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On the group of components of a Néron model

By Dino J. Lorenzini') at Athens

Introduction

Let K be a complete field with a discrete valuation v. Let ¢y denote the ring of
integers of v, with algebraically closed residue field & of characteristic p = 0. The Néron
model of an abelian variety 4 /K is denoted by 2// 0. Its special fiber &, /k is an extension
of the finite étale group scheme 7, (&) by the smooth connected group scheme A2/ k, the
connected component of zero in &;:

0 - 2 - o - n(f) - 0.

The group @, (A4):=ny(s£) (k) is called the group of components of A/K. When no con-
fusion can result, we denote this group simply by @. Let ¢ denote the prime-to-p part of
the group @; when the residue characteristic equals zero, we let @'P = . By Chevalley’s
Theorem, the group 2 can be described by an exact sequence:

05 UxT - o4 - B -0,
where the group U is a unipotent group scheme of dimension uy, the group J is a torus of
dimension 7,, and the quotient B is an abelian variety of dimension a,. We call uy, tg, and
ay respectively the unipotent, toric, and abelian rank of 4/K. The dimension of 4/K is

denoted by g:=dim 4 = ux + tx + ai.

We discuss in this paper the structure of the group @. To provide a context for our
results, let us recall the case of elliptic curves.

If1, =0, then ®e{{0},Z/2Z, 2/32,2Z/42,Z]2Z®Z/2Z}.

If u, =0, then & isa cyclic group and all cyclic groups can arise in this way.

1y Research partially supported by a grant from the Swiss National Science Foundation.
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Lenstra and Oort [L-O], 1.15, have generalized the first fact for abelian varieties as follows:

If tx=ax=0, then ) ord,(|®P|)(¢/—1)<2g.

¢ prime

This bound implies in particular that |$®| < 229, and that, if £ is a prime dividing | ®?|,
then £ < 2g + 1. It was known to Grothendieck (see [Lor2], 3.7) that:

If ug=0, then ¢ is generated by 7, elements.

Silverman [Sil2] suggested that the general case might be a combination of these two
“extreme” cases. We will show in this paper that this is indeed true for . Specifically,
we will show that @ contains a canonical subgroup, @'», whose order and group structure
are bounded in a very precise manner in terms of the unipotent rank ug, and such that the
quotient @P/@P can be generated by t, elements. We will also describe how the
monodromy filtrations on the Tate modules 7, (A) are reflected in the group structure of the
subgroup @'P. In the second part of this paper, we present an analogous description of the
p-part of the group @, when A/K is the jacobian of a curve.

When A4/K has purely additive reduction (i.e., when a; = tx = 0), the group &? is
isomorphic to the prime-to-p part of the torsion subgroup of A4 (K). As a consequence of
our study of @, we obtain very severe restrictions on the possible finite abelian groups that
can occur as the prime-to-p part of the K-rational torsion subgroup of an abelian variety
having purely additive reduction.

1. The main results

1.1. Let A/K be an abelian variety. Recall that there exists a Galois extension, L/K,
minimal with the property that the unipotent rank of 4, /L is equal to zero (see for instance
[Des], 5.15). For a prime ¢ + p, let K,/K denote the unique (cyclic) extension of K in L
of degree

[K; : K] = {°"dt([L:K]) .

We let ag,, 1x,, and ug, denote respectively the abelian, toric, and unipotent rank of
Ay, /K,

1.2. Let G be any finite abelian group. We denote by G, its ¢-part. Write G, as a
product of cyclic groups:

s(¢)
G=1] Z/¢*Z, witha, 2 ... 2 ay,,

i=1

and define

s(¢)
5(G) = (£ — 1) + < y a,.> (¢—1).

i=2

The following theorems summarize the main properties of the group @ ,, for £ prime,
£+ p.
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Theorem 2.15. Let A/K be an abelian variety. There exist three subgroups
Zg . (A) S chz,]a (4 < 21[(3} (4)
of the {-part & ,(A) of Dx(A), having the following properties:
(i) The subgroup Zy ,(A) can be generated by ty elements.
(i) The quotient & ,/ T} is killed by [K,: K] and
O (P, ./ 2R < 2(ag, — ag) + 1y, — Ix -
Moreover,
* 0(Py /5N S tx, — Ik
* (Y ZIED < 2(ag, — ag)-
(iii) The quotient .| 2y , is killed by [K,: K] and 6 (2} / 2 ;) S tg, — k-

Theorem 3.21.2) Let A/K be an abelian variety. Let £ + p be a prime. Assume that
A/ K has a polarization whose degree is prime to ¢.

(1) Then there exists a nondegenerate pairing

(;): P ¥, > QlZ,.
(ii) There exist three subgroups

O (4) € OF}(4) < 6 ,(4)

of the ¢£-part @y ,(A) of P (A), which are functorial in the variable A and whose existence
does not depend on the choice of a polarization for A. These subgroups are equal to the
orthogonals, under the pairing ( ; ), of the subgroups

ZI[<3}(A) 2 2-"l[(Z}(l‘i) 2% .4,

respectively.

(iii) The pairing ( ;) restricts to a nondegenerate pairing on O ,(A), again denoted
by ( ;). The subgroup ©P1(A) is the orthogonal in Oy ,(A), under the restricted pairing, of the
subgroup O} (A4). In particular,

s The groups OF)(A) and Oy ,(4)]OFL(A4) are isomorphic. Equivalently, the group
Dy (A)]ZBL(A) is isomorphic to ZFL(A)/ Z¢ ,(A).

2) The author wishes to thank a referee for a correction to an earlier version of Theorem 3.21.
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As we shall see in the next section, the subgroups of @ , of the form “Z” are easy to
compute with. On the other hand, the subgroups of the form “@’ are more “natural”, as
we shall now see. The group @}?} can be described in the following explicit way. Let M/K
be any finite extension. Let a,,, ¢,,, and u,, denote respectively the abelian, toric, and uni-
potent rank of 4,/M. Denote by ,/0,, the Néron model of 4, /M. By the universal
property of Néron models, there exists a unique map,

Yeom (Fow = s

which equals the identity map when restricted to the generic fibers. In particular, there is a
natural map, again denoted by yg -

Yeom P = Dy
We let
Ve m = Ker (yg ) E O -

Theorem 3.22. The subgroup OF} is equal to the ¢-part of ¥ | .

In the last section of this paper, we will present examples of the filtration of the
group of components

OPL(4) < OL(A) € Oy ,(A) & Py ,(A)

introduced in Theorem 3.21. We will also describe the group of components of the jacobian
of a Fermat curve.

Remark 1.3. Recall that when A/K has purely additive reduction (i.e., when
ay = ty = 0), the reduction map

ng: AK) —> oA,(k)

induces an isomorphism from the prime-to-p part 4(K)®. of the torsion subgroup of

A(K) to ®{. Using Lemma 2.17, we obtain the following corollary of Theorem 2.15,
which is a sharpening of a result of Lenstra and Oort ([L-O], 1.13).

Corollary 1.4. Let A/K be an abelian variety of dimension g having purely additive
reduction. If A/ K has potentially good reduction, then A(K)), is killed by [L : K] and

Z 6(‘4 (K)tors,t) é 2g .

¢+ p

If A| K does not have potentially good reduction, then there exists a subgroup A'?) of A(K)),,
such that both A'?! and A(K){P). ] A'2) are killed by [L : K1, and such that

tors

Z 6(A[(2]) + 5(A (K)tors,{/A[{n) é 2g -

¢+p

Corollary 1.5. Let A/K be a principally polarized abelian variety having purely addi-
tive reduction. If the semistable reduction of A/K is purely toric (i.e., if a, = 0), then the
order of AP (K),,,, is a square.
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Proof. Since, by hypothesis, 7, = 0, it follows from part (i) of Theorem 2.15 that
2., = (0)if £ p. Since a; = 0, it follows from part (ii) of Theorem 2.15 that

2] 3
Il =28}

Hence, Theorem 3.21 shows that the group 4P (K),,,. is an extension of the group Z?}
by itself. The order of 4P (K),,,, is therefore a square. Note that the pairing on &y , is not
necessarily alternating. O

Corollary 3.25. Let A/K be an abelian surface having purely additive reduction. If
A[K has potentially good reduction, then A(K)\? is isomorphic to a subgroup of one of the
following groups:

Z|5Z, (Z]32)% (Z]22)*, Z|2ZDZ|AZ, Z]2Z® Z]6Z.

Except for the groups Z|4Z, Z|5Z and Z|2Z @ Z |4 Z, each group in the above list can be
realized as the prime-to-p torsion subgroup of a product of elliptic curves. The group Z|5Z
can be realized as the prime-to-p torsion subgroup of an abelian surface. The group Z |47
cannot be realized as the prime-to-p torsion subgroup of a principally polarized abelian
surface.

If A|K does not have potentially good reduction, then A(K){E) is isomorphic to a
subgroup of one of the following groups:

Z/82,7/9Z,Z122,(Z/32)% (Z]22)*, Z|2ZD Z|6Z,(Z]22)* ® Z|4Z,(Z|4Z)*.

Except for the groups Z|8Z and Z|9Z, each group in the above list can be realized as the
prime-to-p torsion subgroup of a product of elliptic curves. The groups Z|8Z and Z|927
can be realized as the prime-to-p torsion subgroups of abelian surfaces.

It is not known whether the group Z/2Z @ Z/4 Z can be realized as the prime-to-p
part of the group of components of a principally polarized abelian surface with purely
additive reduction and potentially good reduction.

Remark 1.6. Let L,/K denote the maximal tame subextension of L. We will show in
Lemma 2.17 that

)y (ax, —ag) + (g, —tg) Sug —uy, .
f+p
Let
@}(p) = H @K,( >

C+p

and
‘Pé,pl). = H Y. Lc-

£#*p

Our next corollary follows directly from Theorem 2.15, Theorem 3.21 and Theorem 3.22,
quoted above.
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Corollary 1.7. Let A/K be a principally polarized abelian variety. The functorial
subgroup @) has the following properties:

(i) The quotient ®P|OP is generated by ty elements.

() Y S(¥PL,) + (O ¥R ) = 2(ux — ug)-

t+p

Remark 1.8. It is natural to wonder, in light of Corollary 1.7, and in view of the fact
that the subgroup ¥ , has a well-defined functorial p-part, whether there exists a subgroup,

@K,p(A) = ¢K,p(A) ’

having the following properties:
(i) The subgroup @y ,(4) is functorial in the variable 4.
(iiy The quotient & ,(4)/ O ,(A) is generated by 7 elements.
(iiiy The order of O ,(A) is bounded in terms of u, .

We do not know whether there exists such a subgroup in general. However, when
A/ K is a jacobian, we show in the following theorem that @, contains a subgroup G, satis-
fying the properties (i) and (iii) stated above. Even in the particular case of jacobians, we
do not know whether there exists a subgroup @ ,(4) satisfying property (i) as well as
properties (ii) and (iii).

Theorem 4.1. Let X/K be a smooth proper geometrically connected curve having a
K-rational point. Let A/K denote the jacobian of X|K. The p-part &, of the group of com-
ponents of A|K contains three subgroups,

H,c H,<G,,
having the following properties:

1. The group ®x ,/ G, is generated by ty elements.

2. The following inequality holds:

0(H)+6(G,/H,) = 2uy, .

3. The group G,/H, is isomorphic to the group H,.

Remark 1.9. The semistable reduction theorem for abelian varieties states that,
given an abelian variety 4/K, there exists a finite extension M/K such that the unipotent
rank of 4,,/M is equal to zero. Corollary 1.7 might be better understood in light of the
following proposition, which plays a crucial role in Artin and Winters’ proof of the semi-

stable reduction for abelian varieties [A-W], 2.8. We recall the proof of the proposition for
the convenience of the reader.
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Proposition 1.10.  The existence, for all abelian varieties A[K, of a subgroup G(A) in
@ (A) having the properties:

o ®P/G is generated by ty elements, and
e |G| is bounded by a constant ¢ = c(g) depending on the dimension of A only,

implies the existence of a finite extension M|K such that the Néron model Ay | Oy of
Ay /M has unipotent rank uy = 0.

Proof. Let £ p be a prime larger than c(g). For any group or group scheme G,
denote by ,G the kernel of the multiplication by £ on G. Let M denote the field of rationality
of the points of ,4 (K). We are going to show that u,, = 0. To simplify our notations, we
let <, in this proof, denote the Néron model of 4,,/M. Since £ + p, the multiplication by ¢ is
étale on .« and, hence, we have an isomorphism of groups:

AM) = AK) — (k).
Since ¢+ p, the group </ (k) is #-divisible, that is, the map
“multiplication by 2> : #2(k) — (k)
is surjective. We therefore have an exact sequence,
0 - ,H02k) - k) = P — 0.
We conclude the proof by counting the dimensions of these three F,-vector spaces. The

group ,. (k) has dimension 2g = 2a, + 21y + 2uy, by hypothesis. Since a unipotent
group has no element of order ¢ if /= p, we find that

dimFl(,d,f’(k)) =2a,+ty .
Since ¢ > c(g), dimg (,Py) < 1y We obtain the inequality
2ay, + 20 +2upy S QRay +ty) 1y
and therefore u,, =0. O

Remark 1.11. Write &, = [| Z/¢;Z with ¢,|...|@,, ¢; positive integers. If
r> iy, let i=1

r—ix
Ty:= H ZloZ
i=1

so that @, splits into a product

GV XCyx ... xC

tx

where each group C; is cyclic. If r < 1, let Yy = {0}.
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The crucial step in Artin and Winters’ proof of the semistable reduction theorem is to
show that, when A4 is the jacobian of a curve having a K-rational point, the order of the group
Yy is bounded by a constant ¢ depending only on g = dim 4. This follows from [A-W],
1.16. Artin and Winters, however, did not make this statement explicit (there is no mention
of groups of components in their work). One finds the first explicit statement of an analogous
result in an article, published twelve years later, in which Silverman [Sil] shows that ¢
is bounded by such a constant ¢ when 4/K has potentially good reduction. We provide an
explicit bound for | Y| in 4.16 and 4.21.

Note that the subgroup Yy is not “functorial” in 4 since a morphism of abelian
varieties o : 4 — B does not always induce a commutative diagram

Yy (4) —— Y (B)
n n
&, A) —— & (B).

To show that such a commutative diagram does not always exist, let E be an elliptic curve
with additive reduction over K and a non-trivial group of components. Let & be an elliptic
curve with multiplicative reduction and a trivial group of components. Let ¢ and u be two
positive integers with ¢ > 2u. Consider the natural map

oa:E* - E¥x &*.

The induced map @ (E") - P (E* x &) is an injection while Y, (E¥) = &, (E*) and the
group Yy (E*x &) is trivial.

This article will proceed as follows. In section two, we use the monodromy filtration on
the Tate module 7, (A4) to define some subgroups of & ,(4) and to prove a bound for their
orders. In the third section, we prove our main theorem describing a filtration on the ¢
part of the group of components & , when £ # p. In the fourth section, we recall Raynaud’s
description of the group @, when the abelian variety 4/K is a jacobian. We then use our
main theorem to deduce the existence of a nonfunctorial filtration on the p-part of the group
of components of a jacobian. In the last section, we present some examples to illustrate the
main properties of the group @. In particular, we describe the group of components of the
jacobian of a Fermat curve.

2. Description of the group &, ,

Let A/K be an abelian variety. We let T, or simply 7 when no confusion can result,
denote the Tate module T, 4, £ = p. In this section, we recall Grothendieck’s description
of the group & ,. This description will enable us to associate to any submodule X of 7, a
subgroup s(X) of the group @ ,. The computation of the number of generators of s(X)
and of the order of & ,/s(X) will be reduced to linear algebra.

The Galois group Iy := I(K/K) acts on the Tate module 7, = T, 4 in a natural way.
When 7 is a prime different from the residue characteristic p, Grothendieck [Gro], IX,
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11.2, describes the /-part & , of & in terms of this action by showing the existence of a
natural isomorphism

(T,4A® Q,/Z)"™
(L, A*®Q,/Z,

bro: Do

Let P denote the pro-p-Sylow subgroup of I and let o denote a topological generator
of Iy/P = [] Z,. For each ¢ # p, let 6, denote the automorphism of (7, 4)* induced by

C¥p
¢. We may drop the subscript ¢ in o, when no confusion may result. Let

D{ = @{/Z{ .
Let
o L® DY
T®D,
Lemma 2.1. The group E is isomorphic to the torsion subgroup F of T}/ (c, — id) (T}).
Proof. Since T, is a free Z,-module, we have an exact sequence:

0-T7,->T,R®0 - T,®0 - 0.

Lenstra and Oort remark, in [L-O], 1.2, that taking P-invariants is an exact functor.
Consider then the diagram:

0T > (,®Q) - (,®DY - 0
la,—id la,——id la,—id

07/ > (1,®Q) > (I,®DY)F - 0.
Using the Snake Lemma, we obtain the exact sequence:

0 T/% » (T, ® @)™ — (T,® B)'* — T}/Im (g, — id) > (T} ® @)/Im (g, — id).

Hence, we can write:

(T,® D)= o

T " F/me—id —— (17 ® Q)/Im(, ~id).

Since the kernel of u is equal to the torsion subgroup of 7,°/Im(o, — id), our lemma is
proved. O

Remark 2.2. The isomorphism between the group & , and the group F greatly
simplifies the computation of the group @ , when the matrix o, is given explicitly. Indeed,
a row and column reduction of the matrix o, — id reduces this matrix to a diagonal matrix

h
diag(ey, ..., €,0,...,0), with A < 2g. The group & , is isomorphic to [] Z,/e;Z,.

i=1
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Lemma 2.3. The group F does not depend on the choice of a generator ¢ of Iy/P.
Proof. The group F is defined to be the torsion subgroup of the group
T/ (o, —id)(T;7) .

Let us show that the group (o, — id)(7?) does not depend on the choice of a generator of
I/P. The module TF is compact and Hausdorff, and the map

o,—id: T - T}F

is continuous. Therefore, the image (o, —id)(T) is closed in T, . Let te /P and
x € T;. The element (t — id)(x) is in the closure of (s, —id)(7;?) in T, because the map
/P — T(P’
po— (p—1id)(x)

is continuous and because the subgroup generated by o is dense in I/ P. Therefore, if 7 is
a topological generator of I/ P, then (t —id)(T}f) = (o, —id)(Tf). ©

24. To any submodule X of T,, we may now associate a subgroup s(X) of F as
follows:
X?+ (0, —1d)(TH)
(0, —id)(TF)

5(X) = torsion subgroup of

Clearly, s(X) = s(X*). Note that the subgroup s(X) does not depend on the choice of a
polarization of A4. It does not depend on the choice of a generator of I /P either.

2.5. Before we can proceed any further, we need to recall some standard facts about
abelian varieties. We refer the reader to [Gro], IX, §2 and § 3, for the proofs of these facts.
Fix a polarization of the abelian variety 4/K. There exists a Galois-invariant skew-

symmetric separating pairing:
(O:TAXTA - T,6,2Z,.

For any submodule X £ 7, we let X* denote the orthogonal complement of X under {,).
We define
W, k=T, (T/*)*.

We may drop the index £ when no confusion can result.
The image of the wild ramification subgroup P in Aut (7)) is a finite p-group B,. For
any £ # p, | | is invertible in Z,. Therefore, the following averaging map, introduced by

Lenstra and Oort in [L-O], 1.1, is well defined:

xeT, - (IB™' Y o)eTf.

oePo



Lorenzini, On the group of components of a Néron model 119

The pairing ¢, ) on T, A4 restricts to'a non-degenerate pairing on T/, denoted again
by ¢,>. We let Y? denote the orthogonal complement of a submodule Y & T,” under the
restricted pairing. It is clear that for any submodule X c T,

(X7 = (X
In particular,
W, x = T/<0 (T%) .

For any extension K < M < L, we denote by M, the extension K€ M, & M corre-
sponding to the inertia group

Let a,,, t),, and u,, denote respectively the abelian, toric, and unipotent rank of A, /M.
We indicate in the diagram below the rank over Z, of the quotient of two successive
modules:

ty 2a,, I 2uy 1 ty
M >
0 — Wp — L™ — Wiu I;.

Taking the P-invariant submodules in the above sequence, we obtain the following
inclusions:

0 - WMO - Y}IMO - WA;O - T’lP'

By definition of L, the unipotent rank u; equals zero. Therefore, W}/ T'* is a torsion
module. Since T/T'™ is a free Z,-module for any M 2 K, we conclude that

Wi =T/~
This equality implies in particular that:
(W)} = T'ro.

2.6. In the following diagram, all maps are inclusions. The rank of the cokernel of
each map is indicated over the corresponding arrow.

0 Iy m{ 2ag , TIK 2(ug — ur,) , VVK§
! ! {u
0 s Wy, 2, Tl ey TP
! l {2
0 o &, TR T.

Remark 2.7. Assume that the residue characteristic p is equal to zero. Let g be any
prime and denote by Q the pro-g-Sylow subgroup of I. Let L, denote the extension of K
corresponding to the subgroup I; - O, so that

Lq = (K')IL.Q-
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If £+ g, the image Q, of Q in Aut (7)) is finite. The pairing {;) on T, x T, restricts to a

nondegenerate Galois invariant pairing, again denoted by ¢;>, on 7,2x T,2 If X is any
submodule of T2 let X* denote its orthogonal in 7,2 under the restricted pairing {;).

In the following diagram, all maps are inclusions:

We note, for future use, that

rank, (T/T9) = 2u, .

The following lemma provides a justification for the inclusions given in the first
columns of the two diagrams above.

Lemma 2.8. Let M/K be any field extension contained in L. Then

W, x=Wa0" .

In particular, W, y S W, y S W, ;.
Proof. 1t immediately follows from the definitions of Wy and T'*o that
Wy < T'™o,
To show that W, < (T'"™0)%, let © be a generator of Gal(M,/K). Let x € Wy. Then
[My: K]<x,p> = {x,(1+ T+ -+t Mo:KI=y 8 = ¢
for all ye T™o. Indeed, xe(T'*) and (1 + 7 + -+ + tMo:K1=1) y e T'x_Therefore,
{x,y> =0 forall ye T'™o, and x e (T o)t
Hence, Wi < W,,,. Note now that

g

[TIMﬁ (TIM)_L]P
= T1™0  (T1™0)s8

— TIMOn (TIMO)J.
= WMO 3

so that Wi = W/
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Clearly, Wy < W x. Since (T'"™0)} < (T'x)$, we find that
Wi € Wik = [(T™)"]'x 2 [(T™)*)'* = Wk
This finishes the proof of our lemma. O
Remark 2.9. Let £+ p be a prime. The following description of the module W, ¢
shows that this module does not depend on the choice of a polarization of 4/K. Let o7/ Oy
denote the Néron model of 4/K. Let J denote the torus in the connected component of

zero of the special fiber of <7 The module W, y can be canonically identified to the Tate
module T,(%) ([Gro], IX, 2.3). Therefore, the modules

Wk S W, s T,"
are canonical submodules of T}, independent of a choice of a polarization. We define:

2y (A)= s(W,.x)»
IR A) =5, L),
IR (A) = s(T/).

In the remainder of this section, we discuss some bounds for the order of a quotient of
@y , of the form &, ,/s(X).

Lemma 2.10. If X = T, is any submodule, then

XP + (0, —id)(TP)
(o, —id)(T")

$(X) = torsion of
is isomorphic to
X" (1))
XA (o, —id)(T?)

Proof. The sequence

XP A (TTx) Xr xP
— - — -
XPA(o,—id)(T?)  XPA(o,—id)(T?)  XPn(T'x)

is exact. Since (T7%)! and (6, — id)(T'*) have the same rank, the left term of this sequence
is a finite group. One easily checks that the right term of this sequence is a free Z,-
module. O

Lemma 2.11. The group s(Wy) is generated by ty elements.
Proof. Indeed, the Z,-module W has rank ¢, and, therefore, the group

Wy + (0, —id)(TT) _ Wi
(6, —1d)/(T*) = Wgn (o, —id)(T")

s(Wp) =

is generated by t; elements. O



122 Lorenzini, On the group of components of a Néron model

Proposition 2.12. Let Z S X be two o,-invariant submodules of (T;*) containing
W, - If the automorphism induced by o, on the free Z,-module X|Z has finite order r, then
s(X)/s(2Z) is killed by r and

6(s(X)/s(2)) < rank,, (X/Z)‘%7),

where r,:=¢°%" and () denote the group generated by c}¢. The operator &( ) is defined
asinl2.

Proof. Note that the group

X+ (@ —-0)(T") _ X

s(X)/s(Z) = Z+(@0—-D(T? Xn[Z+(—1)(TH)]

is a quotient of the group

X

oc—1
?—{-(O’——l)(n =coker(X/Z E— X/Z)

Therefore, in order to prove our proposition, we only need to show that X/[Z + (¢ — 1)(X)]
is killed by r and that

X <
5<m> grankz{((X/Z) )

The group X/[Z + (6 —1)(X)] is finite because (¢ — 1) is injective when restricted to
X/Z. Indeed, it is injective on (T'x)%/ W, because this module is isomorphic to Wg/T'x
and Lenstra and Oort have shown, in [L-O], 1.6, that the integer one is not an eigenvalue
of ¢ restricted to W}/ T'*. Therefore, in order to prove our proposition, we only need to
prove the following lemma.

Lemma 2.13. Let Y be a free Z,-module of finite rank. Let ¢ be an automorphism of
Y of finite order r, and such that

Y:=Y/(c —id)(Y) is a finite group .

Then r kills Y and
8(¥) < rank, (Y<°),

where the operator 6( ) is defined as in 1.2.
Proof. Write
Y=1_[J]2z/¢t“Z.
i=1
Let x;, € Y be such that its image X; in Y generates the subgroup

{0} x ... xZ[¢%Zx ... x{0}.
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Let p, (1) € @,[t] denote the minimal polynomial of
x®1eY®,,Q,.

Since the characteristic polynomial char(c)(f) of ¢ is monic with coefficients in Z,, we
conclude that

p(DeZ,[1].

Since ¢(x;) = %; in Y, we find that

P (@) (x)=0=p ()X in Y.
Note that
P, () *0,

because p, (f) divides 1+ ¢+ ... + ¢~ '. Hence,
£% divides p, (1) .
Let ¢, (¢) denote the minimal polynomial over Z of a primitive n-th root of unity. Recall that

1 if n is a composite integer,

¢n(1) = {{ if n =(ord((n).

In particular, if n is a composite integer and f(¢) is a factor of ¢,(¢), then f(1) is a unit in
Z,. Recall also that ¢,.(¢) is irreducible in Z,[¢]. Therefore, since £* divides p, (1), the
polynomial p, (f) must be divisible by a product of at least g, polynomials of the form
@pm; (1), j =1, ..., a;. Since the polynomial p, (¢) divides ¢" — 1, the integers b;; must all be
distinct. It follows that

ai

deg (pxi(t)) = Z (/bij_ /bij_l) > 1.

i=1
Note that

[1¢%=1¥|=u-char(o)(1), where uis a unitin Z,.
i=1

Therefore, char(o)(¢) is divisible by the product of exactly ( > a,.> polynomials of the
form i=1

¢{ck(t), With k= 1, ey Z ai.
i=1

Without loss of generality, we may assume that ¢; = b,;forj=1,...,a,. Itis obvious that

deg(d, (D) 2¢—1 fk>a,.

Hence,
rank, (Y<7?) = ord_,,(char(6") (1)) 2 (¢ - )+ (L a)(¢—1).

j#1

This concludes the proof of our lemma and of Proposition 2.12. 0O
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Corollary 2.14. Let K< M < L be any Galois extension. Fix a prime ¢+ p. From
the inclusions

Wk (T, s Why € Wik,
we obtain the subgroups

s(W) 2 s(T™)*) s s(Wp) S F.
Consider the exact sequence:
0 — s(W)/s(T™)*) — Fls(T™)) - Fls(Wz) —» 0.

The following properties hold:

M) 3(sO%)/ s(T"™))) < 2(apnk, — ax).

(2) The group F/s((T")*) is killed by [M : K] and

8(F/s((T™)")) < 2(aynk, — ) + Ik, — Ix -
(3) The group F|/s(Wy) is killed by [M : K] and

S(FIs(W) < ok, — k-
Proof. Let
Uy = [Wq, N (TP /(T 108,

U, :=(T'%)8/(T"™0)¥, and
Uy o= (T [ [, 0 (TT=)] .
The Galois invariant pairing (;» on TF x T* induces an isomorphism
TTo = TP/(TM0)s .

Since ¢ acts as T7™o with finite order [M, : K], it also acts on the modules U,,i =1,2, 3,
with finite order dividing [M, : K]. We may therefore apply Proposition 2.12. To compute

the ranks of the modules US°™?, we proceed as follows.
The module U, is isomorphic to the dual of the module
Vo= T/ [ W A (TTR)S]E.
The module U, is isomorphic to the dual of the module
Vy = TTMo| TTx
The module U, is isomorphic to the dual of the module

Vysm [W, (TR T
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Note that
Wi, + T7% < [Wi, n (TT<)%]8

is a subgroup of finite index. Therefore
rankz, (([ Wo N (Tlx)§]§) (a'f)) = rankzl (( Wiy, + Tlx)<av,>)
= rankZ{(WMomKt + T1x)

= ranky, (W, ~x,) + rank, (I''<) —rank, (W%).

onkK,

Since the cohomology group H'(G, N) is finite if G is a finite group and N is a finitely
generated module, we can write:

rankZ[(Vl<o’y’>) — rankZ((TIMOr\x[) — rankl,(([ ngof\ (TIK)§]§)<G"‘!>)

= 2aMonK, + Imonk, (tMonK, + (Zag+ 1) — tK)

= 2(aMonK, —ag) .
Similarly,
rankzt(V2<"">) = rankz{(T’Mo“K;) - rankZ,(T“‘)

= 2(aMoﬂx, —ag) + IMonk, — Ik >
and
rank,, (VX°") = rank,, ([(W§, 0 (TT%))11<7) — rank,, (T7x)

= Ipon K, ™ Iy .
This concludes the proof of our corollary. O
Theorem 2.15. Let A/K be an abelian variety. There exist three subgroups
Iy, (4) € ZZL(4) € 22} (4)
of the ¢(-part @y ,(A) of Px(A), having the following properties:
(1) The subgroup Xy ,(A) can be generated by t, elements.
(i) The quotient &y ,/ X8, is killed by [K,: K] and

0T /2 < 2(ag,—ag) + tg,— g -

Moreover,
© O(P /2PN < g, — g,
« SPLIIEY) < 2ay, - ap).

(iii) The quotient Z?},/ Zy , is killed by [K,: K] and 8(Z},/Zx ;) < tx, — tk.

9 Journal fiir Mathematik. Band 445



126 Lorenzini, On the group of components of a Néron model

Proof. The subgroups mentioned in the statement of our theorem were introduced
in Remark 2.9. Part (i) follows from Lemma 2.11. Part (ii) follows from Corollary 2.14,
applied to the submodules W, x = (T,/~)* = W, < W,%. Let us now prove part (iii). Note
that s(W) = s(W,) = s(B,, ). We claim that W, (< W, are two submodules that
satisfy all the hypotheses of Proposition 2.12. Indeed, both modules are g,-invariant and,
since W, ; is contained in T'%o, it follows that ¢, has finite order r:=[L,: K] when
restricted to W, /Wy. To compute the rank of (W, / Wy )<9*>, we proceed as in the proof of
Corollary 2.14 and find that

rank,, (W, We)<") = ranky, (Wy,) — rank,, (W) = tg, — Iy .
This concludes the proof of Theorem 2.15. O

Remark 2.16. Let X/K be a smooth proper geometrically connected curve having a
K-rational point. Let 4/ K denote the jacobian of X/K. Assume that 7, = 0 for all primes
¢ % p. Note that this implies in particular that ¢, = 0. Write

s(¢£)

o, =[] Z/t*Z.
i=1

It follows from the above corollary and from the following lemma that

Y 6(S ) S Y 2(ax,— ag) < 2ug —2uy, .

¢*p f*p
Theorem 3.6 in [Lor 3] states that
s(¢)
5 (z (zai—1)> < 2uy.
£+p \i=1

In view of this theorem, it is natural to wonder whether Lemma 2.13 could be sharpened
to state:

PGS VE rank,, (Y<°7).

i=1

We have not been able to prove or disprove this bound. In case this sharper inequality were
always true, we would define the quantity ¢'(G,), for any finite abelian group

Gx|]z/ituzZ,
i=1
to be:

§'(Gy=Y (£ —1).
i=1

All the theorems stated in this paper would then remain true if 6( ) were replaced by

o' ().
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Lemma 2.17. Let A/K be any abelian variety. Then

Y (ag,—ag) +(tg, — tx) Sug —uy, -
¢+p

Proof. Fix a prime £ and let ¢ & p denote any prime. Consider the inclusions

I I
T/x < T/% < Wik, Wi.

We know that
2(ax, — ag) + 2(tx, — tx) = rank, (T,"<e/ T/*) + rank,, (W /W x,) -

Let f, (x) denote the characteristic polynomial of o, acting on 7%/ T;'* @ Wi/ Wik, For
each prime g, the polynomial f,(x) is a product of cyclotomic polynomials of the form
¢4 (x). The integer one is not an eigenvalue of g, restricted to W, x| T,'* (see for instance
[L-O], 1.3). Hence, we conclude that the polynomials f,(x) are relatively prime and,
therefore,

char (a,) (x)

(X _ 1)2ax + 2tk

[T f,(x) divides

a+p

Hence,
2(Y (ag,+ tx,— ax — 1)) < rankz,(%?xﬂ}"‘) .

aq¥p

It follows from 2.6 that ,
rank,, (W3 /T,'%) = 2(ug — up,) . O

3. A pairing attached to the group @ ,
Let us state now the main theorem of this paper. .

Theorem 3.1. Let A/K be an abelian variety. Let L|K denote the unique extension
of K, minimal with the property that A, /L has semistable reduction. Let ®x(A) denote the
group of components of the Néron model of A|K. Let ¢ + p be a prime. Assume that A|K
has a polarization of degree prime to {. Then there exists a subgroup Oy ,(A) of $(A) such
that:

(1) The subgroup O ,(A) is functorial in the variable A and does not depend on the choice
of a polarization for A.

(2) The quotient &y ,(A)/ Oy ,(A) is generated by ty elements.
Let K< M < L be any Galois extension. There exist three subgroups

@E]M,J(A) & @tl(z,]M,z(A) = @I[<1,]M,J(A) g O ,(4)
such that:

(3) The subgroups ©F,, , are functorial in the variable A for i =1,2,3, and do not
depend on the choice of a polarization for A.
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@ O, is killed by [M : K], and 6(OF), ) < ty g, — Ix.
(5) OR\ . is killed by [M : K], and 6(OF ) £ 2(ayx, — ax) + (tynk, — 1)
(6) 0(OF,s/1OKM.0) < 2(aynk, — ax)-
Moreover, the group @ ,(A) is equipped with a nondegenerate pairing
(;): P [(A)* Py [(A) > Q) 2,
that restricts to a nondegenerate pairing
(5):0g,,(4) %O ,(4) > Q)2Z,.

(7) The group O\, ,(A) is the orthogonal in Oy ,(A), under the above pairing, of the
group O, ,(A). In particular,

(8) The groups O, , and O ,/OF), , are isomorphic.

The natural map gy, : P = By, does not induce, in general, a map from Oy , to Oy ,.
However,

) 1 m(OFh. ) S Oy .-

(10) The subgroup O\, , is equal to the ¢-part Wy \ , of the kernel of vy \. In parti-
cular, the group O\, ,|OR\, , injects into the group 6, ,.

(11) When M = L, the groups OF\, , and O, , are equal. We therefore obtain a
bound for the order of @y , in the form of:

¢ 0(Ok /¥, 1) +0(¥ 1) S 2(ag, — ag) + 2(tx, — tg), and
* O, is killed by [K,: K]>.

Most of this section will be devoted to proving the above theorem. Fix a prime ¢,
£+ p. Let
D= @,/ Z,.
Define
g L@ D)™
/@D,

Recall that Grothendieck, [Gro], IX, 11.2, constructed a functorial isomorphism

ke P, > E.
Let
TP

Foe torsi ]
orsion subgroup of (o — id)(T})
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We showed in 2.1 that the groups E and F are isomorphic. Given the submodules
Wy € Wy S (T S Wy < Wi,
we can define as in 2.4 the subgroups:
s(We) € s(Wy) = s(TH)Y) € sOBH S F.
We will show below the existence of a pairing
(;):ExXF —> D,.

Denote by H* the orthogonal under ( ;) of a subgroup H of F. We will define the sub-

groups O , and O}, , for i=1,2,3, in 3.8. When the pairing on E X F is perfect, we
will show in 3.11 that

bx.cOk,) = s(W)*,
bk, (OL M) =s(Wp*
bx,.(OF4,) = s((T™)*)*, and
b, (OK k) = s(Wip)* .

Therefore, when the pairing on E x F is perfect, part (2) of Theorem 3.1 follows from 2.11.
Parts (4), (5), and (6) follow from 2.14. Part (11) follows from the definitions and from
parts (4), (5), and (8).

3.2. Existence of a pairing on &, ,. We define a pairing

(;):EXF > D,
as follows. If x € E, let ¥ denote a preimage of x under the natural map
/®Q — (T,® D).
If ye F, let § denote a preimage of y under the natural map
(T/*) - (T)/ (0, — 1d)(T]) .

Choose a polarization on 4 and denote by (;) the associated pairing on 7,7 x T,F. The
pairing {;): T,F x T, — Z, extends to a pairing

O (TF® Q) - Q.
We define
(x;»e@,/z,

to be the image of (%, 7 under the natural map @Q, —» Q,/Z,. It is clear that

(ZR+z;9) =L&p> if zeT)*® Q,.
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To check that
K j+z>eZ, if ze(g,— id)(T;"),

we need the following description of (T, ® 0,)'%.
3.3. Any element z in T, 4 can be written as
z={z;}{Z,,

where z; is a point of order ¢* in 4(K), and z; = ¢z;,, for all ie N. Let X = T, be any
I¢-invariant submodule such that T,/X is torsion free. Let

a(X):={xe A(K)|I{x;}>,€ X and je N such that x = x;} .
Lemma 3.4. The set a(X) is a subgroup of A(K) isomorphic to (X ® D,)'x.

Proof. Let x,yea(X). Let {x;}2 € X be such that there exists je N with x = x;.
Similarily, let {y;}{2, be such that there exists k € N with y = y,. We may assume without
loss of generality that k£ < j. Then

x+yea(X)

because
x+y=z,

where
{z:}2 1= {x}2 +/j_k{yu' i=1€X.

We define a map
fraX) > (X® D)~

as follows. If x e a(X), let {x;};2, be such that x = x; for some j€ N. Then set
f@={x}z,®0 7.
Let us first check that f(x) € (X ® D,)'%. Since ¢(x;) = x; for all o€ Iy,
{x;}72, — a({x;};2,) is divisible by 7 in T,
and hence, is also divisible by #7 in X because T/X is free. Let

{y3Zi=¢7({x} —a({x;})), with {y}j2,€X.
Then
[{x}—o({xDI®/ T = {pHh®7=0,
which shows that
{x,}2,®¢77 is fixed by I.
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To show that the map f is well defined, we let {x;};2, € X be such that x = x; for some
J and we let {y,}2, be such that y, = x for some k. Without loss of generality, we may
assume that j = k. Then,

{x;} —¢77*{y,} is divisible by £/ in X .
Hence,

[x}@/1-[{r}® ™ 1=0 inXQ®D,.

We leave it to the reader to check that the map is an isomorphism, recalling only that
{x} ®¢ 7/ =0in X® D, if and only if {x;} = ¢/{y,} for some {y;} € X. This concludes the
proof of Lemma 3.4. 0O

3.5. Let xe (T, ® D,)’*. We claim that we may assume that there exists a lift

XeT/®Q,
of x of the form

{(x}2,®¢77, with {x;}eT and x;=x.

Indeed, by the above lemma, we can find a lift of x in T, ® @, of the form {z,} ® £,
with z; = x. Applying the averaging map

S:T, > T/,

1
v > — o(v)
| Fol

agePgy

to {z;}, we obtain a lift of x in T ® Q,:
F=S{zD®¢ 7, with x=(S{z});.

3.6. Let us now conclude the proof of the existence of the pairing ( ;). Let
x € (T, ® D,)’* and choose
xeT/®Q,

such that % = {x,}72, ® £ ~/ with x;€ A(K) and x; mapping to x under the isomorphism
of a(T) with (T, ® [,)'*. Note that, since {x,}{>, ® £/ = % is such that x;e 4(K),

(o, ' —id)({x,}) is divisible by £/ in T;".

Write then (o, ' —id)({x;}) = £/{y,} for some {y;} € T,”. Let z:= (g, —id) (1) be any ele-
ment of (g, —id)(7;?). Then

(F,z) =<(o, ' —id)(X), u)
=y} @7, u)
=ik w
€ Z,

because both u and {y,} are in 7,F. This shows that the pairing ( ; ) is well defined.
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Lemma 2.3 shows that F does not depend on the choice of a generator ¢ of I /P.
It is then easy to check that the pairing

(;):EXF - D,
also does not depend on the choice of a generator. O

Remark 3.7. Let & , denote the group of components of the abelian variety dual
to 4. In [Gro], IX, 1.2 and in IX, 11.3, Grothendieck defines two pairings between &y ,
and @ ,. We do not know how Grothendieck’s pairings relate to the pairing (;) intro-
ducted in this section. Grothendieck conjectured that the pairing that he defined in IX, 1.2,
was perfect. This was proved by Artin and Mazur (see for instance [McC 3], Theorem 4.8).

3.8. Given a submodule X ¢ T}, let
i X®Q - T, D,

denote the natural map. We denote by ¢(X) the subgroup of E generated by the elements
x € (T, ® D,)'* such that there exists ¥ € X ® @, with f5(X) = x. It follows from 3.5 that
t(X) = t(XF).
Note that if Y € X is such that X/Y is finite, then
tY)y=1t(X).
Note also that, for any submodule X,
t(X)=t(X+T'%).

We define the subgroups & , and O, ., i=1,2,3, as follows:

d’x,/(@x,;) = t((o' - id)(T:P)) >
d’x,z(@gjw,;) = t(T:IM + (g™ K1 — id)(T;P)) s
bk, (OF ) =1(T/™), and

Ok, o (O, )= t(W, ») -
It follows from these definitions that the subgroups @y ,(4) and 6§l ,(4), for
i=1,2,3, do not depend on the choice of a polarization of 4. Lemma 2.3 shows that these
subgroups do not depend on the choice of a generator ¢. It is clear that these subgroups are

functorial in the variable 4. Therefore, parts (1) and (3) of Theorem 3.1 hold.

Let us note that

¢K,[(@K,[) = t((a - id)(]}P)) = t(uégx) >
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since the module T;/% + (¢ — id)(7;?) has finite index in W,%;. Similarly,
bk, (OF )=t (T + (@™ M —id)(T7)) = t (W) -
Therefore, we find the following inclusions:
O, +(4) € O (4) € Bk} (4) € Ok ,(4).
Proposition 3.11 below describes the orthogonals of the groups @, ,(4), i=1,2,3,
and of the group @ ,(A4) under the pairing ( ; ) constructed above, provided that 4 has a

polarization of degree prime to 7.

3.9. The groups E and F are finite and isomorphic. Therefore, in order to show
that the pairing

(;):ExXF - Q,/Z,
is perfect, we need only to show that the induced map
E - Hom(F, Q,/Z,)

is injective or, equivalently, that the orthogonal of Fin E under ( ; ) is trivial. This will be
shown in Proposition 3.11, after a preparatory lemma. Let

n,: T, > T,j¢"T, = A[£"1(K)

n

denote the natural quotient map. The pairing
e, A[£"N(K) X A[£"1(K) — Z,/¢"Z,

induced by {;) is perfect when the polarization used to define the pairing on T, X T, has
degree prime to Z. We claim that the pairing

enr: T (TD) X 1 (TF) — Z|£"Z

is also perfect. Indeed, let x € =, (T;') and x € T,” such that n,(x) = X. Since the pairing e,
is perfect, there exists y € 7, such that

e, (%, m,(») 0.

Hence,
e y>¢l"Z,.
Therefore,
1
{x, SOy = 2l Y, (o), a0 =L,y ¢"Z,.
Ol gePp
Hence,

e p(%, 1, (S(»)) 0, with ,(S(»)emn,(T).
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Lemma 3.10. Let X c T* be any submodule. The group m,(X®) is the orthogonal of the
group m,(X) under the pairing e, p.

Proof. Since X? is orthogonal to X under (;), it is clear that the orthogonal of
7,(X) under e, p contains =, (X %). This inclusion is an equality because both groups have

the same order. Indeed, m,(X*) has order ("™ and the orthogonal of 7,(X) has
order (/n)rank(TP> —rank(X)

Proposition 3.11. Let X be an Ig-invariant submodule of T, such that T,|X is free.
Then t(X*) is the orthogonal of s(X) under the pairing (;) on EXF. In particular, the

pairing ( ;) is perfect.

Proof. Let H* c E denote the orthogonal of a subgroup H = F under the pairing
(;):ExXF— @Q,/Z,. 1t is easy to check that

t(XH es(X)*.
To prove the reverse inclusion, let x € s(X)*. By assumption,
<x~a )7> € Zl

for all lifts % = {x,} ® ¢/ /e T} ® @, with x = x;, and for all elements je X" (T )N
We claim that we can find a lift £ with {x;} € [X*~ (T'%)’]. Indeed,

ej,P(nj (%), T; (f)) =0

for all 7 € X¥~ (T'%)". Therefore, n;(X) is in the orthogonal of =; (X?~ (T7)%) under ¢; p,
which was shown in 3.10 to be equal to 7;([X ¥~ (T'%)']%).

Note now that
(XPY + T2 [XPn (TT)]8

is a subgroup of finite index. Therefore, the image in T ® D, of

(X +T™]1® G,
is equal to the image of
[XFPA (TR Q.

Therefore, we can find two elements

F={z;)®¢° with {z;} e (XT),
and
F={y}®¢™" with {y;}e T’

such that
¥=+75 in T,®D,.
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Since the image of both % and y in T, ® [, are in (7, ® D))"=, it follows that the image
of 7in T,® O, is in (X*)!® D,)'*. Since % and 7 map to the same element in E, we
conclude that

xet((XP)) =1(XYH. D

3.12. Fix a generator ¢ of I/P. Let , : E — F denote the isomorphism described in
2.1 and let

() EXE —» Q,/2Z,

be defined by
(x’ y)o' = (x’ aa' (y)) :
Proposition 3.13. The pairing (;),: EXE— @Q,/Z, restricts to a nondegenerate
pairing

(5)o: t (W) > t (W) -

If W, < X < W is any I-invariant submodule such that W[ X is free, then the orthogonal
of t(X) in t (W) under the pairing (; ), is equal to the subgroup 1(X Y.

Corollary 3.14 (Parts (7) and (8) of 3.1).  The group O}, , is the orthogonal in O ,
of the group OF, ,.

Proof. Recall that Wy < W), < Wy & Wy Recall also that
bk (O8N ) = t(Win) s

and
¢K,((@I[(?]M,/) =t(W, m) -

Hence, the corollary follows immediately from Proposition 3.13. O

Proof of Proposition 3.13. The fact that the restricted pairing is nondegenerate
follows from the fact that the orthogonal of t#(W,%) is equal to (W, ), and that
t(W, ) = {0}. To prove that the orthogonal of #(X) in t (W) under the pairing (; ),
is equal to the subgroup #(X*), we need the following lemmas.

Lemma 3.15. The subgroup X'* + (¢ — 1)(X?) has finite index in X . Equivalently,

X'=n (@ —-1)(XF)={0}.
Proof. Let ye X* be such that (¢ — 1)(y) € X '=. It follows that

(c—-1D*()=0.

In [L-O], 1.3, it is shown that the integer one is not an eigenvalue of ¢ restricted to
W/ T'=. Hence, since X* < W,

(c—1D() =0,
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and, therefore,
X®n(e—-1)(XP) = {0} .

Our lemma follows because
rank (X =) + rank (6 — 1)(X*) = rank (X?). o
Lemma 3.16. The subgroup Wy + [(6 — 1)(XT)]%® has finite index in X* A (T'x)5

Proof. Since Wy < X,
Wy = Xx~ (TTx)5

Since (6 — 1)(X?) g (T'x)}, it follows that
We+ (0~ DXT) = [X™+ (6 —1)(XP)] n (TTx)5.

It therefore follows from the previous lemma that W + (¢ — 1)(X*?) has finite index in
XPN(T'*). Since TP/ X7 is free, we have X* = (X*)¥ and, therefore,

[ = DI S KPS (T = X P (T7x)
Hence, our lemma follows. O
3.17. We are now ready to begin the proof of 3.13. It is clear that r(X*) is con-
tained in the orthogonal of 7(X) under ( ; ),. We therefore need only to prove the reverse
inclusion. Let A € (W) be such that
& 8,()=0 forall {er(X).
Since 4 € 1 (W), we can find a lift Z of 4 in T,f ® @, of the form
f=z®¢71 with zeWg.
Lemma 3.18. Let £=:z® ¢~/ be as above. Then
{y,z)etiZ, forall ye[(c—1)(XP)]%.
Proof. Recall that, if Y is any submodule of TF, then
Y¥={yeT?|ImeN with /myeY}.
Let ye[(c —1)(X?)]*%. Let me N and xe X* such that
"y =(c"' = 1)(x).
This equality shows that the image of the element

x® "eTF®Q,
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in TF ® D, is Iy-invariant. Hence, x ® £ ~™ defines an element { € #(X). Therefore,

A, =<x®¢™™, (6 —1)(£)) mod Z*
=" -
=(y®1,z0777).
But, by hypothesis,
(¢ A, =0 inD,.
Hence, {y;z)ef'Z,. O
Let ¢; , denote the pairing induced by {;> on =;(T%) X n,(T 7). Lemma 3.18 shows

that m; (z) belongs to the orthogonal of the group ;((¢ — 1)(X* )¥). It follows from Lemma
3.10 that

() em;((0 — DAFYH) = 7;((6 —~ DEAT)).
Since, by construction, ;(z) € m; (W), it follows that
n;(2) € (W) N my((0 — D)) .
Lemma 3.19. 7,(2) e 7, ([ Wy + (¢ — 1) (X T)¥TY).

Proof. Let G be any group endowed with a perfect pairing. Let 4* denote the
orthogonal of A under this pairing. Recall that, if 4 = A** and B = B** and

A*+B*=(A*+B*)**’
then
(ANB)* = A* + B* .

This last equality always holds when G is finite. Hence, using this fact and Lemma 3.10,
we conclude that:

[r; (W) nr; (0 — DATIT* = m;(We) + 1;((0 — DXT)¥)
= n;(Wg+ (@~ DED¥).

The last equality comes from the fact that x; is linear. Taking the orthogonals of these
groups and using Lemma 3.10 again proves our lemma. O

It follows from Lemma 3.19 that
z®¢ ) defines an element in ¢ ([Wy + (o — 1) (XF)*]¢).
Lemma 3.16 shows that Wy + (¢ — 1)(X7)*® has finite index in X n (T'%)%. Recall that, if ¥

and Z are two submodules of 7} such that Y = Z and Z/Y is finite, then Y® = Z%. There-
fore, we find that

t([W + (6 — DEXPET) = t([X n(T™*)9).
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Recall also fhat if Y and Z are any submodules of 7, then
Y'+ Z8 < [Yn Z]® is a submodule of finite index .
Therefore, as noted in 3.8, we find that
t([X N (T™)8]%) = 1 (X3 4+ T'x) = 1 (XY).
Since z® ¢~/ is a lift of 4, it follows that Ae#(X%). O

3.20. Proof of parts (9) and (10) of 3.1. The natural isomorphism

(I, ® D)’

ket Pie T/*® D,

is functorial in the following sense. Any extension M/K induces a map of Néron models

('dx)oM - Ay -
This map induces, in turn, a map

Yeom.e  Pre = Pue-

The natural map
ke (T, @ DY) [(T*@ D) — (T,® B)™/(T* @ D)),

induced by the inclusion
(L, ® D)'* > (T,® D)™

coming from the inclusion
AK) s AM),

is such that the following diagram is commutative:

QK,[ M’ ¢M,{
19xe 1bue
(T, ® D)~ [(T/x® D) —*%5 (T,@ B)™/(Tj»® D)) .

Let X < 7, be any submodule. Let

(T, ® D)™

T=® D) generated by (X ® D,)'x,

tx(X'):= subgroup of
and

(T, ® D)™

m generated by (X ® D,)™™ .

1y (X):= subgroup of
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Note that this is the only place in this paper where ¢, and 7,, do not denote toric ranks. It is
clear that

éK,M,((tK(X)) < 1y(X).
Therefore, to prove part (9), i.e., to show that

YK,L,J(@II(I,]M,() SOy,

we simply need to note that

d’x,c(@ll(l,]u,t) =t (WD)
and that .
Ort, 0 (Op,0) = L (W) .

Let us now prove part (10). By definition,
bk, o (P, m,0) = Ker (Ex m,0) -
Since Ker (¢ p..) 1s generated by
(T ® D) (T, ® D)’ = (T, Q@ D),

we find that
1x(T/*) = Ker (g, 0) -

Since
tK(T:IM) = d)K, ¢ (@l[(Z]M ¢) s

part (10) is proved. This concludes the proof of Theorem 3.1. O
Let us now restate two of the theorems announced in the first section of this paper.

Corollary 3.21. Let A/K be an abelian variety. Let ¢ & p be a prime. Assume that
A/K has a polarization whose degree is prime to ¢.

(i) Then there exists a nondegenerate pairing
(;): P o x P, > Q2.
(ii) There exists three subgroups
oL (4) £ OFM(A) < O ,(4)
of the ¢-part @ ,(A) of Dx(A), which are functorial in the variable A and whose existence
does not depend on the choice of a polarization for A. These subgroups are equal to the

orthogonals, under the pairing ( ; ), of the subgroups

B 2B, (A) 22 (4),

respectively.
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(iii) The pairing ( ;) restricts to a nondegenerate pairing on Oy ,, again denoted by
( ;). The subgroup OF(A) is the orthogonal in O ,(A), under the restricted pairing, of the
subgroup @R (A). In particular,

o The groups ORL(A) and O ,(4)]OFL(A) are isomorphic. Equivalently, the group
Dy ,(A) |22, (A) is isomorphic to XL (A)/Zg ,(A).

Proof. Set ©,:=0Y%, ,, for i=1,2,3. Our corollary follows immediately from
Theorem 3.1 and from Proposition 3.11. O

Corollary 3.22. The subgroup O, is equal to the {-part ¥y | , of the kernel of y ;.

Proof. 1In Corollary 3.21, we defined the subgroup ®F to be equal to the group
t(T}'1). Corollary 3.22 follows immediately from the proof of part (10) in Theorem 3.1, a
proof which does not depend on the choice of a polarization of 4. O

Remark 3.23. Let 4/ K be a simple abelian variety. Let L/ K be the minimal extension
such that 4, /L has semistable reduction. If 4/K has real or complex multiplication defined
over K, then the abelian variety 4,,/M has purely additive reduction over any extension
K = M < L (see for instance [Oor], 2.4, for a proof in the case of complex multiplication).
The following corollary provides a bound for the exponent of the prime-to-p part 4 (K)&)
of the torsion subgroup of such an abelian variety.

Corollary 3.24. Let A/K be a principally polarized abelian variety such that A, /M
has purely additive reduction over any extension K < M < L. If A(K){&), % {0}, then [L : K]
is a power of a single prime £ + p and A(K){P), is killed by ¢*. Moreover, if A/K has poten-
tially good reduction, then A(K)E, is killed by ¢.

Proof. If A(K) contains a point of order ¢, then the group @y , is nontrivial. There-
fore, part (11) of Theorem 3.1 implies that the integer

2(ag, —ag) + 2(tg, — tx)
must be strictly positive. It follows then from our hypothesis on 4/K that K, = L.

Assume now that 4(K) contains a point of order 3. Then ¥ , contains a point of
order 2. Indeed, if & /¥, contains a point of order ¢2, then parts (8) and (11) of Theorem
3.1 imply that ¥ ; must also contain a point of order £2. In the case where 4/K has
potentially good reduction and 4 (K) contains a point of order £2, the group ¥ ,, which
equals @, also contains a point of order #2. We will show that, regardless of the type of
semistable reduction of 4, /L, the group ¥ , cannot contain a point of order ¢ 2, Consider
the field extensions

K<EcK,=1L,

with [K, : E] = ¢. Recall that our hypothesis on 4/K implies that az = t; = 0. Therefore,
part (5) of Theorem 3.1 implies that the group ¥ p , must be trivial. It follows that the
group ¥; , contains a point of order £2. We have obtained a contradiction since part (5) of
Theorem 3.1 implies that the group ¥ ; ,is killed by [K,: E]=7. O
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Corollary 3.25. Let A/K be an abelian surface having purely additive reduction. If
A/ K has potentially good reduction, then A(K){), is isomorphic to a subgroup of one of the
following groups:

7|52, (Z]32)?, (Z]22)*, Z]2Z ®Z|AZ, Z|2ZDZ/[6Z.

Except for the groups Z|4Z, Z|5Z and Z|2Z @ Z|4Z, each group in the above list can
be realized as the prime-to-p torsion subgroup of a product of elliptic curves. The group
Z|5Z can be realized as the prime-to-p torsion subgroup of an abelian surface. The group
Z|4Z cannot be realized as the prime-to-p torsion subgroup of a principally polarized abelian
surface.

If A/K does not have potentially good reduction, then A(K){), is isomorphic to a sub-
group of one of the following groups:

Z|8Z, Z|9Z, Z/12Z, (Z|3Z)?, (Z]22Z)*, Z|2Z@® Z|6Z,
(Z]2Z2)*® Z|4Z, (Z]AZ)*.
Except for the groups Z|8Z and Z|9Z, each group in the above list can be realized as the

prime-to-p torsion subgroup of a product of elliptic curves. The groups Z|8Z and Z|9Z
can be realized as the prime-to-p torsion subgroups of abelian surfaces.

Proof. Assume that 4/K has purely additive reduction and potentially good
reduction. It follows immediately from Theorem 2.15 that ¢’ must be isomorphic to one
of the following groups:

0), 2/27, Z]32, Z|52Z, Z/6Z, (Z|22)*, (Z|22)*, (Z|2Z)*,
Z2Z®Z/6Z, (Z|3Z)?, Z|4Z, Z|2Z DZ|AZ.

By taking products of elliptic curves, it is easy to show that each of the groups

0}, 2/22, Z|3Z, Z/6Z, (Z]2Z)*, (Z]2Z)}, (Z|22)*,
Z/2Z® 262, (Z]32Z)*,

arises as the group of components of an abelian surface having purely additive reduction and
potentially good reduction. Let K = C((¢)) and let X/K denote the curve given by the
equation

yr=x5—12.

The jacobian of X/ K has purely additive reduction and potential good reduction. One easily
checks that this abelian surface has a K-rational point of order 5 and that, therefore, the
associated group of components @ also has a point of order 5. Theorem 2.15 implies then
that @ is cyclic of order S.

We proceed now to show that the prime-to-p part of the group of components of a
principally polarized abelian surface with purely additive reduction and potentially good
reduction cannot be cyclic of order 4. Indeed, if the prime-to-p part were cyclic of order 4,

10 Journal fir Mathematik. Band 445
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then the characteristic polynomial char (g,)(x) would be equal either to:

x2+1D)(x2—1), orto(x?2+1)?, orto(x+1)>?(x*—-x+1),
or rank, (T*) = 2 and char (a,)(x) = (x +1)*.

Recall that the multiplicity of the integer one as an eigenvalue of a symplectic matrix must
be even. Therefore, char(o,)(x) cannot be equal to (x? + 1)(x? — 1). Suppose now that
char(0,) (x) = (x + 1)2. Let M/K be an extension of degree 2. Since

char (6)(x) = (x + 1)*,

it follows that the abelian rank of 4,,/M is trivial. Therefore, part (5) of Theorem 3.1 im-
plies that ¥ ,, is trivial. On the other hand, it also follows from the fact that

char (62)(x) = (x + 1)*
that @,, is killed by 2, contradicting the fact that ¥ ,, is trivial. Suppose then that
char(o,)(x) = (x +1)2(x*—x+1).

It follows immediately that [K, : K] = 2 and, therefore, 2 must kill @, ,, which is a contra-
diction. The last case is similar and we omit it.

Assume now that 4/K does not have potentially good reduction. It follows imme-
diately from Theorem 2.15 that the group of components of such an abelian surface must be
isomorphic to a subgroup of one of the groups listed in the corollary. It is clear that, except
for the cyclic groups of order 8 and 9, each subgroup listed in the corollary arises as the
group of components of a product of elliptic curves. Examples 5.6 and 5.2 show that the
groups Z/8Z and Z/9 Z also arise as groups of components of abelian surfaces with purely
additive reduction and ¢; £0. O

Remark 3.26. Let A/K bea principally polarized abelian surface with purely additive
reduction and potentially good reduction. We proved in the previous corollary that &y ,
cannot be isomorphic to Z/4 Z. Therefore, when ¢ = 2, there exists an abelian group satis-
fying the bound for & , given in Theorem 3.1 but which cannot occur as the group of
components of a principally polarized abelian surface with purely additive reduction and
potentially good reduction. In fact, it is likely that our bound for & , is not best possible
for such abelian varieties. We believe that the prime-to-p part of the group of components
of A/K cannot be isomorphic to Z/2Z @ Z/4Z. Since Lemma 2.1 implies that the group
@y, is isomorphic to T3\ / (o, —id)(T5), one could show that @, , cannot be isomorphic
to Z/2Z @ Z/4Z by showing that there does not exist any matrix Sin GL,(Z,) with the
following properties:
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(1) char(S)(x) = (x*> +1)(x + 1)
2 (Z)*Im(S—id)=2Z/2Z@® Z]4Z.
(3) The matrix S is symplectic.

It is interesting to note that the bound for & , obtained in Lemma 2.13 does not depend on
the fact that the matrix g,, acting on T,(4), is symplectic. On the other hand, a proof that
Z[2Z @ Z/4Z cannot arise as a group of components would rely on the fact that g, is
symplectic, since the following matrix S does satisfy both properties (1) and (2) above but is
not symplectic.

100 0
000 —1
S=1 01 0 -1
001 —1

4. The p-part of the group @,
Let A/K be a jacobian variety, and denote by & its group of components. In the

following theorem, we describe, for the group @ ,, a nonfunctorial analogue to the filtra-
tion of @ , introduced in Theorem 3.1 when £ =+ p.

Theorem 4.1. Let X/ K be a smooth proper geometrically connected curve having a K-
rational point. Let A| K denote its jacobian. The p-part & , of the group of components of A|K
contains three subgroups,

H,cH,<G,,

having the following properties:
1. The group @ ,/G, is generated by ty elements.
2. The following inequality holds:
5(H,) + 6(G,/H,) < 2up,(4).
3. The group G,/H, is isomorphic to the group H,.

Proof. To prove our theorem, we must begin by recalling how to compute #,(A4)
and &, (A) using a good regular model &/ of X/K. The special fiber Z; of /0y is an
effective Cartier divisor and, as such, we write it as

Z = Z r,Ci,
i=1
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where 7; is the multiplicity of the irreducible component C;. Let
M=((C;- C))
be the intersection matrix associated to % and set
‘Re=(ry,..., 1) -

The vector R is in the kernel of the matrix M or, equivalently, M - R = 0. When we need
to emphasize the dependence of M and R on %, we write M (%) and R(%).

4.2. The integer ged(ry, ..., 7,) does not depend on the choice of a regular model of
X/K. The fact that X has a K-rational point implies that

ged(ry,...,r)=1.

Raynaud [Ray] (see also [BLR], 9.6) has proven that, when gcd (r,, ..., r,) = 1, the group
of components @ of Jac (X)/K is isomorphic to

Ker ('R)/Im (M),
where M :Z7Z" —» 7" and 'R:Z" —» Z are the linear transformations associated to the
matrices M and ‘R. In particular, the group @ can be computed explicitly using a row and

column reduction of the matrix M (see [Lor1], 1.4).

4.3. We call a regular model /0 of X/K a good model if the following additional
properties hold:

e The components C; are smooth of genus g(C,).

* If i % j, the intersection number (C; - C;) is equal to zero or one.

To the model & we associate a graph G (%) defined as follows: the vertices of G are
the curves C;, and a vertex C, is linked to C; by (C, - C;) edges. We let f(G) denote the first

Betti number of G.

Raynaud (see [BLR], Theorem 4 on page 267 and Propositions 9 and 10 on pages
248-249, or [Lor2], 1.3) has shown that, if /0 is a good model of X/K, then:

Z g(Cl) = aK:
i=1

and

B(G) =1y

44. Let &/0g be a good model of a curve X/K. Let

T(Z)=(g(Cy), ., 8(C,))
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denote the vector whose coordinates are the genera of the components C;. In the termin-

ology of Artin and Winters [A-W], the quadruple (G(%), M(Z), R(¥), T(Z)) is called a
type. Winters’ Theorem [Win], 4.3, states that, given any type

(G,M,R,T),

one can find a field F with a discrete valuation v, having residue characteristic equal to
zero, and such that

+ there exists a smooth proper geometrically irreducible curve Y/F having a regular
model %/ () whose associated type (G(%), M (%), R(¥), T(¥ ) is equal to the given type
(G, M,R,T).

4.5. We are now ready to begin the proof of Theorem 4.1. We want to use Winters’
Existence Theorem to “reduce our situation to a situation in equicharacteristic zero” that

will enable us to apply Theorem 3.1. Let X/K be a curve having a K-rational point.
Choose a good model &'/ 0y of the curve X/K. Let

(G@), M(X), RX), T(¥))
be the type associated to 2/ 0. Winters’ Theorem, when applied to the type
(G, M(Z), RX), T(X))

implies the existence of a curve, Y/F, having the properties listed in 4.4. Let B/F denote
the jacobian of Y/F. It follows from the facts recalled in 4.3 that

tx(A) =t (B) s
and
ax(A) = ap(B).

It follows from the facts recalled in 4.2 that there exists an isomorphism
@: P (4) - Dp(B).

Since @, has equicharacteristic zero and since B/F is principally polarized, Theorem 3.1
shows the existence of three p-subgroups of &y ,(B),

OFL(B) < ¥;,,(B) € 65 ,(B).
Define three subgroups of @ (A4) as follows.

Gp = (p—l(@F,p) H
Hp = (p_l(YIF,p) ’

and
Hy=¢ 1(6F)).



146 Lorenzini, On the group of components of a Néron model

Part (2) of Theorem 3.1 implies part 1 of Theorem 4.1. Similarly, part 3 of Theorem 4.1
follows immediately from part (8) of Theorem 3.1.

Let E/F denote the unique extension of F, minimal with the property that B;/E has
semistable reduction. Let F < F, < E be such that

[F;: : F] =pord,,([E:F]) .
It follows from part (11) of Theorem 3.1 that

6 (¥,p) +6(O, ,/ ¥ ) < 2(ap,(B) — ap (B)) + 2(15,(B) — 1:(B)) .

Let

FSE,cE

denote the unique extension of F such that
[(E:E,]=L[F,:F].
It follows from Lemma 4.8 below that
6(H,) +6(G,/H,) < 2(ay,(B) — ap(B)) + 2(t5,(B) — 1z (B)) < 2ug, (B).
Therefore, to complete the proof of Theorem 4.1, we only need to show that
uy, (A) = ug, (B) .

4.6. Recall from Diagram 2.6 that, if 4/K is any abelian variety and p > 0 is the
residue characteristic, then
2uy,(4) = rank,,(T,4/(T, A)") .

When 4 is the jacobian of a curve X/ K, the rank of (7, 4)* can be computed in terms of a
good regular model of X/K (see [Lor4], 2.1). Namely, let

d; = Z (C;- C,) .
ij
For any integer r, let
rP i p . prordp()

Then

rank, (T, 4)" = 2a,(A4) + 21 (A4) + i P —-1)d,—2)+2 i (rP —1)g(C).

i=1 i=1

4.7. When F has equicharacteristic zero and ¢ is any prime, let Q denote the pro-g-
Sylow subgroup of Gal(F/F). Let

E = (F)'=2.
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We noted in Remark 2.7 that
2ug (B) = rank,, (I, B/(T, B)?) .
We showed in [Lor4], 2.1, that

rankzl(T,B)Q =2ap(B)+2t:(B) + ‘Z r?®—-1)d,—2)+2 i (r?-1g(C).

= i=1
Hence, we may apply this formula for rankzl(T(B)Q in the case ¢ = p and obtain that
2ug (B) = 2g —rank, (T,B)% = 2g — rank, (T, A)" = 2u, (4) .
This concludes the proof of Theorem 4.1. O

Lemma 4.8. Let p = 0 and let q be any prime. Let K, and L, be the extensions of K
defined in 1.1 and 2.7 respectively, with Gal(K,/K) = Gal(L/L,) = g-part of Gal(L/K).
Then

(ag,—ax) + (1, — k) Sup,.

Proof. Let¢{=+q.Let[L:K]=a- B with ged(g, f) = 1 and a = ¢°**«®). Recall that

2(ag + ty) = ord,, _,(char (6,) (%)) ,
2(ag, + t,) = ord, _;,(char (67) (x)) ,
2(a, + 1) = ord, (char(¢f)(x)), and
2(ay + ;) = ord,, _,(char(67#)(x)) .
Hence,

ap+ 1tz (e, + 1)+ (ag, + 1x) — (ag + 1g) -

Since, by definition,

a +ty=a,,+t, +u, =8,
our lemma is proved. O

Remark 4.9. Let 4/K be any abelian variety. McCallum shows in [McC], Theorem
1, that

, , is killed by [L:K].

In light of Theorem 3.1, it is natural to wonder whether a subgroup &y , of & ,, satis-
fying the properties (ii) and (iii) of Remark 1.8, is killed by [L : K 2. In this regard, we can
show:

Corollary 4.10. Let X/K be a smooth proper geometrically connected curve having a
K-rational point. Let A|K be its jacobian. If L/K is tame, then u; (A) = 0 and, therefore,
the group G, introduced in Theorem 4.1 is trivial. O
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Remark 4.11. Let £ = p be any prime. Parts (5) and (10) of Theorem 3.1 imply that,
given any Galois extension K € M < L, the following bound holds for ¥ ,,:

(Y, m,0) S 2(ap —ag) + (1 — 1x) -

The following example shows that this bound does not hold when ¢ = p. Consider the
jacobian 4/K of a wild Fermat quotient C over K = @,;™ (£), with ¢ a primitive p-th root
of 1 (see Example 5.1). McCallum shows in [McC2], Theorem 6, that & is cyclic of order
p=2g+1. Coleman and McCallum have shown in [C-M] (4.6 and following remark)
that the extension L/K, minimal with the property that 4;/L has good reduction, has
degree [L: K] = 2p. The extension L/K is abelian because C has complex multiplication
defined over K ([Se-Ta], corollary 2 on page 502). Let

KcMcL,

with [L: M] = 2. The abelian rank a,, and the toric rank #,, of the jacobian of C,,/M
are both equal to zero because this abelian variety has complex multiplication over M and
does not have good reduction over M ([Oor], 2.4). Since L/M is tame and ¢, = 0,
Theorem 4.1 implies that the group &,, has order prime to p. In particular, the group
¥k » must be cyclic of order p. Hence,

6(Y’K,M,p) =p—1>0=2(ay—ay)+(ty —tx).

Remark 4.12. Let A/K be an abelian variety with purely additive reduction. Let
¢ % p be any prime. As we recalled in Remark 1.3, the reduction map of the Néron model
of A/K induces an isomorphism of the /-part of the torsion subgroup of 4(K) with & ,.
We illustrate in the following remarks the extent to which the reduction map fails to be an
isomorphism on the p-part of 4(X),,. The following example shows that |®,| may be
divisible by p while the abelian variety 4/K has purely additive reduction and no point of
order p defined over K.

Let K denote the completion of the maximal unramified extension of @,. The curve
884 in [AnlIV], given by the equation y* = x*—4x+4, has reduction I* at p =2
(@ =Z/47). The group E (Q) has rank one. We claim that E(K) has no point of order 2.
It is sufficient to check that the polynomial x* — 4 x + 4 is irreducible over a field where the
valuation v(2) equals 1. Assume that there exists z € K such that z3 —4z 44 = 0. Then
z€e O and, in fact, the equality z3 = 4(z — 1) implies that v(z) > 0. Therefore, 1 —z is
a unit or, equivalently, v(z —1) = 0. The equality z® =4(z—1) implies, then, that
3v(z) = 2v(2) = 2, which contradicts the fact that v(z) is an integer.

Remark 4.13. Let 4/K denote an abelian variety of dimension g with purely additive
reduction over 0. Assume that the integer 2g + 1 is prime and consider the following
assertions:

(i) A(K) contains a point of order 2g + 1.

(ii) || is divisible by 2g + 1.
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(i1) [L: K] is divisible by 2g + 1.
(iv) A/K has potentially good reduction (i.e. t;, = 0).
When p + 2g + 1, the following implications hold:
() < (i) = (@) = (@v).
The implication (ii) = (iii) follows from part (11) of 3.1. The implication (iii) = (iv) follows

from Proposition 3.1 in [Lor2]. Note that parts (4), (5), and (6) of Theorem 3.1, together,
also shows that (i) implies (iv). When p = 2g + 1, the situation is quite different and

() + (), @ #+ (i), and @ + (V).

The tame Fermat quotients (see 5.1) provide examples where the implications (i) = (ii) and
(i) = (iii) do not hold (see [Gr-Ro] or [Gre] for the existence of points of order p on the
jacobians of Fermat quotients). The implication (i) => (iv) does not hold in general because
there exist elliptic curves with @-rational points of order 3 that have potentially multi-
plicative reduction (e.g., the curve 90 G on page 92 in [AnIV]). Note that such curves are
twists of Tate curves and, therefore, their torsion points are well understood.

Remark 4.14. From the description of the structure of the group & ,, obtained in
Theorem 3.1 when ¢ =+ p (g prime) and in Theorem 4.1 when ¢ = pand 4/Kis a jacobian,
we can deduce an explicit bound for the order of the subgroup Y , introduced in 1.11.
Recall that, when @ is any abelian group written as

d=Z]o,Z% ...xZ]o,Z with ¢|...|0,,

and ¢ = 0 is any integer, we let

i >
Y(t)=={{0} Tf t=r,
Z]o,Z % ... xZ]o,_Z if r>t.

Proposition 4.15. Let @ be any abelian group and let q be any prime. Suppose that G,
is a subgroup of ®, and that ®,/G, can be generated by t elements. If H, is any subgroup of
G,, then there exists a subgroup U, in Y, (1) such that:

- 5(U) S 6(H,), and

« 3(,(0/U,) £ 5(G,/H,).

Corollary 4.16. Let A/K be any abelian variety and ¢ + p be any prime. Then there
exists a subgroup U, < Yy , such that:

» 0(U) = 2(ag, —ax) + (1x,— ty), and

® 6(YK,(/U() < (tK,_ tK)'
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If A/ K is the jacobian of a smooth proper geometrically irreducible curve X|K having a K-
rational point, then there exists a subgroup U, € Y , such that:

§(U)+ 68Xy ,/U,) < 2uy, .

Proof. The corollary follows immediately from Proposition 4.15 and Theorems 2.15
and 41. O

Proof of 4.15. Before proving Proposition 4.15, we need first to prove the follow-
ing lemmas.

Lemma 4.17. Let ¢ be any abelian group and G < ® be any subgroup such that /G
can be generated by t elements. Then the exponent of Y(t) divides the exponent e of G.

Proof. If S'is any group, we denote by S [e] the kernel of the multiplication by ¢ on
S. Since G = @ [e], the group @/G surjects onto the group @/®[e]. Therefore, since ¢/G
can be generated by ¢ elements, so can &/ P[e].

Recall now that, by definition,
P=YPP/Y,

and that the exponent of Y divides the exponent of @/Y. In particular, if e does not kill
Y, then both groups

Y/Y[e] and (2/Y)/(®/Y)[e]

are not trivial. It follows from the definitions that the minimal number of generators of the
latter group is equal to . Hence, the minimal number of generators of the group

P/P[e]
equals at least ¢+ 1, which is a contradiction, and our lemma is proved. O

Lemma 4.18. Let @ be any abelian group and G < & be any subgroup such that |G
can be generated by t elements. The subgroup Y (t) is a “‘lower approximation™ of G in the
Sfollowing sense: write

s(q)
G,=112/9"Z with a;=...2a

i=1

s(q)

and

r(q)

Y,0=112/9"Z with b,z...28,,

i=1

Then,
Vi, a;2b;.
Proof. Define
s(9)

G, =112Z/q%7

i=j
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and
r(@

Y, ;= 112/4"Z.
i=j
By construction,
Yq,j = Yq(t +]_ 1) s

and ¢,/G, ;is generated by 1 +j — 1 clements. We may therefore apply the previous lemma
to show that ¢* divides ¢%. O

Let us return to the proof of our proposition. It is always possible to find generators for
H, and G, such that the following properties hold:

h
° H = H Z|q“Z with a, 2 ... 2 a,.

i=1

g

g
« G,=[]Z/q"Z with by = ... 2b
i=1

« There exists an injection s: {1,...,h} - {1, ..., g} and a commutative diagram

H < G
! !

h g
M12/¢"z > [] z/4"Z
i=1 i=1
such that
a;<by, Vi=1,...,h,

and such that the map 7 is the product of the inclusions

Z]q%Z - Z|q»wZ, Vi=1,...,h.
Write
Y,()=1T[] Z/q"Z with c¢;=...2¢.
i=1
Set
min (r,h) .
Uq s n Z/ qmm(a.-,cs(i))Z .
i=1
Clearly,

5(U) < 5(H,)-
It follows from the previous lemma that

5(Y,()/U) <5(G,/Hy). D
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Let X/K be a smooth proper geometrically irreducible curve having a K-rational
point. We keep the notations introduced in the proof of Theorem 4.1. In particular, let A /K
denote the jacobian of X/K. Let /0, be any good regular model of X/K, and let

Z = Z r, C;
i=1
denote its special fiber. Let
di= 3 (C; C),
j*i

and let

v(@)= [ r?

We claim that the rational number v(%) is an integer independent of the choice of a good
model of X/K. Indeed, we showed in [Lor4], 1.2, that the rational function

fo () = T] [ = 1)/ (x — )]~ 2
i=1

is a polynomial independent of the choice of a good model of X/K. Since

fe()=v(@),

our claim follows. We denote the integer v(Z) by v(X), or simply by v when no confusion
may result.

Proposition 4.19. Let A/ K be the jacobian of a smooth proper geometrically connected
curve XK having a K-rational point. Let £ be a prime, ¢ % p. Then:

() If ax =0, then | Oy ,(A4)| divides v(X).

(i) 1f tg = 0, then | O ,(A)| = | B ,| and |By] = v(X).

Remark 4.20. It seems quite possible that the integer | @ .(A4)| divides the integer
v(X) even when ai # 0. On the other hand, if ¢4 + 0, then | @ .| is not always equal to the

¢-part of v(X). Indeed, the following graph has a trivial group of components, while
v=2,

3 2
Note that the symbol ¢ is used to denote a vertex/curve of multiplicity m.
ym p

Proof of 4.19. Fix a prime ¢, £ + p. Recall that

l@K,{(A)l = |¢K,(|/|S(VV(.K)I .
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It follows from the definition of the group s(W}) that

(1)}
W + (0, — D(T)

Fls(W) =

This quotient injects into the group
u/"( §
Tx4 (6 —1)(TF)’

which is a quotient of the group
: W
T4+ (c—1D)(WH)

This last group is the cokernel of the (injective) map:
o—1: WS Tx - W/ Tx.

It follows from Theorem 2.1 in [Lor4] that the characteristic polynomial of g, acting on

W T is equal to
n xr,-(") —1\4i—2+29(C)
char (0)(x)= [] ( ) .
i=1 \ x—1

Therefore,
VVK §

order of T'x 4+ (6 — 1)(W)

= /-part of char(o)(1).

Hence, when
Y P —-1)g(C)=0,
i=1

it follows that
|F/s(W)| divides [] rf~2 = v(X).

i=1

We recalled in 4.3 that ax = ) g(C)). Since, by hypothesis, ax = 0, part (1) of our Pro-
position follows.

Part (ii) of our Proposition was proved in [Lor2]. Indeed, when ¢, = 0, Theorem 31
implies that @y , = ¥ ,. We showed in [Lor2], 1.5, that |&| = v(X) when 1, =0. O

Note that, when a; = 0 and 7, = 0, the method used to prove part (i) shows that

| @, | = | Fls(W)| =T/ (6 — 1)(T)|
= {-part of char (¢)(1)
= {-part of v(X),

and, thereby, provides a new proof of [Lor2], 1.5, when ag = tx = 0.
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As we recalled in the above proof, we showed in [Lor2] that:
if tz=0, then |[&|=v(X).
We have also shown in [Lor1], 6.3, that, for a large class of simple graphs (G, M, R),
Y| divides v.
The following proposition implies that |Yy| divides v for all simple graphs (G, M, R),

since Winters’ Existence Theorem implies that every simple graph can be realized as the
dual graph associated to a curve.

Proposition 4.21. Let X/K be a smooth proper geometrically connected curve having
a K-rational point. Let A|K be its jacobian. Then | Yy (A4)| divides v(X).

Proof. Lemma 4.18 shows that, in order to prove our proposition, we only need
to show the existence, for all primes g, of a subgroup G, £ @ such that

(i) 9 ,/G, can be generated by 7y elements, and
(i) |G, divides v(X).
Let &/ O, be any good regular model of X/K. Winters’ Existence Theorem [Win],

recalled in 4.4, implies that there exists a discrete valuation field F of equicharacteristic
zero, and a curve Y/F having a (good) regular model %/, such that

(G@), M@), R®), (0, ..., 0)) = (G&), M(Z), RZ), ..., 0)).
Let B/F denote the jacobian of Y/F. By construction,

T@®)=(,...,0),

which implies that
ap(B)=0.

Therefore, Proposition 4.19 implies that
|OF,,(B)| divides v(Y) for all primes q.
It follows from the facts recalled in 4.3 that

1x(A4) = tg(B),
and
v(X)=v(Y).

It follows from the facts recalled in 4.2 that there is an isomorphism

¢ : P (4) —— Pp(B).
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The subgroups
Gq ==(P_1(@F,q(B))’ q prime’

are the subgroups needed to prove our proposition. O

5. Examples

Example 5.1. The Fermat curve F,. Let p be an odd prime. Denote by k the
algebraic closure of the finite field F,. Let F, be the smooth plane curve defined by the
equation

xXP4+y?4+2P=0.

The special fiber of the regular minimal model of F, over Z, has been computed by Chang
in [Cha], Theorem 4 and figure on page 255. Since the graph associated to this special fiber
satisfies the hypothesis of Theorem 2.1 in [Lor3], we can use Theorem 2.1 to compute
explicitly the group of components of the jacobian of F,/@, using this special fiber. Our
computations show that:

Do, (F) (k) = (Z/2Z) % (Z[pZ)",

for some integers T and w with
T+w=p—12.

Let @,™ denote the maximal unramified extension of @,. Let d be a divisor of p—1. 1t
is poss1ble to use Chang’s result to compute the mlmmal model of F, over the unique
extension K,/Qp™ of degree d. Once the computatlon of a model for (F " )k./ Ky is made,
one may check that Theorem 2.1 of [Lor3] can again be applied to show that

Dy (F) (k) = (Z]2Z2)Yx(Z|pZ)”, ifddivides p—1.

Mc Callum has computed the special fiber of a regular model of F, over K, _; in [McC2],
diagram 3, page 69.

The curve F, has genus equal to
gFE)=(p-2) (p—-1J2.
Hence, over K, _,, the group &@:= & __ (F,) has “maximal order” in the sense that
3(P)+0(P)=1t(p—1)+w(p— 1)=2g(F,).

The integers t and w may be interpreted geometrically as follows. Let C,
s=1,...,p—2, be the smooth projective curve of genus (p —1)/2, birational to

yP=x(1—-x).

Each curve C; is a quotient of F, and the jacobian of F, is isogeneous over @ to the prod-
uct of the Jacoblans Jac(C),s=1,...,p—2 ([Fad]) Let L denote the minimal exten-
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sion of K,_; over which Jac(F,) has semistable reduction. Since each quotient C; has
complex multiplication, the reduction of Jac(F,) over L is in fact good ([Oor], 2.2). Let
L, denote the field of elements in L fixed by the Sylow p-subgroup of Gal(L/K,_,). The
abelian rank of Jac(F,),, /L, is equal to ux — u;,. Theorem 3.1 implies that

0(P) =1t(p—1) = 2(ug — uLo) .
On the other hand, Theorem 4.1 implies that

0(P,)=w(p—1) = 2u,,.
Therefore, we conclude that

ug —up, =t(p—1)/2.

We claim that exactly 1 jacobians Jac (C,) have good reduction over L. First, note
that, if Jac (C,) contains a proper abelian subvariety 4 defined over L, then Jac(C;) must
have good reduction over L,. Indeed, 7,(4) has rank smaller than p — 1 and, therefore,
an element ¢ of Gal(L/K,_,) of order p cannot act in a nontrivial manner on T,(A). On
the other hand, if Jac(C,) is simple, then it has either purely additive reduction or good
reduction over L, since the complex multiplication is defined over K,_, ([Oor], 2.4).
Therefore, all jacobians Jac(C;), /L, have dimension equal to (p — 1)/2 and have either
purely additive reduction or good reduction. Since the abelian rank of [ ] Jac(C,) is equal
to 7(p —1)/2, our claim is proved. We call the t quotients whose jacobian has good
reduction over L, the tame Fermat quotients; the other ones are said to be wild. There are
w such wild quotients.

In an unpublished result, D. Rohrlich (see [Lim], corollary 3.4) shows that the kernel
-2

P
of the isogeny from Jac(F,) to [] Jac(C,) consists only of p-torsion points. Since
s=1
Jac(F,)/@, has purely additive reduction, we conclude that the prime-to-p torsion sub-
group of [ [ Jac(C,)(@;™) is isomorphic to (Z/2Z)". It is easy to show that, if C, is wild,
then the prime-to-p torsion of Jac (C,) (@2™") must be trivial. Itis therefore natural to wonder
whether the prime-to-p torsion of Jac (C,)(@p™) is cyclic of order 2 when C; is tame. When
p—1is a power of 2 and C, is tame, it is indeed true that the prime-to-p torsion of
Jac(C,)(@Q,™) is cyclic of order 2. The general case could be proved (or disproved) by
computing explicitly a regular model of C; over Z,.

Given any positive integer g, the reader will find examples, in [Lor3], 4.1, of abelian
varieties of dimension g, with potentially good reduction, for which the bound for & ,
recalled in Remark 2.16 is achieved (¢ odd). The following examples discuss the case where
the semistable reduction of the abelian variety is not good. Once again, we will produce
examples of degenerating abelian varieties using Winters’ Existence Theorem [Win].

Example 5.2. Leta, m, k, and ¢ be integers such that 1 < k, ¢ < m. Set s:= ged (m, k)
and t:= ged (m, /) and assume that ged (s, 7) = 1. Consider the following graph G (a, m, k,£):
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s m—k mam m—{¢t
.- - e
I. k I {
o5 ;t

The symbol s is used to denote a vertex/curve of multiplicity m. The notation « 2 o
indicates that the given vertices are linked by a edges; when a = 1, the superscript a is
dropped. We use the notation

r ry ged(r,ry)
*——=e0: . -0

to show that the chain is continued using Euclid’s algorithm as follows:

r=c¢,r,—r, with r,<ry,

ry=cyr,—ry Wwith ry<r,,

ry = ged(r,ry) .
The integer —c; is then the “self-intersection” of the vertex having multiplicity r;.

5.3. We claim that the group of components associated to the graph G (a,m, 4, k)
is cyclic of order am?/s?t2. This claim can be easily proved by computing a row and
column reduction of the associated intersection matrix (see Raynaud’s Theorem recalled in
4.2). We leave this computation to the reader.

5.4. Fix an integer n =1 and two integers k, £ < n such that
ged(k,n) =ged (4, n) =1.
Let (G, M, R) denote the graph G(1,n, k,¢) with its associated intersection matrix M and

vector of multiplicities R. Let T:= (0, ..., 0) be a null vector having as many entries as the
number of vertices in the graph G. The quadruple

(G,M,R,T)

is a type and, hence, Winters” Existence Theorem, recalled in 4.4, implies that there exists
a field K with a discrete valuation of equicharacteristic zero, and a smooth proper curve X/K
having a regular model &/ such that:

(G@), M(%), RZ), T(X)) = (G, M, R, T).
Lemma 5.5. The curve X/K has genus n — 1 and achieves semistable reduction over a
cyclic extension L|K of degree n. If d is any divisor of n, let K, denote the unique cyclic

extension of K of degree d. Then Xy /K, has a regular model whose reduced special fiber is
the union of smooth rational curves and whose associated graph is of the form

G <a’, 3, k(d), /(d))

11 Journal fur Mathematik. Band 445
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for some positive integers k(d) and ¢ (d) depending on d, and prime to n/d. In particular, the
special fiber of the minimal (semistable) model of X, [L is the union of two rational curves
intersecting transversally in n points.

Proof. A regular model of X, /K, can be explicitly described using a given regular
model of X/ K. We refer the reader to Theorem 11.2 in [BPV], or to 1.9 and 1.11 in [Lor3].
The explicit computations of the base change are omitted. O

Let 4/K denote the jacobian of X/ K and let d|n. The group ¥,(4) can be computed
explicitly by applying 5.3 to the special fiber of the regular model of Xy, /K, provided in
Lemma 5.5. We then find that

d§Kd=Z/<n-§>Z.

The group O, (4):= [] 6, ,(4) can also be computed explicitly. Let ¥, ; denote the
¢ prime

kernel of the map @, — ¢;. We claim that

n

Y%.. S 6k Dy, - 9
|

Z/(HZ < Z|D*Z ¢ Z|/(n-DZ > Z|nZ.

d

In

Indeed, the groups @, and &, are cyclic of order n?/d and n respectively. Part (5) of
Theorem 3.1 implies that the group ¥, ; is killed by [L: K,] = n/d. Therefore, ¥, ; is
cyclic of order n/d.

Since Lemma 5.5 implies that a,, = 0, it follows from Theorem 3.1 that
@I[(?;],L = I[(Zd]L = ¥,L-

It follows from the fact that @,/ ¥, ; is isomorphic to @], that @, is cyclic of order
(n/d)>.

Example 5.6. We conclude this paper with a variation on the previous example.
Consider the arithmetical graph (G, M, R) whose graph G = G(x,u,v,h,,h,,k,k,) is as
follows:

Implied in the above picture is the fact that ged (u, #;) = ged (v, k;) = 1. A row and column
reduction of the matrix M associated to G shows that the group of components @(G) is cyclic
of order xuv. We leave this computation to the reader.
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Lemma 5.7. Let d 2 c be any positive integers. Let &:=Z [¢°*°Z. Let OP):=Z [¢°Z,

and let ¥ := Z|¢°Z be two subgroups of ®. There exists a discrete valuation field K of equi-
characteristic zero and a jacobian A|K with the following properties:

o A/K has purely additive reduction and has dimension g = (¢ d44c-2)/2.

The group ®y(A) is isomorphic to P.

The group ¥ ;(A) is isomorphic to ¥ and 6(¥) = (—1= tg,(4) + 2ag,(A).

The group OF) (4) is isomorphic to @ and §(O)) = ¢ —1 = 1 (4).

[L:K]=|¥|="¢"

Sketch of Proof. We use Winters’ Existence Theorem to show the existence of acurve
X/K having a regular model Z/ 0, whose associated graph is of the form:

G{,¢5¢% 6 —1,1,04—¢—1,1).

A regular model of X,,/ M can be computed explicitly for all extensions K& M. One easily
checks by direct computations that K, = L with [K,: K] = ¢¢. The group @, can be
computed using a regular model of X,/L (4.2). The groups ¥ , and OF} are then
determined with the help of Theorem 3.1. O

Note that Lemma 5.7 shows that, in general, the group ©y , is not isomorphic to the
direct sum

3 2 3 2
Ok} ® OFL /08 © Ok [6FL..-
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