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Introduction

Let K be a ®eld with a discrete valuation v. Let OK denote the ring of integers of K,
with maximal ideal �p�. Let k be the residue ®eld of OK , assumed to be algebraically closed
of characteristic pZ 0. Let G=K be a semi-abelian variety with NeÂron model G=OK . Let
Gk=k be the special ®ber of G=OK , and let G0

k =k denote the connected component of 0 in Gk.
The group of components of G is the ®nitely generated abelian group F�G� :� Gk=G

0
k .

When no confusion may occur, we shall denote F�G� simply by F or FK . We shall say that
G=OK is split, or that G=K has split reduction, if the extension

0! G0
k ! Gk !c F�G� ! 0�1�

is split: in other words, G is split if and only if Gk�k� is isomorphic as an abelian group
to the product G0

k �k� �F�G�. Thus, when F�G� is a ®nite group, G is split if and only if,
for each j A F�G�, there exists ~j A Gk�k� with ord�~j� � ord�j� such that c�~j� � j. If the
extension (1) is not split, we shall say that G is not split. Since NeÂron models commute
with completion of K, we will assume in this paper that K is complete.

The core of this article is a detailed study of the case of elliptic curves and of the case
of norm tori and their duals, with applications to abelian varieties with potentially purely
multiplicative reduction. In all cases studied, we ®nd that there exists a constant c depend-
ing only on the dimension of G such that, if G has totally not split reduction (see 1.2), then
the Swan conductor of G=K is positive and bounded by c. We also ®nd that there is a
constant d, depending only on the dimension of G, such that GM=M has split reduction for
any tame extension M=K of degree greater than d. Clearly this suggests the possibility that
similar statements may hold for more general tori and abelian varieties.

This paper is organized as follows. We have collected in the ®rst section several gen-
eral statements regarding the splitting property of NeÂron models. Section two contains a
detailed study of the case of elliptic curves. Section three provides examples of the behav-
iour of the splitting property under several standard constructions, such as under isogeny,
tame base extension, and Weil restriction of scalars. The cases of norm tori and their duals



are studied in section four. Section ®ve provides an explicit equation describing the NeÂron
model of the norm torus R1

L=K Gm;L when �L : K� � p. In section six, the results on tori are
applied to the case of abelian varieties with potentially purely multiplicative reduction. The
article ends with a discussion of possible generalizations of our main theorems to larger
classes of semi-abelian varieties.

1. General facts

Before turning to a detailed study of the case of elliptic curves and of the case of tori
in the next sections, let us make below a few general remarks on the splitting property.
Non-trivial examples of abelian varieties of dimension bigger than 1 that are split are given
in 3.7, and examples that are not split are provided in 6.5. Recall that for any commutative
group H, Htors denotes the torsion subgroup of H, Hp denotes the p-part of Htors and H�n�
denotes the subgroup of elements of order dividing n. The next lemma is elementary.

Lemma 1.1. Let 0! H 0 ! H !c C! 0 be an exact sequence of commutative

groups. Let nZ 1 be an integer. Let J be a subgroup of H 0 such that H 0 � J � nH 0. Denote
by nH : H ! H the multiplication-by-n map on H. Then c

ÿ
nÿ1

H �J�
� � C�n�.

1.2. Let 0! H 0 ! H !c C! 0 be an exact sequence of ®nitely generated com-
mutative groups. We shall say that this exact sequence is totally not split (at a prime p) if
pjord�Ctors� and if, for any element j A C of order p, there does not exist ~j A H of order p
such that c�~j� � j. Thus, a sequence is totally not split if and only if C�p�3 f0g and the
natural map H�p� ! C�p� is identically zero. Let G=K be a semi-abelian variety (all semi-
abelian varieties over K are assumed to be connected in this article). Let G=OK be its NeÂron
model. Let us say that G is totally not split, or that G has totally not split reduction, if the
exact sequence (1) is totally not split. An example of a torus whose reduction is only not
split, but not totally not split, can be found in 4.13.

Semi-abelian varieties in general admit a NeÂron lft-model, where lft stands for locally
of ®nite type ([BLR], 10.2/2). In this article, we drop the lft-model notation and talk only of
NeÂron models, the context making it clear whether the model is of ®nite type. It is shown in
[Xar], 2.18, that the group of components of a torus is a ®nitely generated abelian group. It
follows then from [B-X], 4.11 (ii), that the group of components of the NeÂron model of any
semi-abelian variety is a ®nitely generated abelian group. Another proof of this fact can be
obtained using the proof of 4.11 (i) of loc. cit.

Remark 1.3. The proof of [B-X], 4.11 (ii), uses Lemma 4.2 of loc. cit., which is
incorrect in the case of perfect residue ®elds. The authors of [B-X] have informed us
that they can provide a di¨erent proof of 4.11 (ii) without using 4.2.

Proposition 1.4. Let G=K be a semi-abelian variety. Let G=OK be its NeÂron model.
Then the following properties are true.

(a) Let j A F�G� be an element of ®nite order n prime to p. Then j lifts to an element
of Gk of order n.
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(b) The complex

0! G0
k;p ! Gk;p ! F�G�p ! 0�2�

is exact.

(c) G is split if and only if (2) is split.

(d) G is totally not split if and only if (2) is totally not split.

(e) Suppose that F�G�p is cyclic and that G0
k;p is killed by p. Then G is totally not split

if and only if it is not split.

Proof. (a) Since G0
k =k is a smooth commutative group scheme and pa n, the

multiplication-by-n map G0
k ! G0

k is surjective. Now we can apply Lemma 1.1 with J � 0
to the sequence (1).

(b) The only non-trivial fact to prove is that Gk;p ! F�G�p is surjective. The group
G0

k is extension of a semi-abelian variety by an unipotent group U=k. Since the multi-
plication by n is surjective for any integer n on any semi-abelian variety, we have
G0

k � U � nG0
k . Lemma 1.1 shows that any element j A F�G��pr� lifts to an element ~j A Gk

such that pr ~j A U . Hence, ~j A Gk;p.

(c) The condition is clearly necessary. Let us show that it is su½cient. The group of
components F�G� is the direct sum of ®nitely many cyclic (®nite or in®nite) groups. Thus,
to show that G is split, it is enough to show that any element j A F�G� lifts to an element of
Gk of same order. If the order of j is in®nite (resp. a power of p), then the assertion is clear
(resp. follows from the hypothesis). So we can assume that j has order n prime to p. Then
the assertion follows from (a). Assertion (d) follows from the de®nition.

(e) If G is not totally not split, then by (d) there exists an element j A F�G�p of order
p which lifts to an element ~j A Gk;p of order p. Let ~l A Gk;p be a preimage of a generator l
of F�G�p. Then j � prl for some rZ 0. This implies that l has order pr�1. We have

pr ~lÿ ~j A G0
k;p, so by hypothesis p�pr ~lÿ ~j� � 0. Thus, ~l has order pr�1 and G is split by

(c).

Corollary 1.5. If pa jF�G�torsj, then G is split.

Proof. Follows from 1.4 (c).

Proposition 1.6. Assume that G0
k =k is a semi-abelian variety. Then G is split.

Proof. According to 1.4 (c), we only need to show that (2) is split. As at the end of
the proof of 1.4 (b), we ®nd that any element j A F�G��pr� lifts to an element ~j A Gk such
that pr ~j A U . Since by hypothesis U � 0, (2) is split.

Let T=K be a torus of dimension d. Recall that there exists a ®nite Galois extension
L=K minimal with the property that TL=L is isomorphic to Gd

m;L. The ®eld L=K is called
the splitting ®eld of T.

Liu and Lorenzini, Fibers of NeÂron models 181



Corollary 1.7. Let T=K be a torus of dimension d with NeÂron model T. If L=K is

tame, then T is split. In particular, if p > d � 1, then T=K has split reduction.

Proof. It is shown in [Xar], 2.18, that the torsion part of F�T� is killed by �L : K�.
Hence, the assertion follows from Corollary 1.5. Since Gal�L=K� is a subgroup of GLd�Z�,
we ®nd that if a prime l divides �L : K�, then lY d � 1.

Let A=K be an abelian variety. Recall that there exists a Galois extension L=K min-
imal with the property that AL=L has semistable reduction. Recall also that the connected

component A0
k =k is the extension of an abelian variety by a commutative linear group. The

dimension of the toric part of this linear group, tK , is called the toric rank of A.

Proposition 1.8. Let A=K be an abelian variety whose NeÂron model A=OK has toric
rank equal to 0. Then F�A� is killed by �L : K�2.

Proof. Proposition 2.15 in [Lor2] shows that the prime-to-p part of F�A� is killed by
�L : K�2. To prove the general case, we proceed as follows. Consider the subgroups
Y2 LY1 of F�A� introduced on page 480 of [B-X]. Since tK � 0 by hypothesis, we ®nd that
Y1 � F�A�. It follows from [B-X], 5.9, that Y1=Y2 is killed by �L : K�. Let CK;L denote the
kernel of the natural map F�A� ! F�AL�. Then �L : K � kills CK;L ([ELL], Thm. 1). To
conclude the proof of the proposition, it is su½cient to note that the subgroup Y2 is con-
tained in CK;L. Indeed, consider the rigid analytic uniformization of A=K as in [B-X], §1:

T???y
L ���! G ���! A???y

B

with T=K a torus, B=K an abelian variety with potentially good reduction, and L=K a
lattice. The group Y2 is de®ned to be the image under the natural map F�G� ! F�A� of the
subgroup F�G�tors. The change of base L=K induces natural maps

F�G� ���! F�A�???y ???y
F�GL� ���! F�AL�:

It follows from [B-X], 4.11 (see 1.3), that the map F�TL� ! F�GL� is an isomorphism
(recall that F�BL� � �0�). Thus, F�GL� is free since F�TL� is. Hence, the image of F�G�tors

in F�GL� is trivial.

Corollary 1.9. Let A=K be an abelian variety whose NeÂron model A=OK has toric

rank equal to zero. If the extension L=K is tame, then A is split. In particular, if
p > 2 dim A� 1, then A is split.
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Proof. If A is not split, then pj jF�A�j (Corollary 1.5). Then pj�L : K�. It is shown in
[S-T], p. 497, that p > 2 dim A� 1 does not divide �L : K �.

Question 1.10. Let G=K be any semi-abelian variety. Let L=K denote the extension
minimal with the property that GL=L has semistable reduction. If L=K is tame, is it true
that G=K has split reduction? In other words, is it true that the Swan conductor d�G�,
recalled in 1.12 below, is positive if G does not have split reduction?

Proposition 1.11. Let G1 and G2 be semi-abelian varieties over K. Let f : G1 ! G2

be an isogeny of degree n prime to p. Then G1 has split reduction if and only if G2 has split

reduction.

Proof. There exists an isogeny g: G2 ! G1 such that g � f : G1 ! G1 is the multipli-
cation by n on G1 ([BLR], 7.3/5). The isogeny g has degree a power of n and, hence, prime
to p. Consider the morphisms of the associated NeÂron lft-models G1 ! G2 and G2 ! G1,
induced respectively by f and g. Then, by uniqueness of the extension, the composition
G1 ! G2 ! G1 is the multiplication by n on G1. This implies immediately that G1 ! G2

induces an injection F�G1�p ! F�G2�p. Applying the result to the isogeny g, we see
that F�G1�p ! F�G2�p is in fact an isomorphism. Now the proposition follows from

Proposition 1.4, (b) and (c).

Note that the proof above shows that f induces an isomorphism F�G1��n�FF�G2��n�
on the prime-to-n parts of the groups of components.

1.12. In this article, we investigate possible relationships between the splitting
properties of the NeÂron model of a semi-abelian variety G and the size of its Swan con-
ductor d�G�. We recall brie¯y below the de®nition of d�G� and list some of its properties
(see [Ser2], §2.1, for more details). Let GK be the absolute Galois group Gal�K s=K�. Recall
that we assume that K is complete with algebraically closed residue ®eld. Thus GK is equal
to its inertia subgroup. Let l be a prime di¨erent from p. Let Tl�G� denote the Tate module
of G, and set Vl�G� :� Tl�G�nZl

Ql. Consider the l-adic representation

r: GK ! Aut
ÿ
Vl�G�

�
corresponding to the action of GK on Tl�G�. Let T and B be respectively the toric and
abelian parts of G. There is a ®nite Galois extension L=K such that GL acts trivially on
Tl�T� and unipotently on Tl�B�. Since Tl�G� is an extension of Tl�B� by Tl�T� (see
Proposition 6.4 (a)), GL acts unipotently on Vl�G�. Let Vn denote the set of elements

x A Vl�G� such that
ÿ
r�s� ÿ 1

�n
x � 0 for all s A GK . Let gr

ÿ
Vl�G�

�
:� Ly

n�0

Vn�1=Vn. Then

GK acts on gr
ÿ
Vl�G�

�
through the ®nite group G :� GK=GL � Gal�L=K�. For s A GK , the

trace of r�s� on Vl�G� depends only on the image of s in G, and we obtain a function
Trr: G! Ql. The Swan conductor of Vl�G� is de®ned as the scalar product

d
ÿ
Vl�G�

�
:� jGjÿ1P

g AG

Trr�g�bG�g�;

where bG: G! Z is the Swan character.
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The conductor d
ÿ
Vl�G�

�
is always a non-negative integer. It equals 0 if and only if the

p-Sylow subgroup of GK acts trivially on Vl�G�. The latter is equivalent to saying that G
acquires semi-abelian reduction (i.e. G0

k is semi-abelian over k) after a ®nite tamely rami®ed
extension of K.

It is easy to check from the above de®nition that if 0! V 0 ! Vl�G� ! V 00 ! 0 is an
exact sequence of Ql�GK �-modules, then d

ÿ
Vl�G�

� � d�V 0� � d�V 00�. It is well-known that
d
ÿ
Vl�B�

�
and d

ÿ
Vl�T�

�
are integers independent of l3 p. The Swan conductor d�G� is

de®ned to be d
ÿ
Vl�G�

�
for any l3 p.

2. The case of elliptic curves

Let E=K be an elliptic curve given by a Weierstrass equation

y2 � a1xy� a3y � x3 � a2x2 � a4x� a6;�3�

with ai A OK for i A f1; 2; 3; 4; 6g. Note that when ai A pOK for all i � 1; . . . ; 6, then the
reduced equation has a singular point at �0; 0�. We shall repeatedly use the following fact.
If jF�E�j > 1, then there exist a minimal Weierstrass equation (3) for E=K with v�ai� > 0
for all i, and a point P � �x; y� in E�K� with v�x� > 0. Indeed, let E0�K� denote the set of
points in E�K� whose reduction in the Weierstrass model modulo p is not �0; 0�. Then
F�E�GE�K�=E0�K� (see [Si2], IV.9.2).

Let us record here that under a translation x � z� b, the equation (3) becomes

y2 � a1zy� �a3 � ba1�y � z3 � �3b� a2�z2 � �3b2 � 2a2b� a4�z�4�
� �b3 � a2b2 � a4b� a6�:

Recall the formuli

b2 � a2
1 � 4a2;

b4 � 2a4 � a1a3;

b6 � a2
3 � 4a6;

b8 � a2
1a6 � 4a2a6 ÿ a1a3a4 � a2a2

3 ÿ a2
4 ;

D � ÿb2
2b8 ÿ 8b3

4 ÿ 27b2
6 � 9b2b4b6:

If P � �x; y� A E�K� is not a point of order 2, the point 2P has the following x-coordinate:

x�2P� � x4 ÿ b4x2 ÿ 2b6xÿ b8

4x3 � b2x2 � 2b4x� b6
:�5�

We denote by t�E� the type of special ®ber of the regular minimal model of E=K over OK ,
following Kodaira's notation:

t�E� A fIn �nZ 0�; I�n �nZ 0�; II; II�; III; III�; IV; IV�g:
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The cases of reduction I�2n, nZ 0, are the only cases where the group F is not cyclic. In this
case the exact sequence (1) may be not split but not totally not split.

Let m denote the number of irreducible components in the special ®ber of the mini-
mal regular model of E=K. Let d�E� denote the Swan conductor of E (called the wild part
of the conductor of E in [Si2]). Recall Ogg's formula when the reduction of E is additive
([Ogg], Theorem 2, where the proof is incomplete, and [Sai], Corollary 2):

v�D� � 2� d�E� � �mÿ 1�:

Theorem 2.1. Fix a type t of special ®ber of an elliptic curve. Then there exists a
constant c � c�t� such that, if K is any discrete valuation ®eld and E=K is any elliptic curve

with reduction of type t over OK whose NeÂron model E=OK is not split, then 1Y d�E�Y c.
More precisely,

(a) if E=OK is totally not split, then 1Y d�E�Y 3;

(b) if E=OK is not split but not totally not split, then t � I�2n and 1Y d�E�Y 2n� 3.

The proof of Theorem 2.1 is a case by case analysis that will occupy the remainder of
this section. The basic idea is the following. Let j be an element of F. Let P A E�K� be a
rational point whose specialization in Ek lies in the connected component corresponding to
j. Let d be the order of j. We can assume that d is divisible by p and that Ek is additive
(Proposition 1.4 (a) and 1.6). Then d is a power of p. Since E0

k is killed by p, j lifts to an
element of Ek of order d if and only if the image of P in Ek has order d. To determine the
order of the image of P, we take advantage of the fact that the multiplication-by-2 map on
an elliptic curve is given by simple and explicit formuli, and that the reduction map
E�K� ! Ek�k� is easy to compute.

We are going to discuss the splitting of E following Tate's algorithm, as in [Si2],
IV.9.4. The cases where the reduction of E is of type I0 (good reduction), In �nZ 1�,
multiplicative reduction, II and II� (where jFj � 1) are all split cases (see 1.5 and 1.6).
Moreover, when p � 2, IV and IV� (where jFj � 3) are also split cases, and when p � 3, I�n ,
III, and III� are split. When the reduction is not split, the extension L=K is wild (1.9) and,
thus, d�E�Z 1.

2.2. The case p � 2.

2.3. Reduction of type III �F � Z=2Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z1 Z1 Z1 1 Z2 Z2 Z2 Z2 2
and .

In all tables of coe½cients in this article, the inequalities in the second line relate
to the valuation over K of the corresponding coe½cient appearing on the ®rst line. Let
P � �x; y� A E�K� be such that v�x�Z 1. Then v

ÿ
x�2P�� � v�ÿb8=b6�, using formula
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(5). We ®nd that

E is not split, v�b6� � v�b8� � 2

, v�a3� � 1, v�D� � 4

, d � 1:

2.4. Reduction of type III� �F � Z=2Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z1 Z2 Z3 3 Z5 Z2 Z4 Z6 6
and .

Let P � �x; y� A E�K� be such that v�x�Z 1. Then the equation (3) immediately shows
that v�x� > 1, and that if v�x� � 2 then v�a4x� a6�Z 6. Thus it is possible to ®nd b A p2OK

such that v�b3 � a2b2 � a4b� a6�Z 6. Consider the translation x � z� b. We ®nd that
the new coe½cients ai in equation (4) still satisfy all the inequalities for type III� and that,
in addition, the new coe½cient a6 is divisible by p6. It is easy to check that when such is
the case, a point P � �x; y� with v�x� > 1 satis®es in fact v�x�Z 3. Then for such a point,
v
ÿ
x�2P�� � v�ÿb8=b6�. We conclude that

E is not split, v�b6� � v�b8� � 6, v�a3� � 3:

Note that v�a1� � 1, v�b2� � 2, and v�b2� � 2 implies that v�D� � 10. The case v�b2� � 3
requires K � Qnr

2 and v�a2�Y 1. Since in our case v�a2�Z 2, this case cannot happen. If E
is not split, then v�b2�Z 4 implies that v�D� � 12. Since m � 8 in the case III�, we ®nd that

E is not split) d � 1 or 3:

The case d � 2 cannot happen when the reduction is III�. Note that an elliptic curve with
reduction III� and v�a1� � 1 and v�a3� > 3 has d � 1 but is split. Thus the exponent d does
not characterize the splitting of E (see also Remark 6.7).

2.5. Reduction of type I�2n�1, nZ 0 �F � Z=4Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z1 1 n� 2 Z2n� 2 Z2n� 4 Z2 Zn� 3 2n� 4 2n� 5
and .

Using the fact that the valuation of a3 is speci®ed, we ®nd that there exists a point
P � �0; y� in E�K�. Then

x :� x�2P� � ÿb8=b6:

The above table shows that v�ÿb8=b6� � 1. Hence, 2P reduces to the singular point of the
usual Weierstrass model and, thus, P reduces on a component of degree 4 in the NeÂron
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model of E. We ®nd that

x�4P� � x4 ÿ b4x2 ÿ 2b6xÿ b8

4x3 � b2x2 � 2b4x� b6

:

Thus,

E is not split, v
ÿ
x�4P�� � 0, v�b2� � 2:

Note that since F�E�p is cyclic, E not split is equivalent to E totally not split (1.4 (e)). When
E is not split, we have

ÿb2
2 b8 ÿ8b3

4 ÿ27b2
6 9b2b4b6

2n� 9 Z3n� 12 4n� 8 Z3n� 9
.

Hence, in the case I�1 , v�D� � 8, and in the case I�2n�1, nZ 1, v�D� � 2n� 9. In all cases,
v�D� is minimal. In I�2n�1, the number of components equals 2n� 6. Thus

v�D� � 8, d � 1 �minimal for I�1�;
v�D� � 2n� 9, d � 2 �minimal for I�2n�1; nZ 1�:

Note that when v�b2� � 2, then v�c4� � v�b2
2 ÿ 24b4� � 4. Hence,

v� j� � v
c3

4

D

� �
� 12ÿ 2n� 9 < 0 if n � 2; 3; . . . :

In cases I�1 and I�3 , E=K has potentially good reduction. In all other cases, the curve has
potentially multiplicative reduction.

2.6. Reduction of type I�0 �F � Z=2Z� Z=2Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z1 Z1 Z2 Z2 Z3 Z2 Z3 Z4 Z4
and .

The condition to be of type I�0 with the above coe½cients is v�a2
2a2

4 ÿ 27a2
6� � 6. More

precisely, the polynomial

P�t� � t3 � �a2=p�t2 � �a4=p2�t� a6=p3

must have distinct roots modulo p. Since we work over a strictly henselian ®eld, we con-
clude that there exist a1; a2, and a3 in OK such that

x3 � a2x2 � a4x� a6 � �xÿ pa1��xÿ pa2��xÿ pa3�:

Liu and Lorenzini, Fibers of NeÂron models 187



Lemma 2.7. Let Pi � �pai; 0� A E�K�, i � 1; 2; 3. Then the images of P1;P2, and P3

in F are three distinct points of order 2.

Proof. The lemma follows immediately from the description of the minimal regular
model of E=K obtained in Tate's algorithm, as in [Si2], IV.9.4. The details are left to the
reader.

It is easy to check that by using the translation x � z� pa3, we obtain a new
Weierstrass equation with a3 � 0 and with each new coe½cients ai satisfying the same
inequalities listed above for type I�0 . Moreover, the new coe½cients a2 � p�a1 � a2� and
a4 � p2a1a2 have valuation 1 and 2 respectively. The new coe½cient a6 is zero. In this
case, v

ÿ
x�2P3�

� � v�ÿb8=b6�. Note that if v�a4� � 2, then v�b8� � 4. It follows that
v�b6� � v�b8� � 4 if and only if the image of P3 in F has a preimage in Ek of order 4.

Claim 2.8. If E is not split and v�a1�Z 2, then v�D� � 8 and E is totally not split. If E
is not split and v�a1� � 1, then v�D� � 8 or 9. The case v�D� � 9 can occur only when E is

totally not split.

Proof. If E is not split, then the above discussion implies that we can assume that
E=K has a Weierstrass equation with a6 � 0 and

a1 a2 a3 a4 b2 b4 b6 b8

Z1 1 2 2 Z2 Z3 4 4
and .

(Indeed, v�b6� � 4 implies that v�a3� � 2.) We leave it to the reader to verify that if
v�a1�Z 2, then v�D� � 8. Let us assume now that v�a1� � 1. If v�D� > 8, then

v�ÿb2
2b8 ÿ 27b2

6� > 8, and thus v�a4
1a2

4 ÿ 27a4
3� > 8. But a4

1a2
4 ÿ 27a4

3 is congruent to

a4
1a2

4 ÿ a4
3 modulo p9, and we ®nd that v�a2

1a4 G a2
3�Z 5. The congruences below are

now all modulo p10:

D1ÿ�a4
1 � 8a2

1 � 16a2
2�b8 ÿ 27b2

6 � 9b2b4b6

1ÿa4
1b8 � b2

6 � b2b4b6

1ÿa4
1�ÿa1a3a4 � a2a2

3 ÿ a2
4� � a4

3 � �a2
1 � 4a2��2a4 � a1a3��a2

3 � 4a6�
1�a4

1a2
4 � a4

3 � a5
1a3a4 ÿ a4

1a2a2
3 � a2

1�a2a4 � a1a3�a2
3

1ÿ2a2
3 � a5

1a3a4 ÿ a4
1a2a2

3 � 2a2
1a4 � a3

1a3
3

1 a3
1�a2

1a3a4 ÿ a1a2a2
3 � a3

3�
1 a3

1a3�a2
1a4 ÿ a1a2a3 � a2

3�
1 a3

1a3�ÿa1a2a4�:

Thus, v�D�Z 9 and v�D� � 9 if v�a1� � 1.
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Consider the numerator Ni of x�2Pi�, i � 1; 2. We claim that Ni is exactly divisible by

p4. Indeed, if v�x� � 1, then x4 ÿ b4x2 ÿ 2b6xÿ b8 is congruent to �x2 ÿ a4�2 modulo p4.
Thus, v�Ni� � 2v�p2a2

i ÿ p2a1a2�. Since a1 is not congruent to a2 modulo p, our claim fol-
lows. Let us now consider the denominator Di of x�2Pi�, i � 1; 2. By de®nition,

4x3 � b2x2 � 2b4x� b6 � 4�x3 � a2x2 � a4x� a6� � �a1x� a3�2:

Thus, v�Di� � 2v�a1pai � a3�. Hence, if v�a1�Z 2, then E is totally not split and v�D� � 8.
Assume now that v�a1� � 1. Write a1 � A1p and a3 � A3p2 with A1 and A3 units. Note
now that

�A1a1 � A3��A1a2 � A3� � �A2
1a1a2 � A2

3� � A1A3�a1 � a2�

and that p does not divide a1 � a2. On the other hand, if v�D� � 9, then v�a2
1a4 G a2

3�Z 5.
It follows that if v�D� � 9, then v�A1ai � A3� � 0 and, thus, E is totally not split. This
concludes the proof of 2.8.

The type I�0 has 5 components, and one easily checks that the case d � 1 cannot
happen with type I�0 . We conclude from the above discussion that if E is not split, then
d � 2 or 3. The case d � 3 happens only when E is totally not split.

2.9. Reduction of type I�2n, nZ 1 �F � Z=2Z� Z=2Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z1 1 Zn� 2 n� 2 Z2n� 3 Z2 Zn� 3 Z2n� 4 2n� 4
and .

It is easy to check that a point P � �x; y� in E�K� either has v�x� � 1, or has v�x�Z n� 1.
Let X :� x=pn�1 and Y :� y=pn�1 and consider the equation

g�X ;Y� :� Y 2 � a1XY � �a3=pn�1�Y ÿ �pn�1X 3 � a2X 2 � �a4=pn�1�X � a6=p2n�2�:

By hypothesis,

a2X 2 � �a4=pn�1�X � a6=p2n�2 � a2�X ÿ a��X ÿ b��6�

for some a; b A OK , aÿ b B pOK . Thus, a point P � �x; y� in E�K� with v�x�Z n� 1 is such
that either x1 apn�1 or x1 bpn�1 modulo pn�2. Let Pi :� �xi; yi� A E�K� be such that
v�x1� � 1, v�x2 ÿ apn�1�Z n� 2 and v�x3 ÿ bpn�1�Z n� 2.

Lemma 2.10. The reduction map fy;P1;P2;P3g ! F is surjective.

Sketch of proof. Recall that the NeÂron model of E=K is obtained from the minimal
regular model X=OK of E=K by removing the singular points of Xk=k. Thus, to prove our
claim, it is su½cient to show that y;P1;P2, and P3 reduce to four distinct components of
multiplicity 1 in Xk.

Consider the following model Y=OK of P1=K. Start with Y0 � U WU 0, where
U � SpecOK �x� and U 0 � SpecOK �1=x�. Blow up the origin in �Y0�k to get Y1. Blow up the
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origin in the exceptional ®ber of �Y1�k to get Y2. Continue in a similar fashion to construct
Yi from Yiÿ1. Let Y :� Yn�1. The special ®ber of Y is a chain of n� 2 smooth rational
P1=k, say C0; . . . ;Cn�1, with C0 denoting the component corresponding to �Y0�k. Consider
the model Z=OK of E=K obtained as the integral closure of Y in K�E�. Then Zk is the
union of n� 2 smooth rational curves, say D0; . . . ;Dn�1, each having multiplicity 2 in Zk

except for the preimage D0 of C0, which has multiplicity 1. The scheme Z has two singular
points Qa and Qb on Dn�1and a singular point Q1 on D1. Each of these points lie on the
smooth locus of Zred

k . The singularity of Z at Q1 (resp. Qa;Qb) is resolved by the blow-up
of Q1 (resp. the blow-up of Qa;Qb). The three exceptional ®bers have multiplicity one.

Qb

2 22 Q1 1Qa

D0
::::::

Dn�1 Dn

Cn�1 Cn C1 C0

::::::

Let V!Z denote the blow-up of the three points Q1;Qa;Qb, with exceptional ®bers
E1;Ea and Eb. The normal model V contains two con®gurations in Vk of the form

2 . . . . . .

1 E 0

1 E

����������
�����

D

2

such that V is regular at every closed point of E and E 0. Let W!V denote the
minimal desingularisation of V. Then �E � E�W < ÿ1 and �E 0 � E 0�W < ÿ1. Similarly
�D �D�W < ÿ1. Let W! X denote the contraction to the minimal regular model. It
follows that D;E, and E 0 do not contract to points in X.

The reader can check that a point �x; y� A E�K� reduces in Xk to the component
corresponding to E1 (resp. Ea or Eb) if v�x� � 1 (resp. if v�xÿ apn�1�Z n� 2, resp. if
v�xÿ bpn�1�Z n� 2). Indeed, the integral closure of OK �x=pn�1� in K�E� is the ring

OK �X ;Y �=g�X ;Y�;

and we let the points Qa and Qb correspond to the maximal ideals �p;Y ;X ÿ a� and
�p;Y ;X ÿ b�. This concludes the proof of Lemma 2.10.

Note that in the equicharacterstic zero case, the reduction map in 2.10 is also con-
sidered, using a di¨erent method, in [C-Z], 2.25.

Denote by j1 , ja, and jb the elements of F corresponding respectively to the com-
ponents E1, Ea, and Eb. Consider now a point P � �x; y� in E�K� with v�x� � 1 (e.g.,
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P � P1). Then the valuation of the numerator N of x�2P� is equal to 4, and the denomi-
nator D of x�2P� is congruent to b2x2 modulo p4. Thus v�b2� � 2 if and only if the image of
P in Ek has order > 2. This is also equivalent to saying that j1 does not lift to an element of
Ek of order 2. In particular, if v�b2� � 2, then E is not split. Assume now that v�x�Z n� 1
(e.g., when P � P2 or P3). Then v�N� � v�b8� � 2n� 4, and D is congruent to b2x2 � b6

modulo p2n�4. Hence, if v�b2� > 2, we ®nd that E is not split if v�b8� � v�b6�. In conclusion,
E is not split if and only if v�b2� � 2, or v�b2� > 2 and v�b8� � v�b6�.

Proposition 2.11. Assume that E=K has reduction of type I�2n, n > 0. Then:

(a) E=OK is totally not split if and only if v�D� � 2n� 8 and v�b8 � a2
4� � 2n� 5.

(b) If E=OK is not split, then v�D�Y 4n� 9.

Proof. (a) We saw above that j1 does not lift to an element of Ek of order 2 if and
only if v�b2� � 2. It is easy to check that this equality is equivalent to v�D� � 2n� 8, and
also to v�a1� � 1. Let us now assume that v�b2� � 2. We need to show that ja or jb lifts
to an element of Ek of order 2 if and only if v�b8 � a2

4� > 2n� 5 (use the fact that
v�b8 � a2

4�Z 5 in general). Since ja or jb lifting to an element of Ek of order 2 is equivalent
to 2P2 or 2P3 reducing to the identity in Ek, we can use the above discussion to ®nd
that 2Pi �i � 2; 3� reduces to the identity if and only if v

ÿ
b2x�Pi�2 � b6

�
> 2n� 4. It is

easily checked that the latter is equivalent to v
ÿ
a1x�Pi� � a3

�
> n� 2. Substituing ÿa3=a1

for x�Pi� in equation (6), we see that either ja or jb lifts to an element of order 2 if and only

if v
ÿ
a2�a3aÿ1

1 �2 � a4�a3aÿ1
1 � � a6

�
> 2n� 3 or, equivalently,

v�a2a2
3 � a1a3a4 � a2

1a6� > 2n� 5:�7�

Looking at the formula for b8, we ®nd that this last inequality is equivalent to
v�b8 � a2

4� > 2n� 5.

Let us now prove statement (b) of the proposition only in the case char�K� � 0. The
case where char�K� � 2 is similar and is left to the reader. Let e :� v�2� and v :� v�a1�.
Consider ®rst the case where e < v. In this case v�b2� � 2e� 1 and v�b4� � e� n� 2.
Moreover, since E is not split and v�b2� > 2, we have v�b6� � v�b8� � 2n� 4. Thus,
v�a3� � n� 2. We ®nd that

ÿb2
2 b8 ÿ8b3

4 ÿ27b2
6 9b2b4b6

4e� 2n� 6 6e� 3n� 6 4n� 8 3e� 3n� 7
.

Clearly, v�8b3
4� > v�b2b4b6�. Thus v�D�Y 4n� 8 unless two of the numbers 4e� 2n� 6,

4n� 8, and 3e� 3n� 7 are equal and not bigger than 4n� 8.

The equality 4e� 2n� 6 � 3e� 3n� 7 occurs if e � n� 1, but in this case
4e� 2n� 6 > 4n� 8 and v�D� � 4n� 8.

The equality 3e� 3n� 7 � 4n� 8 occurs if 3e � n� 1, but in this case
4e� 2n� 6 < 4n� 8, so that v�D� < 4n� 8.
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The equality 4e� 2n� 6 � 4n� 8 occurs if 2e � n� 1. In this case,
3e� 3n� 7 > 4n� 8, and we may not conclude that v�D�Y 4n� 8. Let us thus
assume that n is odd and e � �n� 1�=2. Let us consider ®rst the case where nZ 3,
so eZ 2. Then v�b2b4b6�Z 4n� 10. We claim that

v�D� � v�ÿb2
2b8 ÿ 27b2

6� � 4n� 8 or 4n� 9:

All congruences below are modulo p4n�10:

D1ÿb2
2b8 ÿ 27b2

6 1ÿb2
2b8 � b2

6

1ÿ�4a2 � a2
1�2b8 � �a2

3 � 4a6�2

1ÿ16a2
2b8 � a4

3

1ÿ16a2
2�ÿa2

4 � a2a2
3� � a4

3

1 a4
3 ÿ 16a2

2a2
4 ÿ 16a3

2a2
3 :

If v�D� > 4n� 8, then v�a4
3 ÿ 16a2

2a2
4� > 4n� 8, which implies that v�a2

3 ÿ 4a2a4� and
v�a2

3 � 4a2a4� are both larger than 2n� 4. Thus

ÿb2
2b8 ÿ 27b2

6 1ÿ16a3
2a2

3 mod p4n�10

and in this case v�D� � 4n� 9.

Consider now the case n � 1, so that e � 1. In this case, v�b2b4b6� � 4n� 9, and a
slight change needs to be made in the above proof. We claim that

v�D� � v�ÿb2
2b8 ÿ 27b2

6 � 9b2b4b6� � 4n� 8 or 4n� 9:

We work again with congruences modulo p4n�10:

ÿb2
2b8 ÿ 27b2

6 � 9b2b4b6 1ÿ16a2
2b8 � a3

4 � b2b4b6

1 a3
4 ÿ 16a2

2a2
4 � 32a2

2a2
4 ÿ 16a3

2a2
3 � 8a2a4a2

3 :

If v�D� > 4n� 8, then v�a2
3 G 4a2a4�Z 2n� 5. Thus

D1 8a2a4�4a2a4 � a2
3� ÿ 16a3

2a2
3

1ÿ16a3
2a2

3 :

It follows that v�D� � 4n� 9 � 13 in this case too.

Let us now consider the case where eZ v. Then v�b2� � 2v and v�b4�Z v� n� 2,
with equality if e > v. It is easy to check that if v � 1, then v�D� � 2n� 8. Thus, we may
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assume that v > 1. We ®nd that

ÿb2
2 b8 ÿ8b3

4 ÿ27b2
6 9b2b4b6

4v� 2n� 4 Z6v� 3n� 6 4n� 8 Z3v� 3n� 6
.

If 4v� 2n� 4Z 3v� 3n� 6, then vZ n� 2. If such is the case, 3v� 3n� 6 > 4n� 8
and v�D� � 4n� 8. If 4n� 8Z 3v� 3n� 6 then n� 2Z 3v. If such is the case, then
4v� 2n� 4 < 3v� 3n� 6 and v�D� � 4v� 2n� 4 < 4n� 8. If 4v� 2n� 4 � 4n� 8, we
®nd that v � �n� 2�=2. Thus n is even. Then

v�b2b4b6� ÿ 4n� 8Z n=2� 1Z 2:

We claim that

v�D� � v�ÿb2
2b8 ÿ 27b2

6� � 4n� 8 or 4n� 9:

We work again with congruences modulo p4n�10:

D1ÿb2
2b8 ÿ 27b2

6 1ÿb2
2b8 � b2

6

1ÿa4
1b8 � a4

3

1ÿa4
1�ÿa2

4 � a2a2
3� � a4

3

1 a4
1a2

4 ÿ a4
3 ÿ a4

1a2a2
3 :

If v�D� > 4n� 8, then v�a2
1a2 G a2

3�Z 2n� 5. Thus

D1ÿa4
1a2a2

3 mod p4n�10

and v�D� � 4n� 9. This concludes the proof of Proposition 2.11.

Assume that E=OK is not split and that E=K has reduction of type I�2n, n > 0. Then the
number of components is m � 2n� 5. Thus, d�E�Y 2n� 3. If E=OK is totally not split,
then d�E� � 2. This concludes the proof of Theorem 2.1 when p � 2.

2.12. The case p � 3.

2.13. Reduction of type IV �F � Z=3Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z0 Z0 Z1 Z1 Z2 Z1 Z1 2 Z3
and .

Since p � 3, E�2��K� injects in the special ®ber Ek�k�. Since F � Z=3Z and E0
k�k� is addi-

tive, we ®nd that E�2��K� must be trivial. Hence, the equation
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4x3 � b2x2 � 2b4x� b6 � 0

has no solutions in K. One easily sees that this fact implies that v�b4�Z 2. Since p � 3, we

can replace y by
1

2
�yÿ a1xÿ a3� to obtain a new equation for E with a1 � 0 � a3 and

a2 a4 a6 b2 b4 b6 b8

Z1 Z2 2 Z1 Z2 2 Z3
and .

Note that now b2 � 4a2, b4 � 2a4, b6 � 4a6 and b8 � 4a2a6 ÿ a2
4. Knowing that v�b4�Z 2

in the initial equation allows us to show that v�b8�Z 3 in the second equation for E. Let
P � ÿ0; y�P�� with y�P�2 � a6. Such a point reduces in F to a generator. We now use the
following formuli to analyze the reduction of 3P � ÿx�3P�; y�3P�� in the connected com-
ponent of Ek=k:

x�3P� � y�2P� ÿ y�P�
x�2P�

� �2

ÿ a2 ÿ x�2P�;�8�

y�2P� � ÿ a4x�2P�
2y�P� ÿ

a6

y�P� ;

x�2P� � ÿb8

b6
:

It follows from the above formuli that Ek is not split if and only if

v
ÿ
y�2P� ÿ y�P��Z v�ÿb8=b6� � v�b8� ÿ 2:

Since

y�2P� ÿ y�P� � ÿa4x�2P� ÿ 4a6

2y�P� ;

and v�a6� � 2, v�a4�Z 2, and v
ÿ
x�2P��Z 1, we ®nd that the valuation of y�2P� ÿ y�P�

must be equal to 1. It follows that Ek is not split if and only if v�a2� � 1, since
b8 � 4a2a6 ÿ a2

4. Thus,

Ek is not split, v�b2� � 1 and v�b8� � 3

, v�D� � 5

, d � 1:

2.14. Reduction of type IV� �F � Z=3Z�. Here

a1 a2 a3 a4 a6 b2 b4 b6 b8

Z1 Z2 Z2 Z3 Z4 Z1 Z3 4 Z5
and
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in Tate's algorithm. Since p � 3 and F � Z=3Z we ®nd that E�2��K� must be trivial. Hence,
the equation 4x3 � b2x2 � 2b4x� b6 � 0 has no solutions in K. One easily sees that this

fact implies that v�b2�Z 2. Since p � 3, we can replace y by
1

2
�yÿ a1xÿ a3� to obtain a

new equation for E with a1 � 0 � a3 and

a2 a4 a6 b2 b4 b6 b8

Z2 Z3 4 Z2 Z3 4 Z6
and

(where now b8 � 4a2a6 ÿ a2
4). Let P � ÿ0; y�P�� with y�P� � a2

6. Such a point reduces to a
generator in F. Using the formuli (8), we ®nd again that Ek is not split if and only if

v
ÿ
y�2P� ÿ y�P��Z v�ÿb8=b6� � v�b8� ÿ 4:

Since

y�2P� ÿ y�P� � ÿa4x�2P� ÿ 4a6

2y�P� ;

we ®nd that v
ÿ
y�2P� ÿ y�P�� � 2. Thus,

Ek is not split, v�b8� � 6

) v�D� � 9 or 10

) d � 1 or 2:

Note that v�D� � 9 if and only if v�a4� � 3. When v�a4� > 3 and Ek is not split, then
v�a2� � 2 and v�D� � 10. This concludes the proof of Theorem 2.1.

3. Remarks and examples

Example 3.1. Let p � 2 and n A N, and let K be such that e :� v�2� < �n� 1�=2.
Let a; b A O�K and consider the curve E=K

y2 � pn�2y � x3 � pax2 � pn�2bx:

Its reduction is I�2n. This curve is such that v�D� � 4e� 2n� 6 < 4n� 8 and d � 4e. Let
P � �0; 0�. Then the reduction of 2P is �b2

; b
3�. Thus the reduction of P has order 4 in Ek

and E=K is not split.

Theorem 2.1 shows that d�E�Y 2n� 3. Choosing K such that e � n=2 when n is even
and �nÿ 1�=2 when n is odd produces examples of curves that do not have split reduction
and with d�E� � 2n when n is even and d�E� � 2nÿ 2 when n is odd. This example shows
that there is no absolute bound, independent of the type of reduction,for the Swan con-
ductor d of elliptic curves with non-split reduction.
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Remark 3.2. Let E=K be an elliptic curve. Let M=K be a ®nite extension. We show
in this remark that the splitting type of the special ®ber of the NeÂron model of EM=M is not
easily predictable, even when the extension M=K is tame. In particular, we will show below
that E=K having split reduction and M=K being tame does not always imply that EM=M has

split reduction. On a more positive note, Proposition 3.3 below implies that if E=K does not
have split reduction, then EM=M has split reduction if �M : K� is large enough.

Let p � 2. Consider an elliptic curve E=K with reduction of type II� �F � f1g�, so
that E=K has split reduction. We are going to show that the NeÂron model of EM=M may
not be split if �M : K � � 3. With type II�, we have

a1 a2 a3 a4 a6

Z1 Z2 Z3 Z4 5
.

Let p � h3. After dividing the equation (3) by h2 and changing variables Y :� y=h6 and
X :� x=h4, we ®nd an equation of the form

Y 2 � a 01XY � a 03Y � X 3 � a 02X 2 � a 04X � a 06;

with

a 01 a 02 a 03 a 04 a 06
Z1 Z2 Z3 Z4 � 3

.

The reduction is of type I�0 , according to Tate's Algorithm [Si2], IV.9.4. As we noted after
2.7, we can ®nd x0 with vM�x0� � 1 such that the translation X ! X � x0 produces a new
equation

Y 2 � a 01XY � �a 01x0 � a 03�Y � X 3 � � � � � a 006

with a 006 � 0. In this case, the discussion after 2.7 implies that EM=M does not have split
reduction if vM�a 01x0 � a 03� � 2. Then EM=M does not have split reduction if vM�a 01� � 1 or,
equivalently, if v�a1� � 1.

Proposition 3.3. Let E=K be an elliptic curve. Let M=K be any tamely rami®ed

extension of degree mZ 4. Then EM=M has split reduction.

Proof. Recall that for any tame extension M=K ,

d�EM=M� � �M : K �d�E=K�:

If d�E=K� � 0, then d�EM=M� � 0. Hence, EM has split reduction (Theorem 2.1). Assume
from now on that d�E=K�Z 1. Then d�EM=M�ZmZ 4. According to Theorem 2.1,
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EM=M has split reduction except possibly when p � 2 and EM has reduction of type I�2n,
n > 0. Consider this remaining case. Our next lemma implies that E=K has also reduction
of type I�2n 0 , n 0 > 0.

Lemma 3.4. Let p � 2. Let E=K be an elliptic curve with reduction of type t. Let

M=K be any ®nite extension of odd degree m. Then the reduction of EM=M is of type t 0, as in
the following table:

t t 0

In �nZ 0� Inm

I�n �nZ 0� I�nm

II or II� II or II� or I�0
III or III� III or III� or I0

IV or IV� IV or IV� .

Sketch of proof. This lemma is well-known but we have been unable to ®nd a ref-
erence for it in the literature. Let X=OK denote the minimal regular model of E=K whose
special ®ber has smooth components intersecting with normal crossings. A regular model
Z=OM of EM=M can be constructed as the minimal desingularization of the normalization
Y of the base change X�Spec�OK � Spec�OM�. The singularities of the normal model Y are
well-understood when the extension M=K is tame: each singularity is resolved by a single
chain of rational curves (Hirzebruch-Young singularities). Except for the case t � In, the
graph associated to the special ®ber of X is a tree. This tree has a single node of multiplicity
r � 6 when t is II or II�, a single node of multiplicity r � 4 when t is III or III�, a single
node of multiplicity r � 3 when t is IV or IV�, and two nodes of multiplicity r � 2 when t is
I�n and n > 0. The key to the proof of the lemma is to note that in each of the cases where
the graph of X has a single node of multiplicity r, the graph of the special ®ber of Y must
be a tree with a single node of multiplicity r=gcd�r;m�.

Let us return to the proof of 3.3. Let W be the minimal Weierstrass model of E=K.
Then E0 is an open subset of W. Consider the equation (3) of W. It follows from Tate's
algorithm that v�a6�Z 3 and, thus, vM�a6�Z 12. Moreover, vM�ai�Z 4. So (3) is not min-
imal for EM . Denote by E 0 the NeÂron model of EM . Then the canonical map E0

k ! E 00k is
the zero map, as can be easily checked by noting that a point �x; y� A E�K� that reduces to
a point of E0

k�k� must reduce, under the reduction map of EM=M, to the point
�0; 0� A E 00k �k�. Since m kills the kernel of the natural map FK ! FM (see [Lor2], 3.1, (5)
and (10)), we ®nd that FK ! FM is an isomorphism. Let j A FM � FK be an element of
order 2. Let x A Ek be in the preimage of j. Let x 0 be the image of x in E 0k. Since 2x A E0

k, we
®nd that 2x 0 � 0. Since x 0 is in the preimage of j, EM=M has split reduction.

Remark 3.5. Let E=K be an elliptic curve, and denote by L=K the extension mini-
mal with the property that EL=L has semistable reduction. Recall that in the case of elliptic
curves, if 3 divides �L : K�, then 3 exactly divides �L : K�. It is shown in [ELL] that �L : K�
kills the group FK when the curve E has potentially good reduction. It is thus natural to
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wonder whether �L : K � also kills Ek=k when FK is not trivial. The following example shows
that the answer to this question is negative in general. Take the curve 54B3 in [Cre]:

y2 � xy� y � x3 ÿ x2 ÿ 14x� 29;

which has reduction of type IV when p � 3. The point P � �3; 1� has order 9 in E�Q�, with
2P � �ÿ3; 7� and 3P � �1;ÿ5�. We ®nd that �0; 1� is the singular point in the special ®ber.

Since 3P does not reduce to y, we ®nd that P has order 9 in the special ®ber and, thus, Ek

is not split and �L : K � does not kill Ek.

Remark 3.6. The following examples show that the possible relationships between
the splitting types of the special ®bers of the NeÂron models of two isogenous curves are not
easily predictable. Consider the four curves of conductor 40 in the tables [Cre]. These four
curves are all isogenous, with the curves A1, A2, and A3 not split, and the curve A4 split.
Note that the curves A2 and A4 both have reduction of type III� (while A1 is of type I�1 and
A3 is of type III).

Remark 3.7. One strategy for determining whether a NeÂron model G=K is split is to
®nd a torsion point in G�K� (and not in G�k�) with the appropriate order and reduction.
However, since there is no relationship in general between G�p��K� and the p-part of FK

when char�k� � p, this method has a very limited scope of application. We shall only use
this method below to exhibit an example of a jacobian of dimension g with additive and
split reduction when ps � 2g� 1. Note however that this method may possibly be used to
discuss the splitting property of the NeÂron model of the jacobian of the modular curve
X0�mpr�=Qnr

p when pZ 5. Indeed, it is proven in [Lor4], 2.3, that the p-part of the group of
components is in the image, under the reduction map, of the cuspidal torsion subgroup.

Let pZ 3 be prime and let gZ 1. Consider the proper smooth completion X=K of the
a½ne plane curve given by the equation

y2 � x2g�1 � p2:

The curve X=K has genus g. Let A=K be its Jacobian. Let P :� �0; p� and Q :� �0;ÿp�.
The point PÿQ belongs to A�K� and has order 2g� 1. We claim that the group of com-
ponents FK of the NeÂron model A=OK of A=K is cyclic of order 2g� 1 and that PÿQ
reduces to a generator of FK . Thus A=K has split reduction. To prove our claim, we shall
exhibit a regular model X=OK of X=K.

Consider the following model X0=OK of X=K. The scheme X0 is the plane projective
curve in P2=OK given by the equation y2z2gÿ1 � x2g�1 � p2z2g�1. We shall now describe
pictorially the sequence of blow-ups

X0  X1  � � �  Xg

that leads to a regular scheme Xg=OK . More precisely, we describe below the special ®bers
of the schemes Xi:
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CP CQ CP

::::::
2

CQ 2

1

2
gÿ 1 g

T::::::
::::::

1
2 :::::: g1 gÿ 1

The triple point T in the model Xg is seen in the chart

SpecOK x; y;
y

xg
;

p

xg

� �
=�y=xg�2 ÿ ÿx� �p=xg�2�:

All irreducible components appearing in the pictures above are smooth P1. We leave the
details of this computation to the reader. The blow-up X=OK of the point T is a model with
normal crossings whose associated graph is a tree. Thus A=K has purely additive reduction
([BLR], Thm. 4 on p. 267, and 9.2/9, 9.2/10). The tree is represented below:

� � � � � � � � � � � � � � � � � � � � �����
�1

1 2 g 2g� 1 g 2 1

CP CQ

One checks easily that P and Q reduce to two distinct components of multiplicity 1, say CP

and CQ. Indeed, consider the following chart of X1:

U � SpecOK x; y;
y

p
;
x

p

� �
=�y=p�2 ÿ ÿ�x=p�2g�1p2gÿ1 � 1

�
:

The special ®ber of U consists of two a½ne curves, and P reduces into the component
y=p � 1 while Q reduces into the component y=p � ÿ1. It is shown in [BLR], 9.6/6, that
FK GZ=�2g� 1�Z. That PÿQ reduces to a generator is shown in [Lor3], 4.4.

Let pc be the largest power of p that divides the order of an element of F. The fol-
lowing examples show that in general, as expected, the fact that the special ®ber Ek is not
split does not provide any indication as to whether the group E�K� contains a point of
order pc�1.

Example 3.8. Let p � 2. Let E=K be an elliptic curve with reduction of type III.
Assume that Ek=k is not split, so that Ek�k� contains a point of order 4. We exhibit below
such an elliptic curve with no 4-torsion points in E�K�. Suppose that P � �x; y� is a point of
order 4 in E�K�. Let u :� x�2P�. Then v�u� � 0 since Ek=k is not split. The coordinate
x :� x�P� is solution of the equations
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�x4 ÿ b4x2 ÿ b6xÿ b8��4x3 � b2x2 � 2b4x� b6�ÿ1 � u;

u3 � b2u2=4� b4u=2� b6=4 � 0:

(

It follows that

v�ÿb8 � ub6�Z 4;

v�a2
4 � ua2

3�Z 3

(

so that v�a8
3 � a2

1a2
3a4

4 � 22a6
4�Z 9. It is easy to exhibit examples where this last congruence

cannot be satis®ed, such as in

y2 � 2xy� 2y � x3 � 2x� 4:

Example 3.9. Consider the curve 24A4 in [Cre]: y2 � x3 ÿ x2 � x. Its reduction is
of type III when p � 2. The singular point is �1; 1� in reduction. Let P � �1; 1�. This point
has order 4 and 2P � �0; 0�. Thus the extension Ek is not split.

Remark 3.10. Let F=K be a ®nite extension and let A=F be any abelian variety. It is
natural to wonder what are the possible relationships between the splitting type of A=F and
that of its Weil restriction ResF=K�A�=K. Let us note ®rst that FK

ÿ
ResF=K�A�=K

�
is iso-

morphic to FF �A� ([ELL], proof of Theorem 1), so that if p does not divide jFF �A�j, then
A=F has split reduction, and ResF=K�A�=K has split reduction for any extension F=K . The
following example shows that the hypothesis that A=F has split reduction does not imply,
in general, that ResF=K�A�=K has split reduction, even when F=K is a tame extension.

Let p � 3 and let F=K be a quadratic extension. Let E=K be an elliptic curve with
reduction of type IV� �jFK j � 3� with v�b8� � 6 and d�E� � 2. Then E=K does not have
split reduction (see 2.14). Moreover, EF=F has split reduction: Indeed, since d�EF � � 4,
Theorem 2.1 shows that to prove our claim, it su½ces to show that the reduction of EF is
not of type I�2n for nZ 0. Since the kernel of the map FK�E� ! FF �EF � is killed by �F : K�
([ELL], Theorem 1), we ®nd that 3 divides jFF �EF �j and, thus, EF cannot have reduction
of type I�2n for nZ 0. It is shown in [Mil], Proposition 7 and following example, that
ResF=K�EF �=K is isogenous over K to the product of E=K by its quadratic twist Ed=K, and
that the isogeny can be chosen to have degree 4. Thus, since E � Ed does not have split
reduction, Proposition 1.11 implies that ResF=K�EF �=K cannot have split reduction either.

4. Norm tori and their duals

Let T=K be an algebraic torus. Such a group scheme has a NeÂron model T=OK ,
locally of ®nite type ([BLR], 10.1/6). When the special ®ber Tk is a unipotent group, the
group scheme T is of ®nite type over OK ([BLR], 10.2/1). In this section, we study the
splitting properties of T when T is a norm torus or its dual. Our main result is Theorem
4.6 below.

Let F=K be any ®nite separable extension, and denote by L=K its Galois
closure over K. Let G � Gal�L=K� and D � Gal�L=F�. Let g1; . . . ; gn A G be such that
G=D � fg1D; . . . ; gnDg. Let fd1; . . . ; dng be the basis of the permutation module Z�G=D�
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de®ned by the giD's. Consider the exact sequence of Gal�K s=K�-modules

0! Z!e Z�G=D� ! Coker�e� ! 0�9�

where e�1� :�Pn
i�1

di. By de®nition, this exact sequence of Gal�K s=K�-modules induces an

exact sequence of tori over K

0! R1
F=KGm;F ! RF=KGm;F ! Gm;K ! 0;

where the torus RF=KGm;F is the Weil restriction of Gm;F , and the map RF=KGm;F ! Gm;K

is the norm map. Denote by T :� R1
F=KGm the associated norm torus. Then

RF=K Gm;F �K� � F �; and T�K� � fz A F � jNF=K�z� � 1g:

The universal property of the Weil restriction implies the existence of a canonical
closed immersion Gm;K ! RF=KGm;F . Let S=K be the quotient torus de®ned by the exact
sequence

0! Gm;K ! RF=KGm;F ! S ! 0:�10�

The associated exact sequence of groups of characters

0! X�S� ! Z�G=D� !r Z! 0�11�

is de®ned by the augmentation map r
P

1YiYn

midi

 !
:� P

1YiYn

mi. For any G-module N, let

us denote by N5 :� HomZ�N;Z� its dual. Recall that the G-module structure on N5 is as
follows: For any f A N5, g A G, and x A N, set �gf ��x� :� f �gÿ1x�. Recall that if T=K is the
torus corresponding to N, then the torus corresponding to N5 is called the dual of T. The
next lemma is well-known.

Lemma 4.1. Let F=K be a ®nite separable extension. Let S :� �RF=K Gm;F �=Gm;K be

the quotient torus. Then:

(a) The torus S is isomorphic to the dual of T.

(b) If F=K is a cyclic extension, then S and T are isomorphic. (See 4.17 for the
converse.)

Proof. (a) Let fd5i gi be the dual basis of fdigi. There is a (non-canonical) iso-
morphism of G-modules Z�G=D�FZ�G=D�5 de®ned by di 7! d5i . We then have a commu-
tative diagram of homomorphisms of G-modules

0 ���! X�S� ���! Z�G=D� ���!r Z ���! 0???y 
0 ���! X�T�5 ���! Z�G=D�5 ���!e5

Z ���! 0:

Liu and Lorenzini, Fibers of NeÂron models 201



Thus X�S� is isomorphic to X�T�5 which, by de®nition, is the character module of the
dual of T.

(b) By assumption, F � L and D � 0. Let s be a generator of G. Then one easily
checks that the complex of G-modules

0 ���! Z ���!e Z�G� ���!sÿ1
Z�G� ���!r Z ���! 0

is exact. Hence X�T� � coker�e� is isomorphic to X�S� � ker�r�.

Proposition 4.2. Let 0! T1 ! T2 ! T3 ! 0 be an exact sequence of tori over K
with T1=K split. Let Ti=OK be the NeÂron model of Ti, i � 1; 2; 3. Then the following

sequences of groups are exact:

(a) 0! F�T1� ! F�T2� ! F�T3� ! 0,

(b) 0!T0
1;k�k� !T0

2;k�k� !T0
3;k�k� ! 0, and

(c) 0!T1;k�k� !T2;k�k� !T3;k�k� ! 0.

Proof. (a) Let us ®rst show that the map F�T1� ! F�T2� is injective. Let L=K

denote an extension such that �T2�L=L has semistable reduction. Since both �T1�L and
�T2�L are split tori, we ®nd that the map F

ÿ�T1�L
�! F

ÿ�T2�L
�

is injective. Since T1=K
is a split torus, the map F�T1� ! F

ÿ�T1�L
�

is also injective. It follows that the map
F�T1� ! F�T2� is injective. Since F�T1� ! F�T2� ! F�T3� ! 0 is exact because T1=K is
split ([B-X], 4.2 and 4.9), we get the exactness of (a).

(b) follows easily from (a) and (c). So it remains to prove (c). Let
j: Spec K ! SpecOK be the canonical map. Then j�Ti, as sheaf on the smooth site
Spec�OK�sm, is represented by the NeÂron model Ti . Since T1 is a split torus, R1j�T1 � 0
on the smooth site (see [Mil2], beginning of the proof of III.C.10) and we have an exact
sequence

0!T1 !T2 !T3 ! 0�12�

of sheaves on the smooth site Spec�OK�sm. To prove (c), it is enough to show that (12) is
exact as complex of group schemes (recall that k is algebraically closed). What follows is
inspired by conversations with C.-L. Chai.

Lemma 4.3. Let S be any scheme. Let T2=S and T3=S be two group schemes

over S, each ¯at (and, thus, faithfully ¯at) and locally of ®nite presentation over S. Let
f: T2 !T3 be a morphism of group schemes over S, and let T denote the kernel of f (as

group scheme). Then:

(a) If f: T2 !T3 induces a surjective map of sheaves on Sfppf , then T=S is ¯at.

(b) If f: T2 !T3 induces a surjective map of sheaves on Ssm, and both T2=S and
T3=S are smooth over S, then T=S is smooth.
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Proof. The surjectivity of the map of sheaves on Sfppf implies the existence of a
faithfully ¯at morphism f : W!T3 and a commutative diagram

T2 ���! T3

s

x??? 
W ���!f T3:

When the map is surjective on Ssm and T3 is smooth, we may assume in addition that f

is smooth. The existence of the section s and the fact that T2 and T3 are group schemes
imply the existence of an isomorphism of schemes over W between T2 �T3

W and
T�S W. The scheme T2 �T3

W is ¯at over S since T2=S is ¯at. This scheme is smooth
over S if T2=S is smooth and f is smooth. Thus, T�S W is ¯at over S, and smooth over
S under the hypotheses of Part (b). Since T�S W is faithfully ¯at over T, we conclude
that T=S is ¯at, and Part (a) is proved. When T�S W!S is smooth, each ®ber of this
map is smooth. Recall that a product of varieties is smooth if and only if each factor is
smooth. It follows that the ®bers of T=S are smooth. Since T=S is ¯at, it is then smooth,
and our lemma is proved.

Let S � Spec�OK�. Both T=S and T1=S are smooth over S and represent the
kernel of the morphism of sheaves on Ssm associated with the morphism T2 !T3. Hence,
T is isomorphic to T1. Proposition 4.2 follows since T2 !T3 is obviously surjective as
morphism of schemes when it is surjective as map of sheaves for the smooth topology.

Let R :� RF=KGm;F . Let Gm=OK , R=OK , and S=OK denote respectively the NeÂron
models of Gm;K , R, and S.

Corollary 4.4. Let F=K be a ®nite separable extension of degree n. Let

S :� �RF=KGm;F �=Gm;K be the quotient torus. Then:

(a) Let A :� OF nOK
k. Then the following complex of groups is exact:

0! G0
m;k�k� ! RA=kGm;A�k� !S0

k �k� ! 0:�13�

(b) F�S�FZ=nZ.

Proof. Note that G0
m � Gm;OK

and R0 � ROF =OK
�Gm;OF

� ([N-X], 3.1). Proposition 4.2
applied to the exact sequence (10) shows that both the sequence (13) and the sequence

0! F�Gm� ! F�R� ! F�S� ! 0�14�

are exact. The exact sequence (14) is canonically isomorphic to

0! K �=O�K ! F �=O�F ! F�S� ! 0;�15�

where the ®rst map is induced by the natural inclusion K HF . Since F=K is totally rami-
®ed, we ®nd that F�S�FF �=K �FZ=nZ.
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Let F=K be a ®nite separable extension of degree n. A uniformizing element t of F

satis®es an Eisenstein equation

tn � a1tnÿ1 � a2tnÿ2 � � � � � an � 0�16�

with ai A pOK and v�an� � 1. Set a0 :� 1. The di¨erent of the extension F=K is given by

vF �DF=K� � min
0YiYnÿ1

�
n
ÿ
v�ai� � v�nÿ i��� nÿ 1ÿ i

	
:

Let S be any torus over K. Let Tl�S� denote the Tate module of S. Recall that when l
is a prime di¨erent from p, the Galois module Tl�S� has rank dim�S� over Zl, and the
evaluation of characters S � X �S� ! Gm induces Galois isomorphisms between S�ln��K s�
and Hom

ÿ
X �S�=lnX �S�;Gm�ln��K s��. It follows, under our assumption on K, that Tl�S�

is isomorphic, as Galois module, to the dual of X�S�nZ Zl. Thus the Swan conductor (see
1.12) d�S� is that of the representation G! Aut

ÿ
X�S�nZ Ql

�
.

Lemma 4.5. Let S be the quotient torus �RF=KGm;F �=Gm;K . Then the Swan conductor

d�S� of S is given by d�S� � vF �DF=K� ÿ �nÿ 1�.

Proof. Since the Swan conductor is an additive function on exact sequences, and
since the Swan conductor of the trivial representation is zero, we conclude from the
exact sequence (11) that d�S� is the Swan conductor of the permutation representation
r: G! Aut�Ql�G=D��. By de®nition,

d�r� � f �r� ÿ dimQl
Ql�G=D�=Ql�G=D�G � f �r� ÿ �nÿ 1�

where f �r� is the Artin conductor of r (see [Ser], VI, §2 for the de®nition of f ). On the other
hand, r � indG

D�1D� with 1D: D! Aut�Ql� being the unit representation of D. Hence,

f �r� � vF �DF=K� deg�1D� � f �1D� � vF �DF=K�

([Ser], VI, §2, Corollary of Proposition 4) and the lemma is proved.

We may now state and prove the main theorem of this section.

Theorem 4.6. Let F=K be a ®nite separable extension of degree n. Let S be the quo-

tient torus �RF=K Gm;F �=Gm;K . Let d�S� be the Swan conductor of S.

(a) The torus S has totally not split reduction if and only if 1Y d�S�Y dim S.

(b) The torus S=K has split reduction if and only if v�ai�Z 2 for every coe½cient ai in

equation (16) such that v�i�Y v�n� ÿ 1.

(c) If d�S�Z �dim S � 1� ordp�dim S � 1�vK�p�, then S=K has split reduction.

Proof. Fix uniformizing elements t and p of F and K, respectively. We have an
explicit description of the reduction map S�K� !Sk�k�. Let z A S�K�. Let y A R�K� � F �

be a preimage of z. Using the exact sequence (15), we see that the image of z in F�S� has
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order, say m, equal to the order of vF �y� in Z=nZ. Now consider mz A S�K�, which reduces
to a point of S0

k . Recall that R0�OK� � O�F , G0
m�OK� � O�K , and that the kernel of the map

R0�OK� ! R0
k�k�, that is, the kernel of O�F ! �OF nOK

k��, is 1� pOF . Using these facts
and the exact sequence (13), we see that mz reduces to 0 A Sk if and only if there exists
x A K � such that ymxÿ1 A 1� pOF .

Claim 4.7. Let u0 :� tnpÿ1 A O�F . Let m A N be a divisor of n. We claim that there
exists a point in Sk of order m whose image in F�S� also has order m if and only if u0 is a

m-th power in OF=pOF .

According to the above discussion, the existence of the desired point in Sk is equiva-
lent to the existence of x A K �, y A F � such that

vF �y�1 n=m mod n;

ymxÿ1 A 1� pOF :

�

Suppose that such x and y exist. Multiplying x and y by suitable powers of p, we are
reduced to the case where vF �y� � n=m. Thus, v�x� � 1. Write y � tn=muÿ1, with u A O�F .
Then

u0 � ymumpÿ1 A um�xpÿ1��1� pOF �LOm
F � pOF

because OK � Om
K � pOK . Conversely, if u0 1 vm mod p, then we can take y � tn=mvÿ1 and

x � p.

Recall that if n is prime to p, then Sk is split (4.4 (b) and 1.5) and d�S� � 0. Assume
now that p divides n. Then Sk is totally not split if and only if tnpÿ1 is not a p-th power in
OF=pOF . The latter is equivalent to the following property in equation (16): There exists
1Y iY nÿ 1 with gcd�p; i� � 1 and v�ai� � 1. In terms of the di¨erent, this means that
vF �DF=K�Y 2nÿ 2. Thus, part (a) follows from Lemma 4.5. The proof of (b) is similar and
the details are left to the reader.

To prove part (c), we note that vF �ntnÿ1� � n ordp�n�vK�p� � nÿ 1. If
d�S�Z n ordp�n�vK�p�, then

vF �DF=K� � d�S� � nÿ 1Z vF �ntnÿ1�:

It follows immediately from this inequality that the criterion given in (b) is satis®ed and
that S=K has split reduction.

Corollary 4.8. Let F=K be a cyclic extension. Let T � R1
F=K�Gm;F � be the norm

torus. Then T has totally not split reduction if and only if 1Y d�T�Y dim T .

Proof. Follows from Theorem 4.6 (a) and Lemma 4.1 (b).

Let us now extend the results of 4.6 to a slightly larger class of tori, the tori of the
form SM=M, where M=K is a ®nite extension.
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Proposition 4.9. Fix an algebraic closure K of K. Let M HK be a ®nite exten-

sion of K. Denote by F 0 the compositum FM in K. Let S=K be the quotient torus
�RF=K Gm;F �=Gm;K . Let V :� �RF 0=MGm;F 0 �=Gm;M . Let S 0=OM and V=OM be the NeÂron

models of SM and V.

(a) Assume that either F=K or M=K is Galois. Let r :� �F : K ��M : K �=�F 0 : K�. There

is a natural exact sequence of group schemes

0! Grÿ1
m;M ! SM ! V r ! 0:

(b) The map SM ! V r in the above exact sequence induces a homomorphism
F�SM�tors ! F�V�r which, when composed with any projection to F�V�, is an isomorphism

F�SM�tors FF�V� � Z=�F 0 : M�Z:

(c) Let q be a divisor of �F 0 : M�. An element j of F�V� of order q lifts to an element

of Vk of order q if and only if a preimage of order q of j in F�SM� lifts to an element of S 0
k

of order q.

(d) Assume that F=K is tamely rami®ed. Then SM=M has split reduction.

(e) Assume that M=K is tamely rami®ed. If either �M : K�Z �F : K � or S has split

reduction, then SM=M has split reduction.

Proof. Consider ®rst the following general argument. Let D � L
1YiYr

Fi be a direct

sum of ®nite separable M-algebras with Fi a domain for all i. Let U be the quotient torus
RD=M�Gm;D�=Gm;M . The scheme Spec D is the disjoint union of the Spec Fi's. Thus

RD=M�Gm;D� �
Q

1YiYr

RFi=M�Gm;Fi
�:

Let Si � �RFi=MGm;Fi
�=Gm;M . We have a canonical commutative diagram

0 ���! Gm;M ���! RD=M�Gm;D� ���! U ���! 0

D

???y  ???y
0 ���! Gr

m;M ���! RD=M�Gm;D� ���! Q
1YiYr

Si ���! 0;

(17)

where D is the diagonal morphism. This leads to an exact sequence

0! Grÿ1
m;M ! U ! Q

1YiYr

Si ! 0;�18�

where the ®rst term of the sequence is identi®ed with Coker�D�. To prove (a),
let D :� F nK M. Then SM � U . Our hypothesis on F=K and M=K insures that
r � �F : K ��M : K�=�F 0 : K� and that Fi FF 0 for all iY r. So Si FV and part (a) is proved.

To prove (b), we ®rst note that it follows from Proposition 4.2 that the complexes
of component groups associated to both horizontal lines in (17) and to (18) are exact.
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Let ni :� �Fi : M�, so that F�Si� can be identi®ed with Z=niZ. Let us also identify
F
ÿ
RD=M�Gm;D�

�
with Zr. Then the exact sequence of groups of components associated

with the second line in (17) becomes

0 ���! F�Gr
m;M� ���! F

ÿ
RD=M�Gm;D�

� ���! Q
1YiYr

F�Si� ���! 0  
0 ���! Zr ���!a Zr ���!b Q

1YiYr

Z=niZ ���! 0;

where a is de®ned by a�a1; . . . ; ar� :� �a1n1; . . . ; arnr� and b is the canonical surjection. Let
n0 :� gcdfnig1YiYr. One checks easily that the map F�U�tors !

Q
i

F�Si� can be identi®ed

with the canonical map Z=n0Z! Q
1YiYr

Z=niZ. Now take again D :� F nK M and we get

part (b).

(c) Let Gm=OM be the NeÂron model of Gm;M=M. Consider the commutative diagram

�G0
m;k�rÿ1 ���! �S 0

k�0 ���! �V0
k �r???y ???y ???y

Grÿ1
m;k ���! S 0

k ���! Vr
k???y ???y ???y

F�Gm;M�rÿ1 ���! F�SM� ���! F�V�r:

The three columns in the diagram are exact. Proposition 4.2 shows that the three rows are
also exact. Part (c) is then easily derived from the fact that �G0

m;k�rÿ1 is �F 0 : M�-divisible.

(d) Assume that F=K is tame and, hence, Galois. Then �F 0 : M� divides �F : K �. It
follows from (b) that the p-part of F�SM� is trivial and, thus, SM has split reduction (4.4
and 1.5).

(e) Assume that M=K is tame and, hence, Galois. Let n :� �F : K � and m :� �M : K�.
Using (d), we may assume that pjn. To prove (e), it is su½cient, according to (c), to show
that V=M has split reduction.

Recall that t denotes an uniformizing element of F. Let m1 :� �F 0 : F �, which divides
m and let n1 :� �F 0 : M�, so that nm1 � n1m. Then tF 0 :� t1=m1 and pM :� p1=m are uni-
formizing elements of F 0 and M, respectively. Using 4.7, we ®nd that V has split reduction

if and only if tn1

F 0p
ÿ1
M is an n1-th power in OF 0=pMOF 0 . Clearly, tn1

F 0p
ÿ1
M � �tnpÿ1�1=m. Since the

formal group 1� tF 0OF 0 is q-divisible for any integer q prime to p, we ®nd that so is the
group �OF 0=pMOF 0 ��. It follows that V has split reduction if and only if tnpÿ1 is an n-th
power in �OF 0=pMOF 0 �� or, equivalently, if

tnpÿ1 A O�nF 0 �1� pMOF 0 � � O�nF 0 �1� tn1

F 0OF 0 �:
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Note now that tnpÿ1 A O�K�1� tOF � � O�nK �1� tOF �. If mZ n, then m1 Z n1 and

tnpÿ1 A O�nK �1� tOF �LO�nF 0 �1� tm1

F 0 OF 0 �LO�nF 0 �1� tn1

F 0OF 0 �:

Hence, V has split reduction. Assume now that S has split reduction. Then 4.7 implies that
tnpÿ1 A O�nF �1� pOF �. Thus tnpÿ1 A O�nF 0 �1� tmn1

F 0 OF 0 � and V also has split reduction.

Corollary 4.10. Let M=K be a ®nite Galois extension. Then SM has totally not split
reduction if and only if 1Y d�SM�Y dim SM .

Proof. Proposition 4.9 (a) implies that d�SM� � rd�V� and

dim SM � r dim V � �rÿ 1�:

So 1Y d�SM�Y dim SM is equivalent to 1Y d�V�Y dim V . Theorem 4.6 applied to V

implies that 1Y d�V�Y dim V is equivalent to V having totally not split reduction. We
conclude the proof using Proposition 4.9 (c).

Corollary 4.11. Let S be the quotient torus �RF=KGm;F �=Gm;K . Then SM=M has split

reduction over any tame extension M=K such that �M : K�Z dim S � 1.

Proof. Follows from 4.9 (e).

Remark 4.12. Let S=K be as in 4.6. The identity component S0
k of Sk can be

explicitly described. Let Wr=k denote the Witt group of dimension r. The main argument
in the proof of TheÂoreÁme 2.1 in [K-S] shows that

S0
k �

Q
1YiYnÿ1; �i;p��1

Wri
;

where ri :� minfr jpr Z n=ig. It is interesting to note that the structure of S0
k depends only

on �F : K �, while that of Sk depends strongly on the extension F=K itself.

Remark 4.13. Consider the torus S as in Theorem 4.6, with F=K de®ned by
the equation tp2 � ptp � p � 0. By construction, the group F�S� is cyclic of order p2.
The reduction of S is not totally not split but it is not split either. Note that
d�S� � vF �p� � p2 � pÿ 1 when vF �p� is large. Thus d�S� is not bounded by a constant
depending only on the dimension of S, even though the reduction of S is not split.

Remark 4.14. The class of tori for which a statement such as Theorem 4.6 holds can
be slightly enlarged as follows. Indeed, there are situations where the quotient torus S=K of
4.6 is isogenous, but not isomorphic, to other tori S 0=K . Hence, it is natural to ask about
the splitting property of such tori S 0. It turns out that in some situations, it is always pos-
sible to ®nd an isogeny between S and S 0 of degree prime to p. Thus, Proposition 1.11 can
be applied and S=K has split reduction if and only if S 0=K has split reduction. We thank
Bas Edixhoven for the proof of the following lemma.

Lemma 4.15. Let T=K be a torus with Gal�K=K� acting on X�T� through a ®nite
cyclic group hsi. Assume that the minimal polynomial f �x� of the image of s in Aut

ÿ
X�T��

is irreducible and equal to the characteristic polynomial. Let T 0=K be any torus isogenous
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over K to T. Then there exists an isogeny (de®ned over K ) between T and T 0 of degree prime

to p.

Proof. Let R denote the ring Z�x�=� f �. Since f is a cyclotomic polynomial, we ®nd
that R is a Dedekind domain. The Galois action endows X�T� with the structure of a
locally free R-module of rank 1. The set of isomorphism classes of such modules is in
bijection with the ideal class group C�R� of R ([New], III.13). The group C�R� is generated
by ®nitely many maximal ideals M1; . . . ;Mr of R. Let �li� :�Mi XZ. The set of generators
can always be chosen such that li 3 p, for all i � 1; . . . ; r. Two tori T and T 0 isogenous
over K correspond to two ideal classes of R. Two such ideal classes become equal in the
class group of R�1=l1 � � � lr�. Hence, there exists an isogeny over K between T and T 0 of
degree la1

1 � � � lar
r for some ai A N.

The above lemma applies for instance to the case where L=K is a Galois extension
of degree p and the class group of the cyclotomic ®eld Q�xp� is not trivial. Then there
exists a torus T 0=K, not isomorphic to T :� R1

L=KGm, and such that T 0L G �Gpÿ1
m �L and

F�T 0�GZ=pZ. Two such tori are isogenous through an isogeny of degree prime to p

and have thus the same splitting properties.

Remark 4.16. Let T=K be a torus. It is natural to ask whether there is a relationship
between the type of splitting of the NeÂron model of T and the type of splitting of the NeÂron
model of the dual of T. We give an example below of a torus T whose NeÂron model T is
split and whose dual S has a non-split NeÂron model S. Let p � 3. Consider the norm torus
T :� R1

F=KGm;F , de®ned by a non-Galois cubic extension F=K with 3Y vF �DF=K�Y 4. Let
S :� T5. Then S is not split (4.1 and 4.6) while T is split because F�T� � 0, as shown in
our next proposition.

Proposition 4.171). Let F=K be a ®nite separable extension with Galois closure L=K,
and F 3K . Let D :� Gal�L=F� and G :� Gal�L=K�. Let T :� R1

F=KGm;F be the norm torus

with NeÂron model T=OK . Then:

(1) T0
k is unipotent and F�T� is a ®nite group killed by �L : K�, canonically isomorphic

to the cokernel of the map Dab ! Gab (where Gab :� G=�G;G�).

(2) If G is abelian, then F�T�GG.

(3) Assume that G is not abelian and is the semi-direct product of D and a normal cyclic
subgroup H of prime order. Assume that D is abelian, and that gcd�jDj; jHj� � 1. Then

F�T� � f0g.

(4) Let S denote the dual torus of T. Then S is isomorphic to T if and only if F=K is a

cyclic extension.

Proof. Denote N � X �T�. Let us consider the long exact cohomology sequence
associated to (9):

1) We thank the referee and X. Xarles for providing us with sharpened versions of the original statement of

this proposition.
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0! Z! �Z�G=D��G ! N G ! H 1�G;Z�

! H 1�G;Z�G=D�� ! H 1�G;N� ! H 2�G;Z� !h H 2�G;Z�G=D��:

Recall that since Z is endowed with the trivial action, H 1�G;Z� � Hom�G;Z� � f0g. On
the other hand, one checks that �Z�G=D��G � �P

i

di�Z. Thus we ®nd that N G � f0g. It fol-

lows from [N-X], Theorem 1.3, that T0
k is unipotent. It follows then from [Xar], Corollary

2.19, that F�T� is ®nite and isomorphic to HomZ

ÿ
H 1�G;N�;Q=Z

�
. Then jGj � �L : K � kills

H 1�G;N� ([Ser], VII, §7, Prop. 6).

Eckmann-Shapiro's lemma provides a canonical isomorphism

H i�G;Z�G=D��FH i�D;Z�

for all iZ 1. So H 1�G;Z�G=D��FH 1�D;Z� � 0. Thus H 1�G;N� is isomorphic to the kernel
of h. By the same lemma, H 1�G;N� is isomorphic to the kernel of H 2�G;Z� �!Res

H 2�D;Z�.
Recall that when i > 0, H i�G;Q� � f0g since multiplication by jGj is an isomorphism on Q

and H i�G;Q� is killed by jGj ([Ser], loc.cit.). Thus the exact sequence

0! Z! Q! Q=Z! 0

induces an isomorphism H 1�G;Q=Z� ! H 2�G;Z� for any ®nite group G. Hence, H 1�G;N�
is isomorphic to the kernel of H 1�G;Q=Z� �!Res

H 1�D;Q=Z�. Or equivalently to the kernel
of Hom�G;Q=Z� ! Hom�D;Q=Z�. Dualizing this last map ®nishes the proof of Part (1).
To prove (2), observe that when G is abelian, then D is trivial since F=K is already Galois.

To prove (3), note that since G=H FD is commutative, jHj is prime and G is not
commutative, we have �G;G� � H. Thus Hom�G=H;Q=Z� ! Hom�G;Q=Z� is an isomor-
phism. By assumption, the composition D! G! G=H is an isomorphism. This implies

that Hom�G;Q=Z� ! Hom�D;Q=Z� is an isomorphism, so that Dab ! Gab has trivial
cokernel.

To prove (4), we need only to show, in view of 4.1 (b), that if S and T are isomorphic,
then F=K is cyclic. From 4.4 (b) and part (1), we know that

jF�S�j � �F : K � � jGj=jDj � jGabj=jDabj:

Thus, �G;G� � �D;D�, which implies that D is a normal subgroup. Hence, D is trivial, and G
must be cyclic of order n.

Remark 4.18. Consider a ®nite separable extension F=K. The torsion subgroup of
S�K�, where S � RF=K�Gm;F �=Gm;K , is easy to compute. Indeed, a point in S�K� has order
m > 1 if and only if there exists y A F �nK � such that ym A K � and yd B K � for all proper
divisors d of m. The reduction of such a torsion point can also be determined. For instance,
when �F : K � � p, we ®nd that S�K�tors is trivial or is generated by an element Q of order
p. When S�K�tors is not trivial, Q reduces to a generator of F�S� if F � K�a� with ap A OK

and v�ap� prime to p, and reduces to the identity in F�S� if F � K�a� with ap A O�K . In the
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latter case, Q may reduce to the identity element of Sk. This is the case when ap � 1� pdu,
with d large enough and u A O�K .

5. Explicit NeÂron models

Let L=K be a cyclic extension of degree p. Let T � R1
L=KGm be the norm torus. Since

the torus T can be given by an explicit equation, one may hope that its NeÂron model may
also be described in some explicit way. We show below in Proposition 5.6 that, indeed, the
NeÂron model T=OK of T=K can be described by a single equation, and that, surprisingly,
this equation can be written down in a simple way. Using this equation, we give a direct
proof that T0

k GGpÿ1
a (4.12), and that Tk is not split if and only if the Swan conductor

d�T� of T is equal to pÿ 1 (4.8).

To construct the NeÂron model T=OK , we ®rst construct explicitly a smooth model U
of T (not necessarily a group scheme) having the properties of Proposition 5.1 below. It
follows then from 5.1 that U is the NeÂron model of T.

Proposition 5.1. Let OK be a strictly Henselian discrete valuation ring. Let G be a

smooth algebraic variety over K admitting a NeÂron model of ®nite type G over OK . Let G 0 be

a smooth model of G over OK such that:

(a) The canonical map G 0�OK� ! G�K� is surjective.

(b) The number of connected components of G 0k is less than or equal to the number of

components of Gk.

Then G 0 is isomorphic to G.

Proof. By the universal property of the NeÂron model, the isomorphism G 0K ! GK

extends to a birational morphism f : G 0 ! G. Since G�OK� ! Gk�k� is surjective, property
(a) implies that fk: G 0k ! Gk is surjective. For any generic point x of Gk, there exists
h A f ÿ1�x�. Since G is normal, f is an isomorphism at h. So property (b) and the surjectivity
of f imply that f is an isomorphism at any one-codimensional point of G 0. According to the
Theorem of van der Waerden (G is regular), the exceptional locus of the birational mor-
phism f if either empty or pure of codimension 1 (see, e.g., [Mum], III.9, Proposition 1).
In our case, it must be empty. Hence, f is an isomorphism.

5.2. Let L=K be any extension of degree p. A uniformizing element t of L satis®es
an Eisenstein equation

tp ÿ s1tpÿ1 � s2tpÿ2 � � � � � �ÿ1�psp � 0�19�

with si A pOK and v�sp� � 1. Set s0 � p so that the di¨erent of the extension L=K is given by

vL�DL=K� � min
0YiYpÿ1

fpv�si� � pÿ 1ÿ ig

(see, e.g., [Ser], p. 67). Note that when L=K is Galois, then vL�DL=K� � �pÿ 1�vL

ÿ
s�t� ÿ t

�
,

where s is any generator of Gal�L=K� ([Ser], p. 72). Therefore, vL�DL=K� is
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divisible by pÿ 1 in this case. Let 0YmY pÿ 1 be the unique integer such that
vL�DL=K� � pv�sm� � pÿ 1ÿm. Let

r :� ÿv�sm� ÿm
�
=�pÿ 1�:

Recall that (4.5) the Swan conductor d�T� of T is

d�T� � vL�DL=K� ÿ �pÿ 1� � �pÿ 1��pr�m�:

Let T be the norm torus R1
L=KGm;L. Since f1; t; . . . ; tpÿ1g is a basis of L=K , T is given by

T � Spec
K �x0; . . . ; xpÿ1�

NL=K�1� x0 � x1t� � � � � xpÿ1tpÿ1� ÿ 1
:

Lemma 5.3. Let A � Z�s1; . . . ; sp; y0; . . . ; ypÿ1� be the ring of polynomials in 2p vari-
ables. Let

B � A�u�=ÿup ÿ s1upÿ1 � � � � � �ÿ1�psp

�
:

Let t be the image of u in B, and denote by N A A the norm NB=A�y0 � y1t� � � � � ypÿ1tpÿ1�.
Then the following properties hold:

(a) N is homogeneous of degree p in the variables y0; . . . ; ypÿ1.

(b) Let 0Y j Y pÿ 1. Then the coe½cient of y
p
j in N is s j

p and, if j 3 0, the coe½cient

of y
pÿ1
0 yj is TrB=A�t j�.

(c) The coe½cient of yl0

0 � � � ylpÿ1

pÿ1 in N belongs to the ideal �psp; s1; . . . ; spÿ1� if at least

two of the li's are not zero.

Proof. (a) is clear because NB=A�ab� � apNB=A�b� for any a A A and for any b A B.

(b) It is enough to compute NB=A�y0 � t jyj�. Let

f �Z� :� Zp ÿ sj;1Zpÿ1 � � � � � �ÿ1�psj;p

be the irreducible polynomial of t j over A �pÿ 1Z j Z 1�. Then

NB=A�y0 � t jyj� � y
p
j NB=A�y0=yj � t j�

� y
p
j �ÿ1�pf �ÿy0=yj�

� y
p
0 � sj;1y

pÿ1
0 yj � � � � � sj;py

p
j :

Since sj;1 � TrB=A�t j� and sj;p � NB=A�t j� � s j
p, (b) follows.

(c) Let p be the ideal of A generated by �p; s1; . . . ; spÿ1�. Then the image of
N in B=pB is the norm of y0 � y1t� � � � � ypÿ1tpÿ1 in the inseparable extension
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A=p! B=pB � A=p�u�=�up ÿ sp�. Recall that in an inseparable extension of degree p,
Norm �z� � zp for all z. Thus

N 1 y
p
0 � spy

p
1 � � � � � spÿ1

p y
p
pÿ1 mod�p; s1; . . . ; spÿ1�:

We also have N 1 y
p
0 mod�s1; . . . ; spÿ1; sp�. Since in Z�sp�, �sp�X �p� � �psp�, the two con-

gruence relations above imply (c).

Lemma 5.4. Keep the notation introduced in 5.2. Let

b � �1� a0� � a1t� � � � � apÿ1tpÿ1 A L; ai A K

be such that NL=K�b� � 1. Then

v�aj�Z r� 1 if m > 0 and 0Y j Ymÿ 1;

r if mY j Y pÿ 1:

�
Proof. Since 0 � vL

ÿ
NL=K�b�

� � pvL�b�, we have b A OL. Hence, aj A OK for all j.
According to Lemma 5.3, we have NL=K�b� � 1, with

NL=K�b� � �1� a0�p � spa
p
1 � � � � � spÿ1

p a
p
pÿ1 � an expression in IJ;

where I � �psp; s1; . . . ; spÿ1� and J :� �a1; . . . ; apÿ1�. Thus

v
ÿ�1� a0�p ÿ 1� spa

p
1 � � � � � spÿ1

p a
p
pÿ1

��20�
Z min

1YiYpÿ1
fv�si�; v�p� � 1g � min

1Y jYpÿ1
fv�aj�g:

Assume that m3 0. Then, since v�si�Z v�sm� for all 0Y iY pÿ 1, we get

v
ÿ�1� a0�p ÿ 1� spa

p
1 � � � � � spÿ1

p a
p
pÿ1

�
Z v�sm� � min

1Y jYpÿ1
fv�aj�g:

If m � 0, then v�si�Z v�s0� � 1 for all iZ 1, and we have a stronger inequality

v
ÿ�1� a0�p ÿ 1� spa

p
1 � � � � � spÿ1

p a
p
pÿ1

�
Z v�s0� � 1� min

1Y jYpÿ1
fv�aj�g:�21�

Let 1Y j0 Y pÿ 1 be such that v�aj0� � min
1Y jYpÿ1

fv�aj�g. Let e 0 :� v�p�=�pÿ 1�. Assume

®rst that v�a0� < e 0. Then v
ÿ�1� a0�p ÿ 1

� � pv�a0�, and the inequality (20) becomes

min
0Y jYpÿ1

fpv�aj� � jgZ v�sm� � v�aj0��22�

(recall that v�sp� � 1). In particular, pv�aj0� � j0 Z v�sm� � v�aj0� and, thus,

v�aj0�Z r�mÿ j0

pÿ 1
:
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Substituing this inequality in (22) and using the fact that j0 Y pÿ 1 implies that, for all
j Y pÿ 1,

v�aj�Z r� pmÿ �pÿ 1�� j � 1�
p�pÿ 1� :

This last inequality implies the statement of the lemma except when m � 0 and j � pÿ 1.
In this case, we remark that one can substitute v�sm� by v�sm� � 1 in inequality (22) because
of (21), thus v�apÿ1� > rÿ 1 and v�apÿ1�Z r.

Now assume that v�a0�Z e 0. Then the lemma is already true for j � 0 because
e 0Z r�m=p. The inequality (20) implies that

min
1Y jYpÿ1

fpv�aj� � jgZ v�sm� � v�aj0�:

If v�sm� � v�aj0� < pe 0, then the proof of the lemma is the same as in the case v�a0� < e 0.
Assume now v�sm� � v�aj0�Z pe 0. Let 1Y j Y pÿ 1. Then pv�aj� � j Z pe 0Z pr�m. Thus
p
ÿ
v�aj� ÿ r

�
Zmÿ j. So v�aj� > r if j < m and v�aj�Z r if mY j Y pÿ 1. Hence, the

lemma is proved.

Let p :� sp. The element p is a uniformizing element of K. Make the change of
variables

xj � pr�1Xj if m > 0 and 0Y j Ymÿ 1;

prXj if mY j Y pÿ 1:

�
We have a new equation F�X0; . . . ;Xpÿ1� � 0 for the torus T, with

F�X0; . . . ;Xpÿ1� � NL=K 1� P
0Y jYmÿ1

pr�1t jXj �
P

mY jYpÿ1

prt jXj

 !
ÿ 1:

Lemma 5.5. With the above notation, F�X0; . . . ;Xpÿ1� A ppr�mOK �X0; . . . ;Xpÿ1� and

F�X0; . . . ;Xpÿ1�pÿ�pr�m�1X p
m � uXm mod �p�

for some u A O�K .

Proof. Recall that for any iY pÿ 1, one has v�si�Z v�sm� � �pÿ 1�r�m,
and v�psp� � v�s0� � 1 > �pÿ 1�r�m. Let 1Y j Y pÿ 1. Let pj :� TrL=K�t j�. Then
p1 ÿ s1 � 0, and

pj � �ÿ1� j jsj �
P

1YlY jÿ1

�ÿ1�l�1slpjÿl

(see for instance [BA], IV, §6, formula (26)). Thus, we see by induction that v�pj�Z v�sm�,
and that equality holds if and only if v�sj� � v�sm�. We assume from now on that mZ 1.
The case where m � 0 is similar and is left to the reader. Apply Lemma 5.3 with
y0 � 1� prX0, and yj � xj, j > 0. It follows from Lemma 5.3 and from the computa-
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tion of the valuations of the coe½cients of �1� pr�1X0�p ÿ 1, that the coe½cients of
F�X0; . . . ;Xpÿ1� all have valuation at least pr�m, and those that can possibly reach the
minimum are the coe½cients of the monomials in sm

p �prXm�p and pjyjy
pÿ1
0 , 1Y j Y pÿ 1.

But note now that if j 3m and v�pj� � v�sm�, then v�sj� � v�sm� and, thus, by de®nition of
m, we must have j < m. Hence, for such a j, xj � pr�1Xj. It follows that the only mono-
mials of F with coe½cients of valuation pr�m are sm

p prX p
m and TrL=K�tm�prXm (appearing

as a monomial of TrL=K�tm�prXmy
pÿ1
0 ). Since sp � p by hypothesis, the lemma is proved.

Proposition 5.6. Let L=K be a cyclic extension of degree p. Let T � R1
L=K Gm;L be the

norm torus. Let G�X0; . . . ;Xpÿ1� :� F�X0; . . . ;Xpÿ1�pÿ�pr�m�. Let

U :� SpecOK �X0; . . . ;Xpÿ1�=�G�:

Then U=OK is the NeÂron model of T=K.

Proof. Since NeÂron models commute with eÂtale base change, we may assume that K

is strictly henselian. Keep the notation of Lemmas 5.4 and 5.5. It is easy to check that U is
a smooth model of T over OK and that Uk has p connected components. Lemma 5.4 implies
that the canonical map U�OK� ! UK�K� is surjective. Thus, Proposition 5.1 shows that U
is isomorphic to T.

Corollary 5.7. Let L=K be a cyclic extension of degree p. Let T � R1
L=KGm;L be the

norm torus. Let T be the NeÂron model of T over OK . Then T0
k GGpÿ1

a , and Tk is (totally)
not split if and only if the conductor d�T� of T is equal to pÿ 1.

Proof. A proof of this statement without the use of an explicit equation is found in
4.12 and 4.8. Let us now give a proof based on the explicit description of the NeÂron model
of T. Let U :� SpecOK �X0; . . . ;Xpÿ1�=�G�. Our previous proposition shows that U is iso-
morphic to T. The identity element of T is X0 � � � � � Xpÿ1 � 0. Using Lemma 5.5, we see
that the identity component T0

k of Tk is the closed subset V�p;Xm�. Let Q A T�K�. Let
~Q A Tk be its specialization in Tk. The point Q can be represented by an element

q � 1� P
0Y jYmÿ1

pr�1t jbj �
P

mY jYpÿ1

prt jbj A L

with bj A OK and NL=K�q� � 1. Write

w :� qÿ 1 � prtm�bm � ta�; for some a A OL:

Note that the condition v�bm� � 0 is equivalent to ~Q B T0
k . The point pQ is represented by

qp. Write

qp � 1� P
0Y jYmÿ1

pr�1t jcj �
P

mY jYpÿ1

prt jcj

with cj A OK . It follows that:

P
0Y jYmÿ1

pr�1t jcj �
P

mY jYpÿ1

prt jcj � wp � pw�1� wb�; for some b A OL:
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Since the coe½cients cj belong to OK , we ®nd that the vL-valuation of the left hand side is
the minimum of the vL-valuations of each summand. Recall that the conditions r � 0 and
m � 1 are equivalent to d�T� � pÿ 1. Comparing the vL-valuations of both sides in the
above equation, we easily see that, if r � 0, m � 1, and v�bm� � 0, then v�c0� � 0. So
p ~Q A T0

k is not the identity element. Thus, Tk is not split in this case. The reader will check
that, if either d�T� > pÿ 1 or v�bm�Z 1, then v�cj� > 0 for all 0Y j Y pÿ 1. Hence,

p ~Q � 0. In particular, in the case v�bm�Z 1, this shows that pT0
k � 0, so that T0

k FGpÿ1
a

for any d�T�. When d�T� > pÿ 1, this shows that pTk � 0, and thus Tk is split.

6. Abelian varieties with rigid analytic uniformization

Let A=K be an abelian variety over K. Then A can be uniformized as follows. There
exist a semi-abelian variety G and a lattice L in G such that the following sequence of rigid
analytic groups is exact ([B-X], Theorem 1.2):

0! L! G ! A! 0�23�

and G is an (algebraic) extension

0! T ! G ! B! 0

of an abelian variety B with potentially good reduction by a torus T. Denote by L, G, T,
B, and A, the associated NeÂron models. The exact sequence (23) induces an isomorphism

G0
k FA0

k�24�

([B-X], Theorem 2.3) and an exact sequence

0! F�L� ! F�G� ! F�A�

([B-X], Theorem 4.12). Since L is a discrete group, L is locally ®nite over OK . Thus
L�K�FLk�k�FF�L�. In particular, F�L� is torsion free. Thus

0! F�G�tors ! F�A��25�

is exact. Putting (24) and (25) together with Proposition 1.4, we obtain a commutative
diagram of exact sequences

0 ���! G0
k;p ���! Gk;p ���! F�G�p ���! 0 ???y ???y

0 ���! A0
k;p ���! Ak;p ���! F�A�p ���! 0

(26)

with injective vertical arrows.
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Proposition 6.1. Let A=K be an abelian variety uniformized as in (23). Then:

(a) If A is split, then so is G.

(b) If F�G�p 3 �0� and A is totally not split, then so is G.

Proof. Follows from the diagram (26) and Proposition 1.4.

Let GK :� Gal�K s=K�. Consider L�K s� as a GK -module.

Proposition 6.2. Let A=K be an abelian variety uniformized as in (23). Then there
exists a canonical isomorphism

L�K s�nZ QFX �T�5nZ Q�27�

of Q�GK �-modules.

Proof. For any semi-abelian variety H=K with NeÂron model H=OK , we denote by
H 0�K� the subgroup of points of H�K� which reduce to the identity component of Hk.
Since K is complete and, hence, henselian, the reduction map induces an isomorphism
H�K�=H 0�K� ! F�H�. For any ®nite Galois extension M=K , we endow F�HM� with the
structure of Gal�M=K�-module via the isomorphism HM�M�=H 0

M�M� ! F�HM�. The
morphisms L! G and T ! G induce canonical maps of Galois modules

L�M� �!aM
F�GM�; and F�TM� �!bM

F�GM�:

Let L=K be a ®nite Galois extension such that TL is a split torus, BL has good
reduction and LL is constant (e.g., take L=K such that AL has semi-abelian reduction).
Then GK acts on L and X �T� through the quotient G :� Gal�L=K�. So it is enough to
exhibit an isomorphism of Q�G�-modules between L�K s�nZ Q and X�T�5nZ Q. The
hypothesis on L implies that aL is injective ([B-X], top of page 462) and that bL is an iso-
morphism ([B-X], bottom of page 461). Thus, we obtain a natural injection

bÿ1
L � aL: L�K s� ! F�TL�:

By de®nition of a lattice, the rank of L�L� � L�K s� is equal to dim TL and, hence, equal
to the rank of F�TL�. So L�L�nZ QFF�TL�nZ Q as Q�G�-modules. Consider now the
evaluation pairing

TL�L� � X�T� ! Q

de®ned by �z; w� 7! �L : K�ÿ1vL

ÿ
w�z�� (we divide by �L : K� to make the pairing independent

of L). This pairing is well-de®ned because the image of T�L� by w is in L� since w is de®ned
over L. It is clearly compatible with the action of G. The morphism w extends to a mor-
phism of NeÂron models and, thus, the image of T 0�L� is in OL. It follows that the pairing
factorises to a pairing

F�TL� � X �T� � ÿTL�L�=T 0
L�L�

�� X�T� ! �L : K �ÿ1
Z:�28�
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Now it is easy to check that this pairing is perfect because TL is a split torus. This implies

that F�TL�FX�T�5nZ �L : K �ÿ1
Z. Thus the proposition is proved.

Remark 6.3. Using the injection bÿ1
L � aL: L�L� ! F�TL�, the pairing (28) induces a

Galois pairing L� X �T� ! Q. This should be a generalization of the pairing in [B-X],
bottom of page 478.

Proposition 6.4. Let l be a prime di¨erent from char�K�. Let Tl�N� denote the Tate
module of any group N. Let A=K be an abelian variety uniformized as in (23).

(a) There are two natural exact sequences of GK-modules

0! Tl�G� ! Tl�A� ! LnZ Zl ! 0

and

0! Tl�T� ! Tl�G� ! Tl�B� ! 0:

(b) Let d�A�, d�B�, and d�T� be the Swan conductors of A, B, and T, respectively. Then

d�A� � 2d�T� � d�B�:

Proof. (a) The exact sequence (23) gives rise to an exact sequence of GK -modules

0! L�K s� ! G�K s� ! A�K s� ! 0:

Since L is torsion free and G is ln-divisible for any nZ 1, we have an exact sequence

0! G�ln� ! A�ln� ! L=lnL! 0:

Passing to the inverse limit, we get the desired exact sequence (note that Tl�A� ! LnZ Zl

is surjective because G�ln�1� ! G�ln� is surjective). The second exact sequence is proved in
a similar manner.

(b) Let l be a prime di¨erent from p. From part (a) we ®nd that

d�A� � d�G� � d�L� � d�T� � d�B� � d�L�:

According to the previous proposition, d�L� � d�T�. This proves part (b).

Remark 6.5. Consider the torus S introduced in Theorem 4.6. Proposition 6.1 (a),
shows that any abelian variety A uniformized by such a torus does not have split reduction
if S does not have split reduction. Since we have an explicit criterion to determine whether
S is split, we thus can provide non-trivial examples of abelian varieties that are not split.

Corollary 6.6. Let A=K be an abelian variety that has potentially purely multiplic-

ative reduction with uniformization by a torus S=K as in 4.6. If A=K has totally not split
reduction, then 2Y d�A�Y 2 dim�A�.
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Proof. Since S has purely additive reduction over OK , so does A. Let L=K denote
the extension minimal with the property that AL=L has semi-stable reduction. The
extension L=K is wild since p divides jF�A�j by hypothesis (1.9). Proposition 6.2 shows
that Gal�K s=K� acts on Tl�S� and L�K s� through the same ®nite group. Proposition 6.4
(a) shows that this ®nite group is Gal�L=K�. By hypothesis, S is the canonical quotient of
RF=KGm;F , where F=K is a subextension of L=K . If F � L, then clearly p divides �F : K �. If
F=K is not Galois, then again p must divide �F : K � since L=K is totally rami®ed. It follows
that the group Fp�S� is always not trivial, and we can apply Proposition 6.1 to show that S
has totally not split reduction. It follows from 4.6 (a) and 6.4 that 2Y d�A�Y 2 dim�A�.

Note that the case where dim�A� � 1 was treated already by direct computations in
the proof of Theorem 2.1 (see 2.5 and 2.9).

Remark 6.7. Let A be an abelian variety over K with Tate module Tl�A�. Denote by
rl the natural representation GK ! Aut

ÿ
Tl�A�

�
. Let A be the NeÂron model of A over OK .

In the case where A is the Jacobian of a proper smooth curve C=K , the combinatorial data
associated with the special ®ber (called the type of the special ®ber) of a regular model of C

is enough information to completely determine the group F�A�, and most of the structure
of the scheme A0

k . In case dim�A� � 1, the type of the special ®ber completely determines
A0

k . In this article, we have been able to exhibit in some cases a relationship between
the group structure of Ak and the representation rl. It is thus natural to ask whether the
representation rl plus the type of the special ®ber of a regular model of C is enough
information to completely determine the group structure of Ak. In what follows, we give an
example which shows that the answer to this question is negative.

Suppose char�K� � 0 and char�k� � 2. Fix an integer nZ 3. Let E be an elliptic
curve with reduction type I�2n. Let

y2 � �a1x� a3�y � x3 � a2x2 � a4x� a6

be the minimal Weierstrass equation of E given in Tate's algorithm (2.9). In particular,
v�b4�Z n� 3 and v�b6�Z 2n� 4. We may choose v�a1� � 1, so that v�b2� � 2. Then
v�c4� � 4 and v�D� � 2n� 8 > 3v�c4�. Hence, E has potentially multiplicative reduction
and v� j� � ÿ�2nÿ 4�. Moreover, E achieves multiplicative reduction over the quadratic

extension L :� K� ���������������ÿc4=c6

p � (see [Si2], V.5.5.3). Since v�b4�Z 4 and v�b6�Z 6, and since
any element of 1� 4OK is a square in OK , it is easily checked that L � K� �����b2

p � (see page
443 of [Si2]). Let E 0 be the elliptic curve over K de®ned by

y2 � �a1x� a 03�y � x3 � a2x2 � a4x� a6

with v�a 03�Z n� 2. Then E 0 has exactly the same type of reduction as E, with
b2�E 0� � b2�E� and v

ÿ
j�E 0�� � v� j�. Thus, E 0 has multiplicative reduction over L. Lemma

6.8 below shows that the l-adic representations of E and E 0 are isomorphic.

Let E and E 0 be the NeÂron models of E and E 0 respectively. We can choose a3 and a 03
in such a way that the inequality v�b8 � a2

4� > 2n� 5 is satis®ed in the case of a3 but not in
the case of a 03. Then E 0k is totally not split, but Ek is not (see Proposition 2.11). Hence, E 0k is
not isomorphic to Ek.
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The exact sequence of Proposition 6.4 (a) does not determine completely, in
general, the structure of Tl�A�. However, for elliptic curves E with potentially multi-
plicative reduction, the structure of Tl�E� is well known. The proof of the following lemma
is left to the reader.

Lemma 6.8. Let E=K be an elliptic curve with additive and potentially multiplicative

reduction. Let L=K be the quadratic separable extension such that EL has multiplicative

reduction. Let j be the modular invariant of E. Let l3 p be a prime, and let wl: GK ! GL�Zl�
be the cyclotomic character obtained from the action of GK on the Tate module Tl�Gm�. Then

there exists a basis fx; yg of Tl�E� such that, for any t A GK , the matrix of t in this basis is

e�t� � 1 ÿwl�t�v� j�
0 1

� �
;

where e�t� � 1 if t A Gal�K s=L� and e�t� � ÿ1 otherwise.

In view of the main results of this paper, Theorems 2.1, 4.6, 4.9, and 6.6, it is natural
to ask the following questions. All discrete valuation ®elds below are of residue character-
istic p > 0.

Question 6.9. Let g > 0 and consider all the abelian varieties A of dimension g over
a discrete valuation ®eld, and whose NeÂron model A has toric rank equal to zero. Is there a
constant c, depending on g but not on the ®eld, such that if the special ®ber of A is totally
not split, then the Swan conductor d�A� is bounded by c? As phrased, this question has an
obvious negative answer in general. Indeed, consider an abelian variety B=K with purely
additive reduction that is totally not split. Consider an elliptic curve E=K with additive
reduction, large conductor d�E� and such that F�E� � f0g (take for instance y2 � x3 � p,
whose Swan conductor is 4vK�2�). Then the abelian variety A :� B� E has purely additive
reduction, is totally not split, but the conductor of such an abelian variety is not bounded
by a constant that depends only on g. Hence, we are lead to ask the above question for
more restricted classes of abelian varieties. For instance, one may ask the same question for
simple abelian varieties whose NeÂron model is totally not split; or for the more restricted
class of abelian varieties such that the representation of the inertia group I on the Tate
module Tl�A�, l3 p, is irreducible.

Question 6.10. Let A=K be an abelian variety. The Swan conductor of A=K is
bounded by a constant f depending on dim�A� and on vK�p� only ([B-K], 6.2). Is there a
bound c depending on dim�A� and on vK�p� only such that, if d�A� > c, then A=K has split
reduction? Such a bound was shown to exist for a torus of the form S=K in 4.6 (c). It would
be interesting to check whether, in the known examples where the bound f is achieved, the
abelian varieties all have split reduction.

For instance, Example 6.5 in [B-K] (see also 3.1 in [LRS]) is the case of the jacobian
A=K of the hyperelliptic curve X=K given by the a½ne equation y2 � xps ÿ pK (with p
odd). Consider the model X=OK of X=K given as the normalization of the projective curve
y2zpsÿ2 � xps ÿ pKzps

in P2=OK . The point �0 : 0 : 1� is singular in the special ®ber, but
regular in X. Thus the special ®ber has arithmetical genus at least �ps ÿ 1�=2, which is the
genus of X. Hence, the model X=OK is regular, with an irreducible special ®ber. It follows
that the group of components of A=OK is trivial and, thus, A=K has split reduction. In
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[B-K], 6.6, the ®rst example consists of the Weil restriction RM=K�B�, of the jacobian B=M

of the hyperellipic curve given by the equation y2 � xp ÿ pM . As above, this curve has a
regular model over OM with an irreducible special ®ber and, hence, the NeÂron model of its
jacobian has trivial group of components. Since FK

ÿ
RM=K�B�

�
is isomorphic to FM�B�

([ELL], proof of Thm. 1), we ®nd that RM=K�B� has split reduction.

It follows from 6.3 in [B-K] that the jacobian Ar=K of the hyperelliptic curve Xr=K

given by the a½ne equation y2 � xps ÿ pr
K , with p odd and coprime to r, also reaches the

bound for the conductor of an abelian variety of genus �ps ÿ 1�=2. We believe that the
group FK�Ar� is trivial if r is odd and cyclic of order ps if r is even. Moreover, in the latter
case, Ar�K� contains a torsion point of order ps which reduces to the generator of FK�Ar�.
Thus, the jacobian Ar may have split reduction in all cases. The case r � 1 is proved above,
and the case r � 2 is discussed in 3.7. We leave it to the reader to check our claim for the
remaining cases following the method of 3.7. As in [B-K], we may also consider the Weil
restriction RM=K�Br� of the jacobian Br=M of the hyperellipic curve given by the equation
y2 � xp ÿ pr

M . As we showed in 3.10, the splitting properties of a Weil restriction are not
well understood.

Question 6.11. Let G=K be a semi-abelian variety that does not have split reduction.

(a) Is it always possible to ®nd a tame extension M=K such that GM=M has split
reduction?

(b) Does there exist a constant c depending on dim�G� only such that if M=K is any
tame extension of degree at least c, then GM=M has split reduction?

Both questions have a positive answer when dim�G� � 1 or G is a quotient torus S

(see 3.3 and 4.11). Note that if the condition that M=K is tame is dropped, then the answer
to (a) is obviously positive. Indeed, take M � L, where L=K is such that GL=L has semi-
stable reduction. Then GL=L is split (1.6). Note that our assumption that G does not have
split reduction implies, at least for tori and abelian varieties with toric rank equal to zero,
that L=K is not tame (1.7 and 1.9).
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