, b) reduces to (d/g, 1, σ).

Other examples where the resolution is not minimal can also be obtained when q > 1; for
instance, when p = 2, the singularity W 2−U2V 2(V 7−U3) = 0 (resp. W 2−U2V (V 4−U3) = 0)
admits a resolution with smooth rational curves and dual graph drawn on the left below (resp.
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on the right):

−2 −1

−7

−3 −2 −1

−8

−3

5. Brieskorn singularities

Let k be an algebraically closed field of characteristic exponent p ≥ 1. Let q, c, d ≥ 2 be
integers, with q coprime to cd. Let

B := k[[x, y, z]]/(zq + xc + yd).

We study in this section properties of the singularity SpecB. Let g := gcd(c, d).

Theorem 5.1. Assume that gcd(p, g) = 1. Then SpecB admits a star-shaped resolution of
singularities X → SpecB whose associated intersection matrix is

N = N(s0 | a1/b1, a2/b2, a0/b0, . . . , a0/b0︸ ︷︷ ︸
g entries

),

where N is specified as follows (notation as in 1.2). Let

a1 := c/g, a2 := d/g, and a0 := q.

Set `1 := dq/g, `2 := cq/g and `0 := cd/g, and define bi by bi`i ≡ −1 mod ai and 0 ≤ bi < ai.
Finally, set

s0 := g2/cdq + b1/a1 + b2/a2 + gb0/q.

In case a1 = 1 (resp. a2 = 1), in which case b1 = 0 (resp. b2 = 0), we remove the term a1/b1

(resp. a2/b2) from the matrix N .
When q = p, the associated discriminant group ΦN is killed by p and has order pg−1.

Proof. Consider the weighted homogeneous singularity

C := k[[x, Y, Z]]/(Zq − xqY q(Y d − xc)).
Since we assume that gcd(p, g) = 1 and q is coprime to cd, the conditions (4.1) are satisfied,
and Theorem 4.4 provides a resolution of SpecC. Since k is algebraically closed, the field k
contains an element ζ2d such that ζd2d = −1. Let B := k[[x, y, z]]/(zq + xc + yd). The scheme
SpecC is not normal, and the natural map C → B, with Z 7→ ζ2dzxy and Y 7→ ζ2dy, induces a
finite birational morphism SpecB → SpecC. Hence, SpecB has the same resolution as SpecC.
The reader will check that the matrix NC associated to the resolution of SpecC in Theorem
4.4 is the same as the matrix N appearing in the statement of Theorem 5.1. The discriminant
group ΦN is computed in Proposition 4.9. �

Remark 5.2. A resolution of the Brieskorn singularity of the form xc + yd + ze = 0 is known
over the complex numbers thanks to the work of [19], Theorem, page 232, when c, d, and e are
pairwise coprime, and [38] in general. An explicit description for the intersection matrix N and
dual graph ΓN of a resolution is found for instance in [48], page 284, with a formula giving the
self-intersection −s0 of the node given on page 287.

Let now p > 1 be prime. When p is coprime to cd, the intersection matrix for the resolution
of zp + xc + yd = 0 obtained in Theorem 5.1 is the same as the intersection matrix obtained in



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 24

characteristic 0. Some characteristic p > 1 examples appear explicitly already in the literature,
such as the case of zp + x2 + yp+2 = 0 when p is odd, treated in [35], Lemma 3.13.

Assume that p > 1 is prime and divides cd. The Brieskorn singularity zp + xc + yd = 0 has
then a resolution in characteristic p which is quite different than in characteristic 0. Indeed,
assume that c = pγ for some integer γ, and gcd(p, d) = 1. Then in characteristic p, zp+xc+yd =
(z + xγ)p + yd. It follows that the normalization of k[[x, y]][z]/(zp + xc + yd) is regular when
char(k) = p. On the other hand, in the case for instance of z2 +x3 +y6 = 0 in characteristic 0 (a
case which is not covered by Theorem 5.1), the minimal resolution is a smooth elliptic curve of
self-intersection −1. This explicit example of a resolution in characteristic 0 (and many others)
is found for instance in [24], page 1290.

Theorem 5.3. Let B := k[[x, y, z]]/(f), where f(x, y, z) is a weighted homogeneous polynomial
of the following form, with n,m ≥ 1:

(i) zp + xpm+1 + ypn+1,
(ii) zp + xy(xpm−1 − ypn−1), and

(iii) zp − x2 + 2yp+1 when p ≥ 3.

Then SpecB is a wild Z/pZ-quotient singularity. Moreover, the fundamental group of the
punctured spectrum SpecB \ {mB} is trivial.

Proof. The proof of the theorem is similar for each of the three types of homogeneous polyno-
mials. In each case, there exists a family of rings Bµ, µ homogeneous in k[x, y], such that the
ring B can be identified with the ring Bµ=0, and such that when deg(µ) is large enough, there
is an isomorphism between Bµ=0 and Bµ. The family Bµ is constructed such that when µ 6= 0
is chosen adequately, the ring Bµ is a wild Z/pZ-quotient singularity.

For the weighted homogeneous form in (iii), we use the family Bµ (with µ ∈ k[y]) described
in Proposition 6.2. For the weighted homogeneous forms in (i) and (ii), we use the families
discussed in [32] and recalled in 0.2. More precisely, fix a system of parameters a, b in k[[x, y]].
Consider the family of hypersurface singularities SpecBµ, µ ∈ k[[x, y]], with

Bµ := k[[x, y, z]]/(zp − (µab)p−1z − apy + bpx).

Let G := Z/pZ. When µ is not a unit, is not zero, and is coprime to a and coprime to b,
then Bµ is isomorphic to the ring of invariants AG of an action of G on A = k[[u, v]], and the
morphism SpecA→ SpecAG is ramified in codimension 1. The cases (i) and (ii) are obtained
when µ = 0 by setting a = −yn and b = xm, and a = −xm and b = −yn, respectively.

We now claim that it is possible to find a homogeneous polynomial µ of large enough degree
such that B := k[[x, y, z]]/(f) is isomorphic over k to Bµ. In the cases (i) and (ii), we note
that the homogeneous polynomial µ := xt + yt (t ≥ 1), is coprime to both a and b, so that the
corresponding SpecBµ is a quotient singularity associated with an action that is ramified in
codimension 1.

To prove the existence of a k-isomorphism from B := k[[x, y, z]]/(f) to Bµ, we use the Lemma
in [17], 2.6, page 345. For the details of the proof of this Lemma, the authors of [17] refer the
reader to the paper [6]. Recall that the Tjurina ideal of f is j(f) := (f, ∂f

∂x
, ∂f
∂y
, ∂f
∂z

), and that

there exists an integer s > 0 such that (x, y, z)s ⊆ j(f) if and only if the Tjurina number
τ := dimk(k[[x, y, z]]/j(f)) is finite. This is indeed the case for all polynomials f in (i), (ii),
and (iii). Then the Lemma in [17], 2.6, implies that if deg(µg) > 2τ (with g ∈ k[[x, y, z]]), then
B := k[[x, y, z]]/(f) is isomorphic over k to k[[x, y, z]]/(f + µg).
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In each case above, we have shown that SpecB is isomorphic to a quotient singularity SpecBµ

such that Bµ is the ring of invariants of an action of Z/pZ on the ring A := k[[u, v]] such that
the morphism SpecA → SpecBµ is ramified in codimension 1. Corollary 1.2 (ii) in [4] shows
that the fundamental group of the punctured spectrum SpecB \ {mB} is trivial. �

Remark 5.4. Consider the equation f := zq + xc + yd with q, c, d three distinct primes.
Let k be a field of characteristic p. Let B := k[[x, y, z]]/(f). Theorem 5.1 shows that the
intersection matrix of the resolution of SpecB is the same in all three characteristics p = q, c, d,
and has determinant 1. It is natural to wonder whether this matrix can occur in more than
one characteristic as the intersection matrix attached to a resolution of a wild Z/pZ-quotient
singularity.

Consider the intersection matrix with resolution graph E8. In Artin’s notation in [4], f :=
z2 + x3 + y5 defines the singularity SpecB denoted by E0

8 , with resolution graph E8. This
singularity is a wild Z/pZ-quotient singularity when p = 2 (see Theorem 5.3, (i)). When
p = 5, a different singularity, denoted by E1

8 in [4], also has resolution graph E8 and is a wild
Z/5Z-quotient singularity.

Theorem 5.5. Let p be prime. Let s ≥ 0.

(a) Assume that either s 6≡ 1 mod p, or that p is odd and s = 1. Then there exists a Z/pZ-
quotient singularity SpecAG with associated action ramified precisely at the origin, and such
that the discriminant group of a resolution of the singularity has order ps.

(b) Assume that either p is odd and s ≡ 1 mod p, or that p = 2 and s = 1. Then there exists
a Z/pZ-quotient singularity SpecAG with associated action ramified in codimension 1 and
such that the discriminant group of a resolution of the singularity has order ps.

Proof. (a) The cases s = 0 and s = 1 are covered by Theorem 7.1 and 0.2, and Proposition 6.2
and Theorem 6.3, respectively. The cases with s ≥ 2 and s 6≡ 1 mod p were obtained earlier
in the papers [31] and [34].

(b) When s ≡ 1 mod p and s ≥ p+1, we use the Brieskorn singularities exhibited in Lemma
5.6, and apply Theorem 5.1 and Theorem 5.3. The case p = 2 and s = 1 was noted by Artin
and is discussed in Section 8. The case s = 1 is treated in Theorem 9.4. �

Lemma 5.6. Let p be an odd prime, and r be any positive integer. Then there are integers
m,n > 0 such that the discriminant group ΦN of the intersection matrix N associated with the
Brieskorn singularity zp + xpm+1 + ypn+1 = 0 described in 5.1 is isomorphic to (Z/pZ)pr+1.

Proof. In view of Theorem 5.1, we need to produce integers n and m such that gcd(pn+1, pm+
1) = pr+ 2. For this, it suffices to take n := (pr+ r+ 2)/2, so that pn+ 1 = (pr+ 2)(p+ 1)/2,
and to set m := (3pr + r + 6)/2, so that m = n+ (pr + 2). �

Note that not all elementary abelian p-groups appear as discriminant groups ΦN attached
to the intersection matrix N associated with a Brieskorn singularity zp + xpm+1 + ypn+1 = 0.
Indeed, for all m,n > 0, the integer g = gcd(pm + 1, pn + 1) is never divisible by p. Thus in
the above setting ΦN cannot be isomorphic to (Z/pZ)pr−1 for any r > 0.

Remark 5.7. Let B be a complete noetherian local ring that is two-dimensional and normal,
with algebraically closed residue field. Consider a resolution of singularities X → SpecB, with
associated intersection matrix N . Recall that there is a natural surjection Cl(B) → ΦN (see
[26], 14.4). In particular, when det(N) 6= 1, we obtain a natural non-trivial finite quotient of
Cl(B) from the computation of a resolution of SpecB.
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The study of the class group Cl(B) of B := k[[x, y]][z]/(zp−xc−yd) was initiated by Samuel
in [45], Proposition (3) in section 6 (see also [14], Chapter IV, section 17). When p = 2, Samuel
is able to exhibit by a completely algebraic method a finite quotient of Cl(B) of order pg−1,
where g := gcd(c, d). Under the hypothesis of Theorem 5.1, pg−1 would also be the order of the
corresponding group ΦN .

6. Analogues of the E6 singularities

Let k be an algebraically closed field of characteristic p ≥ 3. Let µ ∈ k[y], µ 6= 0. Consider
the automorphism σ of the polynomial ring k[u, v, y] given by

u 7−→ u+ µv, v 7−→ v + µy, and y 7−→ y.

This automorphism has order p. We exclude the case p = 2 in this section because when p = 2,
σ has order 4. Let

Nu := Norm(u) =

p−1∏
d=0

σd(u) =

p−1∏
d=0

(
u+ dµv +

d(d− 1)

2
µ2y

)
,

and
x := Norm(v) = vp − (µy)p−1v.

Finally, let
z := v2 − µyv − 2yu.

Let G := Z/pZ act on k[u, v, y] through σ. When µ = 1, the ring of invariants k[u, v, y]G is
known to be generated by x, y, z, and Nu, subject to a single relation (see e.g., [8], 4.10). This
relation was made explicit by Peskin, who showed in [42], Lemma 5.6, that hµ=1(x, y, z,Nu) = 0,
where,

hµ=1(x, y, z,Nu) := zp + 2ypNu − x2 +

(p+1)/2∑
n=2

(−1)nCn−1y
2p−2nzn.

Here Cn−1 := (2n− 2)!/n!(n− 1)! are the Catalan numbers.
When µ 6= 1, the above result can be used to show that x, y, z, and Nu are subject to the

relation

h(x, y, z,Nu) := zp + 2ypNu − x2 +

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn = 0.

Indeed, the morphism k[u, v, y] → k[U, V, y], which sends u 7→ µ2U , v 7→ µV , and y 7→ y, is
G-equivariant when k[u, v, y] is endowed with the action of σ, and k[U, V, y] is endowed with
the action of σ1, with σ1(U) = U + V and σ1(V ) = V + y.

For any choice of c(y) ∈ yk[y], we can consider the ring

A0 := k[u, v, y]/(Nu − c(y)).

We will slightly abuse notation and denote again by x, y, z, u, v, the classes of these elements
in A0. Clearly, the automorphism σ fixes the polynomial Nu − c(y), and thus induces an
automorphism on A0, again denoted by σ. This endows A0 with an action of G. Let A denote

the formal completion Â0 of the ring A0 at the maximal ideal (u, v, y).
The fixed scheme of the G-action on Spec(A0) is given by the ideal I := (µv, µy). When

µ ∈ k∗, I = (v, y) = (up, v, y), and thus its radical is the maximal ideal (u, v). Hence, the
morphism SpecA → SpecAG is ramified precisely at the origin. When µ 6= 0 is not a unit in
A, the morphism SpecA→ SpecAG is ramified in codimension 1.
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The study of the singularities of the rings SpecAG when µ = 1 was initiated by Peskin
([41], Chapter III, §4, and [42], Section 5). In the remainder of this section, we treat the
case where c(y) = y, and obtain a family of wild quotient singularities AG of multiplicity 2
whose discriminant groups have order |Φ| = p. For p > 3, these singularities can be viewed as
analogues of the rational double point of type E1

6 in characteristic p = 3, which was shown to
be a wild Z/3Z-quotient singularity by Artin [4].

Proposition 6.1. Let c(y) := y. Let µ ∈ k[y]. Then the ring A0 is a domain, the formal
completion A is regular, and the canonical map k[[u, v]]→ A is bijective.

Proof. The expression f(u, v, y) := Nu − y is a monic polynomial of degree p in the variable
u over the factorial ring k[v, y], with constant term f(0, v, y) = −y. Since f is monic in u,
to prove f irreducible in k[u, v, y], it suffices to prove that f(u, 0, y) is irreducible in k[u, y].
The Newton polygon of f(u, 0, y) with respect to the y-adic valuation is the straight line from
(0, 1) to (p, 0) in R2, and we conclude with the Eisenstein–Dumas Theorem [36] that f(u, 0, y)
is irreducible.

The ring A0 and its formal completion A are thus two-dimensional domains. To see that
the local ring A is regular, we have to check that the cotangent space mA/m

2
A has vector space

dimension at most two. Indeed, this vector space is generated by u, v, y. In light of the relation
Nu− y = 0, the class of y vanishes. In turn, the canonical map k[[u, v]]→ A between complete
local rings induces a bijection on cotangent spaces, and is thus bijective. �

Let µ ∈ k[y]. Abusing notation slightly, we let h(x, y, z) ∈ k[x, y, z] be defined as

(6.1) h(x, y, z) := zp + 2yp+1 − x2 +

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn.

We let Bµ := k[[x, y, z]]/(h).

Proposition 6.2. Let c(y) := y. Let µ ∈ k[y], µ 6= 0. Then the canonical map Bµ → AG is
bijective. In particular, the wild quotient singularity AG is a complete intersection of multiplicity
two.

Proof. Both local rings Bµ and AG are Cohen–Macaulay, and finite k[[x, y]]-algebras of rank p.
One easily sees that h(x, y, z) = 0 defines an isolated singularity, by using the relations hx = −2x
and 2z(µ+ yµy)hz + µyhy = 2µyp+1 between partial derivatives. It follows that k[[x, y, z]]/(h)
is normal, and that the canonical map induces a bijection on the field of fractions. The map in
question is thus bijective, by Zariski’s Main Theorem. Clearly, the monomial x2 is the lowest
term in h(x, y, z), and it follows that the complete intersection AG has multiplicity two. �

Theorem 6.3. Let c(y) := y. Let µ ∈ k[y]. Let X → Spec(Bµ) be the minimal resolution of
singularity, with associated intersection matrix N . Then the dual graph ΓN is independent of
µ, and takes the form:

p−1

−(p+1)/2

p−1

The associated discriminant group ΦN has order p.
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Proof. Consider the blow-up Z → Spec(Bµ) of Spec(Bµ) with respect to the ideal (x, y, z). Let
Y → Z denote the normalization of Z. Let E denote the exceptional divisor of the blow-up,
and let D denote its schematic preimage in Y .

The blow-up Z is covered by three charts that we call the x-chart, y-chart, and z-chart. We
consider in detail below the y-chart and show that its normalization contains a unique singular
point y0. Proceeding in an analogous way as for the y-chart, the reader will check that the
normalizations of the x-chart and the z-chart are regular.

On the y-chart, the strict transform of h(x, y, z) = 0 becomes(
z

y

)p
yp−2 + 2yp−1 −

(
x

y

)2

+

(p+1)/2∑
n=2

(−1)nCn−1µ
2p−2ny2p−n−2

(
z

y

)n
= 0.

The fraction x/y(p−1)/2 satisfies the integral equation

(6.2)

(
z

y

)p
y + 2y2 −

(
x

y(p−1)/2

)2

+

(p+1)/2∑
n=2

(−1)nCn−1µ
2p−2nyp−n+1

(
z

y

)n
= 0.

Write g = (z/y)py+ 2y2− (x/y(p−1)/2)2 + · · · for the polynomial on the left. The radical of the
Tjurina ideal associated with g contains y, because y defines the exceptional divisor on the y-
chart and there are no singularities outside the exceptional divisor. Obviously the Tjurina ideal
also contains x/y(p−1)/2 (consider the derivative of g with respect to the variable x/y(p−1)/2).
Using the partial derivative gy = (z/y)p + · · · , we see that the radical of the Tjurina ideal
furthermore contains z/y. Thus the normalization of the y-chart is given by the three variables
z/y, y, x/y(p−1)/2 and the equation g = 0.

We claim that Dred is a smooth rational curve, and that (Dred · Dred)Y = −1/2. For this
it suffices to check analogously as in Proposition 3.6 that the curve Ered is regular, and that
(E·Ered)Z = −1. Then one checks that the natural mapDred → Ered is an isomorphism. Finally,
noting that the multiplicity of E is ` = 2, we apply the formula (Dred ·Dred)Y = (E · Ered)Z/`
in Proposition 2.3 to obtain the claim.

Regarded as a formal power series, the initial term of g is the quadratic polynomial 2y2 −
(x/y(p−1)/2)2, which is thus a product of two linear factors since k is algebraically closed. Ac-
cording to Lemma 6.4 below, the singularity must be a rational double point of type Am for
some integer m ≥ 1. To determine this integer, we compute the Tjurina number of the sin-
gularity, which is the colength of the ideal generated by g and its partial derivatives. Setting
x′ = x/y(p−1)/2 and z′ = z/y, the partial derivatives take the form

gx′ = 2x′, gy = z′p + y · (4 + y · ∗) and gz′ =

(p+1)/2∑
n=2

(−1)nnCn−1µ
2p−2nyp−n+1z′n−1.

We now use gy = 0 to substitute for y in the equations g(0, y, z′) = 0 and gz′(0, y, z
′) = 0, and

infer that the Tjurina ideal has colength τ = 2p. The first two summands in g(0, y, z′) = 0 do
not cancel after the substitution.

Recall that the Tjurina number for the Am-singularity, which is formally isomorphic to
Zm+1 −XY = 0, is given by

τ =

{
m if p does not divide m+ 1;

m+ 1 else.

It follows that either m = 2p− 1 or m = 2p, and we shall see below that m is odd.
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Write X → Y for the minimal resolution of singularities of the rational double point, such
that the composite map X → Y → Spec(Bµ) is a resolution of the singularity. The dual graph
of this resolution contains a chain C1, . . . , Cm of (−2)-curves, together with the strict transform
C0 of the divisor Dred on Y .

Suppose that C0 intersects two distinct exceptional curves Ci 6= Cj. Then (
⋃
i≥1Ci) ∩ C0 is

an Artin scheme of length ≥ 2 on C0. We claim that this is not possible. Indeed, consider the
blow-up X → Y . The induced morphism C0 → Dred is an isomorphism since we have shown
above that the point y0 is a regular point of Dred. The scheme (

⋃
i≥1Ci), which is proper, has

schematic image in Y the reduced closed point y0. The same is true for any closed subscheme
of the exceptional divisor, including the subscheme (

⋃
i≥1Ci) ∩ C0. This is a contradiction

since we have on the other hand an isomorphism C0 → Dred, and a closed subscheme of length
bigger than one in the source cannot be sent to a closed subscheme of length 1 in the target.
Thus C0 hits precisely one divisor Ci. If (C0 · Ci)X > 1, a similar argument leads again to a
contradiction, and thus we must have (C0 · Ci)X = 1.

Consider now the involution on Bµ given by x 7→ −x, y 7→ y and z 7→ z. This involution fixes
Peskin’s equation (6.1), and induces an involution on the initial blow-up Z and its normalization
Y . There the equation z/y = 0 defines an invariant Cartier divisor on the Am-singularity
SpecOY,y0 , which is the union of two regular Weil divisors D1 and D2, and these divisors are
interchanged by the involution. The blow-up Y ′ → Y of the singular point y0 ∈ Y with reduced
structure introduces two exceptional curves F1 and F2, and the strict transforms of D1 and D2

in Y ′ are disjoint. The intersection F1 ∩ F2 consists of a single point y′0, and the local ring
OY ′,y′0 is a rational double point of type Am−2.

We now show that m is odd. First, suppose that the strict transforms of D1 and D2 in Y ′

do not intersect the same exceptional component of the blow-up Y ′ → Y . It then follows that
the involution acts non-trivially on the dual graph attached to the resolution of singularities
X → Y . If m = 2p was even, the curve C0 would pass through the sole fixed point Cp ∩ Cp+1

of the exceptional divisor, and as we have seen above, this is a contradiction. It follows that
m = 2p− 1 must be odd in this case, and that (C0 ·Cp)X = 1. The assertion on the dual graph
ΓN follows.

Suppose now that the strict transforms of D1 and D2 in Y ′ intersect the same exceptional
component of the blow-up Y ′ → Y . We are going to show that this case cannot happen.
Indeed, then the Weil divisors D1, D2 ⊂ Y define the same class in the class group Cl(OY,y0) =
Z/(m + 1)Z of the rational double point of type Am. Since the curves Di are regular, the
divisors Di ⊂ Y are not Cartier. It follows that Di has order two in Cl(OY,y0) since the sum
of D1 and D2 is a Cartier divisor on Y . On the other hand, the strict transform of Di in X
intersects a terminal vertex of the exceptional divisor of X → Y , and this fact along with a
computation using the intersection matrix of the chain of m curves implies that Di has order
m+ 1 in the class group. This gives m = 1, contradicting m ≥ 2p− 1 ≥ 5.

To completely determine the intersection matrix N of the resolution X → Spec(Bµ), it
remains to compute the self-intersection number (C0 · C0)X . We have already observed above
that (D0 · D0)Y = −1/2, and Proposition 2.2 shows that (C0 · C0)X = (D0 · D0)Y − δ, where
the correcting term δ is computed as follows. The determinant of the intersection matrix of the
full chain of length 2p − 1 is −2p. Removing the vertex adjacent to C0 from this chain yields
two chains of length p − 1. The determinant of the associated intersection matrix is then p2.
It follows that δ = p2/2p = p/2. Hence,

(C0 · C0)X = −1/2− p/2 = −(p+ 1)/2.
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Proposition 1.3 shows that |ΦN | = p. �

In the course of the proof we have used the following well-known general observation:

Lemma 6.4. Let f ∈ k[[x, y, z]] by a power series over an arbitrary field k. Write f =∑∞
j=0 f

(j), where f (j) is a homogeneous polynomial of degree j. Suppose that f (0) = f (1) = 0,

and that f defines an isolated singularity. Assume also that the quadratic part f (2) is the product
of two non-associated linear forms. Then k[[x, y, z]]/(f) is isomorphic to k[[x, y, z]]/(zm+1−xy)
for some integer m ≥ 2. In other words, the singularity in question is a rational double point
of type Am.

Proof. After a linear change of coordinates, we may assume that f = xy + O(3), where we
denote by O(d) an element of md. By induction on d ≥ 3, one makes further coordinate
changes of the form x′ := x + a(x, y, z), y′ := y + b(x, y, z) with a, b ∈ md−1 sending f to a

power series of the form x′y′ +
∑d

i=3 λiz
i +O(d+ 1), for some λi ∈ k. This shows that we may

assume f = xy +
∑∞

i=3 λiz
i. If all coefficients λi vanish, the singularity would not be isolated.

Thus our equation is of the form xy + zm+1ε for some m ≥ 2 and unit ε. Multiplying with ε−1,
we get the equation (ε−1x)y + zm+1 for the rational double point of type Am. �

Recall that the fundamental cycle Z of an intersection matrix N is the minimal positive vector
Z such that NZ is a non-positive vector. The canonical cycle K of an intersection matrix N
is recalled in 10.2. The fundamental genus h1(OZ) can be computed for the hypersurface
singularities considered below as 2h1(OZ)− 2 = (K + Z) · Z.

Proposition 6.5. The multiplicities in the fundamental cycle Z of the resolution of SpecBµ

are indicated below next to the corresponding vertex.

1 p− 1

p−1

p

2

p− 1 1

p−1

The canonical cycle is given by K = −p−3
2
Z. We have Z2 = −2, and h1(OZ) = (p− 3)/2.

Proof. Let us denote by E0 the node of ΓN , and by E1 the pendant vertex of self-intersection
E2

1 = −(p + 1)/2. To compute Z, we apply Artin’s Algorithm [1]: one starts with the cycle C
having all coefficients equal to 1, which we will draw pictorially as 1

1 1 ··· 1 ··· 1 1 . The algorithm
updates C by increasing some coefficient of C at each step. We denote by m0 the multiplicity
of E0 in C. Since C · E0 > 0, the algorithm increases m0 by 1. The new cycle C has positive
intersection number with both vertices adjacent to the node on the two terminal chains of
length p− 1, and one then increases their multiplicities by 1. Proceeding along these terminal
chains, one ends with the new cycle C given by 1

1 2 ··· 2 ··· 2 1 . Now one repeats the process,
starting again at the node E0. After p− 1 steps, one obtains the cycle 1

1 2 ··· p ··· 2 1 . This new
cycle has positive intersection number with the terminal vertex E1. Increasing the multiplicity
m1 of E1 by 1 gives the fundamental cycle: indeed, this new cycle C = Z now has (Z ·E1) = −1,
and all other intersection numbers are 0.

This description of Z immediately lets us compute that Z2 = −2. It is easy to check that
the canonical cycle is K = −p−3

2
Z, and that (K + Z) · Z = p− 5. �
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7. Analogues of the E8 singularities

Let k be an algebraically closed field of characteristic p > 0. We compute in this section
the resolution of the singularity of SpecBµ introduced in 0.2, for any value of the parameter
µ ∈ k[[x, y]] when a = −y2 and b = −x. The ring Bµ is given in this case by

Bµ := k[[x, y]][z]/(zp − (µxy2)p−1z − xp+1 + y2p+1).

When p = 2, the resolution of SpecBµ is known to have dual graph E8 when µ = 0, µ = 1
and µ = y: these values produce the rational double points E0

8 , E2
8 , and E1

8 , respectively ([4];
see also [41]). The index of determinacy of a singularity Er

8 in characteristic 2 is computed
to be 5 in [17], page 346. It follows that when µ ∈ (x, y)2, then SpecBµ is isomorphic to E0

8 .
For µ ∈ k×, we find that Bµ is isomorphic to E2

8 through the change of variables X = µ10/7x,
Y = µ6/7y, and Z = µ15/7z.

Theorem 7.1. Let p ≥ 3. Then SpecBµ has a resolution of singularities with dual graph ΓN
independent of µ of the following form:

−(p+1)/2 −4

p−1p

The associated discriminant group ΦN is trivial.

Proof. Set R := k[[x, y, z]] and f := zp− (µxy2)p−1z− xp+1 + y2p+1, and write B := R/(f). We
start with an initial blowing-up Z := BlaB(B) for the ideal a := (x, y2, z), as in 3.6. As usual,
let E ⊂ Z denote the exceptional divisor of the blow-up, and Ered its reduction. Proposition
3.6 shows that Ered is a smooth rational curve, that E = 2pEred, and that (E · Ered)Z = −1.
One checks that the blow-up is regular on the y2-chart and the z-chart, and contains a unique
singularity, which is located at the origin of the x-chart.

The x-chart is given by four variables x, y, y2/x, z/x modulo the two relations

y2 =

(
y2

x

)
x and

(z
x

)p
− µp−1xp−1

(
y2

x

)p−1
z

x
− x+

(
y2

x

)p
y = 0.

The exceptional divisor is given by x = 0. Its reduction is defined by x = y = z/x = 0. Let us
rewrite the second equation above as

(7.1)
(z
x

)p
+

(
y2

x

)p
y = x(µp−1xp−2

(
y2

x

)p−1
z

x
+ 1).

On the formal completion along the exceptional divisor, 1+µp−1xp−2(y2/x)p−1(z/x) is invertible,
and we denote by ε its inverse. The unit ε admits a (p + 1)-st root δ (with δp+1 = ε). After

extracting an expression for x from (7.1) and substituting it in the expression y2 = y2

x
x, we find

that

y2 =
y2

x

((z
x

)p
+

(
y2

x

)p
y

)
ε.

This is formally isomorphic to the equation

y2 − Up+1y − UW p = 0
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in the new set of variables y, U,W , via the map given by y 7→ y, U 7→ (y2/x)δ and W 7→ (z/x)δ.
Note that the reduced exceptional divisor is given by x = y = z/x = 0 in the old coordinates,
and by y = W = 0 in the new ones. Let

B′ := k[[y, U,W ]]/(y2 − Up+1y − UW p).

We now make a second blow-up Z ′ → Spec(B′), with nonreduced center given by (y, U,W p).
Let E ′ denote the exceptional divisor of this blow-up. Using Proposition 3.1, we infer that the
U -chart of Z ′ is described by four variables U,W, y/U,W p/U and two relations

W p =

(
W p

U

)
U and

( y
U

)2

− Up
( y
U

)
− W p

U
= 0.

Substituting the latter in the former and renaming y/U by V gives

(7.2) W p = UV (V − Up) .

The origin (U, V,W ) is obviously singular on this chart, and this is a singularity analyzed in
Theorem 4.4. The reader will check that Z ′ has no further singularities on other charts, and that
the only singularity on the U -chart is located at the origin. On this chart, the exceptional divisor
is given by U = 0. Its reduction has U = W = 0. The reader will check that the exceptional
divisor E ′ of this blow-up is a smooth projective line. Note also that the strict transform of
the exceptional divisor from the initial blow-up is given by V 2 = 0 (since x = V 2Uδ), with
reduction V = W = 0, and that this strict transform is also a smooth projective line.

Theorem 4.4 lets us describe explicitly the intersection matrix N(s0 | α−1, β−1, γ−1) of the
unique singularity in the U -chart. Using the notation from 4.3, we set q = p, a = b = 1, c = p
and d = 1, and find that g := gcd(c, d) = 1 and (ad+ bc+ cd)/g = 2p+ 1. It follows that

α−1 = p2/(2p− 1) and β−1 = γ−1 = p/(p− 1).

Recall that p ≥ 3 and set e := (p + 1)/2. The reader will check that the continued fraction
expansion of α−1 = p2/(2p−1) is α−1 = [e, 5, 2, . . . , 2] with 2+(p−3)/2 overall entries, starting
with the relations

p2 = e(2p− 1)− (p− 1)/2, and (2p− 1) = 5(p− 1)/2− (p− 3)/2.

The self-intersection −s0 of the node of the star-shaped graph is computed as:

s0 =
1

p2
+

2p− 1

p2
+ 2

p− 1

p
= 2.

Having resolved the singularity (7.2), we get a resolution for our original singularity SpecBµ

with the following resolution graph:

(7.3) ︸ ︷︷ ︸
p−1

−e −5 ︸ ︷︷ ︸
(p−3)/2

︸ ︷︷ ︸
p−1

According to Proposition 4.8, the white terminal vertex to the left corresponds to the strict
transform of the exceptional divisor on the initial blow-up, whereas the white terminal vertex
on the top right corresponds to the strict transform of the exceptional divisor on the second
blow-up.
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It remains to determine the self-intersection of both of these strict transforms in the resolution
of SpecB. Recall that E ′ is the exceptional divisor for the second blow-up Z ′ → Spec(B′).
Computing in the affine charts, one sees that E ′red is a projective line, with E ′ = pE ′red and
(E ′ · E ′red)Z′ = −2. Since the U -chart is regular away from the origin, we can conclude using
Proposition 2.3 that the self-intersection of the strict transform of E ′red in the normalization
of Z ′ is −2/p. Proposition 2.2 shows that the strict transform C ′ of E ′red in X has thus
(C ′ · C ′)X = −2/p − δ for some correction term δ ∈ Q>0. The term δ is computed as follows.
Let Γ1 be the star-shaped subgraph in (7.3) consisting of all the black vertices, and let Γ′1 ⊂ Γ1

be the star-shaped subgraph obtained from Γ1 by removing the terminal black vertex in the top
right position. Let N1 and N ′1 be the resulting intersection matrices. According to Proposition
2.2, we have δ = − det(N ′1)/ det(N1). Using Proposition 1.3, we compute that | det(N1)| = p2

and | det(N ′1)| = p2 − 2p. Hence, δ = (p2 − 2p)/p2 = 1 − 2/p, and it follows that the white
terminal vertex on the top right has self-intersection −1. We can thus contract this divisor.
Successively contracting (−1)-curves from the right, we get the desired graph as in the statement
of Theorem 7.1 with a terminal vertex of self-intersection number −4 = −5+1 on the top right.

Recall that we denoted by E the exceptional divisor of Z → SpecB, and determined using
Proposition 3.6 that Ered is a smooth rational line, that E = 2pEred, and that (E ·Ered)Z = −1.
As above, Proposition 2.2 shows that the strict transform C of Ered in X has (C · C)X =
−1/2p − δ for some correction term δ ∈ Q>0. Let Γ2 be the star-shaped subgraph in (7.3)
consisting of all the black vertices and the terminal white vertex (of self-intersection (−1)) in
the top right position. Let Γ′2 be the star-shaped subgraph obtained from Γ2 by removing the
terminal black vertex of Γ2 attached to the terminal white vertex on the left corresponding to
E. Let N2 and N ′2 be the resulting intersection matrices. According to Proposition 2.2, we have
δ = − det(N ′2)/ det(N2). The matrix N2 has the same determinant as N(2 | p/(p − 1), p/(p −
1), (2p+1)/4), and N ′2 has the same determinant as N(2 | (p−1)/(p−2), p/(p−1), (2p+1)/4).
Using Proposition 1.3, we compute that | det(N2)| = 2p and | det(N ′2)| = 4p − 1. Hence,
(C · C)X = −2.

Now that the intersection matrix N of the resolution has been determined, with N = N(2 |
p/(p− 1), (p+ 1)/p, (2p+ 1)/4), Proposition 1.3 can be used to show that | det(N)| = 1. �

Proposition 7.2. Keep the assumptions of Theorem 7.1. The multiplicities in the fundamental
cycle Z of the resolution of SpecBµ are indicated below next to the corresponding vertex.

p 2p p2 p2 + p

2p + 1 (p + 1)/2

p2 − 1 2(p + 1) p + 1

p−1p

The canonical cycle of the resolution is K = −(2p−4)Z+ p−3
2
E2, where E2 is the terminal vertex

on the top right of the above graph. We have Z2 = −(p+ 1)/2, and h1(OZ) = (p2 − p+ 2)/2.

Proof. The self-intersection numbers along the three terminal chains in the dual graph ΓN yield
the continued fractions

p+ 1

p
= [2, . . . , 2],

p

p− 1
= [2, . . . , 2], and

2p+ 1

4
= [(p+ 1)/2, 4].
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Recall that given a fraction r/s, the ceiling dr/se is the smallest integer larger than or equal
to r/s. Write E0 ∈ ΓN for the central node. According to [48], equation (3.4) on page 282, its
multiplicity m0 ≥ 1 in the fundamental cycle Z is the smallest integer m ≥ 1 such that

(7.4) 2m− d mp
p+ 1

e − dm(p− 1)

p
e − d 4m

2p+ 1
e ≥ 0.

Let us show that m0 = (p + 1)p. First, we claim that when m = (p + 1)p, then equality holds
in (7.4). Indeed, the first two fractions on the left of (7.4) are then the integers p2 and p2 − 1,
whereas the last summand becomes

d 4m

2p+ 1
e = d2p+

2p

2p+ 1
e = 2p+ 1.

Assume now m < (p + 1)p. We claim that in this case (7.4) fails. Indeed, since the fraction
p/(p+ 1) and (p− 1)/p are reduced, and one of the integers p or p+ 1 does not divide m, one
of the fractions mp/(p+ 1) and m(p− 1)/p is not an integer. Using 1/p > 1/(p+ 1), we obtain

d mp
p+ 1

e+ dm(p− 1)

p
e ≥ mp

p+ 1
+
m(p− 1)

p
+

1

p+ 1
.

In turn, the left hand side of (7.4) is bounded above by

2m− mp

p+ 1
− m(p− 1)

p
− 4m

2p+ 1
− 1

p+ 1
=

m

p(p+ 1)(2p+ 1)
− 1

p+ 1
.

This is bounded above by 1/(2p + 1) − 1/(p + 1) < 0, because m < p(p + 1). As desired, the
inequality (7.4) fails.

For convenience in this proof, let us denote by Z0 the vector whose coefficients are given
in the proposition. Without loss of generality, we may assume that E1 and E2 are the two
vertices on the very short chain of the graph, with self-intersection numbers E2

1 = −(p + 1)/2
and E2

2 = −4, respectively. It is easy to check that NZ0 = −E2. Since NZ0 has non-positive
coefficients, we find that by definition of the fundamental cycle, we must have Z ≤ Z0.

We now determine that the multiplicities of Z along the two terminal chains comprising only
(−2)-curves are the ones indicated in the statement of the proposition. We treat the case of
the terminal chain on the right, with p − 1 vertices. The other chain is treated similarly. Let
us denote by zp−1, . . . , z2, z1 the multiplicities of Z along the terminal chain with p− 1 vertices.
The central node has multiplicity denoted for convenience zp := p2 + p. The fact that NZ
has non-positive coefficients produces the following inequalities. At the last vertex, we have
−2z1 + z2 ≤ 0, and at each other vertex of the chain, we find that −2zi + zi−1 + zi+1 ≤ 0. It
follows that

zi+1 − zi ≤ zi − zi−1

when 2 ≤ i ≤ p− 1. Since Z ≤ Z0, we have zp−1 ≤ p2 − 1. Suppose that zp−1 = p2 − 1− a for
some a ≥ 0. Then

(p2 + p)− (p2 − 1− a) = p+ 1 + a = zp − zp−1 ≤ zp−1 − zp−2 ≤ . . . ≤ z2 − z1 ≤ z1.

Hence,

p2 + p = zp ≥ p(p+ 1 + a).

It follows that a = 0 and zp−1 = p2 − 1. A similar argument shows that zp−i = (p− i)(p + 1),
as desired.
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It remains to determine the coefficients of Z along the terminal chain of length 2. As above,
E0 is the central node, and we denote by m0,m1,m2, the coefficients of Z corresponding to
E0, E1, E2, respectively. We have shown above that m0 = p2 + p. We have

0 ≥ (Z · E1) = (m0E0 +m1E1 +m2E2) · E1 = p2 + p−m1(p+ 1)/2 +m2.
0 ≥ (Z · E2) = (m1E1 +m2E2) · E2 = m1 − 4m2.

This gives m1 ≥ 4(p2 + p)/(2p + 1) > 2p. Since Z ≤ Z0, we have m1 ≤ 2p + 1 and, thus,
m1 = 2p+ 1. From m2 ≥ m1/4, we conclude that m2 ≥ (2p+ 1)/4, and since m2 is an integer,
we must have m2 ≥ (p + 1)/2. Again because Z ≤ Z0, we have m2 ≤ (p + 1)/2 and, hence,
m2 = (p + 1)/2. Thus, the vector Z0 described in the proposition is indeed the fundamental
vector of N .

It is easy to compute that Z2 = −(p+1)/2. It is also an easy matter to check that the vector
K satisfies the matricial condition defining the canonical cycle recalled in 10.2. Similarly, one
checks that (K + Z) · Z = p2 − p. �

Remark 7.3. Let G := Z/pZ and let SpecAG be a G-quotient singularity. Let X → SpecAG

be a resolution of singularities with an exceptional divisor having smooth components and
normal crossings. It is known that the fundamental cycle Z associated with the intersection
matrix of the exceptional divisor satisfies |Z2| ≤ p (see [29], 2.4). It is not immediate to
produce examples of such singularities where |Z2| < p. We note that the singularities exhibited
in Theorems 6.3 and 7.1 have |Z2| = 2 and |Z2| = (p+ 1)/2, respectively.

It is shown in [29], Lemma 3.7, that if the discriminant group ΦN of an intersection matrix
N is killed by e, then the fundamental cycle Z associated with N satisfies |Z2| ≤ ezmin, where
zmin is the smallest coefficient of Z. In the case of the intersection matrix in Theorem 7.1,
zmin = (p+ 1)/2 and |ΦN | = 1, showing that the inequality |Z2| ≤ ezmin is sharp.

8. Analogues of the E7 singularities

When p = 2, the blow-up at the maximal ideal of the Z/2Z-quotient singularity E2
8 given by

z2 + xy2z + x3 + y5 = 0

has a new singularity, namely the singularity E1
7 given by the equation

z2 + xy2z + yx3 + y3 = 0

(see for instance [44], 1.1). The singularity E2
8 has resolution graph the Dynkin diagram E8 with

trivial discriminant group, while the resolution of E1
7 has resolution graph E7 with discriminant

group of order 2.
Artin ([4], bottom of page 18, or [41], (2.16), page 104) shows that the Dynkin diagram E7

cannot be obtained as the resolution graph of a wild Z/2Z-quotient singularity whose associated
action is ramified precisely at the origin. He shows however that the singularity E1

7 does occur
as the resolution graph of a wild Z/2Z-quotient singularity for an action that is ramified in
codimension 1.

When p = 2, we have not been able to exhibit any wild Z/2Z-quotient singularity whose ac-
tion is ramified precisely at the origin and whose associated intersection matrix has discriminant
group of order 2s with s odd. We suggest in 8.3 for each s odd the existence of explicit exam-
ples with group (Z/2Z)s. In each case, these wild Z/2Z-quotient singularities are associated to
actions that are ramified in codimension 1.
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The above considerations have analogues for any prime p. Indeed, consider the singularity
at the maximal ideal of SpecBn, where

Bn := k[[x, y, z]]/(zp − (xyn)p−1z − ypn+1 + xp+1).

This singularity is a special case of the singularity recalled in 0.2, where we have set µ = 1, a =
yn, and b = x. In particular, this singularity is a Z/pZ-quotient singularity whose moderately
ramified action is ramified precisely at the origin. When n = p = 2, this singularity is E2

8 .
Consider the blow-up of SpecBn at the maximal ideal (x, y, z). Then the y-chart (defined by

the variables y, x/y, z/y) has a singular point whose local ring is isomorphic to the local ring
Cn, where

(8.1) Cn := k[[x, y, z]]/(zp − (xyn)p−1z − y(n−1)p+1 + yxp+1).

When n > 1, the closed point of SpecCn is singular, and we show below in 8.1 that the
singularity of SpecCn is again a Z/pZ-quotient singularity, but for an action that is ramified
in codimension 1. In the examples that we were able to compute, the discriminant groups ΦBn

and ΦCn of the intersection matrices of the resolutions of SpecBn and SpecCn when n > 1
satisfy |ΦCn| = p|ΦBn|.

When n = 2, the singularity of SpecB2 is treated in Theorem 7.1 and generalizes the E2
8 -

singularity. The singularity of SpecC2 is the E1
7 -singularity when p = 2, and thus SpecC2

is a natural generalization for all primes p of the E1
7 -singularity. Our educated guess for the

resolution of SpecC2 is discussed in Example 8.4.
We can further generalize the ring Cn as follows. Let a, b ∈ k[[x, y]], not both 0. Set

A0 := k[[x, y]][U, V ]/(Up − (ay)p−1U − y, V p − (by)p−1V − xy).

Let L denote the field of fractions of A0. The ring A0 and the field L are endowed with an
automorphism σ of order p fixing k[[x, y]] and with

σ(U) := U + ay,
σ(V ) := V + by.

As usual, we set G := 〈σ〉. Let z := aV − bU . Then σ(z) = z, and we find that

(8.2) zp − (aby)p−1z − apxy + bpy = 0.

Let B denote the subring k[[x, y]][z] of A0. Let A denote the subring A0[V
U

] of L. The group G
acts on A, since σ(V/U) = (V/U + by/U)(1 + ay/U)−1 and 1 + ay/U is a unit in A0.

Proposition 8.1. Keep the above notation. The ring homomorphism A → k[[u, v]], which
sends U to u and V/U to v, is a k-isomorphism. In the special case where either a = xm and
b = y`, or a = y` and b = xm for some integers `,m ≥ 1, then the ring of invariants AG is
equal to the ring B. In particular, SpecCn is a wild Z/pZ-quotient singularity when n > 1.

Proof. The equation Up− (ay)p−1U − y = 0 first shows that y/U is in the maximal ideal of A0,
and then that y/Up is in A0 and is a unit. The ring A0 is not integrally closed, since it is clear
from the equation V p − (by)p−1V − xy = 0 that(

V

U

)p
−
(
by

U

)p−1(
V

U

)
− y

Up
x = 0

is an integral relation for V
U

over A0. Since x and y can be expressed in terms of U and V/U ,

we find that A := A0[V
U

], viewed as a subring of L, is in fact isomorphic to the power series
ring k[[u, v]], with u := U and v := V/U .
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Consider the ring B′ := k[[x, y]][Z]/(Zp − (aby)p−1Z − apxy + bpy) and the natural map
ϕ : B′ → AG which sends Z to z. Assume that either a = x` and b = ym, or that a = y` and
b = xm for some integers `,m ≥ 1. We claim that ϕ is an isomorphism. One can show that
B′ is an integral domain, and that its field of fractions injects in Frac(A), and has image by
degree considerations equal to Frac(AG). The ring B′ is Cohen–Macaulay since it is free as a
module over the regular ring k[[x, y]]. Thus B′ is normal as soon as it is regular in codimension
1. This can be shown, because of the special forms of a and b, by using the Jacobian criterion.
Let f := Zp − (aby)p−1Z − apxy + bpy. Then if a prime ideal p of B′ contains the classes of f ,
and of the partial derivatives fx, fy, fZ , then p contains (x, y, Z).

The reader will check that when n > 1, the ring Cn is isomorphic to B when a = −x and
b = −yn−1. When p = n = 2, the proposition is proved in [41], (2.16), page 104. �

Example 8.2. We show in this example that there are (many) intersection matrices N with
ΦN killed by 2 and of order 2s with s odd. Since our interest is to provide evidence that there
may exist wild Z/2Z-quotient singularities whose resolutions have discriminant groups of order
2s with s odd, we note that any such resolution must also have an intersection matrix N whose
fundamental cycle Z satisfies |Z2| ≤ 2 ([29], 2.4). This is a non-trivial restriction on the possible
matrices N , and we exhibit below matrices that also satisfy this restriction.

Recall that a star-shaped graph with n ≥ 4 vertices is called a star, or the complete bipartite
graph K1,n−1, if it consists of a single node and n − 1 terminal vertices attached to the node.
We write the intersection matrix N of a star on n vertices as N = N(s0 | s1/1, . . . , sn−1/1),
where −s0 denotes the self-intersection of the node, and −si denotes the self-intersection of the
i-th terminal vertex when i > 0. The Dynkin diagram D4 is a star on 4 vertices, and so are the
two graphs in Remark 4.11.

Consider any intersection matrix N = N(s0 | s1/1, . . . , sn−1/1) such that one of the sj with
j ≥ 1 is even and at most one of the sj with j ≥ 1 is divisible by 4. Assume in addition that
ΦN is killed by 2, and that the fundamental cycle Z of N satisfies |Z2| ≤ 2. Define the matrix
Ni(s0 | s1/1, . . . , sn−1/1, sn/1), i = 1, 2, by

sn := i+

(
n−1∏
j=1

sj

)
/|ΦN |.

We claim that the two intersection matrices N1 and N2 have graphs that are stars on n +
1 vertices with |det(Ni)| = i|det(N)|. Moreover, both groups ΦNi

are killed by 2, and both
fundamental cycles Zi of Ni satisfy |Z2

i | ≤ 2.

Proof. Let `n−1 := lcm(s1, . . . , sn−1). Then the order of the node in ΦN is equal to `n−1(s0 −∑n−1
j=1 1/sj) (use 1.3 (ii)). This order equals 1 since we assume that one of the sj is even (use 1.3

(v)). It follows that |ΦN | = (
∏n−1

j=1 sj)/`n−1 (use 1.3 (i)). In particular, (
∏n−1

j=1 sj)/|ΦN | = `n−1

is an integer. The equality |det(Ni)| = i|det(N)| follows from an easy computation.
We find that lcm(s1, . . . , sn−1, `n−1 + i) = lcm(`n−1, `n−1 + i), which equals `n−1(`n−1 + 1)

when i = 1, and `n−1(`n−1/2 + 1) when i = 2. Hence, the node is trivial in ΦNi
since its order

is

lcm(s1, . . . , sn−1, `n−1 + i)

(
s0 −

n−1∑
j=1

1/sj − 1/(`n−1 + i)

)
= 1.
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Let R ∈ Zn+1 denote the transpose of the vector (`n−1, `n−1/s1, . . . , `n−1/sn−1, 1). Then NiR =
−ien+1. Since all coefficients of R are positive and NiR has non-positive coefficients, we find
that R is an upperbound for the fundamental cycle Zi of Ni. Then |Z2

i | ≤ |R2| ≤ i, as desired.
To show that ΦNi

is killed by 2, it suffices to show that the classes of the standard vectors
have order 1 or 2 in ΦNi

for each terminal vertex of the graph. This is clear for a terminal vertex
vj with sj odd or exactly divisible by 2, since the column of Ni corresponding to vj shows that
the class of sjvj is equal to the class of the node. We note now that the construction implies
that there can be at most one terminal vertex vj with sj divisible by 4. If the corresponding
class in ΦNi

has order divisible by 4, we would find using the first column of the matrix Ni that
this unique class is equal to the sum of classes which all have order 1 or 2, a contradiction.
This ends the proof of the claim. �

The sequence {sn}n≥1 with s1 = 2 and sn := lcm(s1, . . . , sn−1) + 1 is called Sylvester’s
sequence {2, 3, 7, 43, . . . } in the literature. It produces the only intersection matrices N(1 |
s1/1, . . . , sn−1/1) with trivial group ΦN in the above construction.

An example of a star with intersection matrix N such that ΦN is killed by 2 but |Z2| > 2 is
given by N = N(1 | 2/1, 3/1, 10/1, 16/1), with group ΦN = (Z/2Z)2 and Z = (30, 15, 10, 3, 2),
giving |Z2| = 4.

Example 8.3. Let p = 2. Fix an integer n ≥ 1. Consider the star graph with a central node
of self-intersection −(n+ 1) attached to 2n+ 1 terminal vertices of self-intersection −2. Denote
by N0 its intersection matrix. Proposition 1.3 (iv) shows that ΦN0 = (Z/2Z)2n. We remark in
passing that this matrix does occur as the intersection matrix attached to a quotient singularity
(use the equation z2 = xy(x2n−1 − y2n−1) and Theorem 5.3 (ii)).

Starting with N0, the construction in Example 8.2 produces two intersection matrices, the
matrix N1(n) := N(n + 1 | 2/1, . . . , 2/1, 3/1) with group of order 22n and whose graph is
represented on the left below, and the matrix N2(n) := N(n+ 1 | 2/1, . . . , 2/1, 4/1) with group
of order 22n+1 and whose graph is represented below on the right.

−(n+1)

−3

2n

. . .

−(n+1)

−4

2n

. . .

When n = 1, the intersection matrices N1(n) and N2(n) are the matrices of the resolutions of
the wild quotient singularities SpecB4 and SpecC4, respectively. This can be verified using the
Magma [7] commands ResolveSingByBlowUp() and IntersectionMatrix().

When n ≥ 1, consider f := zp − (aby)p−1z − apxy + bpy introduced in (8.2), and set a := xn

and b := y2n+1. Let B := k[[x, y, z]]/(f). Proposition 8.1 shows that the equation f = 0 defines
a wild Z/2Z-quotient singularity. We conjecture that SpecB has a resolution X → SpecB with
a dual graph equal to the dual graph of N2(n) represented on the right above. The conjecture
thus provides examples of wild Z/2Z-quotient singularities with discriminant group of order
22n+1 for all n ≥ 1. These quotient singularities are associated with actions that are ramified
in codimension 1.

Example 8.4. (Analogues of E7.) Let p be prime. Computations suggest that the resolution
of the wild Z/pZ-quotient singularity SpecC2 (see (8.1)) has intersection matrix (notation as
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in 1.2)

N = N

(
2 | p

p− 1
,
p+ 1

p
,

p2

2p− 1

)
with group ΦN = Z/pZ. When p is odd, the intersection matrix N has the following graph:

−(p+1)/2 −5 (p−3)/2

p−1p

The resolution of SpecB2 is discussed in Theorem 7.1.

Remark 8.5. Consider the equation zp − (aby)p−1z − apxy + bpy = 0 introduced in (8.2), and
set a = yn and b = xm for some integers m,n ≥ 1. Proposition 8.1 shows that this equation
defines a wild Z/pZ-quotient singularity. Computations with Magma [7] suggest that for such
a and b, the resolution of the singularity at the origin of zp − (aby)p−1z − apxy + bpy = 0 has
the same intersection matrix as the resolution of the singularity of zp − apxy + bpy = 0.

When a = yn and b = xm, this latter singularity has the form zp− xy(ypn− xpm−1) = 0, and
Theorem 4.4 provides an explicit resolution for it. When p = 2, we find that g := gcd(pn, pm−1)
is always odd, so the discriminant group of this resolution, which has order 2g+1 by Proposition
4.9, is always of the form |ΦN | = 2s with s even. Thus the quotient singularity (8.2) in this
case is unlikely to provide examples of discriminant groups of order |ΦN | = 2s with s odd.

When p = 2, (8.2) in the case b = x and a = yn gives the equation of the singularity Dn
2(2n+1)

with resolution graph the Dynkin diagram D2(2n+1) (notation as in [4], section 3).

9. D4 and Ap−1

We compute in this section the resolution of the singularity of SpecBµ introduced in 0.2, for
any value of the parameter µ when a = −y and b = −x. The ring Bµ is given in this case by

Bµ := k[[x, y]][z]/(zp − (µxy)p−1z − xp+1 + yp+1).

Let Z → Spec(Bµ) be the blow-up of the ideal b = (x, y, z), as in 3.6. We note in Theorem 9.4
that Z has p + 1 singularities, each again Z/pZ-quotient singularities, with resolution graph
Ap−1 and associated discriminant group Z/pZ.

Remark 9.1. When k contains a third root of unity ζ with ζ2 + ζ + 1 = 0, the change of
variables X := x + ζy and Y := x + ζ2y produces x3 + y3 = −ζXY (X + ζY ). In that case,
for any integer q ≥ 1, the singularity zq − (x3 + y3) = 0 is always isomorphic over k to the
singularity zq − (x2y − xy2) = 0. When in addition p = 2, we find that Bµ=0 is isomorphic
over F4 to the singularity D0

4, given by the equation z2 + x2y + xy2 = 0. The dual graph of its
resolution is the Dynkin diagram D4. The Tjurina number of this singularity is equal to 8.

The resolution of SpecBµ=1 when p = 2 is also known to have dual graph D4 over an
algebraically closed field. Indeed, the equation when µ = 1 is stated to be equivalent to D1

4

in [41], page 102, where D1
4 is given by the equation z2 + xyz + x2y + xy2 = 0. The quotient

singularity SpecBµ=1 when p > 2 can thus be considered as a generalization of D1
4.
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Theorem 9.2. Assume that p ≥ 3. Then SpecBµ has a resolution of singularities with star-
shaped dual graph ΓN independent of µ having p+ 1 identical terminal chains, each with p− 1
vertices, as follows:

-p

. . .

p−1 p−1

The associated discriminant group ΦN has order pp.

Proof. Let Z → Spec(Bµ) be the blow-up of the ideal aB = (a, b, z) = (x, y, z), as in Proposition
3.6. Let as usual E denote the exceptional divisor. We find from Proposition 3.6 that Ered is
a smooth rational curve over k, and that (E · Ered)Z = −1. In addition, E = pEred, and the
z-chart is regular.

The blow-up Z is covered by three affine charts, and we see that the x-chart is generated by
the expressions x, y/x, z/x modulo the relation

(9.1)
(z
x

)p
− x

(
1 + µp−1xp−2

(y
x

)p−1 z

x
−
(y
x

)p+1
)

= 0.

Clearly, this chart is regular at the origin. Let Y → Z denote the normalization of Z. Let D
denote as usual the pull-back of the exceptional divisor of Z. It follows from the regularity at
the origin that the induced morphism Dred → Ered is an isomorphism. Hence, we can conclude
from Proposition 2.3 that (Dred ·Dred)Y = −1/p.

Using partial derivatives, one sees that the singular locus on the x-chart is given by x =
z/x = 0 and (y/x)p+1 = 1. In particular, the singular locus is finite and, hence, Z is normal
since it is Cohen-Macaulay and regular in codimension 1. We thus have Y = Z. Let ζ denote
a primitive root of the equation up+1 = 1. When rewriting the above equation defining the
x-chart in terms of the expressions x, y/x − ζj, and z/x, we obtain a polynomial of the form
x(y/x − ζj) + O(3) when p ≥ 3. Using the changes of variables discussed in the proof of
Lemma 6.4, we find that the singularity is in fact a rational double point. Since the equation
(9.1) contains the monomial (z/x)p and no other monomial (z/x)i with i < p, we find that the
rational double point is of type Ap−1.

Let X → Y denote a resolution of the singularities of Y . Let C denote the strict transform
of Dred in X. It follows from Proposition 2.2 that (C · C)X = −1/p − (p + 1)δ, where δ is
the correcting term associated with the rational double point Ap−1. As noted in 1.1, δ =
(p − 1)/p, and we find that (C · C)X = −p. The associated discriminant group is computed
with Proposition 1.3. �

Let R := k[[x, y]]. As recalled in 0.2, let

A := k[[u, v]] = R[u, v]/(up − (µy)p−1u− x, vp − (µx)p−1v − y),

and let σ be the automorphism defined by σ(u) = u + µy and σ(v) = v + µx. Let G := 〈σ〉.
The element z := xu− yv is invariant, and we can identify the ring Bµ with AG.
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Let Z ′ → Spec(A) be the blow-up of the induced ideal aA, with a = (x, y, z). Let Y ′ → Z ′

denote the normalization of Z ′. We have the commutative diagram

Y ′ −−−→ Z ′ −−−→ Spec(A)y y y
X −−−→ Y −−−→ Z −−−→ Spec(AG).

Let yi, i = 1, . . . , p + 1, denote the rational double points in Y of type Ap−1. We show below
that these points are in fact Z/pZ-quotient singularities.

Lemma 9.3. The scheme Y ′ is regular, and the morphism Y ′ → Spec(A) coincides with the
blow-up of the maximal ideal mA = (u, v).

Proof. Indeed, using the relations

(9.2) up − (µy)p−1u = x and vp − (µx)p−1v = y,

we get up, vp ∈ aA. Since the finite ring extension R ⊂ A is flat of degree p2, we must have
aA = (up, vp). More precisely, substituting the equations (9.2) into each others one obtains

x · unit = up − µp−1vp(p−1)u and y · unit = vp − µp−1up(p−1)v,

showing explicitly that (x, y)A ⊆ (up, vp). Since z = xu− yv, we have (up, vp) = aA.
The blow-up Z ′ of the ideal (up, vp) in Spec(A) is covered by two charts. The up-chart has

generators u, v, and vp/up, so v/u satisfies an obvious integral equation, and we also have
v = v/u · u. It follows that on the normalization the chart becomes regular. The situation on
the vp-chart is similar, and we see that the scheme Y ′ is regular. �

Theorem 9.4. The preimage of each yi under the map Y ′ → Y consists of a single regular
point xi ∈ Y ′, and OY,yi = (OY ′,xi)

G. Thus yi is a Z/pZ-quotient singularity whose resolution
has dual graph Ap−1 and associated discriminant group Z/pZ. The morphism Spec OY ′,xi →
Spec(OY ′,xi)

G is ramified in codimension 1 and the punctured spectrum of the rational double
point yi has trivial fundamental group.

Proof. The G-action on the ring A induces a G-action on the normalized blow-up Y ′, which on
the field of fractions of the u-chart is given by

u 7→ u+ µy and v/u 7→ (v + µx)/(u+ µy).

Since Y is normal, the induced morphism Y ′ → Y yields an identification Y = Y ′/G.
Let E ′ denote the exceptional divisor of the blow-up Y ′ → Spec(A) of the maximal ideal.

Then the natural map E ′ → Dred induced by Y ′ → Y is purely inseparable of degree p,
and, hence, the morphism Spec OY ′,xi → Spec(OY ′,xi)

G is ramified at the codimension 1 point
corresponding to E ′. It follows from [4], Corollary 1.2, that the punctured spectrum of the
rational double point yi has trivial fundamental group. �

Remark 9.5. The occurrence of the Ap−1-singularities yi on the quotient Y = Y ′/G is caused
by points xi ∈ Y ′ where the ideal of the fixed scheme Y ′G ⊂ Y ′ is not a Cartier divisor. Indeed,
using Theorem 2 in [22], we find that when the action of σ on the local ring A = k[[u, v]] is
such that the ideal (σ(u)−u, σ(v)− v) of the fixed scheme is principal, then the fixed ring A〈σ〉

is regular.



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 42

Proposition 9.6. The multiplicities in the fundamental cycle Z of the resolution of SpecBµ

are strictly decreasing along each terminal chain, as indicated below next to the corresponding
vertex.

p

. . .

p− 11 p− 1 1

The canonical cycle of the singularity is K = −(p − 2)Z. Moreover, Z2 = −p, and h1(OZ) =
(p− 2)(p− 1)/2.

Proof. For convenience in this proof, let us denote by Z0 the vector whose coefficients are
given in the proposition. Since NZ0 has non-positive coefficients, we find that by definition
of the fundamental cycle, we must have Z ≤ Z0. In particular, the multiplicities in Z of the
terminal vertices of the graph must be all equal to 1. Since the fundamental cycle Z is unique,
it is easy to check that it must be ‘rotationally symmetric’ around the central node. Let us
denote by zp−1, . . . , z2, z1 the multiplicities of Z along a terminal chain. The central node
has multiplicity denoted zp, and the fact that NZ has non-positive coefficients produces the
following inequalities. First at the central node, we find

−pzp + (p+ 1)zp−1 ≤ 0.

It follows that zp − zp−1 ≥ zp−1/p, so that zp − zp−1 ≥ 1. At each other vertex, we find that

−2zi + zi−1 + zi+1 ≤ 0.

It follows that zi+1 − zi ≤ zi − zi−1. Hence, for each i = 2, . . . , p, we have zi − zi−1 ≥ 1. Since
Z ≤ Z0, we must have Z = Z0.

It is easy to compute that Z2 = −p. It is also an easy matter to check that the vector K
satisfies the matricial condition defining the canonical cycle recalled in 10.2. Similarly, one
checks that (K + Z) · Z = p2 − 3p. �

10. Numerically Gorenstein intersection matrices

All wild Z/pZ-quotient singularities resolved in this article are hypersurface singularities.
We prove in this section that all wild Z/2Z-quotient singularities are hypersurface singularities.
We then recall that the intersection matrix associated with a hypersurface singularity is always
numerically Gorenstein. We show in Proposition 10.5 that any intersection matrix N whose
discriminant group ΦN is killed by 2 is automatically numerically Gorenstein. We exhibit in
10.7 an example when p > 2 of a wild Z/pZ-quotient singularity which is not numerically
Gorenstein.

Proposition 10.1. Let p = 2. Let A = k[[u, v]], endowed with a non-trivial action of G =
Z/2Z. Then there exists a power series ring R := k[[x, y]] such that AG is k-isomorphic to
R[z]/(z2 + sz + t), with s, t ∈ R.

Proof. Let σ denote the generator of G. Proposition 2.9 in [32] allows us, if necessary, to replace
the system of parameters (u, v) for A with a new system of parameters (again denoted by (u, v)
below) with the following properties (use [32], Proposition 2.3): let x := uσ(u) and y := vσ(v).
Let R := k[[x, y]] be the subring of A generated by k, x, and y. Then A is a free R-module of
rank 4.
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We have the inclusions R ⊂ AG ⊂ A, and the fraction field of AG is then of degree 2 over
the fraction field of R. Since R is regular and AG is Cohen-Macaulay because it is normal of
dimension 2, we find that AG is a free R-module of rank 2. Thus, R is a direct summand of AG,
with quotient AG/R free of rank 1. We can therefore find an element z ∈ AG which generates
the quotient AG/R. It follows that the natural map R[Z]→ AG with Z 7→ z is surjective. Since
z /∈ R, it satisfies a quadratic equation z2 +sz+ t = 0, with s, t ∈ R and Z2 +sZ+ t irreducible
in R[Z]. Since R[Z] is a UFD, we find that R[Z]/(Z2 + sZ + t)→ AG is an isomorphism. �

10.2. Let N = (cij) ∈ Matn(Z) be an intersection matrix. Let H0 ∈ Zn be the integer vector
whose i-th coefficient is hi := −cii − 2 for i = 1, . . . , n. Since N is invertible, there exists a
vector K ∈ Qn such that NK = H0. The vector K is called the canonical cycle of N . We say
that N is numerically Gorenstein if K ∈ Zn.

When N is the intersection matrix associated with a collection of irreducible curves Ci,
i = 1, . . . , n on a surface, each component Ci has an arithmetical genus pa(Ci). Our definition
of numerically Gorenstein coincides with the usual one (see for instance [43], (2.5)) when all
arithmetical genera are equal to 0. When a matrix N is numerically Gorenstein and Z denotes
its fundamental cycle, then −K ≥ Z, unless the dual graph of N is the dual graph of a rational
double point ([25], Proposition 2.1, or [43], Proposition 2.4)

Lemma 10.3. Let k be a field of characteristic p. Let B denote a complete local ring of
dimension 2, isomorphic to k[[x, y, z]]/(f) for some f ∈ (x, y, z), and formally smooth outside
its closed point. Let X → SpecB be a resolution of the singularity, with associated intersection
matrix N . Assume that all the irreducible components in the exceptional locus of the resolution
are smooth rational curves. Then N is numerically Gorenstein.

Proof. We first use [2], 3.8, to find an algebraic scheme S over k and a point s ∈ S such that
the completion of OS,s is isomorphic to B. The ring OS,s is Gorenstein since its completion
B is ([13], 21.18). Thus there exists an open set U of S, containing s, and such that U is
everywhere Gorenstein ([16], 1.5). It follows that U has a canonical sheaf that is an invertible
sheaf. Consider a resolution π : V → U of the singularity s ∈ U . Then the canonical divisor KV

on V is supported on the exceptional divisor of π. The adjunction formula for each irreducible
component Ei shows that (KV · Ei) + (Ei · Ei) = 2pa(Ei) − 2. Since KV is equal to a linear
combination of the Ei, we find that the intersection matrix N of the exceptional locus is
numerically Gorenstein. �

Let N = (cij) ∈ Matn(Z) be an intersection matrix with discriminant group ΦN . As usual,
denote by e1, . . . , en the standard basis of Zn, and let pi denote the order of the class of ei in ΦN .
For each i = 1, . . . , n, let Ri ∈ Zn denote the unique positive vector such that NRi = −piei.
Let (Ri)j denote the j-th coefficient of Ri, and define

gi :=
n∑
j=1

(Ri)j(|cjj| − 2) = (tRi)H0.

If the matrix N is such that cjj ≤ −2 for all j = 1, . . . , n, then gi ≥ 0.

Lemma 10.4. Let N be an intersection matrix. Then tK = (−g1/p1, . . . ,−gn/pn). In partic-
ular, the matrix N is numerically Gorenstein if and only if pi divides gi for each i = 1, . . . , n.

Proof. By hypothesis, we have NK = H0 for some vector K ∈ Qn. It follows that −piKi =
tRiNK = tRiH0 = gi, and we find that Ki = −gi/pi. �



DISCRIMINANT GROUPS OF QUOTIENT SINGULARITIES 44

Proposition 10.5. Let N = (cij) ∈ Matn(Z) be an intersection matrix with discriminant group
ΦN killed by 2. Then N is numerically Gorenstein.

Proof. Our hypothesis implies that pi = 1 or 2, for all i = 1, . . . , n. We use the criterion given
in 10.4: to show that N is numerically Gorenstein, it suffices to show, for each i, that the
integer gi is even when pi = 2. Assume then that pi = 2. Then by construction,

tRiNRi = −pi(Ri)i.

We now compute explicitly the term tRiNRi and obtain

tRiNRi =
n∑
j=1

cjj(Ri)
2
j + 2

∑
j<k

cjk(Ri)j(Ri)k.

Since pi is even and (Ri)
2
j ≡ (Ri)j (mod 2), we find that

∑n
j=1 cjj(Ri)j is even, and so is gi, as

desired. �

Remark 10.6. Let N = (cij) ∈ Matn(Z) be an intersection matrix associated with the reso-
lution of a hypersurface singularity, all of whose exceptional components are smooth rational
curves. Assume that cii ≤ −2 for all i = 1, . . . , n. Laufer in [25], 3.7, provides additional
constraints on the canonical vector K associated with such N , with an improvement by M.
Tomari stated in the Addendum on page 496. A further improvement was found by Yau in
[49], Theorems B and C, which show that for such N ,

gi/pi ≥ (|Z · Z| − 2)zi,

where tZ = (z1, . . . , zn) is the fundamental cycle of N . In other words, we have −K ≥ (|Z ·
Z| − 2)Z. Note that the singularity in Proposition 9.6 satisfies −K = (|Z · Z| − 2)Z.

In the context of wild Z/2Z-quotient singularities treated in this article, the resolution of such
a singularity has intersection matrix N with ΦN killed by 2 and with |Z · Z| ≤ 2. Proposition
10.5 shows that any such N is always numerically Gorenstein, and since |Z ·Z| ≤ 2 and Z > 0,
Laufer’s constraints are also automatically satisfied.

Example 10.7. We exhibit below a wild Z/pZ-quotient singularity that is not numerically
Gorenstein. Let p > 2 be prime and consider the wild Z/pZ-quotient singularity in [30],
6.8, with resolution graph with r1(i) = 1. This resolution graph has a single vertex of self-
intersection different from −2, namely the terminal vertex C with r1(i) = 1 and self-intersection
−p, represented as the top center vertex in the graph below:

1 p− 1

p−1

p

2
−p

p− 1 1

p−1

The graph is adorned with the coefficients of an integer vector R, and it is easy to check that
the canonical vector K is −(p− 2)R/p. Since p > 2, the vector K is not an integer vector. The
fundamental cycle of the singularity is given in [31], 4.4, and it is shown in [31], 4.1, that this
singularity is rational.
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