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Let K be a discrete valuation field. Let OK denote the ring of integers
of K , and let k be the residue field of OK , of characteristic p ≥ 0. Let
S := SpecOK . Let X K be a smooth geometrically connected projective
curve of genus 1 over K . Denote by EK the Jacobian of X K . Let X/S and
E/S be the minimal regular models of X K and EK , respectively. In this
article, we investigate the possible relationships between the special fibers
Xk and Ek . In doing so, we are led to study the geometry of the Picard
functor Pic X/S when X/S is not necessarily cohomologically flat. As an
application of this study, we are able to prove in full generality a theorem of
Gordon on the equivalence between the Artin-Tate and Birch-Swinnerton-
Dyer conjectures.

Recall that when k is algebraically closed, the special fibers of elliptic
curves are classified according to their Kodaira type, which is denoted by
a symbol T ∈ {In, I∗n, n ∈ Z≥0, II, II∗, III, III∗, IV, IV∗}. Given a type T and
a positive integer m, we denote by mT the new type obtained from T by
multiplying all the multiplicities of T by m. When k is algebraically closed,
the relationships between the type of a curve of genus 1 and the type of its
Jacobian can be summarized as follows.

Theorem 6.6. Assume that k is algebraically closed. Let X K /K be a smooth,
geometrically connected projective curve of genus 1 and let EK/K be its
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Jacobian. Let X/S and E/S be the minimal regular models of X K and
EK , respectively. Let m denote the order of the element of H1(K, EK ) cor-
responding to the torsor X K . If T denotes the type of Ek, then Xk is of
type mT .

The most difficult part of this theorem is the case of additive reduction.
As a corollary to Theorem 6.6 and of results of Bégueri [5] and Bertapelle [6]
on the structure of H1(K, EK ) when K is complete, we prove in 6.7 the
existence of torsors X K having reduction of type mT , for any additive
type T and integer m = pn and, in case the type T is semi-stable, for any
integer m > 0.

To prove Theorem 6.6, we first show in 3.8 that there exists a canonical
map of OK -modules H1(X,OX) → H1(E,OE) which extends the natural
isomorphism H1(X K ,OX K ) → H1(EK ,OEK ). The existence of this map
is the main link between X and E, and is proved in the following general
theorem on Néron models of Jacobians.

Theorem 3.1 (Raynaud, unpublished [47]). Assume that k is algebraic-
ally closed. Let f : X → S be a proper flat curve, with X regular and
with f∗OX = OS. Let J/S denote the Néron model of the Jacobian of X K/K,
and let Lie(J) denote its Lie algebra. Then the canonical morphism of
OK -modules H1(X,OX) → Lie(J), which induces the canonical iso-
morphism H1(X K ,OX K ) → Lie(JK ), has a kernel and cokernel of same
length.

This theorem is a key ingredient in the proof of Theorem 6.6, and we
provide here a complete proof. The statement and proof of Theorem 6.6 in
the function field case was also known to Raynaud at the time he wrote [47].
Independently, Cossec and Dolgachev provided a proof of a slightly weaker
version of Theorem 6.6 in the function field case in [11], Theorem 5.3.1,
also using [47] as one of the main ingredient in their proof. The statement
of 6.6 in the function field case is mentioned without proof in the second
paragraph of [23].

The proof of Theorem 3.1 relies on Raynaud’s results on Picard functors
in [48], and on a theorem on morphisms of group schemes of finite type
that is of independent interest: Let u : G → G′′ be a morphism of smooth
group schemes of finite type over a complete discrete valuation ring OK
with algebraically closed residue field k. Assume that uK : GK → G′′

K is
surjective with smooth kernel. Then the length of the cokernel of Lie(u) :
Lie(G) → Lie(G′′) is expressed in 2.1 in terms of two other invariants, the
first one obtained using the group smoothening of Ker(u), and the second
one defined as the dimension of a smooth group scheme D/k constructed so
that D(k) = Coker(G(S) → G′′(S)). Using 3.1, we show in Theorem 5.9
that the minimal regular models X and E have the same discriminant when
k is perfect.
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The second main ingredient in the proof of Theorem 6.6 is then the
formula of T. Saito [51], which states that the Artin conductor is equal to
the discriminant when k is perfect. Using this formula and 3.1, one easily
shows in 6.5 that the curves Xk̄ and Ek̄ have the same number of irreducible
components. To conclude the proof of Theorem 6.6, we use the description
by Raynaud of the group of components ΦJ of the Néron model J/S of the
Jacobian EK/K : when k is algebraically closed, ΦJ can be computed using
the intersection matrix of Xk.

It is likely that the complete relationship between the type of reduction
of a curve of genus 1 and the type of reduction of its Jacobian may prove
more difficult to express when k is imperfect. For instance, when the re-
duction is additive and K has characteristic zero, we show in 9.2 that the
type of reduction of EK depends not only on the type of reduction of X K ,
but also, for instance, on v(p). We are able, however, to completely de-
scribe the relationship between Xk and Ek when the reduction is semi-stable
(8.1 and 8.3). In particular, we find that in this case already, the statement of
6.6 does not hold if k is not algebraically closed. When k is imperfect, the
possible types of reduction of elliptic curves consist not only of the classical
Kodaira types, but also of several new types. We give in Appendix A a list
of these possible types of reduction, as well as of several additional types
for curves of genus 1 without rational point.

As a corollary to Theorem 3.1, we provide an application to the con-
jectured equivalence between the Artin-Tate and Birch-Swinnerton-Dyer
conjectures. Let k be a finite field of characteristic p. Let X/k be a smooth
projective geometrically connected surface and denote by Br(X) its Brauer
group. Let f : X → V be a proper and flat morphism, with V/k a smooth
projective curve. Let K be the function field of V . Let us suppose that X K/K
is a smooth projective geometrically connected curve of genus g ≥ 1. Let
AK denote the Jacobian of X K and let X(AK ) be its Shafarevich-Tate
group. It is well-known that if eitherX(AK ) or Br(X) is finite, then so is
the other. Let δ and δ′ denote respectively the index and the period of X K .
Similarly, for any place v ∈ V with completion Kv, let δv and δ′

v denote the
index and period of X Kv

/Kv, respectively.

Theorem 4.3. Assume that X(AK ) and Br(X) are finite. The equiva-
lence of the Artin-Tate and Birch-Swinnerton-Dyer conjectures holds ex-
actly when

|X(AK )|
∏

v

δvδ
′
v = δ2|Br(X)|.

This equality is satisfied if the periods δ′
v are pairwise coprime (4.6).

Notation. Throughout this paper, with the exception of Sect. 4, K denotes
a discrete valuation field, OK is the ring of integers of K , k is the residue
field of OK , and π is a uniformizing element. Starting in Sect. 2, the letter
S will be reserved to denote SpecOK .
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1. Review of Lie algebras

We review in this section several basic facts about Lie algebras needed in
the next sections. We first recall the general definition of the Lie algebra of
a group functor, and then consider the special case of the functor Pic X/S.
All group functors considered are assumed to be commutative.

For any scheme T , let

Tε := T ×Spec(Z) Spec(Z[ε]/ε2).

The canonical projection p : Tε → T is a finite faithfully flat morphism of
finite presentation. It admits a canonical section i : T → Tε corresponding
to the homomorphism OTε

= OT ⊕ εOT → OT , b1 + εb2 �→ b1.
Let S be any scheme, and let F be a contravariant commutative group

functor on the category of S-schemes. By definition, Lie(F ) is the functor

T �→ Ker(F (Tε) → F (T )),

where F (Tε) → F (T ) is defined by the immersion i : T → Tε. Any
homomorphism of group functors h : F → G induces canonically a homo-
morphism Lie(h) : Lie(F ) → Lie(G). If F is a sheaf for some topology
on S, then so is Lie(F ).

Recall that Lie(F ) is equipped with a structure of OS-module as fol-
lows. Suppose that S is affine and let T be any S-scheme. Let a ∈ OS(S).
Then the OS(S)-algebra homomorphism OT ⊕ εOT → OT ⊕ εOT defined
by

ψa : b1 + εb2 �→ b1 + εab2(1)

induces a morphism ua : Tε → Tε such that ua ◦ i = i and p ◦ ua = p.
Hence, ua acts on Lie (F )(T ). This is the multiplication by a in Lie(F )(T ).
See [13], II, §4, 1.2, or [SGA3], Tome I, Exposé 2, for more details.

Let us call an algebraic space G over an algebraic space S a group space
if it is a group object in the category of algebraic spaces over S (see [25], and
also [7], p. 96). Let G be a group scheme or group space over a scheme S.
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We denote by Lie(G) the Lie algebra of the sheaf associated to G, and by
Lie(G) the OS(S)-module Lie(G) := Ker(G(Sε) → G(S)) = Lie(G)(S).

Recall the definition of the subfunctor G0/S of a group functor G/S
with representable fibers (see [48], 3.2 d), or [7], p. 233):

G0(T) := {
a ∈ G(T ) | at ∈ G0

t (Spec(k(t)), for all t ∈ T
}
,

where G0
t is the connected component of 0 in Gt , and k(t) denotes the

residue field of the point t, with natural morphism Spec(k(t)) → T .
The following facts are known but we have been unable to find a refer-
ence for some of them in the literature.

Proposition 1.1. Let S be a scheme.

(a) Let 0 → F ′ → F → F ′′ be an exact sequence of (pre)sheaves on the
category of S-schemes. Then

0 → Lie(F ′) → Lie(F ) → Lie(F ′′)

is an exact sequence of (pre)sheaves.
(b) Let pG : G → S be a group scheme. Let εG : S → G be the zero

section, and set ωG/S := ε∗
GΩ1

G/S. Then there is a natural isomorphism
ρG : p∗

GωG/S → Ω1
G/S.

Given a morphism of S-group schemes f : F → G, the exact sequence
f ∗Ω1

G/S → Ω1
F/S → Ω1

F/G → 0 induces an exact sequence of OS-
modules

ωG/S
α−→ ωF/S −→ ε∗

FΩ1
F/G → 0.

Let ω∨
G/S denote the dual of ωG/S. There is a canonical isomorphism of

OS-modules µG : Lie(G) → ω∨
G/S, functorial in G.

(c) Let f : F → G be a smooth (resp. étale) morphism of group spaces
over S. Then Lie(F)(T ) → Lie(G)(T ) is surjective (resp. bijective)
for any S-scheme T which is affine.

(d) Let G/S be a group functor with representable fibers. Then Lie(G0) →
Lie(G) is an isomorphism.

(e) Let f : F → G be a morphism of smooth group schemes of finite type
over S. Assume that S is affine and that Lie(F) → Lie(G) is surjective.
Then f is smooth.

Proof. (a) follows easily from the definitions. For (b), see [SGA3], tome 1,
II.4.11.

(c) After making the base change T → S if necessary, we may assume
that S is affine and prove the assertions for Lie(F) → Lie(G). Let

F ��f
G

S
�

� ��i

OO

εF

Sε

OO��A
A

A

A
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be a commutative diagram of S-morphisms. We have to complete the dia-
gram with a morphism Sε → F, unique if f is étale. When F and G are
both schemes, then the assertion follows from classical results for schemes
(see for instance [7], 2.2/6). In the case of algebraic spaces, we proceed as
follows. Consider H = Sε ×G F as a Sε-smooth algebraic space, and S as
a Sε-scheme via the canonical immersion i. We have to extend (i, εF ) :
S → H to a morphism of algebraic spaces Sε → H . To do so, represent
H as a quotient R ⇒ U → H of an Sε-scheme U by an étale equivalence
relation R. In particular, for any scheme T , H(T ) is the quotient of the set
U(T ) by the equivalence relation R(T ) ⊂ U(T )×U(T ). When f is smooth
(resp. étale), we may choose such an U with U → Sε smooth (resp. étale)
(see [25], II.3.2). The lifting assertions to be proved follow then from the
analogue results for schemes.

(d) The inclusion Ker(G(Tε) → G(T )) ⊆ Ker(G0(Tε) → G0(T ))
follows from the definition. The reverse inclusion is obvious.

(e) The natural isomorphism ρG : p∗
GωG/S → Ω1

G/S recalled in (b)
induces a commutative diagram of exact sequences:

p∗
Fε∗

F( f ∗Ω1
G/S)� f ∗(p∗

Gε∗
G(ΩG/S))−−→ p∗

Fε∗
FΩ1

F/S −−→ p∗
Fε∗

FΩ1
F/G −−→ 0

f ∗(ρG )

� ρF

�
�

f ∗Ω1
G/S −−→ Ω1

F/S −−→ Ω1
F/G −−→ 0.

It follows that p∗
F(ε∗

FΩ1
F/G) � Ω1

F/G . Proposition 2.2/8 in [7] implies
that F → G is smooth if Ω1

F/G is locally free. Let us show then that ε∗
FΩ1

F/G
is locally free. Consider the exact sequence of OS-modules

ωG/S
α−→ ωF/S −→ ε∗

FΩ1
F/G → 0.

Since S is affine and Lie(F) → Lie(G) is surjective, we find using (b)
that ω∨

F/S → ω∨
G/S is surjective. Since ωG/S and ωF/S are locally free, we

find that ωG/S
α−→ ωF/S is injective. Let F be any coherent OS-module.

The surjectivity of ω∨
F/S → ω∨

G/S implies that of HomOS(ωF/S,F ) →
HomOS(ωG/S,F ) = ω∨

G/S ⊗ F . Considering then the long exact sequence
of cohomology associated with HomOS(·,F ) and the exact sequence 0 →
ωG/S → ωF/S → ε∗

FΩ1
F/G → 0, we deduce that Ext1

OS
(ε∗

FΩ1
F/G,F ) = 0.

Hence ε∗
FΩ1

F/G is locally free. ��
1.2 The Lie algebra of Pic X/S. Let S be a scheme and let f : X → S be
an S-scheme. We denote by Pic X/S the relative Picard functor of X over S.
It is the fppf (faithfully flat and finite presentation) sheaf associated with
the presheaf

PX/S : (Sch/S)0 → (Sets), T �→ Pic(X ×S T ).

If f is proper, the relative Picard functor is also the étale-sheaf associated
with PX/S ([7], p. 203).
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Let us introduce some notation for the statement of the next proposition.
Let f : X → S, g : Y → S be S-schemes and h : X → Y be a morphism of
S-schemes. Consider OX as a sheaf for the fppf, or étale, or Zariski topology.
The map h# : OY → h∗OX induces R1(h#) : R1g∗OY → R1g∗(h∗OX ). We
denote by R1(h) : R1g∗OY → R1 f∗OX the canonical homomorphism
which is the composition of R1(h#), and the canonical homomorphism
R1g∗(h∗OX ) → R1 f∗OX . When S is affine, we may also denote R1(h)
by H1(h). We define similarly R1(h) for the sheaf O∗

X .

Proposition 1.3. Let S be a scheme and let f : X → S be a quasi-compact
separated morphism of schemes.

(a) Let R1 f∗OX denote the fppf-sheaf on S associated to the presheaf

T �−→ H1(XT ,OXT ).

If T is affine, then Γ(T, R1 f∗OX ) = H1(XT ,OXT ).
(b) There exists a canonical isomorphism of fppf-sheaves of OS-modules

θX : R1 f∗OX −→ Lie(Pic X/S).

(c) Let g : Y → S be quasi-compact and separated, and let h : X → Y be
a morphism of S-schemes. Let ĥ : PicY/S → Pic X/S be the canonical
morphism induced by h. Then the diagram

R1g∗OY
θY−−−−→ Lie(PicY/S)

R1(h)

�
�Lie(ĥ)

R1 f∗OX
θX−−−−→ Lie(Pic X/S)

is commutative. We shall abbreviate (c) by saying that the isomorphism
θX is functorial on X.

Proof. (a) Under the hypothesis on f , the formation of R1 f∗OX commutes
with flat base change. Hence, it is easy to see that R1 f∗OX is nothing but
the sheaf W(R1 f∗OX ) for the fppf topology (see [37], II.1.2 (d)).

(b) Let T be a S-scheme. We have a split exact sequence of (Zariski)
sheaves on XT

0 �� OXT
��α O∗

XTε

��β

O∗
XT

oo
γ

�� 1(2)

defined in an obvious way by α(b) = 1+bε, β(b1+b2ε) = b1 and γ(b) = b.
Hence, we have a split exact sequence of Zariski-sheaves on T

0 → R1 fT∗OXT → R1 fT∗O∗
XTε

→ R1 fT∗O∗
XT

→ 1.
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Let p : Sε → S be the canonical projection. It is a fppf morphism. For any
flat finite presentation S-scheme T (resp. Sε-scheme T ′), we have

p∗ PXε/Sε
(T ) = PX/S(Tε), PXε/Sε

(T ′) = p−1 PX/S(T
′).(3)

We have a split exact sequence of fppf-presheaves

0 → R1 f∗OX → p∗ PXε/Sε
→ PX/S → 0.

Therefore, we have a split exact sequence of fppf-sheaves

0 → R1 f∗OX → p∗Pic Xε/Sε
→ Pic X/S → 0.

From (3) we see that p−1Pic X/S = Pic Xε/Sε
and, hence,

p∗Pic Xε/Sε
(T ) = Pic Xε/Sε

(Tε) = Pic X/S(Tε).

This implies canonically an isomorphism of fppf-sheaves on S

θX : R1 f∗OX � Lie(Pic X/S).

Let us show that the above isomorphism is compatible with the structure
of OS-modules. To simplify the notation, we can suppose that S is affine and
consider only S-sections. Let a ∈ OS(S). Then we can ‘multiply’ the exact
sequence (2) by a, i.e., we have a commutative diagram of exact sequences

0 −−−−→ OX
α−−−−→ O∗

Xε

β−−−−→ O∗
X −−−−→ 1

·a
� ψa

�
�Id

0 −−−−→ OX
α−−−−→ O∗

Xε

β−−−−→ O∗
X −−−−→ 1

where ψa = u#
a is defined by (1). Hence, ψa acts on Pic X/S as R1(ua).

Since the multiplication by a on Lie(Pic X/S) is also induced by ua, we
see immediately that R1 f∗OX → Lie(Pic X/S) is a homomorphism of OS-
modules.

(c) The commutative diagram

OY
α−−−−→ O∗

Yε�
�

h∗OX
h∗α−−−−→ h∗O∗

Xε

induces a commutative diagram

R1g∗OY
R1(α)−−−−→ R1g∗O∗

Yε�
�

R1g∗(h∗OX )
R1(h∗α)−−−−→ R1g∗

(
h∗O∗

Xε

)
.
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Since the construction of R1g∗(h∗F ) → R1 f∗F is functorial on F ,

R1g∗OY −−−−→ R1g∗O∗
Yε

R1(h)

�
�R1(h)

R1 f∗OX −−−−→ R1 f∗O∗
Xε

is commutative. This achieves the proof. ��
1.4. Let X K be a smooth geometrically connected projective curve over
a field K , with Jacobian JK . We define a canonical isomorphism

τX K : H1(X K ,OX K ) → H1(JK ,OJK ),

compatible with base change Spec(K ′) → Spec(K ), as follows. Pic X K /K
is representable by a K -scheme locally of finite type, whose connected
component Pic0

X K /K is JK . Let λ : Pic0
X K /K → Pic0

JK/K be the canonical
isomorphism of JK with its dual (given by the Θ-divisor, [7], p. 261). Let
ZK denote X K or JK . Then Pic0

ZK /K is an open subgroup of Pic ZK /K and,
hence, Lie(Pic0

ZK /K) = Lie(Pic ZK /K ) (Proposition 1.1). The isomorphism
τX K is the only isomorphism making the diagram of isomorphisms below
commutative:

H1(X K ,OX K )
θX K−−−−→ Lie(Pic X K /K) Lie

(
Pic0

X K /K

)

τX K

�
�Lie(λ)

H1(JK ,OJK )
θJK−−−−→ Lie(Pic JK/K ) Lie

(
Pic0

JK/K

)
.

(4)

(In order to lighten the notation, we have denoted θX K (Spec K ) simply
by θX K .) The reader will check that τX K is compatible with the base change
K ′/K .

Corollary 1.5. Let X K be a smooth projective geometrically connected
curve of genus 1 over a field K such that X K (K ) �= ∅. Let EK be the
Jacobian of X K . Then there exists a K-isomorphism of curves h : EK → X K
such that τX K = H1(h).

Proof. Let JEK denote the Jacobian of EK , and let λ : EK → JEK be the
canonical isomorphism defined by x �→ [x − 0]. Let us fix x0 ∈ X K (K ).
Then there exists a unique isomorphism f : X K → EK such that, over an
algebraic closure of K , f(x) = [x − x0] for all closed points. Let h = f −1.
Let us check that the morphism ĥ : EK = JX K → JEK is equal to λ. We can
suppose K algebraically closed. Let y ∈ EK (K ). We can write y = [x − x0]
for some x ∈ X K (K ). Then

ĥ(y) = [
h−1(x) − h−1(x0)

] = [y − 0] = λ(y).
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Hence, 1.3(c) gives a commutative diagram

H1(X K ,OX K )
θX K−−−−→ Lie(Pic X K /K) Lie

(
Pic0

X K /K

)

H1(h)

�
�Lie(λ)

H1(EK ,OEK )
θEK−−−−→ Lie(Pic EK /K ) Lie

(
Pic0

EK /K

)
.

Therefore, τX K = H1(h) by diagram (4). ��

2. Morphisms of smooth S-group schemes

This section is independent of the rest of the paper, and the reader in-
terested only in its applications to Picard schemes and Néron models of
Jacobians may proceed directly to read the next section. Given any artinian
OK -module M, we let �(M) denote its length.

Consider an exact sequence of smooth algebraic groups over K

0 −→ G′
K −→ GK

uK−→ G′′
K −→ 0.

Assume that this sequence is the generic fiber of an exact sequence

0 −→ G′ −→ G
u−→ G′′

of group schemes of finite type over S := SpecOK , with G and G′′ smooth
and separated over S. We then have an exact sequence (1.1(a))

0 −−−−→ Lie(G′)−−−−→ Lie(G)
Lie (u)−−−−→ Lie(G′′).

The module Coker(Lie(u)) has finite length because Lie(G)K→Lie(G′′)K

is surjective since GK → G′′
K is smooth (1.1(c)). Let v : G̃′ → G′ be the

group smoothening of G′ ([7], p. 174). Our goal in this section is to prove
the following theorem.

Theorem 2.1. Assume that OK is complete with algebraically closed residue
field, and let u : G → G′′ be as above. Then

(a) If u(S) : G(S) → G′′(S) is surjective, then

�(Coker(Lie(u))) = �(Lie(G′)/ Lie(G̃′)).

(b) In general, there exists a smooth group scheme D/k of finite type such
that D(k) is isomorphic, as abelian group, to Coker(u(S)), and such
that

�(Coker(Lie(u))) = �(Lie(G′)/ Lie(G̃′)) + dim(D).
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Proof. Suppose that OK is any strictly henselian discrete valuation ring.
The additional assumptions that OK is complete and k is perfect will only
be used starting in 2.5. Let G′/S be any group scheme of finite type with
smooth generic fiber. Its group smoothening G̃′/S is obtained from G′ by
a sequence of dilatations ([7], pp. 174–175)

G̃′ = G′
n −→ . . . −→ G′

1 −→ G′
0 = G′,

where, for each i, the center of the dilatation is a closed smooth subgroup
scheme Hi/k of the special fiber (G′

i)k. Consider now the closed immersion
G′ → G given in Theorem 2.1. Construct G1 as the dilatation of the image
of H0 in Gk. Then the natural map G′

1 → G1 is a closed immersion ([7],
3.2.2(c)). Similarly, construct G2 as the dilatation of the image of H1 in G1.
Repeating this process, we find that it is possible to obtain a commutative
diagram

G̃′

��
g′

�� G̃

��
g

G′ �� G,

where G̃′/S is the group smoothening of G′, the map G̃′ → G̃ is a closed
immersion, and the map g is a sequence of dilatations with smooth centers.
Consider the quotient map ũ : G̃ → G̃′′ := G̃/G̃′. That this quotient
exists is proved, for instance, in [3], 4.C. That G̃′′/S is smooth of finite
type is proved in [SGA3] VIB 9.2 (xii), p. 380. The same reference also
shows that ũ is faithfully flat (hence smooth), while (x) implies that G̃′′/S
is separated. Note that the map ũ(S) is surjective: given a section S → G̃′′,
then S ×G̃ ′′ G̃ → S being smooth and S strictly henselian implies that
S ×G̃ ′′ G̃′ → S has a section. We have thus obtained a diagram of group
schemes with exact rows:

0 −−−−→ G̃′ −−−−→ G̃
ũ−−−−→ G̃′′ −−−−→ 0

g′
� g

� g′′
�

0 −−−−→ G′ −−−−→ G
u−−−−→ G′′.

(5)

Consider the diagram induced by (5) on S-points:

0 −−−−→ G̃′(S) −−−−→ G̃(S)
ũ(S)−−−−→ G̃′′(S) −−−−→ 0

g′
� g

� g′′
�

0 −−−−→ G′(S) −−−−→ G(S)
u(S)−−−−→ G′′(S),

with G̃′(S) → G′(S) surjective by construction of the group smoothening.
It follows that

0 → G(S)/G̃(S) → G′′(S)/G̃′′(S) → Coker(u(S)) −→ 0(6)
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is an exact sequence of abelian groups. Consider now the diagram induced
by (5) on Lie algebras:

0 �� Lie(G̃′)

��
Lie (g′)

�� Lie(G̃) ��Lie(ũ)

��
Lie(g)

Lie(G̃′′)

��
Lie(g′′)

�� 0

0 �� Lie(G′) �� Lie(G) ��Lie(u)
Lie(G′′),

where Lie(ũ) is surjective because ũ is smooth (1.1(c)). We easily extract
from this diagram the exact sequence

0 → Coker(Lie(g′)) → Coker(Lie(g))

→ Coker(Lie(g′′)) → Coker(Lie(u)) → 0.

It follows that

�(Coker(Lie(u))) − �(Lie(G′)/ Lie(G̃′))(7)

= �(Coker(Lie(g′′))) − �(Coker(Lie(g))).

By construction, the morphism g is a sequence of dilatations. Our next
proposition and its corollary 2.3 show that the same holds for g′′. In the
second part of the proof 2.1, starting in 2.5, we use this fact to iden-
tify, when k is perfect, the groups G(S)/G̃(S) and G′′(S)/G̃′′(S) with the
k-points of two smooth k-group schemes C/k and C′′/k, having dimensions
�(Coker(Lie(g)) and �(Coker(Lie(g′′)), respectively. ��
Proposition 2.2. Let OK be a discrete valuation ring. Let f : F → G be
a birational morphism of S-group schemes of finite type. Let α : ωG/S→ωF/S
denote the induced map of OS-modules (1.1(b)).

(a) We have a canonical exact sequence of OK -modules:

0 → Lie(F)
Lie ( f )−→ Lie(G)(8)

→ Ext1(Coker α,OK ) → Ext1(ωF/S,OK ).

In particular, Lie( f ) is injective.
(b) Suppose that G is smooth over S and that f : F → G is the dilata-

tion with respect to a closed smooth subgroup scheme H0 of Gk. Let
d = codim(H0, Gk). Then

�(Lie(G)/ Lie(F)) = d.

(c) Suppose that S is henselian. Let Si := Spec(OK/(π i)). Let G/S be
smooth, and let f : F → G be a sequence of n dilatations with respect
to smooth closed subgroups. Then, for all i ≥ n, the canonical map

ri : G(S)/ f(F(S)) → G(Si)/ f(F(Si))

is an isomorphism.
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Proof. (a) On the generic fiber, fK : FK → GK is birational and, hence,
is an isomorphism. It follows that both Ker α and Coker α are killed by
a power of π. Recall that Lie(.) can be identified with HomOS(ω./S,OS)
(1.1(b)). We obtain the exact sequence (8) by taking the dual HomOS(·,OS)
of the exact sequence

0 → Ker α → ωG/S
α−→ ωF/S → Coker α → 0.

(b) Since the dilatation F/S of a smooth group G/S is smooth, ωF/S
is locally free, and, hence, the last term in (8) vanishes. Let us compute
Coker α. Let s = dim H0. Then there exists a system of local parameters
{x1, ..., xs, y1, ..., yd, π} of G at 0 ∈ Gk such that H0 = V(y1, ..., yd, π)
locally at 0. Since F is an open subset of the blowing-up of G along H0, we
see that OF,0 = OG,0[z1, ..., zd]/(πyi − zi, i = 1, . . . , d). We have an exact
sequence

0→ΩG/S,0 ⊗OG,0 OF,0 →ΩF/S,0 →ΩF/G,0 � ⊕1≤i≤dOG,0dzi/πdzi →0

([31], Exercise 6.3.8). Restricting to the unit section of F/S gives rise to an
exact sequence

ωG/S → ωF/S → ⊕1≤i≤dOK/(π) � kd → 0.

Therefore, Coker α � kd and �(Ext1OK
(Coker α,OK)) = d.

(c) Since G(S) → G(Si) is surjective, it is enough to prove that ri is
injective. Let α ∈ G(S) be such that α|Si ∈ f(F(Si)). Since F(S) → F(Si)
is surjective, we can change α by a section of f(F(S)) and assume that
α|Si = 0. Then Part (c) is an immediate consequence of the following
property:

(1) Ker(G(S) → G(Sn)) ⊆ f(F(S)).
We prove now by induction on n that (1) and (2) hold, where

(2) Ker(F(S) → F(Sn+m) → G(Sn+m)) ⊆ Ker(F(S) → F(Sm)) for
all m ≥ 1.

Let us start with n = 1. Then property (1) comes from the univer-
sal property of the dilatation. Let εF and εG denote the zero sections of
F and G respectively. Let α ∈ F(S) be such that f(α)|Sm+1 = εG |Sm+1.
Then α maps the closed point of S to a point of F ×G SpecOG,0 =
SpecOG,0[T1, ..., Td]/(πTj − y j)1≤ j≤d with the above notation. We have
πα#(Ti) ≡ ε#

G(yi) = 0 mod πm+1. Thus α#(Ti) ≡ 0 mod πm and α#(a) ≡
0 mod πm+1 for all a ∈ OG,0. Therefore α|Sm = εF |Sm . This proves the
property (2) when n = 1.

If n ≥ 2, we decompose F → G into a single dilatation F → F ′ and
a sequence of n −1 dilatations F ′ → G. Then (2) is easily deduced from the
case n = 1 and the induction hypothesis applied to F ′ → G. Property (1)
follows from (2) applied to F → F ′ and F ′ → G. ��

The above proposition has the following important consequence for
birational morphisms of group schemes over S (when G is affine,
see [65], 1.4).



468 Q. Liu et al.

Corollary 2.3. Let S be the spectrum of a strictly henselian discrete valu-
ation ring OK . Let f : F → G be a morphism of smooth S-group schemes
of finite type. Suppose that fK : FK → GK is an isomorphism. If f is
separated, then f consists in a finite sequence of dilatations with smooth
centers.

Proof. Let H0 be the schematic closure of Im (F(S) → F(k) → G(k))
in Gk. It is a smooth subgroup scheme of Gk, and Fk → Gk factorizes
through H0 → Gk. If H0 = Gk, then Fk → Gk has dense image, so it is
faithfully flat ([SGA3], VIA, 5.6). Hence, F → G is birational and faithfully
flat ([EGA], IV.11.3.11). It is an isomorphism by Lemma 2.4 below (where
the hypothesis that f is separated is used).

Now suppose that H0 �= Gk. Let G1 → G be the dilatation along H0.
Then by the universal property of the dilatation, F → G factorizes into
F → G1 → G. If F → G1 is not an isomorphism, we start again with
a dilatation on G1. We construct in this way a sequence of dilatations

F → Gn → Gn−1 → ... → G1 → G.

If dim(H0) = dim(Gk), then we find that the map G1 → G is an open
immersion and H1 = G1,k. It follows that G2 = G1 = F. If
dim(Hi) < dim(Gi,k), we find that Lie(Gi)/ Lie(Gi−1) �= 0 (2.2(b)).
Since Lie(G)/ Lie(F) → Lie(G)/ Lie(Gn) is surjective, it follows that
there exists n ≤ �(Coker(Lie( f ))) such that F = Gn. ��
Lemma 2.4. Let T be an integral locally noetherian scheme with generic
point ξ . Let f : F → G be a morphism of flat group schemes over T . Let
H := Ker f , with h : H → T the structural morphism.

(a) If f admits a section σ : G → F, then f is faithfully flat.
(b) Assume that f is separated, of finite type, and birational (i.e., fξ is an

isomorphism). If f is faithfully flat, then it is an isomorphism.

Proof. (a) The existence of σ implies that F → G is an epimorphism. Let
i : H → F be the canonical morphism. Then (i, σ) : H ×T G → F is an
isomorphism of T -schemes. Since G → T is faithfully flat and F → T is
flat, we find that H → T is flat. Thus the projection H ×T G → G is flat.
Since this projection corresponds to the map f , f is flat too.

(b) We claim that f is a monomorphism if h is flat. The morphism h
is separated, of finite type, and Hξ = Ker fξ = {0}. Since h is separated
and T is integral, H(T ) consists only of the zero section. For any T -scheme
T ′ which is integral and locally noetherian, applying the previous remark
to the morphism HT ′ → T ′ and the integral scheme T ′ gives the equality
H(T ′) = T(T ′). The scheme H itself is integral since H/T is flat birational
and T is integral (see, e.g., [31], 4.3.8). Let εH : T → H be the zero section.
The equality H(H) = T(H) shows then that idH = εH ◦ h. Thus, h is an
isomorphism, and f is a monomorphism.
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Let us suppose now that f is faithfully flat. From the above, H → T
is an isomorphism and F → G is an isomorphism of fppf-sheaves, hence
F → G is an isomorphism. ��
2.5. Let us now return to the proof of Theorem 2.1. Assume until the end
of the proof that OK is complete and that k is algebraically closed. Let us
turn to defining the smooth group scheme D/k alluded to in the statement
of 2.1.

Let Si := Spec(OK/(π i)). The Greenberg functor Gri of level i (see,
e.g., [7], p. 276) associates to each Si-scheme Yi locally of finite type
a k-scheme Gr(Yi) locally of finite type in such a way that, functorially
in Yi ,

Yi(Si) = Gri(Yi)(S1).

When K is of equicharacteristic p, Gri(Yi) is simply the Weil restriction
ResSi/S1Yi , where Si → S1 is the natural structure morphism.

Let G/S be any scheme locally of finite type. Let Gi := G ×S Si . Denote
by Gri(G) the k-scheme Gri(Gi), and let Gr(G) denote the projective system
of k-schemes

. . . −→ Gri(G) −→ Gri−1(G) −→ . . . −→ Gr1(G) = Gk.

Any morphism f : G → G′′ of S-group schemes induces in a natural
way morphisms fi : Gri(G) → Gri(G′′) of k-group schemes, which give
a morphism of projective systems Gr( f ) : Gr(G) −→ Gr(G′′). We let
Coker(Gr( f )) denote the projective system {Coker( fi)}i . When G/S is
smooth, Gri(G)/k is smooth for all i ([5], 4.1.1).

Lemma 2.6. Assume that OK is complete and that k is algebraically closed.
Let f : G → G′′ be a morphism of S-group schemes of finite type.

(a) If G′′/S is smooth and f(S) is surjective, then Coker(Gr( f )) = {0}.
(b) If G/S is smooth, then Coker( f(S)) is isomorphic to lim←− i Coker( fi(k)).
(c) If G and G′′ are smooth and if f is separated and birational, then there

exists n such that, for all i ≥ n, Coker( fi+1)(k) → Coker( fi)(k) is an
isomorphism and dim Coker( fi) = �(Coker(Lie f )).

Proof. Since G′′/S is smooth, G′′(Si+1) → G′′(Si) is surjective. Since
Gri(G)(k) → Gri(G′′)(k) is identified with the map G(Si) → G′′(Si)
by construction, the hypothesis that f(S) is surjective implies that fi is
surjective for all i, thereby proving (a). To prove (b), note that any exact
sequence of projective systems

Gri(G)(k) −→ Gri(G
′′)(k) −→ Coker( fi(k)) −→ 0

produces an exact sequence of projective limits

lim←− i Gri(G)(k) −→ lim←− i Gri(G
′′)(k) −→ lim←− i Coker( fi(k)) −→ 0
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if all maps Gri(G) → Gri−1(G) of the projective complex on the left
are surjective. This is the case when G/S is smooth. Hence, since OK is
complete, we have an exact sequence

G(S) −→ G′′(S) −→ lim←− i Coker( fi(k)) −→ 0

which proves (b).
(c) By Corollary 2.3, f consists in a sequence of n dilatations with

respect to smooth closed subgroups. By construction, Coker( fi)(k) =
G′′(Si)/ f(G(Si)). The isomorphism Coker( fi+1)(k) → Coker( fi)(k) fol-
lows from Proposition 2.2(c). The equality dim Coker( fi)= �(Coker(Lie f ))
comes from Proposition 2.2(b) when n = 1. If n ≥ 2, we decompose f into
f ′ : F → F ′ and g : F ′ → G as in the proof of 2.2(c). Then

�(Coker(Lie f )) = �(Coker(Lie f ′)) + �(Coker(Lie g)).

On the other hand, we have an exact sequence

0 −→ F ′(S)/ f ′(F(S)) −→ G(S)/ f(F(S)) −→ G(S)/g(F ′(S)) −→ 0

which induces an exact sequence

0 → Coker( f ′
i )(k) → Coker( fi)(k) → Coker(gi)(k) → 0

for all i ≥ n. Hence, dim Coker( fi) = dim Coker( f ′
i ) + dim Coker(gi),

which allows us to achieve the proof by induction on n. ��
Remark 2.7. Some hypothesis on G′′/S is needed in Lemma 2.6(a). Indeed,
let G′′/S be the group p/S, kernel of the multiplication by p on Gm/S.
Let G/S denote the trivial group scheme, and let f : G → G′′ denote the
natural closed immersion. Assume that OK does not contains the p-th roots
of unity. Then f(S) is surjective as p(S) is the trivial group. The reader
will check that the projective system Coker(Gr( f )) is not trivial.

When G/S is a smooth group scheme of finite type, dim(Gri(G)) =
i dim(GK ) if K is of equal characteristic and dim(Gri(G)) = ie dim(GK )
if K is of mixed characteristics and e is the absolute ramification in-
dex (see, e.g., [5], 4.1.1). Thus, when G/S and G′′/S are smooth with
dim(GK ) < dim(G′′

K ), then limi dim(Coker( fi)) = ∞. Under our assump-
tions on the morphism u : G → G′′ in 2.1, on the other hand, we are going
to show that the projective system Coker(Gr(u)) is constant for i large
enough.

Let us return to the proof of 2.1. Part (a) of 2.1 follows from Part (b).
Indeed, when u(S) is surjective, we find that D(k) = {0} in (b). Since k
is algebraically closed, we conclude that dim(D) = 0, and the formula in
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(b) implies (a). Let us now conclude the proof of 2.1(b). Consider the right
hand side of the diagram (5):

G̃
ũ−−−−→ G̃′′ −−−−→ 0

g

� g′′
�

G
u−−−−→ G′′.

The morphism g′′ is separated and an isomorphism on the generic fiber. It
follows then from 2.3 that g′′ is a finite sequence of dilatations with smooth
centers. By construction, the same holds for g.

We apply Lemma 2.6(c) to the maps g and g′′ and find that there exists
i0 ∈ N such that for all i > i0, the natural maps Coker(gi) → Coker(gi−1)
and the natural maps Coker(g′′

i ) → Coker(g′′
i−1) are all isomorphisms of

smooth group schemes. Denote by C and C′′ the smooth groups Coker(gi0)
and Coker(g′′

i0
), respectively, and let u0 : C → C ′′ denote the map between

them induced by u. Denote by D/k the (smooth) group Coker u0. It follows
from Lemma 2.6(b) and the exact sequence (6) that we have a commuting
diagram with vertical isomorphisms:

C(k)
u0(k)−−→ C ′′(k) −−→ D(k) −−→ 0







0 −−→ G(S)/G̃(S)
u−−→ G′′(S)/G̃′′(S) −−→ G′′(S)/G(S) −−→ 0.

We find that the map u0(k) is injective and, thus, we can conclude with
Lemma 2.6(c) that

dim(D) = dim(C′′) − dim(C) = �(Coker(Lie(g′′))) − �(Coker(Lie(g))).

To conclude the proof of 2.1, it suffices to apply Equality (7). ��
Remarks 2.8. a) Keep the hypotheses of 2.1, and assume in addition that
the morphism u : G → G′′ is faithfully flat, so that the sequence 0 →
G′ → G → G′′ → 0 is exact in the fppf-topology. In this case, the
three invariants appearing in the statement of 2.1 depend on G′/S only,
and not on the expression of G′ as the kernel of a morphism of smooth
group schemes. Indeed, this is clearly the case for �(Lie(G′)/ Lie(G̃′)).
The cokernel G′′(S)/G(S) can be identified with the cohomology group
H1

f pp f (G
′), as H1

f pp f (G) = {0} since G/S is smooth. Finally, as G′/S is
flat, Lie(G′′)/ Lie(G) can be computed in terms of the cotangent complex
of G′ (see [21] (4.3.3)).

b) It is natural to wonder whether Part (a) of Theorem 2.1 still holds when
k is only assumed to be separably closed. In other words, if G(S) → G′′(S)

is surjective, is it true that �(Lie(G′)/ Lie(G̃′)) = �(Coker(Lie(u)))? This
is the case when G′/S is smooth.
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c) Suppose that dim(G′
K ) = 0. Then G′

K/K is étale in our context, and
we have Lie(G̃ ′) = Lie(G′). When G′

K/K is only assumed to be finite and
G → G′′ is faithfully flat, the computation of dim(D) in 2.1(b) is found
in [5], 4.2.2.

Examples 2.9. All terms in the formula of 2.1(b) can be non-zero.

a) For instance, dim(D) �= 0 for any non-trivial dilatation u : G → G′′
of any smooth group scheme G′′/S. A very interesting sequence of
dilatations is obtained as follows. Let L/K be a finite extension, let
S′ = SpecOL and let GK be an algebraic group. Suppose that the Néron
model G/S of GK and the Néron model H/S′ of GL exist. We obtain
in this case a natural map G ×S S′ → H . The length of the cokernel
Lie(H)/ Lie(G ×S S′) is studied in [9] and [10].

b) To find an example where �(Lie(G′)/ Lie(G̃′)) �= 0, consider a finite
separable totally ramified extension L/K , and let G → G′′ be the norm
map N : RS′/SGm,S′ → Gm,S (where RS′/S is the Weil restriction to S,
see [7], 7.6). The kernel G′ of this map is usually denoted by R1

S′/SGm,S′.
The reader will verify that there is a natural commutative diagram with
vertical isomorphisms

Lie(G) ��Lie(N)
Lie(G′′)

OL

OO

��
TrL/K

OK

OO

We find that �(Lie(G′′)/ Lie(G)) = �(OK/TrL/K (OL)). Let DL/K de-
note the different of L/K . As in [53], V.3, Lemma 4, when [L : K ]
is prime, we find that �(OK/TrL/K(OL)) is equal to the integer part of
vL(DL/K)/[L : K ].
Assume now that K is complete with algebraically closed residue field.
Then it is known that Norm(L∗) = K∗ for any finite separable extension
L/K (see, e.g., [53], V.5, prop. 7). Since vK (Norm(α)) = vL(α), we
find that Norm(O∗

L) = O∗
K , so that the map N(S) is surjective. It follows

from 2.1 that �(Lie(G′)/ Lie(G̃′)) = �(Lie(G′′)/ Lie(G)). The latter
integer is not zero when L/K is wildly ramified. The smoothening map
G̃′ → G′ is described in [33], 5.6, when L/K is cyclic of degree p.

c) Let us return to the general formula of 2.1(b). Suppose that G and G′′
are the Néron models of two abelian varieties GK and G′′

K , with G
semistable. When v(p) < p − 1, then �(Lie(G′′)/ Lie(G)) = 0 ([7],
7.5/4), and when v(p) = p − 1, then �(Lie(G′)/ Lie(G̃′)) = 0 and
p − 1 | dim(D) ([1], Theorem A.1).

It is possible to slightly generalize Theorem 2.1 as follows. Let

G• : . . . −→ Gi ui−→ Gi+1 −→ . . .
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be a bounded complex of separated smooth S-group schemes of finite type.
Assume that G• is exact on the generic fiber. When k is algebraically
closed, we associate to this complex two invariants as follows. Consider the
associated complex of Lie algebras

Lie(G•) : . . . −→ Lie(Gi)
Lie (ui)−→ Lie(Gi+1) −→ . . . .

By hypothesis, this complex of OK -modules becomes exact when tensored
with K . Thus, we can define

hi
Lie (G

•) := �(Ker(Lie(ui))/Im(Lie(ui−1)),

and χLie (G
•) :=

∑

i

(−1)ihi
Lie (G

•).

Note that one can define a Cartier divisor D := Div(Lie(G•)) on S ([26],
pp. 47–48, see also 5.3) such that det(Lie(G•)) is canonically isomorphic
to OS(D), and χLie (G•) is then equal to the degree of D.

Consider a morphism u : F → G of separated S-group schemes of
finite type, with FK and GK smooth and FK → GK smooth and surjective.
Then the group Coker(u(S)) can be endowed with the structure of a smooth
algebraic group over k. Indeed, consider the group smoothenings F̃ and G̃
of F and G, and let ũ : F̃ → G̃ be the associated morphism. Recall that
F̃(S) = F(S) and G̃(S) = G(S). Then, as we showed in 2.1, there exists
a smooth group scheme of finite type D/k such that D(k) = Coker(ũ(S)).

For each map ui : Gi → Gi+1, consider the associated morphism
Gi−1 → Ker(ui), again denoted by ui−1. Let Di/k denote the group scheme
such that Di(k) = Ker(ui(S))/Im(ui−1(S)). Define

hi
points(G

•) := dim(Di) and χpoints(G
•) :=

∑

i

(−1)ihi
points(G

•).

Theorem 2.10. Let G• be a complex of S-group schemes as above. Then

χLie (G
•) = χpoints(G

•).

Proof. Left to the reader. Proceed by induction on the length of the complex.

3. Comparison of Lie algebras

Let S = SpecOK , and let f : X → S be a proper and flat curve, with X regu-
lar and f∗OX = OS. Let J/S denote the Néron model of Jac(X K ). We want
to compare Lie(Pic X/S) with Lie(J). As we shall see, these OK -modules
are naturally isomorphic when k is perfect and X is cohomologically flat
in dimension zero ([7], p. 206) or, equivalently, when k is perfect and
H1(X,OX ) is torsion-free. In the case where X is not cohomologically flat
in dimension zero, the functor Pic X/S is, unfortunately, not representable
by an algebraic space over S ([48], 2.4.4, or [7], 8.3/2). To alleviate this
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technical difficulty, the rigidified Picard functors introduced in [48], 2.1.2
and 2.4.1 (or [7], 8.1/11), allow for a resolution of Pic X/S by a sequence of
group spaces. We recall below this theory, following the notation of [7]. We
will show that when S is strictly henselian, Pic X/S has in fact a resolution
by group schemes (3.2). Consideration of this resolution and its associated
sequence of Lie algebras allows us then to prove our main theorem 3.1.

A rigidificator Y/S of the relative Picard functor Pic X/S is a subscheme
Y ⊂ X which is finite and faithfully flat over S, and such that the map

H0(XT ,OXT ) �−→ H0(YT ,OYT ),

induced from the inclusion YT → XT , is injective for all S-schemes T . It is
shown in [48], 2.2.3, that Pic X/S has a rigidificator. An invertible sheaf on
X rigidified along Y is defined to be a pair (L, α), where L is an invertible
sheaf on X and α : OY → L|Y is an isomorphism. Two pairs (L, α) and
(L′, α′) are said to be isomorphic if there is an isomorphism ϕ : L → L′
such that ϕ|Y ◦ α = α′. We let

(Pic X/S, Y ) : (Sch/S)0 −→ (Sets)

denote the group functor that associates to any S-scheme T the set of
isomorphism classes of line bundles on XT rigidified on YT . We let

h : (Pic X/S, Y ) −→ Pic X/S

denote the natural transformation of functors obtained by forgetting the
rigidification. Both functors are formally smooth ([7], 8.4/2), and h is an
epimorphism of étale sheaves. The functor (Pic X/S, Y ) is always repre-
sentable by an algebraic space over S ([48], 2.3.1). The functor Pic X/S is
representable by an algebraic space over S if and only if X/S is cohomo-
logically flat in dimension 0 ([48], 2.4.4).

Let P and (P, Y ) denote respectively the subfunctors of Pic X/S and
(Pic X/S, Y ) consisting of the line bundles of total degree 0 (see [7], p. 265).
We will denote again by h the map h|(P,Y ).

Consider the subfunctor Ker(h) of (P, Y ). Since the generic fiber of
P is representable, so is the generic fiber Ker(hK ) of Ker(h). Let then
H denote the schematic closure of Ker(hK ) in (P, Y ) (see [48], 3.2 c)).
Proposition 9.5.3 in [7] states that the f pp f -quotient Q := (P, Y )/H is
representable by a smooth and separated group scheme over S. The map
(P, Y ) → Q factors through (P, Y ) → P, to give a map

q : P → Q

which is an isomorphism on the generic fiber. Thus, QK coincides with the
Jacobian JK of X K . Since X is regular, the group scheme Q/S is of finite
type ([7], 9.5.11). Our main theorem in this section is:
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Theorem 3.1. Let OK be a discrete valuation ring. Assume that f : X → S
is a proper and flat curve, with X regular and f∗OX = OS. Consider the
natural map of Lie algebras

Lie(q) : Lie(P) −→ Lie(Q)

induced by the map q : P → Q. Then

(a) The kernel of Lie(q) is isomorphic to the torsion subgroup of H1(X,OX ).
(b) Assume that the residue field k is perfect (in which case Q is the Néron

model of JK , see 3.7). Then the kernel and cokernel of Lie(q) have the
same length.

Proof. We saw in Proposition 1.3 that Lie(P) can be canonically identified
with the OK -module H1(X,OX ). To prove (a), let us note that the map
q : P → Q is an isomorphism on the generic fiber. Hence, the kernel
of the map Lie(q) is equal to the torsion submodule of Lie(P) since the
OK -module Lie(Q) is torsion-free, Q/S being a smooth group scheme.

The proof of Part (b) will occupy the rest of this section. Let us start by
noting that it is sufficient to prove the case where OK is strictly henselian and
even complete. It is only when using the main result of Sect. 2, Theorem 2.1,
that we will need to distinguish between separably closed and algebraically
closed residue fields. Thus, until the end of this section, we only assume
that k is separably closed.

When P/S is an algebraic space, the proof of (b) is substantially sim-
plified: the map P → Q is an étale map of algebraic spaces and, thus, the
map Lie(P) → Lie(Q) is an isomorphism (1.1(c)).

Let us recall now the description of the kernel Ker(h) of the map h :
(Pic X/S, Y ) → Pic X/S (see for instance pp. 206–209 of [7]). Clearly, given
T/S, we can map a global invertible section a on Y ×S T to the pair (OXT , α)
in Ker(h)(T ), where the isomorphism α : (OXT )|YT → (OXT )|YT is the
multiplication by a. One shows that given Z/S proper and flat, the functor

(Sch)0 → (Sets), T �→ H0(ZT ,OZT )

is representable by a scheme VZ/S, and that the subfunctor of units

(Sch)0 → (Sets), T �→ H0(ZT ,O∗
ZT

)

is represented by a smooth open subscheme V ∗
Z of VZ . When Y ⊂ X is

a rigidificator, the induced morphism VX → VY is a closed immersion
which induces an immersion V ∗

X → V ∗
Y of group schemes. The following

sequence is an exact sequence of sheaves with respect to the étale topology
([48], 2.1.2, 2.4.1):

0 −→ V ∗
X −→ V ∗

Y −→ (Pic X/S, Y ) −→ Pic X/S −→ 0.(9)
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This is the ‘resolution of Pic X/S by group spaces’ alluded to at the beginning
of this section. In order to obtain objects that are of finite type, we may pass
to the analogue commutative diagram:

0 −−−−→ V ∗
X −−−−→ V ∗

Y −−−−→ (P, Y )
h−−−−→ P −−−−→ 0�

∥∥∥ q

�

0 −−−−→ H −−−−→ (P, Y )
h̄−−−−→ Q −−−−→ 0.

Since V ∗
Y /S is flat, we find that Ker(h) ⊆ H . ��

Proposition 3.2. The functor (Pic X/S, Y ) is representable by a smooth
group space. Its connected component of zero (Pic X/S, Y )0 is represented by
a separated smooth group scheme. If S is strictly henselian, then (Pic X/S, Y )
is representable by a smooth group scheme (not separated in general).

Proof. Recall that since (P, Y ) and (Pic X/S, Y ) are represented by alge-
braic spaces smooth along the unit section, (P, Y )0 and (Pic X/S, Y )0 are
represented by open subspaces (see [SGA3] VIB, 3.10, p. 344, for group
schemes).

As we mentioned above already, (Pic X/S, Y )0 is represented by a smooth
group space. To show that (Pic X/S, Y )0 is represented by a separated smooth
group scheme, it is sufficient to show that (Pic X/S, Y )0 is a separated group
space (definition in [48], 3.2 a)). Indeed, any separated group space G/S
is a group scheme ([3], 4.B, or [48], 3.3.1, when G/S is smooth). To show
that a group space G/S is separated, it is sufficient to show that the unit
section of G is closed. Indeed, let E/S denote the schematic closure in
G of the unit section of GK . Then the quotient G/E is a separated group
scheme ([48], 3.3.5).

To show that the zero section of G := (Pic X/S, Y )0 is closed, we proceed
as follows. The morphism ε : S → G is an immersion, closed on the generic
fiber, and it is closed if, for each étale covering U → G (with U a scheme),
the map S ×G U → U is a closed immersion1. The latter property can
be checked after a base change T → S which is faithfully flat and quasi-
compact ([EGA] IV, 2.6.2), so we can assume that S is strictly henselian.
We claim that to prove ε : S → G is a closed immersion, it suffices to check
that the set G0(S) of sections µ ∈ G(S) such that µK = εK contains only
the section ε. Indeed, for any section µ : S → U such that µK = ρK for
some section ρ : S → S ×G U , we have µ ∈ (S ×G U)(S) (composing µ
with U → G gives rise to a section S → G in G0(S) = {ε}). The reader will
check that this property implies that S ×G U → U is a closed immersion,

1 Note that the criterion given in [7], p. 225, states that ε is a closed immersion if, for
any scheme Y and morphism Y → G, Y ×G S is a scheme and Y ×G S → Y is a closed
immersion. Since ε is an immersion, we find that Y ×G S is a scheme ([25], p. 109). The
proof of the equivalence between the two criteria is left to the reader.



Néron models, Lie algebras, and reduction of curves of genus one 477

having in mind that S ×G U is a union of copies of S, and S ×G U → U is
an immersion, closed above the generic point of S.

Let us show that the set of sections of (Pic X/S, Y )0(S) reducing to εK
consists only in the unit section. Consider the natural exact sequence

0→Pic(T )→Pic(X ×S T )→Pic X/S(T )→Br(T )→Br(X ×S T ).(10)

Since S is strictly henselian, Br(S) = (0) and we have Pic(X) = Pic X/S(S).
Note that by setting T = Spec(K ) in (10) we obtain the exact sequence:

0 → Pic(X K ) → Pic X/S(K ) → Br(K ) → Br(X K ),(11)

which will be used in the next sections. Thus, every element of
(Pic X/S, Y )0(S) is represented by a pair of the form (L, α), where
L ∈ Pic(X). (Note that (Pic X/S, Y ) is an fppf-sheaf, while Pic X/S is only
the fppf-sheaf associated with the presheaf T → Pic(X ×S T ) ([48], 2.1.2).
If L is trivial on the generic fiber, we can identify (L, α) with (OX(D), α),
where D is a divisor supported on the special fiber. Now the condition that the
element is in (Pic X/S, Y )0(S) implies that we can assume that D = qr−1 Xk
with 0 ≤ q ≤ r −1, where r is the gcd of the multiplicities of the irreducible
components of Xk. We have to show that (OX(D), α) � (OX, Id).

By hypothesis, (OX K , αK ) � (OX K , Id). So there exists a∈ H0(X K ,O∗
X K

)
= K∗ such that αK : OYK → OYK maps 1 to a. Let y ∈ Y . Consider the
isomorphism

αy : OY,y → OX(D) ⊗ OY,y.

There exists a basis e of OX(D)y such that ē := αy(1) = a in OX(D)⊗OY,y
⊗K . This implies that e = a in OX(D)⊗OY,y and, thus a = e+eb in OX (D)y
for some b ∈ OX(−Y )y ⊂ myOX,y. Let Γ be an irreducible component of Xk
passing through y, of multiplicity s in Xk. The element a, being, up to a unit,
a power of π, is a function having on Γ a pole of order a multiple of s. Since
b+1 is a unit at y, we see that e(b+1) has a pole on Γ of order exactly qs/r. It
follows that r | q, which implies that q = 0 and a ∈ O∗

K . Thus OX(D) = OX
and (OX(D), α) � (OX, Id).

Assume now that (Pic X/S, Y )0 is a scheme. Since (Pic X/S, Y ) is a smooth
algebraic space, it is equal to the schematic closure of its generic fiber.
Proposition 3.3.6 2) of [48] implies that when k is separably closed and
(Pic X/S, Y )0 is separated, then (Pic X/S, Y ) is a scheme. ��

Let us now consider the Lie algebras associated with the resolution of
Pic X/S. The functorial definitions of V ∗

X and V ∗
Y recalled above immediately

allows the computations of their Lie algebras, and one find that the following
natural diagram with vertical isomorphisms of OK -modules is commutative:

0 −−−−→ OX(X) −−−−→ OY (Y )�
�

0 −−−−→ Lie
(
V ∗

X

) −−−−→ Lie
(
V ∗

Y

)
.
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Proposition 3.3. Keep the above notation. The exact sequence of Lie alge-
bras associated with the exact sequence of functors (9) is exact:

0 → Lie(V ∗
X) −→ Lie(V ∗

Y ) −→ Lie(Pic X/S, Y ) −→ Lie(Pic X/S) → 0.

Proof. In the proof that the functor (Pic X/S, Y ) is representable ([48], 2.3.1),
the existence of a natural exact sequence of the form

0 → OX(X) −→ OY (Y ) −→ Lie(Pic X/S, Y ) −→ H1(X,OX ) → 0,

is established in (∗) on p. 36, taking, in the notation of the bottom of p. 35,
A0 = OS and A′ = A = OSε

. We established in 1.3(b) that H1(X,OX )
is canonically isomorphic with Lie(Pic X/S). We leave it to the reader to
check that the four-term sequence above can be naturally identified with the
four-term sequence in the statement of the proposition. ��
Remark 3.4. Let I ⊂ OX denote the sheaf of ideals defining the sub-
scheme Y . The exact sequence of coherent sheaves 0 → I → OX →
OY → 0 induces the long exact sequence

0 −→ f∗OX −→ f∗OY −→ R1 f∗ I −→ R1 f∗OX −→ 0(12)

of coherent sheaves on S. The exact sequence of Lie algebras associated
with the exact sequence of functors (9) can be canonically identified with
the exact sequence of global sections over S associated with the exact
sequence (12).

Let S be strictly henselian. Since (Pic X/S, Y ) is a scheme, (P, Y ) is an
open and closed subscheme and (P, Y )0 is an open subscheme of (P, Y ).
Consider the closed subscheme H1 := H ∩ (P, Y )0 and its open sub-
scheme H0

1 /S. Let H̃1/S be the group smoothening of H1/S ([7], pp. 174–
175).

Lemma 3.5. (a) The map V ∗
Y → (P, Y ) factors through V ∗

Y → H1 ⊂
(P, Y )0

(b) Let r be the gcd of the multiplicities of the irreducible components of Xk.
Then we have an exact sequence

V ∗
Y (S) → H1(S) → Z/rZ→ 0.

(c) There are natural immersions of group schemes

Gm,S −→ V ∗
X −→ V ∗

Y ,

with Gm,S → V ∗
Y a closed immersion.

(d) The map V ∗
Y → H1 factors through H̃1 and the sequence

0 −→ Gm,S −→ V ∗
Y −→ H̃0

1 −→ 0

is exact.
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(e) We have a natural diagram with exact lines:

0 −−−−→ Lie(H̃1) −−−−→ Lie((P, Y )0)
Lie(h)−−−−→ Lie(P0) −−−−→ 0�

∥∥∥ Lie(q)

�

0 −−−−→ Lie(H1) −−−−→ Lie((P, Y )0)
Lie(h̄)−−−−→ Lie(Q0).

Proof. Let x = (L, α) ∈ H1(S). Then on the generic fiber, LK � OX K . So
up to isomorphism of (L, α), we can write L = OX(D) for some vertical
divisor D. On the special fiber, we have L|Xk ∈ P0

k , which means that
deg L|Γ = 0 for all irreducible components Γ of Xk . Hence, D = qr−1 Xk
for some q ∈ Z.

(a) and (b). Since V ∗
Y is connected, it maps to (P, Y )0 with image in H .

This gives a canonical morphism V ∗
Y → H1. The map

H1(S) → Z/rZ,
(
OX(qr−1 Xk), α

) �→ q̄ ∈ Z/rZ

is surjective. An element (OX(D), α) is in the kernel if and only if D ∈ ZXk,
which is equivalent to OX(D) � OX and, hence, equivalent to (OX(D), α) ∈
Ker(h)(S) = Im(V ∗

Y (S)).
(c) Recall that the subscheme Y ⊂ X is finite and flat over S. It follows

that the group scheme V ∗
Y /S is nothing but the Weil restriction RY/SGm,Y

([7], 7.6). Indeed, by definition, the group scheme RY/SGm,Y represents the
functor T → Γ(YT ,O∗

YT
), and is thus equal to V ∗

Y . Note now the inclusions

Γ
(
T,O∗

T

) ⊆ Γ
(
XT ,O∗

XT

) ⊆ Γ
(
YT ,O∗

YT

)
.

We thus find natural morphisms of representable functors

Gm,S → V ∗
X → V ∗

Y .

The map Y → S corresponds to a morphism of rings OK → A. Using
a basis for A over OK , it is easy to see that the composition Gm,S → V ∗

Y is
given by a surjective morphism of rings and is thus a closed immersion.

(d) The quotient V ∗
Y /Gm,S is a smooth group scheme (see [3], 4.C, for

the existence of the quotient. Since Gm,S is a torus and V ∗
Y is affine, see also

[SGA3] VIII, 5.7, p. 19. For smoothness, see [SGA3] VIB 9.2 xii, p. 380)
and the map V ∗

Y → H1 factors through V ∗
Y /Gm,S. Since V ∗

Y /Gm,S is smooth,
the map V ∗

Y /Gm,S → H1 factors through a map g : V ∗
Y /Gm,S → H̃1. Let us

show that g is an open immersion. Clearly, gK is an isomorphism. Recall that
since H̃1 → H1 is a group smoothening, H̃1(S) → H1(S) is a bijection.
Part (b) shows then that the cokernel of the map gs on the special fiber
is finite. Since both V ∗

Y /Gm,S and H̃1 are flat and the dimension of their
generic fibers are equal, the dimension of their special fibers are also equal.
It follows that the morphism gs is quasi-finite and, thus, so is g. Since
V ∗

Y /Gm,S → S is affine, g is separated. We may thus apply Zariski’s Main
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Theorem ([EGA], IV3, 8.12.10), to show that g is an open immersion. Since
the fibers of V ∗

Y /Gm,S are connected, g is an isomorphism between V ∗
Y /Gm,S

and H̃0
1 .

(e) The morphisms Gm,S → V ∗
X → V ∗

Y induce the maps of Lie algebras
OS → f∗OX → Lie(V ∗

Y ) (see the commutative square before 3.3). Since,
by hypothesis, OS = f∗OX , we find that the exact sequence of smooth group
schemes in Part (b) of our lemma gives Lie(H̃1) = Lie(V ∗

Y )/ Lie(V ∗
X). The

four-term sequence of Lie algebras in 3.3 can thus be replaced by the exact
sequence:

0 −→ Lie(H̃1) −→ Lie((P, Y )0) −→ Lie(P0) −→ 0. ��
To conclude the proof of Theorem 3.1, note first that it follows immedi-

ately from Diagram 3.5 (e) that

Ker(Lie(q)) � Lie(H1)/ Lie(H̃1), Coker(Lie(q)) � Coker(Lie(h)).

Assume now that k is algebraically closed. Consider the morphism of smooth
separated group schemes

(P, Y )0 h−→ Q0

and apply to it 2.1. Since the induced map on S-points, (P, Y )0(S) → Q0(S),
is surjective ([7], p. 275), Theorem 2.1 implies that Lie(H1)/ Lie(H̃1) has
the same length as Coker(Lie(h)), and Part (b) follows. ��
Remark 3.6. When k is imperfect, we have been unable to find examples
where the lengths of Ker(Lie(q)) and Coker(Lie(q)) are not equal. In a very
particular case (8.13), we are able to show that these lengths are in fact equal.

In order to state our applications of Theorem 3.1, let us recall the rela-
tionship between the group scheme Q and the Néron model of the Jacobian
JK of X K .

Facts 3.7. Let f : X → S be a proper and flat curve, with X regular and
f∗OX = OS.

(a) If k is perfect or if X/S has a section on Osh
K , then the group scheme

Q/S is the Néron model of JK/K .
(b) Suppose S strictly henselian. Then Q is the Néron model of JK if

Pic0(X K ) → JK (K ) is an isomorphism. The latter happens for in-
stance if the residue field k of OK is algebraically closed (see also [48],
8.1.4 b)).

Proof. (a) When X is regular and f∗OX = OS, the generic fiber X K/K
is geometrically irreducible. Indeed, X Ksep/Ksep is regular and connected,
so it is irreducible. Since X Kalg → X Ksep is a homeomorphism, X Kalg is
irreducible. Part (a) follows then from [7], 9.5.4. (b) Most of this statement
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is contained in the proofs of [7], 9.5.4 and 9.5.2. The key is to note that
Pic0(X K ) → P(K ) = JK(K ) is an isomorphism if and only if the canonical
map P(S) → P(K ) is surjective. Indeed, since X is regular, each line bundle
on X K extends to a line bundle on X, and using [7], 9.1/2, we find that this
extension is in P(S). So the image of P(S) ⊆ Pic(X) in P(K ) is equal
to Pic0(X K ). Since Q/S is a smooth separated group scheme of finite type,
it follows from [7], 7.1/1, that Q is the Néron model of its generic fiber if
and only if Q(S) → Q(K ) is surjective. Since the map P(K ) → Q(K ) is
the identity, we find that if P(S) → P(K ) is surjective, then Q(S) → Q(K )
is surjective. This achieves the proof. ��

Let J/S denote the Néron model of JK/K . Examples where the natural
maps Q → J and Lie(Q) → Lie(J) are not isomorphisms are given in 9.3.
We do not have an example where P(S) → Q(S) is not surjective.

The following corollary to 3.1 is an essential ingredient in the proof of
our theorem 6.6 on the reduction of curves of genus 1.

Theorem 3.8. Let X K/K be a smooth projective geometrically connected
curve of genus 1, and denote by EK/K its Jacobian. Let X/S and E/S
be regular models of X K and EK . Then there exists a homomorphism of
OK -modules

τX : H1(X,OX) −→ H1(E,OE)

such that the following diagram is commutative:

H1(X,OX)
τX−−−−→ H1(E,OE)�

�

H1(X K ,OX K )
τX K−−−−→ H1(EK ,OEK ),

where the vertical maps are the natural ones induced by the open immersions
X K ⊂ X and EK ⊂ E, and τX K is described in 1.4. When k is perfect, the
kernel and cokernel of τX have the same length.

Proof. We have Pic0
X K /K = EK . Since E/S has a section, the Néron model

of Pic0
EK /K can be obtained using E: it is the group scheme QE , quotient

of PE . Consider the group functors PX and Q X associated to X. The canon-
ical identification λ : EK = Pic0

X K /K → Pic0
EK /K (recalled in 1.4) extends

to a morphism Q X −→ QE , since Q X/S is smooth. The maps

PX −→ Q X −→ QE ←− PE

induce maps of the corresponding Lie algebras

Lie(PX ) −−→ Lie(Q X ) −−→ Lie(QE )
∼←−− Lie(PE )

θX (S)


 θE (S)



H1(X,OX) H1(E,OE),

(13)
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where θX(S) is the map on S-sections of the canonical isomorphism of
fppf-sheaves of OS-modules θX : R1 f∗OX −→ Lie(Pic X/S) introduced
in 1.3(b). The map Lie(QE ) ← Lie(PE ) is an isomorphism since the map
P0

E → Q0
E is an isomorphism (Fact 3.7(a)). Thus, we can define a map

of OK -modules τX : H1(X,OX) → H1(E,OE) which renders the above
diagram commutative. The compatibility with the map τX K follows from
the definition of τX K in 1.4 and the sheaf properties of θX .

When k is perfect, Q X is the Néron model of EK (3.7(a)). Thus the
morphism Q X −→ QE is an isomorphism. It follows immediately from
3.1(b) that the kernel and cokernel of τX are of the same length. ��

4. Application to conjecture d) of Artin and Tate

4.1. Our second application of Theorem 3.1 pertains to the conjectures of
Artin-Tate and Birch-Swinnerton-Dyer. Let k be a finite field of character-
istic p. Let V/k be a smooth projective geometrically connected curve with
function field K . Let X/k be a proper smooth and geometrically connected
surface endowed with a proper flat map f : X → V such that the generic
fiber X K/K is smooth and geometrically connected of genus g. The conjec-
ture of Birch and Swinnerton-Dyer for the Jacobian AK /K of X K/K and
the conjecture of Artin-Tate for X/k are conjectured by Artin and Tate to be
equivalent ([58], conj. d)). This equivalence has been shown when, for each
place v of V , the curve X Kv

has index 1 (where Kv is the completion of K
at the place v). See [58], [16], 6.1 and [38], 1.5. Recall that the index δ(X K )
of a curve over a field K is the least positive degree of a divisor on X K . The
hypothesis δ(X Kv

) = 1 for all v implies that f is cohomologically flat in
dimension zero.

The condition that f is cohomologically flat in dimension zero is ex-
plicitly used in [58] and [16] to express the Euler-Poincaré characteristic
χ(X,OX ) in terms of the degree on V of the line bundle

∧g
ωA/V (see (14)

below), where A/V denote the Néron model of AK /K over V . Theorem 3.1
can be used to show that (14) still holds even when f is not cohomologically
flat. To see this, let us state first the analogue of Theorem 3.1 in the current
context.

Theorem 4.2. Let k be a perfect field. Let V/k be a smooth proper curve with
function field K. Let X/k be a projective smooth geometrically connected
surface. Let f : X → V be a proper and flat curve, with f∗OX = OV .
Consider the subfunctor P of Pic X/V consisting in the line bundles of total
degree 0, and let Q/V denote its largest separated quotient.

(a) Then Q/V is represented by a smooth group scheme of finite type, and
Q/V is the Néron model of the Jacobian AK /K of X K/K.

(b) The kernel and cokernel of the canonical map Lie(q) : R1 f∗OX →
Lie(Q) are torsion sheaves on V of same length.
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Proof. (a) The results recalled in 3.7 show that the statement of (a) is correct
when V is replaced by Spec(OV,v) for any closed point v ∈ V . Corollary 1.2
in [SGA6], Exp. XII, implies that there is a dense open set U ⊆ V such
that Pic f −1(U )/U is representable by a separated smooth scheme locally of
finite type. Note that under our hypotheses, X K/K is not assumed to be
smooth. In particular, AK /K is not necessarily an abelian variety. The curve
X K/K is, however, geometrically irreducible (proof of 3.7 (a)). It follows
that by restricting U if necessary, we can assume that f −1(U) → U has
geometrically irreducible fibers ([EGA], IV, 9.7.8). Since the geometric
fibers are irreducible, the groups of components of Qv/Spec(OV,v) are
trivial for all v ∈ U ([7], 9.5/9). It follows that QU/U is equal to the
connected component of zero of Pic f −1(U )/U . Using [7], 1.2/4, we find that
the scheme QU/U is then the Néron model of its generic fiber. As in the
proof of [7], 1.4/1, we conclude that Q/V is represented by a scheme of
finite type, and is a global Néron model for AK /K .

(b) The kernel and cokernel of Lie(q) are torsion sheaves on V since
both of these sheaves are trivial when restricted to the dense open set U .
Then (b) follows immediately from the local statement 3.1. ��

We return for the remainder of this section to the hypotheses of 4.1,
where X K/K is smooth. Part (b) of 4.2 implies that χ(V, R1 f∗OX )) =
χ(V,Lie(Q)) = χ(V, ω∨

Q/V ). Using this equality, we find, as in [16], 2.4
and 6.5, that

χ(X,OX ) = deg
( g∧

ωQ/V
) + (1 − g)χ(V,OV ).(14)

This equality is exactly what is needed to prove the following generalization
of the main result of [16], Theorem 6.3. Recall that the period δ′(X K ) of
a curve X K is the order of the cokernel of the degree map Pic X K /K(K ) → Z.
Clearly, δ′(X K ) divides δ(X K ). When K is a local field (i.e., complete
with finite residue field), we have δ(X K ) = δ′(X K ) or δ(X K ) = 2δ′(X K ),
and δ(X K ) = 2δ′(X K ) if and only if δ(X K ) does not divide g − 1 ([30],
Theorem 7). In particular, δ′(X K ) always divide g − 1. In fact, the results
of [30] are stated only for finite extensions of Qp, but once Tate’s duality
holds in the equicharacteristic case (see, e.g., [39], III 7.8), the same proofs
work over any local field. LetX(AK ) denote the Shafarevich-Tate group of
the abelian variety AK /K . It is well-known that if eitherX(AK ) or Br(X)
is finite, then so is the other. We let δ := δ(X K), δ′ := δ′(X K ), δv := δ(X Kv

),
and δ′

v := δ′(X Kv
).

Theorem 4.3. Let X/k and f : X → V be as in 4.1. Assume thatX(AK )
and Br(X) are finite. Then the equivalence of the Artin-Tate and Birch-
Swinnerton-Dyer conjectures holds exactly when

|X(AK )|
∏

v

δvδ
′
v = δ2|Br(X)|.(15)
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Proof. We claim that the only places in [16] where the hypothesis that
f is cohomologically flat in dimension zero is used2 is in 2.4 and 6.5,
to obtain Formula (14), and in the course of the proof of Theorem 6.3,
in (6.2.1). As we discussed above, Formula (14) also holds without the
hypothesis of cohomological flatness. To complete the proof of (6.2.1)
when f is not cohomologically flat, we need the following variation on
Proposition 3.3 in [16]. Let v ∈ V be a closed point with residue field k(v),
and let Nv := |k(v)|. Let Xk(v) = ∑hv

i=a ra Xa, and let Xa,k(v) = ∑qa
j=1 Xa, j .

Then the zeta function of Xk(v)/k(v) is:

Z(Xk(v), T ) = P1(T )

(1 − T )
∏hv

a=1(1 − NvT )qa

(see [16], 3.3).

Lemma 4.4. Let A0
v/k(v) denote the connected component of zero of the

special fiber of the Néron model of Jac(X K )/K over OKv
. Then

P1
(
N−1

v

) = ∣∣A0
v(k(v))

∣∣N−g
v .

Proof. Let d := dim(Pic Xk(v)/k(v)). It is shown in [16], 3.3, that

P1
(
N−1

v

) = ∣∣Pic0
Xk(v)/k(v)(k(v))

∣∣N−d
v .

When k is perfect and X/V is not cohomologically flat, the kernel of the
natural faithfully flat ([48], 4.1.2) morphism

Pic0
Xk(v)

−→ A0
v

is a non-smooth group scheme Ev/k(v) ([48], 6.4.2). The connected com-
ponent of zero E0

v of Ev is unipotent ([48], 6.3.8 (ii)). Consider the quotient
Bv := Pic0

Xk(v)
/E0

v . Then Bv is an abelian variety isogenous to A0
v. Since

k(v) is finite,
|Bv(k(v))| = ∣∣A0

v(k(v))
∣∣

(see [43], Appendix 1, Theorem 2 (c)). When k is perfect, H1(Gal(k̄/k), G)
= {0} for any connected (possibly not smooth) unipotent group G/k, since
such a group has a filtration with quotients isomorphic to Ga/k or p/k.
Therefore, ∣∣Pic0

Xk(v)/k(v)(k(v))
∣∣ = ∣∣E0

v(k(v))
∣∣|Bv(k(v))|.

Since E0
v is unipotent, |E0

v(k(v))| = |E0,red
v (k(v))| = Ndim(Ev)

v . The lemma
follows. ��

2 This hypothesis on f is not necessary in Theorem 5.2(3) of [16], see [7], 9.6/1. Note
also a slight correction in the statement and proof of Proposition 4.4 in [16]: the possibly
non-reduced proper scheme Pic0

X should be replaced by the abelian variety (Pic0
X )red.
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In view of the above remarks, we can use the proof of Theorem 6.3 in
[16] in the case f is not cohomologically flat, and obtain from [16], middle
of p. 196, that the equivalence of the Artin-Tate and Birch-Swinnerton-Dyer
conjectures holds exactly when

|X(AK )|
∏

v

d2
vεv = α2|Br(X)|,(16)

where the notation is as follows. In [16], p. 169, α is the index δ. The integer
dv (defined on p. 173) divides the index δv, and one defines ∆v := δv/dv (to
verify that this definition is consistent with the definition of ∆v on p. 174
of [16], use Remark 1 after Lemma 16 of [46]). The integer εv is introduced
in Proposition 5.5 of [16]. We compute it now using Theorem 1.17 of [8]
(which generalizes 5.3 in [16]). Let Φ/k(v) denote the group of components
of the Néron model of AKv

. Theorem 1.17 expresses |Φ(k(v))| as the product
of a term | Ker(β)/Im(α)| by δv/(dvq), where q = 1 if δv divides g − 1,
and q = 2 otherwise. Now, according to the results of [30] recalled above,
we have δv/q = δ′

v, thus δv/dvq = δ′
v/dv. The definition of εv in 5.5 and

Lemma 5.4 immediately give that εv = δvδ
′
v/d2

v . Thus, our theorem follows
from Gordon’s formula (16). ��
Remark 4.5. Let us assume that both X(AK ) and Br(X) are finite. On
the left hand side of (15), δvδ

′
v is a square if and only if δv divides g − 1.

Otherwise, it is twice a square ([30], Theorem 7). In [46], a place v is called
deficient if δv does not divide g − 1 (see just before Corollary 12, and
Remark 1 after Lemma 16). Let d denote the number of deficient places
(also equal to the number of places v where δv = 2δ′

v). Corollaries 9 and
12 of [46] show that the order ofX(AK ) is a square if d is even, and is
twice a square if d is odd. Thus, it follows that the order of the left hand
side of (15) is a square.

It is shown in [58] that the prime-to-p part of Br(X) is endowed
with a skew-symmetric non-degenerate pairing. This statement is extended
in [36], 2.4, to the p-part of Br(X). Thus, the prime-to-2 part of Br(X) has
order a square. When p �= 2, it is proved in [60], 0.1- 0.3, that the 2-part
of Br(X) has order a square. Thus, in this case, the 2-part of the right hand
side of (15) is also a square. If Formula (15) holds, then the 2-part of Br(X)
has order a square, even when p = 2.

We now use the results of [15] to prove new instances where the Artin-
Tate and Birch-Swinnerton-Dyer conjectures are equivalent.

Corollary 4.6. Let X and f : X → V be as in 4.1. Assume thatX(AK )
and Br(X) are finite. Then the equivalence of the Artin-Tate and Birch-
Swinnerton-Dyer conjectures holds if the periods δ′

v are pairwise coprime.

Proof. Under the assumption that the periods δ′
v are pairwise coprime, we

find in [15], Main Theorem, that:

|X(AK )|
∏

v

(δ′
v)

2 2e+ f = δδ′|Br(X)|,(17)
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where e = max(0, d − 1), and f = 1 if d ≥ 1 and δ′/
∏

v δ′
v is even (d is as

in 4.5). Otherwise, f = 0. The proof of the corollary consists in showing
that Formula (15) is equivalent to (17).

We claim that if |AK (K )/Pic0(X K )| = (
∏

v δ′
v)/ lcm(δ′

v), then δ =
δ′ or δ = 2δ′. Indeed, using the global and local versions of the exact
sequence (11), as well as the exact sequence 0 → Br(K ) → ⊕vBr(Kv) →
Q/Z→ 0 (see the proofs of 2.3 and 2.5 in [15]), we obtain a diagram with
exact rows and injective vertical maps:

0 −−−−→ AK (K )/Pic0(X K ) −−−−→ Pic X K /K(K )/Pic(X K )�
�

0 −−−−→ Ker(η̄′) −−−−→ Ker(η̄).

The map η̄ is the summation map ⊕vBr(Kv) = ⊕vQ/Z → Q/Z re-
stricted to the subgroup ⊕vδ

−1
v Z/Z. Similarly, the map η̄′ is the summation

map ⊕vQ/Z → Q/Z restricted to the subgroup ⊕v(δ
′
v)

−1
Z/Z. The map

Ker(η̄′) → Ker(η̄) is the natural inclusion. By definition of the period and
index, the cokernel of the first row is cyclic of order δ/δ′. By hypothesis,
the left column is an isomorphism. Since δv = δ′

v or 2δ′
v, it is clear that the

cokernel of AK (K )/Pic0(X K ) → Pic X K /K(K )/Pic(X K ) is killed by 2, and
our claim is proved.

Let us return to the proof of the corollary. By [15], Theorem 2.5, we
have

∣∣AK (K )/Pic0(X K )
∣∣ = 1 = (

∏
v δ′

v)/ lcm(δ′
v), thus δ = δ′ or δ = 2δ′.

If d = 0, then δv = δ′
v for all v. Thus, at most one of the groups δ−1

v Z/Z
(in the proof of the above claim) has even order and, hence, the kernel of
the summation map cannot contain an element of order 2. Thus, δ is odd.
Therefore, δ = δ′, and (15) is equivalent to (17).

Assume that d ≥ 1. Then for some v, δv is even and, thus, δ is even. If δ′
is odd, we find that 2δ′ | δ. Hence 2δ′ = δ by the above claim. Again, (15)
is equivalent to (17).

Assume now that d ≥ 1 and δ′ is even. Suppose that there exists an odd
δ′
v such that 2δ′

v = δv. According to [30], Theorem 7, (g − 1)/δ′
v is odd and,

thus, g is even. In particular, ord2(2g − 2) = 1. Since δ | 2g − 2, we find
that ord2(δ) = 1. Since (δ/δ′) | 2, we find that δ′ = δ. Since g is even, all δ′

v

are odd since they divide g −1. It follows that f = 1, and (15) is equivalent
to (17).

Assume now that d ≥ 1, δ′ is even, and there exists no odd δ′
v with

2δ′
v = δv. Thus there exists w with δ′

w even and δw = 2δ′
w. If f = 0, that is,

if ord2(δ
′
w) = ord2(δ

′), then ord2(δ
′) + 1 ≤ ord2(δ). Thus, 2δ′ = δ and (15)

is equivalent to (17). If f = 1, that is, if ord2(δ
′
w) + 1 ≤ ord2(δ

′), note that
(g − 1)/δ′

w is odd. Therefore, ord2(δ
′) = ord2(δ) and δ′ = δ. Again, this

shows that (15) is equivalent to (17). ��
The results of [15] allow us to state below a variation on Theorem 4.3.

Let us return to the general situation of 4.1. Let ∆ := lcm(δv) and
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∆′ := lcm(δ′
v). Let P = Pic X K /K . The proof of (17) in [15] exhibits

two exact sequences

0 −→ T0 −→ T1 −→ Br(X) −→X(P )
φ−→ Q/∆−1

Z,

([15], 2.4) and

0 −→ T2 −→X(AK ) −→X(P )
γ−→ Coker D

([15], exact sequence (7)) with |T0| = (δ/δ′)|AK (K )/Pic0(X K )|, |T1| =
(
∏

v δv)/∆, |T2| = δ′/∆′, and | Coker D| = (
∏

v δ′
v)/∆

′. The image T3

of the composition X(AK ) → X(P ) → Q/∆−1
Z has order |T3| =

δ′/∆′ gcd(∆/∆′, δ′/∆′) ifX(AK ) has no nonzero infinitely divisible elem-
ents ([15], 2.10).

Let a := |AK (K )/Pic0(X K )|, let b := | Coker D/Im(γ)|, and let c :=
|Im(φ)/T3|. With this notation, we find that |T1||X(AK )||Im(γ)| =
|T0||T2||Br(X)||Im(φ)|. In other words,

|X(AK )|
∏

v

δvδ
′
v = δδ′abcε|Br(X)|,(18)

where, to simplify the notation, we let ε := (∆/∆′) gcd(∆/∆′, δ′/∆′)−1.
Note that ε = 1 or 2. Comparing (18) with (15), we obtain:

Corollary 4.7. Assume thatX(AK ) and Br(X) are finite. Then the conjec-
tures of Artin-Tate and Birch-Swinnerton-Dyer are equivalent if and only if
δ = δ′abcε.

Note that the equality δ = δ′abcε has the following interesting conse-
quences. Since δ | 2(δ′)2 ([30], Thm. 8), we find that abcε | 2δ′. Since
| Ker(η̄)| = (

∏
v δv)/∆, we find that aδ/δ′ | (

∏
v δv)/∆. From δ/δ′ = abcε,

we conclude that a2 | (
∏

v δv)/∆.

5. Comparison between the discriminants of X/S and E/S

Let g : Y → T be a smooth projective curve over a scheme T with
geometrically connected fibers of genus ≥ 1. Let ωY/T denote the relative
canonical sheaf, equal to Ω1

Y/T when Y/T is smooth. There exists a unique
(up to sign) isomorphism of invertible sheaves on Y :

∆Y/T : det Rg∗
(
ω⊗2

Y/T

) −→ (det Rg∗(ωY/T ))⊗13,(19)

functorial with respect to isomorphisms and compatible with base changes
T ′ → T (the functor det Rg∗ is briefly reviewed in 5.2). This isomorphism
was first noted by Mumford [42], Theorem 5.10. Deligne [12] reduced the
sign ambiguity in [42] (one sign for each genus) to a unique sign ambiguity
in genus 1. Note that when Y → T is smooth of genus 1, then ωY/T =
g∗g∗ωY/T and the projection formula 5.2 (b) implies a canonical isomorph-
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ism det Rg∗(ω⊗2
Y/T ) � det Rg∗(ωY/T ). Hence, ∆Y/T : det Rg∗(ω⊗2

Y/T ) →
(det Rg∗(ωY/T ))⊗13 can be identified with a canonical map, again denoted
by ∆Y/T :

∆Y/T : OT → (g∗ωY/T )⊗12.(20)

Let X K → Spec(K ) be a proper smooth and geometrically connected
curve over a discrete valuation field K , with canonical isomorphism ∆X K /K
as in (19). Let f : X → S be a proper regular model of X K . Consider the
invertible sheaves det R f∗(ω⊗2

X/S) and (det R f∗(ωX/S))
⊗13 on S, identified

with their respective images in det R fK∗(ω⊗2
X K /K) and (det R fK∗(ωX K /K))⊗13

(see Lemma 5.3). Then there exists λ ∈ K∗ such that

∆X K /K
(

det R f∗
(
ω⊗2

X/S

)) = λ(det R f∗(ωX/S))
⊗13.(21)

The integer disc(X) := v(λ) is called the (valuation of the) discriminant
of X. When X/S is the minimal model of X K/K , we may call disc(X) the
discriminant of X K .

We prove in this section that the discriminant of a curve X K of genus 1
and the discriminant of its Jacobian EK are equal when k is algebraically
closed. This statement is not true anymore if k is not assumed to be per-
fect (9.2). For the convenience of the reader, we start by collecting be-
low some results on determinants, as found in [26], and similarly quoted
in [40], 1.1. Note that we cannot assume in our context the simplifying
assumption that all sheaves involved (for instance, R1 f∗OX) are flat.

Let X be a scheme. A complex F • of OX-modules is perfect ([SGA6]
I.0, p. 80) if locally (for the Zariski topology) on X, there is a quasi-
isomorphism of complexes G• → F •, where G• is bounded and its terms
are free and finitely generated OX-modules. If X is noetherian and regular,
then any bounded complex of coherent OX-modules is perfect.

Facts 5.1 ([26], Theorem 2). Let X be a scheme. There is a unique way
(up to unique isomorphism) to associate to any perfect complex F • of
OX-modules an invertible sheaf det F • on X such that the following prop-
erties are true.

(a) The map det is a functor from the category of perfect complexes on
X with quasi-isomorphisms to the category of invertible sheaves on X
with isomorphisms.

(b) If F • consists of a single locally free OX-module F of finite rank, then
det F • is just the classical determinant det F .

(c) Let 0 → F ′• α→ F • β→ F ′′• → 0 be a true triangle of perfect
complexes (see [26], def. 2 on p. 37). Then there exists a canonical
isomorphism

i(α, β) : det F ′• ⊗ det F ′′• � det F •.
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(d) (Base change) If ρ : X ′ → X is a morphism of schemes, then there ex-
ists a canonical isomorphism of OX ′-modules det(ρ∗F •) � ρ∗ det F •.

Recall that by convention, the determinant of the zero sheaf on X is OX .
Note that to be precise, det F • is an invertible sheaf with a sign, but it does
not matter in our work.

Facts 5.2. Let f : X → Y be a proper flat morphism of schemes with Y
noetherian. Then there exists a functor F • �→ det R f∗F • from the category
of perfect complexes F • on X with quasi-isomorphisms to the category of
invertible sheaves on Y with isomorphisms such that the following properties
are true.

(a) Suppose that Y is regular. Let F be a perfect coherent sheaf on X. Then
we have a functorial isomorphism

det R f∗F � ⊗i≥0(det(Ri f∗F ))⊗(−1)i
.

(b) (Projection formula). Let F be a perfect coherent sheaf on X, flat on Y .
Let χ f (F ) be the locally constant map

y �→ χk(y)(Fy) :=
∑

i≥0

(−1)i dimk(y) Hi(X y,Fy)

on Y . Then for any invertible sheaf L on Y , we have a canonical
isomorphism

det R f∗(F ⊗ f ∗L) � (det R f∗F ) ⊗ L⊗χ f (F ).

Proof. (a) See [26], Proposition 8. (b) is stated in [40], 1.1.7, and is an
immediate consequence of op. cit., 1.1.6. ��

Let M be a finitely generated module over a discrete valuation ring OK .
Let r := dimK (M ⊗ K ). When M is free of rank r, then det M = ∧r M
by definition. When M is not free, there is no unique choice of det M,
since det M is only determined up to canonical isomorphisms. However,
having chosen a det functor, we can consider the image of det M under the
following sequence of canonical maps:

det M → (det M) ⊗ K � det(M ⊗ K ) = ∧r(M ⊗ K ).(22)

Clearly, det M and the isomorphism � above depend on the choice of the
functor det, but ∧r(M ⊗ K ) does not. The following lemma shows that the
image of det M in ∧r(M ⊗ K ) is independent of the choice of a det functor.
Thus, so is the discriminant disc(X) defined in (21).

Lemma 5.3. Let ϕ : M → N be a map of finitely generated OK -modules
such that ϕK : M ⊗ K → N ⊗ K is an isomorphism. Then the following
properties are true.
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(a) Let c := −�(Ker ϕ) + �(Coker ϕ). Then the image of the canonical
injective map

det M → (det M) ⊗ K � det(M ⊗ K )
det(ϕK )−→ det(N ⊗ K )

is πc det N, where we abuse notation and denote again by det(N) the
image of det(N) under the canonical map (22).

(b) The canonical surjection M → L := M/Mtors induces a canonical
isomorphism det(M ⊗ K ) � det(L ⊗ K ). The image of det M in
det(M ⊗ K ) is equal to the image of π−�(Mtors) det L in det(L ⊗ K ).
As L is free, det L is independent of the choice of det and, thus, so is
the image of det(M).

Proof. (a) The map of coherent sheaves M∼ → N∼ on S is a good map in
the sense of [26], p. 47, where a Cartier divisor Div(M∼ → N∼) (that we
denote by Div(M → N) for simplicity) on S is defined. By construction, the
image of det M in (det N)⊗K is nothing but OS(− Div(M → N)) det N. By
decomposing ϕ into M → Im ϕ and Im ϕ → N, we are reduced to the case
where ϕ is either injective or surjective ([26], Theorem 3(i)). Suppose for
example that ϕ is surjective. Let A = Ker ϕ. Then there exist resolutions
by bounded complexes of finite free OK -modules A → A, M → M,
and N → N, forming a true triangle 0 → A → M → N → 0 ([26],
Prop. 4). The latter induces an isomorphism

det M � det N ⊗ det A,

and we have Div(M → N) = Div(M → N ) = − Div(0 → A). Since
Div(0 → C) = π−�(C)OK for any OK -torsion module C ([26], Thm. 3(vi)),
the lemma is proved when ϕ is surjective. The proof is similar when ϕ is
injective.

(b) is an immediate consequence of (a). ��
Until the end of the section, OK is a discrete valuation ring, S = SpecOK ,

and det M is canonically identified with its image in det(M ⊗ K ).

Corollary 5.4. Let f : X → S be a flat projective curve with X regular.
Let F be a coherent sheaf on X. Then we have a canonical isomorphism

det R f∗F � det f∗F ⊗ (det R1 f∗F )∨.

If, moreover, F is killed by some power of π, then det R f∗F = π−χlen(F )OK ,
where χlen(F ) := �(H0(X,F )) − �(H1(X,F )).

Proof. Note that X/S being a curve, Ri f∗F = 0 if i > 1. Since on
a regular noetherian scheme, any coherent sheaf is perfect, we can apply
5.2(a) and 5.3(b). ��
Proposition 5.5. Let f : X → S be the minimal regular model of a smooth
projective geometrically connected curve X K → Spec(K ) of genus 1. Then,
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(a) For each m, we have a canonical isomorphism

det R f∗
(
ω⊗m

X/S

) � (
det R1 f∗OX

)∨
.

(b) Let a := �(H1(X,OX)tors). Then we have a canonical isomorphism

(
det R1 f∗OX

)∨ � πa( f∗ωX/S).

The proposition will follow from the next two lemmas.

Lemma 5.6. Let X K/K be as in 5.5, and let X be a regular model of X K
over S. Let Xk = ∑

1≤i≤n riΓi , with r := gcd(r1, . . . , rn). Let V := r−1 Xk,
considered as a scheme over k. Let F be an invertible sheaf on X with
deg F |Xk = 0. For any n ∈ Z, let F (nV ) := F ⊗ OX(nV ). Then we have
a canonical isomorphism

det R f∗(F (nV )) � det R f∗F .

Proof. Let j : V → X denote the closed embedding. Consider the exact
sequence

0 → F ((n − 1)V ) → F (nV ) → j∗(F (nV )|V ) → 0.

It induces a canonical isomorphism:

det R f∗(F (nV )) � det R f∗(F ((n − 1)V )) ⊗ det R f∗( j∗F (nV )|V ).

Since j∗(F (nV )|V ) is killed by π, Corollary 5.4 implies that
det R f∗( j∗F (nV )|V ) = π−χk( j∗F (nV )|V )OK . To prove the lemma, it remains
to show that χk( j∗F (nV )|V ) = 0. We claim that χk(L) = 0 for any in-
vertible sheaf L on V of degree 0. Indeed, the Riemann-Roch for the l.c.i.
curve V/k states ([31], Theorem 7.3.17 and Corollary 7.3.31):

χk(L) = deg L + χk(OV ) = χk(OV ) = −1

2
deg ωV/k.

The adjunction formula ωV/k � (OX(V ) ⊗ ωX/S)|V ([31], Theorem 9.1.37)
implies:

deg ωV/k = V 2 + V · ωX/S = r−1 Xk · ωX/S = −2r−1χK (OX K ) = 0.

Hence, χk(L) = 0. Since F (nV )|V has degree 0, the lemma is proved. ��
Lemma 5.7. Keep the hypotheses of 5.5. Then there exists an integer 0 ≤
q ≤ r −1 such that ωX/S is canonically isomorphic to f ∗ f∗ωX/S ⊗OX(qV ).
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Proof. Since X K has genus 1, f∗ωX/S is free of rank 1 on S. Let ω0 be
a basis of f∗ωX/S. Then f ∗ f∗ωX/S → ωX/S is nothing but the inclusion
ω0OX → ωX/S. The invertible sheaf f ∗ f∗ωX/S ⊗ω∨

X/S is canonically a sub-
sheaf of OX , whose restriction to the generic fiber is equal to OX . So it is
equal to OX(−D) for some vertical divisor D ≥ 0 on X.

Note now that for any irreducible component Γ of Xk, we have D · Γ =
deg ωX/S|Γ = 0. To see the second equality, recall the adjunction formula:
0 = −2χK (OX ) = ∑

i ri deg(ωX/S|Γi ). Since deg(ωX/S|Γi ) ≥ 0 because X
is minimal ([31], Prop. 9.3.10(b)), we have deg(ωX/S|Γi ) = 0 for all i. Thus
D = qV ∈ ZV ([31], Theorem 9.1.23). We have 0 ≤ q ≤ r − 1 since
f ∗ f∗ωX/S and ωX/S have the same global sections (otherwise, if q ≥ r,
ω0/π is a global section of ωX/S = ω0OX(qV )). ��
Proof of 5.5. (a) Let ω = f∗ωX/S and let m ∈ Z. Lemma 5.7 gives us
a canonical isomorphism

ω⊗m
X/S � f ∗ω⊗m ⊗ OX(mqV ).

Lemma 5.6 then produces a canonical isomorphism

det R f∗
(
ω⊗m

X/S

) � det R f∗( f ∗ω⊗m).

The projection formula 5.2(b) applied with L = ω⊗m produces a canonical
isomorphism

det R f∗( f ∗ω⊗m) � (ω⊗m)⊗χ f (OX)⊗det R f∗OX = ω⊗mχ f (OX )⊗det R f∗OX .

Since χ f (OX ) = 0 and f∗OX = OS, Corollary 5.4 produces canonical
isomorphisms

det R f∗
(
ω⊗m

X/S

) � det R f∗OX � (
det R1 f∗OX

)∨
.

This proves (a).
(b) By Grothendieck’s duality, we have a canonical isomorphism

(R1 f∗OX )∨ � ω. By Lemma 5.3, det R1 f∗OX � π−aM where M =
R1 f∗OX/(R1 f∗OX )tors is free of rank 1 on S. Hence ω � M∨ �
π−a(det R1 f∗OX )∨. ��

Our main theorem in this section, Theorem 5.9 below, is proved using
Theorem 3.8, which we now recall in the following form.

Corollary 5.8. Keep the hypotheses of Theorem 3.8. Then a = �(Ker τX ),
and we let b := �(Coker(τX )). Identify as in (22) det H1(X,OX ) and
det H1(E,OE ) with their images in det H1(X K ,OX K ) and det H1(EK ,OEK ),
respectively. Then the isomorphism

det τX K : det H1(X K ,OX K ) → det H1(EK ,OEK )

(which is equal to τX K ) maps det H1(X,OX ) onto πb−a det H1(E,OE ).
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Proof. This follows immediately from Corollary 3.8, Lemma 5.3, and the
fact that H1(E,OE ) is torsion free. ��

Theorem 5.9. Let S be the spectrum of a discrete valuation ring OK with
residue field k. Let X K be a smooth projective geometrically connected
curve of genus 1 over K, with Jacobian EK . Let f : X → S and g : E → S
be their respective minimal regular models. Then

disc(X) = disc(E) + 12(b − a).(23)

Moreover, when k is perfect, then disc(X) = disc(E).

Proof. Recall (see (20)) that ∆X K /K can be identified with a map

∆X K /K : K → (
det H1(X K ,OX K

)∨)⊗12
.

The equality (23) will follow from the commutativity of the diagram:

K
∆X K /K−−−−→ (

det H1
(
X K ,OX K

)∨)⊗12

∥∥∥


(
τ∨

X K

)⊗12

K
∆EK /K−−−−→ (

det H1
(
EK ,OEK

)∨)⊗12
.

To prove this commutativity, we first note that this statement is only re-
lated to the curve X K over K . Using the compatibility with base change,
we can enlarge K and assume that X K (K ) �= ∅. By Corollary 1.5,
τX K = H1(h) for some isomorphism h : EK → X K . Then the commu-
tativity of the above diagram comes from the functoriality of ∆X K /K with
respect to isomorphisms of curves. ��

Remark 5.10. As in the proof of 3.8, we obtain the map τX as the com-
position of the canonical maps θX : H1(X,OX ) = Lie(PX ) → Lie(Q X )
and Lie(Q X ) → Lie(QE ). The latter map is injective because Lie(Q X ) is
torsion free (Q X is smooth). Hence

b − a = �(Lie(QE )/ Lie(Q X )) + �(Coker θX ) − �(Ker θX ).

For an example where b − a �= 0 or, more precisely, where Lie(Q X ) →
Lie(QE ) is not surjective, see 9.3. We do not know of examples of curves
X K where �(Ker θX ) �= �(Coker θX ). It would be interesting to determine
whether disc(X) ≥ disc(E) holds in general. If the reduction of E is
multiplicative, disc(X) = disc(E), even when k is not perfect (8.11).
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6. Néron models and curves of genus 1 when k is perfect

We prove in this section our main theorem 6.6 describing the relationship
between the reduction of a curve of genus 1 and the reduction of its Jacobian,
when k is algebraically closed. We start by reviewing various general results
needed for the proof.

Let S = Spec(OK ). Let f : X → S be a proper and flat curve, with X
regular and f∗OX = OS. Let Γ1, ...,Γn be the irreducible components of Xk,
of respective multiplicities r1, ..., rn , and respective geometric multiplici-
ties ei := length(k(Γi) ⊗k k̄). Consider the (modified) intersection matrix
M := (e−1

i Γi · Γ j)i, j of Xk and let

ΦX := torsion subgroup of Zn/MZn.

Let J/S denote the Néron model of the Jacobian JK/K of X K/K . Recall
that the group scheme Q/S introduced in Sect. 3 is smooth and has generic
fiber JK . Thus, the universal property of the Néron model implies the
existence of a morphism Q → J which restricts to the identity map on the
generic fiber. This morphism induces a canonical map of component groups
ΦQ → ΦJ .

Facts 6.1. Let OK be a strictly henselian discrete valuation ring.

(a) There exists a canonical surjective mapΦX → ΦQ . This map is injective
if X/S is cohomologically flat in dimension zero.

(b) Assume that k is algebraically closed. Then Q/S is the Néron model of
JK , and the map ΦX → ΦQ is an isomorphism.

Proof. See [7], 9.6.1 and 9.6.3 (these references apply since X K is geomet-
rically irreducible (proof of 3.7)). It is proved in [48], 8.1.2 (iii), that if X is
cohomologically flat in dimension zero, then the natural map ΦX → ΦQ is
injective. That the map is always surjective is proved in [7], 9.5.9. ��
6.2. Let us recall next the following definitions. Let C/k be a projective
and geometrically connected curve over a field k. Over an algebraic closure
k̄ of k, the group scheme Pic0

Ck̄/k̄
can be decomposed as

0 → T × U → Pic0
Ck̄/k̄

→ A → 0(24)

where A, T , and U are, respectively, abelian, toric, and unipotent, smooth
group varieties. We will call their respective dimensions the abelian, toric,
and unipotent, ranks of C, denoted by aC, tC , and uC. We have

aC + tC + uC = dimk̄ H1(Ck̄,OCk̄
) = dimk H1(C,OC).

For the existence of the above exact sequence, see for instance [7], p. 244.
The integers aC and tC depend only on (Ck̄)red. We will say that Pic0

C/k is
semi-abelian if uC = 0.
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Lemma 6.3. Let � be a prime number different from the characteristic of k.
Let

T�

(
Pic0

C/k

) := lim←−n
Pic0(Ck̄)[�n]

be the Tate module of Pic0
C/k.

(a) T�(Pic0
C/k) is a free Z�-module of rank 2aC + tC.

(b) Let n denote the number of irreducible components of Ck̄. Then

χét(Ck̄) :=
2∑

i=0

(−1)i dimQ�
Hi

ét(Ck̄,Q�) = n + 1 − (2aC + tC).

Proof. (a) is well-known. (b) We have (see, e.g., [59], 10.3.5) dimQ�

H0
ét(Ck̄,Q�) = 1, dimQ�

H2
ét(Ck̄,Q�) = n, and

dimQ�
H1

ét(Ck̄,Q�) = dimQ�

(
T�

(
Pic0

C/k

)∨ ⊗Z�
Q�

) = 2aC + tC . ��
6.4. Let X K/K be a projective, smooth, geometrically connected curve of
genus g ≥ 1. Let X/S be a regular model of X K . Let aX := aXk , tX := tXk

and uX := uXk . One can show that these integers do not depend on the
choice of a regular model for X K/K . The connected component of zero J0

k
of the special fiber Jk/k of the Néron model J of the Jacobian of X K is
a smooth group scheme, and we similarly let aJ , tJ , and u J be the abelian,
toric, and unipotent ranks of J0

k̄
, respectively. When Pic0

X/S is isomorphic

to J0, we find that aX = aJ and tX = tJ . We prove in 7.1 that these equalities
are always true. Denote by nX the number of irreducible components of Xk̄.

When k is perfect, the Swan conductor δX K is the Swan conductor
([54], 2.1) associated with the �-adic representation

Gal(Ks/K ) → Aut(H1
ét(X K̄ ,Q�)).

The Artin conductor of X is defined by

Art(X/S) := χét(Xk̄) − χét(X K̄ ) + δX K= (2g(X K ) − 2aX − tX + δX K ) + nX − 1
= (tJ + 2u J + δJK ) + nX − 1,

where δJK is the Swan conductor associated to the Tate module T�(JK )
of JK . The second equality above comes from 6.3(b). Since

H1
ét(X K̄ ,Q�) � T�(JK )∨ ⊗Z�

Q�,

we have δX K = δJK . The third equality is then a consequence of Proposi-
tion 7.1. Hence, we see that Art(X/S) − nX depends only on JK .
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Corollary 6.5. Assume that k is perfect. Let X K be a smooth, projective,
and geometrically connected curve of genus 1 over K, with Jacobian EK .
Let X and E be the minimal regular models over OK of X K and EK ,
respectively. Let nX and nE denote the number of irreducible components
of Xk̄ and Ek̄, respectively. Then nX = nE.

Proof. We have shown in Theorem 5.9 that disc(X) = disc(E). The rela-
tionship between the Artin conductor and the discriminant is expressed in
a theorem of T. Saito [51]:

disc(X) = Art(X/S).

It follows that Art (X/S)=Art(E/S). As discussed above, Art (X/S)−nX =
Art(E/S) − nE , and the corollary follows. ��

We are now ready to prove our main theorem on the reduction of curves
of genus 1 when k is algebraically closed.

Theorem 6.6. Assume that k is algebraically closed. Let X K /K be a smooth,
geometrically connected projective curve of genus 1 and let EK/K be
its Jacobian. Let X/S and E/S be the minimal regular models of X K
and EK , respectively. Let m denote the order of the element of H1(K, EK )
corresponding to the torsor X K . If T denotes the type of Ek, then Xk is of
type mT .

Proof. We can assume that OK is strictly henselian. Let us first show that
the type of Xk is of the form rT for some r. Since aX = aE and tX = tE
(7.1), we are reduced to consider three cases:

1) Assume that aX = aE = 1. In this case, Ek is of Kodaira type I0. The
classification of the possible types of reduction shows that the type of Xk is
rI0 for some r ≥ 1.

2) Assume that tX = tE = 1. In this case, Ek is of Kodaira type Iν,
ν > 0. The classification of the possible types of reduction shows that the
type of Xk is rIµ for some µ ≥ 1. In particular, |ΦE | = ν and |ΦX | = µ.
Since the group of components ΦX and ΦE are isomorphic (6.1(b)), we find
that ν = µ.

3) Assume that uX = uE = 1. Then Ek is of Kodaira type T and Xk is of
type rT ′, with T, T ′ ∈ {II, II∗, III, III∗, IV, IV ∗, I∗

n }. It follows from 6.5
that Xk and Ek have the same number of irreducible components. Moreover,
|ΦE | = |ΦX |. Upon inspection of the types in the above list (see, e.g., [55],
p. 365), we find that these two conditions are satisfied only when T = T ′.

To conclude the proof of 6.6, we recall the following facts. The element
of H1(K, EK ) corresponding to the torsor X K is equal to the image of 1
under the natural coboundary map Z → H1(K, EK ) associated with the
exact sequence 0 → EK → Pic X K /K → Z → 0. Indeed, the image of 1
under the above map is the class of the torsor Pic1

X K /K ([17], Remarque
4.2(e)), which is isomorphic to X K/K . Thus, the element of H1(K, EK )
corresponding to the torsor X K has order equal to the period δ′ of X K .
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On the other hand, it is well-known that the index δ of X K is equal to the
gcd of the multiplicities of the irreducible components of Xk ([7], 9.1.5 and
9.1.10). Since Br(K ) is trivial, we find that Pic(X K ) = Pic X K /K (K ). Hence
δ = δ′. This shows that if X K is a torsor under EK whose minimal model
has a special fiber of type rT , then the element of H1(K, EK ) associated
with X K has order r. ��

Since the torsors under EK are classified by the group H1(K, EK ), it is
natural to wonder whether the group H1(K, EK ) can be trivial and, if it is
not, what is its structure. When k is algebraically closed, the field K is C1,
and the multiplication-by-p map on H1(K, EK ) is then surjective. Thus, in
this case, the group H1(K, EK ) is divisible by p. No such result seems to
be known when k is imperfect.

When k is algebraically closed and K is complete, the first results con-
cerning the non-triviality and structure of the p-part of H1(K, EK ) are
due to Vvedenskii, [62] and [63]. In [64], he corrects an earlier assertion
of Néron that H1(K, EK ) = (0) when EK has additive reduction ([44],
Thm. 3). The general structure of H1(K, EK ) can be understood through
a non-degenerate pairing between H1(K, EK ) and a huge (in particular,
non-trivial) profinite group associated with the Greenberg realization of the
Néron model of EK/K . The existence of such a pairing was conjectured
by Shafarevich, and proved by Bégueri [5] in the mixed characteristic case,
and by Bertapelle [6] in the equicharacteristic case. Little is known about
the non-triviality and structure of H1(K, EK ) when k is imperfect. Note that
H1(K, EK ) is a p-group if the type of Ek is additive (7.4). The following
corollary answers positively a question of Néron ([45], last sentence).

Corollary 6.7. Let OK be complete with k algebraically closed. Let EK
be an elliptic curve, E/S its minimal regular model, and let T denote the
type of Ek. Let m = pn ≥ 1 if the type is additive, and let m > 0 be an
arbitrary integer otherwise. Then there exists a proper flat map X → S,
with X regular, such that the generic fiber X K is a torsor under EK , and the
special fiber Xk is of type mT .

Proof. The results of [5] and [6] recalled above show that under our hy-
potheses on OK , the group H1(K, EK ) has an element x of order m as
in the statement of the corollary. Theorem 6.6 shows that the torsor X K
corresponding to x has a minimal regular model X/S whose special fiber
has type mT . ��
Remark 6.8. Theorem 6.6 does not hold as stated when the hypothesis that k
is algebraically closed is dropped, and is replaced either by k imperfect and
separably closed, or by k perfect but not algebraically closed (8.8).

The analogue of Corollary 6.7 for curves of genus g > 1 is not known
in general. In other words, given a type T of genus g, it is not known
whether there exists a regular model X/S with X K/K a smooth proper
geometrically connected curve of genus g and Xk of type T (if T = mT ′,
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we have m | 2g − 2). This problem is not completely solved even when
the gcd m of the multiplicities of T is equal to 1 (see [61] and [66]), and is
mostly open when OK is of mixed characteristic.

The analogue of Corollary 6.7 when k is separably closed and imperfect
is also open. Remarks 8.7 and 9.4 seem to indicate that the existence of
a given reduction type over OK may depend on the existence of certain
cyclic extensions of K .

Examples of multiple fibers can be found in [18], Theorem 0.1, in [24],
Sect. 8, in [23], Sect. 3, and in [48], 9.4.1.

7. Remarks on Néron models

We keep the notation introduced in the previous section, and prove the
following proposition, which slightly extends 6.1 when k is imperfect.

Proposition 7.1. Let OK be a discrete valuation ring, with separably closed
residue field k of characteristic p ≥ 0. Let f : X → S be a proper and flat
curve, with X regular and f∗OX = OS.

(a) Let aQ and tQ denote the abelian and toric ranks of Q0
k̄
. Then aX =

aQ = aJ and tX = tQ = tJ .
(b) The maps ΦX → ΦQ → ΦJ induce isomorphisms Φ

(p)

X →Φ
(p)

Q →Φ
(p)

J
on their prime-to-p parts.

Examples where the p-part of ΦX is not equal to the p-part of ΦJ are
given in 8.8 and 9.3. We do not know of examples where the map ΦX → ΦJ
is not injective. We start the proof of 7.1 with several lemmas. Let G be any
abelian group. For any integer d, let us denote by dG the multiplication-by-d
map on G, and by G[d] the kernel of dG .

Lemma 7.2. Let OK be strictly henselian. Let d be an integer prime to p.

(a) Let G be a smooth group scheme of finite type over S with con-
nected fibers. Then G(S) = dG(S) and the canonical homomorphisms
G(S)[d] → G(k)[d] → G(k̄)[d] are isomorphisms.

(b) Assume OK complete. Then (a) also holds for the fppf-sheaf G = P0,
with P as in 3.1.

Proof. (a) The map dG is étale ([7], 7.3/2) and surjective on the fibers over S.
This implies the surjectivity of dG(S) since S is strictly henselian. The second
part of the statement follows immediately from the fact that G[d] is étale
over S.

(b) Applying (a) to P0
k → Spec(k), we get P0(k) = dP0(k) and

P0(k)[d] � P0(k̄)[d]. The kernel of P0(S) → P0(k) is uniquely d-div-
isible (proved as in [4], 2.1). This implies that P0(S) = dP0(S) and
P0(S)[d] � P0(k)[d]. ��
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Lemma 7.3. Let d be an integer prime to p.

(a) The canonical homomorphism Q(k)[d] → J(k)[d] is an isomorphism;
(b) There exists an integer m0 such that, for all d prime to m0, the natural

map P0(k)[d] → Q0(k)[d] is an isomorphism.

Proof. (a) Since P(S) = Pic0(X) → Pic0(X K ) is surjective by the regu-
larity of X, we have Pic0(X K ) ⊆ Q(S) ⊆ Q(K ) = J(K ) = J(S). Since
Br(K ) has no d-torsion ([17], 1.4), Pic0(X K )[d] = J(K )[d]. Consider the
commutative diagram induced by the map Q → J:

Q(S)[d] J(S)[d]�
�

Q(k)[d] −−−−→ J(k)[d] .
The vertical arrows are isomorphisms (same proof as for Lemma 7.2 (a)).
Then, so is Q(k)[d] → J(k)[d].

(b) Let E be the schematic closure of the zero section in P (see [48],
3.2 c)). The group E(S) is the subgroup of P(S) ⊂ Pic(X) generated by
the vertical divisors. Let r be the gcd of the multiplicities of the irreducible
components of Xk. Then it is easy to see that E(S)[d] is generated by the
class of (r/(r, d))(r−1 Xk) ∈ P0(S). Using Lemma 7.2(b) (we can suppose
OK complete), we have Ker(P0(S)[d] → Q0(S)[d]) � Z/(d, r)Z for all d
prime to p.

On the other hand, since Pk → Qk is surjective ([48], 4.1.2) and the
group Pk/P0

k is a finitely generated abelian group, we find that P0
k → Q0

k
is surjective. Let E ′ = E ∩ P0, then

P0(k)[d] → Q0(k)[d] → E ′(k̄)/dE ′(k̄) = ΦE′
k̄
/dΦE′

k̄

is exact (the last equality comes from the fact that the multiplication by d on
(E ′0

k̄
)red is surjective). Let m0 be equal to r|ΦE′

k̄
|, multiplied by p if p > 0.

Then P0(k)[d] � Q0(k)[d] for all d prime to m0. ��
Proof of 7.1. Lemma 7.3(a) implies that Ker(Qk → Jk) contains no semi-
abelian subvarieties because, otherwise, Ker(Q(k)[d] → J(k)[d]) would
contain a non-trivial subgroup for any order d prime to p. Hence, aQ ≤ aJ

and tQ ≤ tJ . Since dQ0(k̄) = Q0(k̄), we have an exact sequence

0 −→ Q0(k)[d] −→ Q(k)[d] −→ ΦQ[d] −→ 0.

Therefore, |Q(k)[d]|=d2aQ+tQ |ΦQ[d]|. Similarly, |J(k)[d]|=d2aJ +tJ |ΦJ [d]|.
Lemma 7.3(a) implies that there are infinitely many values of d such that
d2aQ+tQ

∣∣Φ(p)

Q

∣∣ = d2aJ+tJ
∣∣Φ(p)

J

∣∣. It follows that 2aQ + tQ = 2aJ + tJ . Hence,
aQ = aJ and tQ = tJ , and

∣∣Φ(p)

Q

∣∣ = ∣∣Φ(p)

J

∣∣. The map ΦQ[d] → ΦJ [d] is
then an isomorphism since it is surjective (because Qk[d] → Jk[d] is).
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Since Ker(Pk[d]→ Qk[d]) is trivial for most integers d by Lemma 7.3(b),
we can argue as above to find that aX ≤ aQ and tX ≤ tQ . Since Pk → Qk
is surjective as noted in the proof of 7.3(b), we can conclude that aX = aQ
and tX = tQ , and Part (a) is proved.

It remains to compare ΦX and ΦQ . We can assume OK complete.
Let M ⊆ Q0(S) be the image of P0(S). Since ΦX is canonically
P(S)/(P0(S)+ E(S)) ([7], proof of 9.5.9), the map P(S) → Q(S) induces
a canonical injection ΦX → Φ := Q(S)/M, whose composition with
Q(S)/M → Q(S)/Q0(S) is the canonical map ΦX → ΦQ . Let d be prime
to p. Then P0(S) = dP0(S), so M = dM. Hence, Φ[d] � Q(S)[d]/M[d].
Let us compute |M[d]|. Since E(S) ∩ P0(S) is a finite group (generated
by r−1 Xk), the exact sequence

0 → E(S) ∩ P0(S) → P0(S) → M → 0

implies that |M[d]| = |P0(S)[d]| = d2aX+tX = d2aQ+tQ by (a). So |M[d]| =
|Q0(S)[d]|. Hence |Φ[d]| = |ΦQ[d]| and

∣∣Φ(p)

X

∣∣ ≤ |Φ(p)| = ∣∣Φ(p)

Q

∣∣. Since

Φ
(p)

X → Φ
(p)

Q is surjective by 6.1(a), it is an isomorphism. ��
Corollary 7.4. Let X be as in 7.1. Assume that aX = tX = 0, which
happens if and only if the Jacobian of X K has purely additive reduction.
If r := gcd(r1, . . . , rn) > 1, then char(k) = p > 0 and r = ps for some
s ≥ 1.

Proof. Let V = 1
r Xk. Then V defines a line bundle of order exactly r

in P0(S). Thus, if r is not a power of p, then Pic0
Xk/k(k) = P0(k) contains

a torsion element of order prime to p, which implies that aX + tX > 0. The
assertion on the Jacobian of X K follows from 7.1(a). ��
Corollary 7.5. Let X be as in 7.1. If J/S has semi-stable reduction, then
Q → J is an open immersion. Moreover, if J/S has good reduction, then
Q → J is an isomorphism.

Proof. Since Q/S is separated, so is Q → J , and we can apply 2.3 to
find that Q → J factorizes as a sequence of dilatations. As shown in
7.1(a), dim Qk = dim Jk = aJ + tJ = aQ + tQ . Thus, Qk does not contain
any unipotent subgroup. Hence, the sequence of dilatations Q → J can
only be the dilatation of a union of connected components of Jk. When Jk
is an abelian variety, we find that ΦJ is trivial and, thus, Q → J is an
isomorphism. ��

An example where the map Q → J is not an isomorphism and J has
purely toric reduction is given in 8.8.

Remark 7.6. Let us note that when Q/S is not the Néron model, p | 2g−2.
Indeed, recall that Br(K ) is a p-torsion group ([17], 1.4). When Q �= J ,
Pic0(X K ) �= JK (K ) (3.7). Let η be a non-trivial element in the image of
JK (K ) → Br(K ). Clearly, when X M/M has a section, the natural map
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J(M) → Br(M) is the trivial map. Thus, η is in the kernel of the natural
map Br(K ) → Br(M), which is killed by [M : K ]. It follows that the
p-part of the index δX K kills the cokernel of JK (K ) → Br(K ). Thus, if this
cokernel is not trivial, then p | δX K . Since the canonical divisor has degree
2g − 2, we find that δX K | 2g − 2.

8. The case of semi-stable reduction

Let K be an arbitrary discrete valuation field. Let X K be a proper smooth
and geometrically connected curve of genus 1 over K , and let EK be its
Jacobian. Let X/S and E/S denote the minimal regular models of X K and
EK , respectively. In this section, we investigate the possible relationships
between the special fibers Xk and Ek when Ek is assumed to be semi-stable
(generalizing [44], Thm 1’).

The invariants of Xk can be explicitly computed when the reduction
of E is multiplicative, allowing us for instance to show in 8.8 that the
analogue of 6.6 does not hold when k is imperfect, and to prove in 8.11 that
disc(X) = disc(E). We begin with the case of good reduction in arbitrary
dimension.

Proposition 8.1. Let K be a discrete valuation field. Let X K be a torsor
under an abelian variety AK having a proper smooth model A/S. Then X K
admits a proper regular model X/S endowed with an action A ×S X → X
extending the structure of torsor of X K under AK , and such that the map
A ×S X → X ×S X, (a, x) �→ (ax, x) is surjective.

Let V := Xred
k and k0 := H0(V,OV ). Then V/k0 is smooth and k0/k is

purely inseparable. Moreover, V ×k0 k̄ is a torsor under an abelian variety
isogenous to Ak̄.

Proof. The first part of 8.1 is proved in [49], c) at the bottom of p. 82 (see
also [29]). Since Xk̄ is a homogeneous space under Ak̄ , Xk̄ is irreducible. We
can write Xk = rV with V reduced and geometrically irreducible over k.
Hence, k0/k is finite and purely inseparable. Since Ak is geometrically
reduced, the structure of X under A makes V a homogeneous space under Ak .

If k is perfect, then k0 = k. It follows that V is geometrically integral.
Hence, Vk̄ is a principal homogeneous space under Ak̄/Stabx , where Stabx

is the stabilizer of any point x ∈ V(k̄). This implies then that V/k is smooth.
When k is not perfect, we can prove that V → Speck0 is smooth as

follows. As dim Ak = dim V , the morphism Ak ×k V → V ×k V , defined
by (a, v) �→ (av, v), is quasi-finite. Consider the groupoid constructed as in
[SGA3], Exemple 2 a) with Ak acting on V . Applying [SGA3], exposé V,
Thm 8.1 to this groupoid, we obtain that the fppf-quotient T := V/Ak is
representable by a scheme. It follows then that V → T is smooth because
Ak is smooth. The transitivity of the action implies that T is a single point.
Since V → T is faithfully flat, k ⊆ O(T ) ⊆ k0. As k0 is purely inseparable
over k and V → T is geometrically reduced, we obtain that O(T ) = k0. ��
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Remark 8.2. In case dim(A) = 1, the proper regular model X/S constructed
in the above proposition is clearly the regular minimal model of X K/K , and
is thus endowed with an action of the Néron model J/S of AK . When the
reduction of AK is not good, one can still show (by a method similar to
[31], 10.2.12(c)) that the regular minimal model X of a torsor X K under
AK is also endowed with an action of J extending the action of AK on X K .
When X is semi-stable, one can prove that J0

k acts non trivially on every
irreducible component of Xk.

In the remainder of the section, we consider the case of multiplicative
reduction. We say that EK has split multiplicative reduction3 of type In,
n ≥ 1, if the unit component of the special fiber of the Néron model of EK

is isomorphic to Gm,k and if |ΦEK (k̄)| = n. Note that n = −vK ( j(E)) ≥ 1.
If k is separably closed, a multiplicative reduction is always split. In general,
a multiplicative reduction becomes split after a quadratic étale extension.

To study the reduction of torsors under EK , we may and will assume
that K is complete, since the minimal regular model commutes with the
completion of OK .

Proposition 8.3. Let K be a complete discrete valuation field. Let X K be
a smooth and geometrically connected projective curve of genus 1 over K,
such that its Jacobian EK has split multiplicative reduction of type In, n ≥ 1.

(a) There exists a unique cyclic extension K ′/K such that X K (K ′) �= ∅
and which is contained in any extension of K trivializing X K (i.e., any
extension M/K such that X K (M) �= ∅).

(b) Let X/S be the minimal regular model of X K . Let k′ be the residue
field of K ′. Let f := fK ′/K = [k′ : k] and e := eK ′/K . Then f | n.
Moreover, if f �= n, then Xk is a cycle of n/ f projective lines over k′,
each of multiplicity e in Xk. The intersection points between reduced
components of Xk are rational over k′ with associated intersection
number over k′ equal to 1. If f = n, then (Xk)

red is irreducible with
a k′-rational double point, and its normalization is a projective line
over k′.

Note that when k is algebraically closed, it follows from Part (b) that Xk
is of type [K ′ : K ]In. Thus, Proposition 8.3 provides a different proof of
6.6 when the reduction is multiplicative. The proof of 8.3 uses Tate’s uni-
formization of EK (see e.g., [55], V.3, or [14], 5.1). Let ΓKs := Gal(Ks/K )
and let vK : Ks → Q ∪ {∞} be the valuation on Ks extending the normal-
ized valuation on K . Denote by | | an associated absolute value. There exist

3 Note that when EK has split multiplicative reduction of type In , the minimal regular
model E/S has reduction of type In . Indeed, the reduction type of Ek can only be Im , I2m−2,2
or I2m−1,2 for some m (see [31], pp. 486–487 for the reduction types of elliptic curve having
multiplicative reduction). It is shown in [8], 4.3, that ΦEK (k) = ΦEK (k̄). This forces Ek to
have reduction type In (see [31], 10.2.24).
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q ∈ K∗ with vK (q) = n, and an exact sequence of ΓKs -modules:

1 −→ qZ −→ (Ks)∗ −→ E(Ks) −→ 0.(25)

For any z ∈ (Ks)∗, we denote by z̃ the image of z in E(Ks).

Proof of Part (a). This is well-known: the exact sequence (25) gives rise to
the exact sequence

0= H1(ΓKs , (Ks)∗)→ H1(ΓKs , E(Ks))→ H2(ΓKs ,Z)�Hom(ΓKs ,Q/Z).

The torsor X K corresponds to an element x of H1(ΓKs , E(Ks)), and the
torsor is trivial if and only if x is trivial in H1(ΓKs , E(Ks)). One eas-
ily shows that the extension K ′/K corresponds to the kernel of the map
ΓKs → Q/Z, image of x under the functorial injection H1(ΓKs , E(Ks)) →
Hom(ΓKs ,Q/Z). The extension K ′/K is cyclic because any finite subgroup
of Q/Z is cyclic. ��
8.4. Before proving Part (b) in 8.6, we need some preliminary results. The
Néron model J of EK is the smooth part of the minimal regular model E
(see e.g., [31] 10.2.14, or [7], 1.5/1). Let ΦEK be the group of components
of J . Using rigid analytic geometry, one can describe the reduction map
rK : E(Ks) → E(kalg) as follows (see [14], §5.3). Let z ∈ (Ks)∗. Then
there exists an integer i such that |π|i+1 < |z| ≤ |π|i . Any isomorphism
Z/nZ → ΦEK allows us to number the connected components of Ek and
Jk as E(i)

k ⊃ J (i)
k , with i ∈ Z/nZ. There exists such a numbering such that,

when |z| = |π|i , rK (z̃) belongs to the component J (i)
k , and when |π|i+1 <

|z| < |π|i , then rK (z̃) is an intersection point pi,i+1 of the irreducible
components E(i)

k and E(i+1)
k . This intersection point is unique if n ≥ 3.

Lemma 8.5. Let w ∈ K∗ with vK (w) = m and m �≡ 0 mod n. The
translation by w̃ ∈ E(K ) is an automorphism of EK which extends to an
automorphism tw̃ : E → E. This automorphism acts freely on E(kalg)
and ΦEK .

Proof. By the uniqueness of E, any automorphism of EK (considered as
a curve) extends to an automorphism of E. By the description we reviewed
above, tw̃ acts as the addition-by-m on Z/nZ � ΦEK . (Note that n �= 1 by
the hypothesis on m.) Thus, tw̃ has no fixed point on ΦEK and, hence, no
fixed point on Jk (which is identified with the smooth part of Ek).

Let us suppose now that n ≥ 3. Then tw̃ maps the intersection point
pi,i+1 ∈ E(i)

k ∩ E(i+1)
k to pi+m,i+m+1 . Since (i, i + 1) is neither congruent to

(i + m, i + m + 1) nor to (i + m + 1, i + m) modulo n, we see that pi,i+1
is not a fixed point.

When n = 2, pick z with |π|i < |z| < |π|i+1, which reduces to an
intersection point in Ek . Then tw̃(z̃) = w̃z̃ reduces to the other intersection
point. Hence tw̃ has no fixed point in E(kalg). ��
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Let F/K be a finite Galois extension, with group ΓF and ramification
index eF/K . Then (25) induces an exact sequence of ΓF-modules

0 → qZ → F∗ → E(F) → 0.

The canonical map cF : E(F) → ΦEF induced by the Néron model can be
understood using the following commutative diagram of exact sequences

0 −−−→ O∗
F O∗

F −−−→ 0
�

�
�

0 −−−→ qZ −−−→ F∗ −−−→ E(F) −−−→ 0

vK

� vK

� cF

�

0 −−−→ nZ −−−→ e−1
F/KZ −−−→ ΦEF −−−→ 0.

(26)

The last two columns are exact, and the long exact sequence of Galois
cohomology applied to these two short exact sequences gives (remembering
that ΓF acts trivially on ΦEF )

e−1
F/KZ −−→ H1(ΓF,O∗

F) −−→ H1(ΓF, F∗) = 1
�

∥∥∥

ΦEF −−→ H1(ΓF,O∗
F) −−→ H1(ΓF, E(F)) −−→ H1(ΓF,ΦEF ).

Hence, ΦEF → H1(ΓF,O∗
F) is surjective and the bottom sequence above

induces the exact sequence

0→H1(ΓF,E(F))→H1(ΓF ,ΦEF )=Hom(ΓF,ΦEF )
αF→H2(ΓF,O∗

F).(27)

8.6. Proof of 8.3 b). Since X K and EK become isomorphic over K ′, our
knowledge of the minimal model E/OK will provide us with a description of
the minimal regular model X ′ of X K ′ over OK ′ . We can recover the minimal
regular model X/OK as the quotient of X ′ by a (twisted) action of Γ := ΓK ′ ,
as follows. Let (ξσ)σ be a 1-cocyle whose class in H1(Γ, E(K ′)) defines the
torsor X K . Then its image ρ ∈ Hom(Γ,ΦEK ′ ) in the exact sequence (27) is
the 1-cocycle σ �→ cK ′(ξσ). Thus ρ(σ) = cK ′(ξσ). Note that ρ is injective
by the minimality of K ′.

We identify X K ′ to EK ′ endowed with a twisted action of ΓKs : let τ ∈ ΓKs

with image σ in Γ, then

τ ∗ x := τ(x) + ξσ , for all x ∈ E(Ks),

where τ(x) is the usual Galois action of ΓKs on E(Ks). Let E ′ = X ′ be the
minimal regular model of EK ′ over OK ′ . Then ΦEK ′ is cyclic of order ne.
Applying the description of the reduction as in (8.4) to E ′, we see easily
that the usual Galois action of Γ on E ′

k′ fixes the intersection points and
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the generic points of the irreducible components of E ′
k′ . Let wσ ∈ K ′∗

with image ξσ ∈ E(K ′). Since ρ(σ) �= 0, the commutative diagram (26)
with F = K ′ implies that vK ′(wσ) �= 0 mod ne. The action of σ on X ′ is
induced by the usual Galois action of σ followed by the multiplication by
wσ on (Ks)∗. Applying Lemma 8.5 to EK ′/K ′, we see that σ acts freely
on X ′

k′ whenever σ �= 1. Hence, Γ acts freely on X ′
k′ and on the set of the

irreducible components of X ′
k′ .

Let Y := X ′/Γ. Since the action of Γ is free, Y is a regular model
of X K over OK . Looking at the action of Γ on X ′

k′ , we see that Yk is
a union of ne/[K ′ : K ] = n/ f irreducible components as in the statement
of the proposition, each of them having multiplicity e in Yk. Moreover,
two consecutive components meet each other transversally at a point y (if
x ∈ X ′

k′ is a point lying over y, then OY,y → OX ′,x′ is étale) and y is rational
over k′. In particular, Yk does not contain any exceptional divisor, and, hence,
Y = X. Note that it is important to take K ′/K minimal. Otherwise X ′/Γ is
not necessarily regular. ��

Let us now turn to proving the existence of curves of genus 1 having
Jacobians with multiplicative reduction.

Proposition 8.7. a) Let EK/K be an elliptic curve parametrized as
Gm,K/qZ. Let K ′/K be a cyclic extension of degree d. Then H1(Γ,EK (K ′))
contains an element of order d if and only if q ∈ NK ′/K (K ′∗) (where
NK ′/K denotes the norm map).

b) Given any positive integer n and any cyclic extension K ′/K with fK ′/K |n,
there exists a smooth projective curve X K/K of genus 1 minimally triv-
ialized by K ′ and whose Jacobian has split multiplicative reduction of
type In.

Proof. a) In view of the exact sequence (27), we need to understand when
there exists an injective homomorphism ρ : Γ → ΦEK ′ in Ker(αK ′). After
fixing a generator of Γ, we can identify Hom(Γ,ΦEK ′ ) with ΦEK ′ [d], and
the set of injective ρ’s with set of elements of ΦEK ′ [d] of order d. The group
H2(Γ,O∗

K ′) can be identified with O∗
K/NK ′/K (O∗

K ′) (see [53], VIII, §4, for
a review of the Galois cohomology of cyclic groups). The map αK ′ is then
described as follows. Let x ∈ ΦEK ′ [d], and let y ∈ E(K ′) be a preimage of
x under cK ′ . The trace of y is in E(K ) and belongs to Ker(cK ). It is thus
the image of an element in O∗

K . Then αK ′(x) is equal to the image of this
element of O∗

K in O∗
K/NK ′/K (O∗

K ′).
We need to show that q ∈ NK ′/K(K ′∗) if and only if ΦEK ′ [d] ⊆ Ker αK ′

or, equivalently, if an element of ΦEK ′ [d] of order d is in Ker αK ′ .
Let n := vK (q). If ΦEK ′ [d] has an element of order d or if q ∈

NK ′/K (K ′∗), then f | n. Let z := (π ′)n/ f ∈ K ′, where π ′ is a uniformizing
element of K ′. Then |z| = |q|1/d and x := cK ′(z̃) is a generator of ΦEK ′ [d].
We have NK ′/K (z) = qu for some u ∈ O∗

K , and TrK ′/K(z̃) = ũ. Hence,
αK ′(x) = u in O∗

K/NK ′/K(O∗
K ′). Then we see immediately that αK ′(x) is

trivial if and only if q ∈ NK ′/K(K ′∗).
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b) Given K ′/K cyclic with f | n, let z := (π ′)n/ f ∈ K ′, and use
q := NK ′/K (z) to define EK := Gm,K/qZ. We let X K be the torsor under
EK defined by the element of order d in H1(K, EK ) found in Part a). Then
vK (q) = n, with EK and X K as in Proposition 8.3. ��
Example 8.8. Let n ≥ 2 and let K ′/K be a cyclic extension of degree
d �= 1 dividing n and such that eK ′/K = 1. According to Proposition 8.7,
there exists a smooth projective curve X K/K of genus 1 whose Jacobian
EK has split multiplicative reduction of type In. Then 8.3 implies that Xk
has n/d geometric irreducible components. Thus, Theorem 6.6 does not
hold as stated when k is imperfect, or when k is perfect but not algebraically
closed.

Assume that k is imperfect. To produce an explicit example, consider
a field K of mixed characteristic p which contains the f -th roots of unity
(with f a power of p). Then the extension K ′ := K [x]/(x f − a), with
a ∈ OK not a p-th power modulo π, is cyclic over K with residual
index f .

Note that in this example, ΦX and ΦE have orders n/d and n, respec-
tively. In particular, their p-parts are not isomorphic. It follows that the
natural map Q → J is an open immersion (7.5), but not an isomorph-
ism.

Remark 8.9. Propositions 8.3 and 8.7 show the existence of torsors X K of
some shape once a cyclic extension K ′/K exists with residue extension
k′/k of degree f . Let us remark here that a cyclic extension K ′/K of degree
d := pr , totally ramified, and with f > 1, may not exist for a given K .
For instance, a theorem of Miki (see, e.g., [56] 9.1) states that if K has
characteristic zero and vK (p) < p − 1, then any cyclic extension K ′/K of
degree pr has separable residue field extension.

Remark 8.10. Let us return to 8.3 b). Let Z := (Xk)
red . Since Z/k is

geometrically connected (see, e.g., [31], 5.3.17), we know that H0(Z,OZ)/k
is purely inseparable. It is in fact equal to (k′)Aut (k′/k), the largest purely
inseparable extension of k in k′. Indeed, we saw in the proof of 8.3 b) that
Γ acts freely on Xk′ . We find then that Z = Xk′/Γ and H0(Z,OZ) = (k′)Γ.
Since Γ acts on OK ′ as Gal(K ′/K ), it acts on k′ as Aut(k′/k).

Keep the notation and hypotheses of Proposition 8.3. We turn now
to computing the integers disc(X) and �(H1(X,OX)tors) explicitly. It fol-
lows from 8.3 that the greatest common divisor of the multiplicities of
the components of Xk is e. Let h be the integer such that 0 ≤ h ≤
e − 1 and ωX/S = ω0OX(he−1 Xk) for some basis ω0 of H0(X, ωX/S)
(Lemma 5.7).

Let S′ := Spec(OK ′) and let π ′ be a uniformizing element of K ′. Recall
that ωS′/S is the sheaf associated with the module HomOK (OK ′,OK). This
latter module is isomorphic to WK ′/K := {β ∈ K ′ | TrK ′/K(βOK ′) ⊆ OK}
(see, e.g., [31], 6.4.25 and Exer. 6.4.8). Write WK ′/K = (π ′)−δK ′/K OK ′ .
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Proposition 8.11. Keep the above notation. Let a := �(H1(X,OX)tors).
Then

(a) disc(X/S) = disc(E/S) = n.
(b) Write δK ′/K = se + r with 0 ≤ r < e = eK ′/K . Then a = s, and h = r.
(c) X/S is cohomologically flat if and only if K ′/K is tamely ramified.

When X/S is cohomologically flat, then h = e − 1.

Proof. Using the results recalled in 9.1, we obtain that disc(E/S) = n. Let
X ′ � ES′ be the minimal regular model of X K ′ over S′. We conclude then
that disc(X ′/S′) = ne. Let us now compute disc(X ′/S′) in a different way.

Recall as in 9.1 that ∆X K /K can be regarded as a map K →
(H0(X K , ωX K /K ))⊗12. Using the identification from 5.5, we find that
∆X K /K(1) can be identified with the element λ(πaω0)

⊗12 for some λ ∈ K∗
with vK (λ) = disc(X/S).

Let µ : X ′ → X be the canonical (quotient) morphism. We saw in the
proof of Proposition 8.3 that µ is étale. Thus,

ωX ′/S = µ∗ωX/S = ω0OX ′(h X ′
k′) = (π ′)−hω0OX ′ .

Let ρ : X ′ → S′ be the natural map. Using the adjunction formula (see,
e.g., [31] 6.4.9), we find that

ωX ′/S′ = ωX ′/S ⊗OX′ (ρ∗ωS′/S)
∨ = (π ′)δK ′/K ωX ′/S = (π ′)δK ′/K −hω0OX ′ .

We may thus compute ∆X K ′/K ′(1) in H0(X K ′, ωX K ′/K ′)⊗12 as the image
of ∆X K /K(1), namely: let ω′

0 := (π ′)δK ′/K −hω0. Then ∆X K ′/K ′(1) =
λπ12a(π ′)12(−δK ′/K +h)(ω′

0)
⊗12. It follows then from the definitions that

disc(X ′/S′) = edisc(X/S) + 12(ea − δK ′/K + h).

Putting both expressions for disc(X ′/S′) together, we obtain:

disc(X/S) = n + 12e−1(δK ′/K − h − ea).(28)

Theorem 5.9 shows that disc(X) − disc(E) is divisible by 12. Since
disc(E) = n, we obtain from (28) that e | (δK ′/K − h). Thus, h = r.
We turn now to proving that a = s. Once this fact is known, Part a) is
immediate from b) and (28).

For any integer N ≥ 0 and any scheme Y over S, we denote by YN =
Y ×S Spec(OK/πN+1OK ). Let Γ = Gal(K ′/K ). Since X ′ → X is étale,
so is X ′

N → X N and we have X N = X ′
N/Γ. Therefore H0(X N,OX N ) =

H0(X ′
N ,OX ′

N
)Γ. Since X ′ → SpecOK ′ is cohomologically flat, we have

H0(X N ,OX N ) = (
H0(X ′,OX ′)⊗OK ′ OK ′/πN+1OK ′

)Γ = (
OK ′/πN+1OK ′

)Γ
.

The exact sequence 0 → OX
·πN−→ OX → OX N−1 → 0 induces an exact

sequence

0 → OK/πNOK → (
OK ′/πNOK ′

)Γ → H1(X,OX)[πN ] → 0
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(where [πN ] means πN -torsion). Similarly, the exact sequence 0 → OK ′
·πN−→

OK ′ → OK ′/πNOK ′ → 0 induces an exact sequence

0 → OK/πNOK → (
OK ′/πNOK ′

)Γ → H1(Γ,OK ′)[πN ] → 0.

Taking N � 0, we find τ = �(H1(Γ,OK ′)[π∞]). Since H1(Γ,OK ′) is
finitely generated on OK and H1(Γ, K ′) = 0, we find that H1(Γ,OK ′)[π∞]
= H1(Γ,OK ′). As noted in [52], Remark after Theorem 2, one can use
Herbrand’s quotient to show that �(H1(Γ,OK ′)) = �(Ĥ0(Γ,OK ′)), and
this latter module is isomorphic to OK/Tr(OK ′). That Tr(OK ′) = πsOK is
well-known ([53], V.3, Lemma 4 when |Γ| is prime). Hence, a = s.

The cohomological flatness of X/S in Part c) is equivalent to a = 0,
and, thus, equivalent to δK ′/K ≤ e − 1. This last condition is equivalent to
K ′/K tamely ramified and to δK ′/K = e − 1. The equality h = e − 1 then
follows from (b), and Proposition 8.11 is proved. ��
Remark 8.12. We are now in a position to give an example of a wild fiber of
strange type (see [24], added in proof, where the authors indicate that such
an example is not known.) We need to produce a model X/S which is not
cohomologically flat, and such that its fiber has multiplicity e and h = e−1.
It suffices to find a totally and wildly ramified extension K ′/K of degree e,
such that δK ′/K = se+e−1 for some s > 0. Choose K with an algebraically
closed residue field, and consider an extension K ′ := K(α), where α is the
root of an Eisenstein polynomial f(T ) ∈ OK [T ]. The formula for δK ′/K in
terms of the valuation of f ′(α) shows that it is possible to find examples
of wild extensions with δK ′/K congruent to any integer 0 < h < e, at least
when the valuation of e is large enough if K has characteristic zero.

Remark 8.13. Keep the notation of this section. Consider the natural maps
introduced in 3.8 (13),

H1(X,OX) −→ Lie(Q X) −→ H1(E,OE).

Under our current hypotheses 8.3, we can show that the cokernel and kernel
of H1(X,OX) → Lie(Q X) have same length, even when k is imperfect.
Indeed, Theorem 5.9 shows that disc(X) = disc(E) + 12(b − a). Since
disc(X) = disc(E) (8.11), we find that b = a. Since Lie(Q X) is isomorphic
to H1(E,OE) (7.5), our claim follows.

9. Some examples

Let X K be a smooth, projective, and geometrically connected curve of
genus 1, and let EK be its Jacobian. Let X and E denote the minimal regular
models over S = SpecOK of X K and EK , respectively. When k is separably
closed but not algebraically closed, we saw in 8.8 examples where the
number of irreducible components nX and nE of Xk and Ek are not equal,
and where ΦX and ΦE are not isomorphic. We exhibit below a different



Néron models, Lie algebras, and reduction of curves of genus one 509

example where the reduction is additive and where, in addition, E and X do
not have the same discriminant.

9.1. Let us recall here the relationship between the discriminant disc(X)
and the usual discriminant of a curve of genus 1 with a rational point.
Let T be any scheme. Let Y → T be a smooth projective curve with
geometrically connected fibers of genus 1. Then ∆Y/T is defined as an
isomorphism ∆Y/T : OT → (g∗ωY/T )⊗12 (see the begining of Sect. 5).
Suppose that T is affine and that Y can be defined by a Weierstrass equation

y2 + (a1x + a3)y = x3 + a2x2 + a4x + a6, ai ∈ OT (T ).

Let ∆ ∈ OT (T ) be the discriminant of the above equation, and set

ω0 := dx

2y + a1x + a3
.(29)

Then ωY/T = ω0OY . It is well-known that ∆Y/T (1) = ∆ω⊗12
0 up to sign.

Let EK be an elliptic curve over a discrete valuation field K . Let ∆ be
the minimal discriminant of EK , and E be the minimal regular model of EK
over S. We claim that disc(E) = v(∆). Indeed, let

y2 + (a1x + a3)y = x3 + a2x2 + a4x + a6, ai ∈ OK

be a minimal Weierstrass equation of EK . Let W/S be the Weierstrass model
of EK associated to the above equation, and let η : E → W be the natural
contraction map (see for instance [31], Cor. 9.4.37). Let ω0 be given by (29).
Then, as we mentioned above, ∆EK /K(1) = ±∆ω⊗12

0 . It is well-known that
η∗ω0 is a basis of ωE/S ([31], loc. cit.). Thus disc(E) = v(∆).

Proposition 9.2. Let K be a discrete valuation field of mixed characteris-
tic 3, with imperfect residue field k and uniformizing element π.
Let eK := v(3). Fix an element c ∈ OK whose image in k is not a cube, and
consider the cubic curve X K/K defined by the equation

x3 + cy3 + πz3 = 0.(30)

Then the regular minimal model X/S of X K is the plane curve in P2/S
defined by equation (30). Let EK be the Jacobian of X K . Then

[ΦE, nE, disc(E)] =
{ [Z/3Z, 3, 3eK + 4] if eK is even,

[{0}, 9, 3eK + 10] if eK is odd.
[ΦX , nX, disc(X)] = [{0}, 1, 9eK + 4].

In particular, nX �= nE, disc(X) �= disc(E) except when eK = 1, and

disc(X) − (nX − 1) �= disc(E) − (nE − 1).(31)

Moreover, if eK is even, then ΦX �= ΦE .
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Proof. The Jacobian EK is defined by the Weierstrass equation (see [2],
§3.2)

y2 = 4x3 − 27c2π2.

We easily find that the reduction of EK is of type IV if eK is even, and of
type II∗ otherwise (to obtain the minimal model, it suffices in this example to
divide the equation by the appropriate power of π6; see also [57]). This gives
ΦE , nE , and disc(E) (which by 9.1 is the minimal discriminant of EK ).

Let us compute this data for X K . Equation (30) defines a plane curve over
S which is easily checked to be regular, with integral special fiber. Thus, it is
the minimal regular model X/S of X K , with nX = 1, and ΦX = {0}. Since
X is a global complete intersection, it is cohomologically flat over S (see,
e.g., [31], Exer. 5.3.14). Moreover, ωX/S is generated by its global section
(5.7). Consider the rational functions x1 := x/z, y1 := y/z ∈ K(X) on X.
Then the rational differential

ω1 := dx1

3cy2
1

∈ Ω1
K(X )/K

is a basis of ωX/S (this can be seen by a direct computation, similar to the
proof of [31], 9.4.26 (c)). Thus, we need to compute the valuation of λ ∈ K
such that ∆X K /K (1) = λω⊗12

1 (see 9.1). Let K ′ := K(c1/3). Let

u := −3πz

x + c1/3y
, v := 9πc1/3y

x + c1/3 y
∈ K(X K ′).

Then v2−9πv = u3−27π2. The discriminant ∆ of this Weierstrass equation

is −39π4, and its canonical differential is ω0 = du

2v − 9π
. One checks that

ω0 = c1/3ω1. We may then compute disc(X) as follows. By construction,
∆X K /K(1) = λω⊗12

1 , and ∆X K ′ /K ′(1) = ∆ω⊗12
0 (see 9.1). So, as v(c) = 0,

disc(X) = v(λ) = v(∆). This achieves the proof. ��
Remark 9.3. In the above example, the group scheme Q/S associated with
X K/K is not isomorphic to the Néron model J/S of the Jacobian of X K ,
except when eK = 1. This is easily seen as follows when eK is even: the
group ΦX is trivial, and since the natural map ΦX → ΦQ is surjective, ΦQ
is also trivial. On the other hand, the group ΦE has order 3.

When eK > 1, we can show that the natural map Q → J does
not induce an isomorphism Lie(Q) → Lie(J) (or, in other words, that
Q → J is not an open immersion). Note first that in the above example,
disc(X) − disc(E) = 6eK or 6(eK − 1), depending on whether eK is even
or odd. Since X/S is cohomologically flat as noted in the proof of 9.2,
Theorem 5.9 shows that disc(X)− disc(E) = 12c, where c is the length of
the cokernel of Lie(Q) → H1(E,OE ). Hence, in this example, c = eK /2
or (eK − 1)/2, depending on whether eK is even or odd.

Recall that when the natural map of S-group schemes Q → J is not an
isomorphism, then Pic0(X K ) �= JK (K ) (3.7). It is in general very difficult
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to check directly whether Pic0(X K ) �= JK(K ). The above result shows that
for the curve (30), Pic0(X K ) �= JK (K ) if eK > 1.

Remark 9.4. The Brauer group Br(K ), when k is imperfect and separably
closed, is a huge torsion group (see, e.g., [22], Theorem 3, [27] 5.8, or [50]).
We note below that it is sometimes possible to use torsors under elliptic
curves to obtain explicit elements in Br(K ).

In 8.8 and in 9.2, we have been able to construct torsors X K/K such that
the natural map Q X → J is not an isomorphism. As we saw above, the cok-
ernel of Pic0(X K ) → JK (K ) is then non-trivial and, thus, we obtain in this
way non-trivial elements of Br(K ) (use the exact sequence (11) restricted
to Pic0). When the reduction of X is additive, we find that the cokernel of
Pic0(X K ) → JK(K ) maps surjectively to an additive group (k,+).

We consider below curves X K/K of genus 1 whose Jacobians EK/K
have good reduction. As noted in 7.5, in this case Q → J is an isomorphism.
Thus we cannot use the cokernel of Pic0(X K ) → JK (K ) to produce non-
trivial elements of Br(K ). Nevertheless, given a cyclic extension K ′/K with
residual index f = [K ′ : K ] = pn , we are going to exhibit curves X K/K
of genus 1 whose period δ′ strictly divides its index δ. We can then use the
exact sequence (11) to produce elements in Br(K ) of order divisible by δ/δ′.

Fix two integers 0 < r ≤ n. Let OK be complete with k separably
closed. Assume that there exists a cyclic extension K ′/K of degree pn ,
with associated residue extension k′/k also of degree pn . Then we construct
curves X K/K of genus 1 with index δ = pn+r and period δ′ = pn as
follows4. Choose an elliptic curve EK/K with ordinary reduction, as in
[48], 9.4.1 (iii), and assume in addition that E/S is a Serre-Tate lifting of
its special fiber (as in [48], 9.4.3 b)). In other words, the p-divisible group
B associated with E/S splits as the sum of Brad and Bet. That many such
curves EK/K exist over K is proved as follows. Let k0 ⊂ k be a perfect
subfield of k. Let W(k0) denote the Witt ring associated with k0, with
S0 := SpecW(k0). Given any ordinary elliptic curve Ek0/k0, there exists
a unique smooth lifting E0/S0 of Ek0 to S0 (the canonical Serre-Tate lifting,
see [35], V (3.3)). Using the natural map W(k0) → OK , we can consider
the pull back E = E0 ×S0 S. It is easy to check that E/S has the required
properties.

For such E/S, the p-part of H1(K, EK ) is the direct sum of two terms,
one isomorphic to Hom(Gal(K/K ),Qp/Zp), and the other one isomorphic
to Qp/Zp. Moreover, given any extension F/K of ramification index e, the
natural map H1(K, EK ) → H1(F, EF ) restricted to the factor Qp/Zp is the
multiplication-by-e map Qp/Zp → Qp/Zp. We define now a torsor X K/K
as the torsor corresponding to the following class x = x(K ′/K, r) in the
p-part of H1(K, EK ). On the factor Qp/Zp, choose the class of 1/pr . On
the other factor Hom(Gal(K/K ),Qp/Zp), pick the element corresponding

4 It is known that δ | (δ′)2 ([30], Theorem 8). Examples where δ = (δ′)2 are given in [28],
end of Sect. 4.
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to the map

Gal(K/K ) → Gal(K ′/K ) � Z/pn
Z ⊂ Qp/Zp.

It is clear that the order of x (that is, the period δ′) is equal to pn . To compute
the index of X K/K , we note that any extension F/K such that x is mapped
to 0 in H1(F, EF ) under the natural map H1(K, EK ) → H1(F, EF ) is
such that F ⊇ K ′ and F/K has ramification index divisible by pr . Thus,
pn+r | δ. Since it is always possible to find a totally ramified extension of
K ′ of degree pr , we find that δ = pn+r .

Remark 9.5. Let X K be a torsor under an elliptic curve EK over K . If we
naively extend the definition of Artin conductor of X when k is imperfect
by setting

Art imp(X) := χ(Xk̄) − χ(X K̄ ) + δ
imp
X

where δ
imp
X is some ‘Swan conductor’ associated to the Galois module

H1
et(X K̄ ,Q�), then Art imp(X) = tE +2uE +δ

imp
E +nX −1 (see 6.4). Proposi-

tion 9.2 shows that in general, it is possible that either disc(X) �= Art imp(X)
or disc(E) �= Art imp(E), contrary to the case where k is perfect.

Remark 9.6. Let X K/K and YK/K be two smooth projective geometrically
connected curves of genus g ≥ 1, with minimal regular models X/S and
Y/S, respectively. Assume that Jac(X K )/K and Jac(YK )/K are isomorphic
as abelian varieties over K (but possibly not as polarized abelian varieties).
It is natural to wonder what are the possible relationships between Xk/k
and Yk/k.

Under our assumption, the Néron models JX/S and JY/S of Jac(X K )/K
and Jac(YK )/K are isomorphic. Assuming that k is algebraically closed,
we can use [7], 9.6.1, and obtain, for instance, that the intersection ma-
trices of Xk and Yk can be used to compute the group of components
ΦJac(X K ) (= ΦJac(YK )), thus providing a non-trivial relationship between the
intersection matrices. One may wonder what further relationships exist be-
tween these matrices. Let us note here that, in general, these matrices do
not have the same size, contrary to the case of curves of genus 1. Indeed,
the two curves of genus 2 over Q:

−y2 = (x2 + 4)(x4 + 3x2 + 1) and 3y2 = (x2 − 4)(x4 + 7x2 + 1)

have Q-isomorphic Jacobians. This example is due to E. Howe ([20], Ex-
ample 11). Using [32], one finds that at p = 3, one curve has good reduction,
while the other degenerates into the union of two elliptic curves.

Appendix A. The reduction types of curves of genus 1

We exhibit below all possible types of reduction of curves of genus 1
that have more than one component. We show that this list of reduction
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types is complete using the classification of affine Cartan matrices. Let us
start by recalling some intersection theory. Let OK be strictly henselian
with char(k) = p > 0. Let X K/K be a projective, smooth, geometrically
connected curve of genus g. Let X/S be a regular model of X K . Write the
special fiber Xk as

∑n
i=1 riΓi . Fix a component Γ of Xk. We let hi(Γ) =

dimk Hi(Γ,OΓ). We also let e(Γ) denote the geometric multiplicity of Γ
([7], 9.1.3), and r(Γ) denote its multiplicity in Xk. It is shown in [7], 9.1.8,
that e(Γ) divides Γ ·∆ for any divisor ∆ on Xk. It is clear that h0(Γ) divides
e(Γ) (because k is separably closed) and h1(Γ). The integers h0(Γ) and
h1(Γ) are related by the adjunction formula

Γ · Γ + Γ · KX/S = 2h1(Γ) − 2h0(Γ),

where KX/S denotes the relative canonical divisor on X. The same formula
applied to Xk instead of Γ reads:

2g − 2 =
n∑

i=1

r(Γi)
( − Γi · Γi − 2h0(Γi) + 2h1(Γi)

)
.(32)

Recall that any component Γ such that h0(Γ) = −Γ·Γ and h1(Γ) = 0 can be
blown down to a regular point (see, e.g., [31], 9.3.1). Thus, a regular model
is minimal if Xk has no such components. When the model is minimal, we
find ([31], 9.3.10) that for all i = 1, . . . , n,

−Γi · Γi − 2h0(Γi) + 2h1(Γi) ≥ 0.(33)

To be able to study the combinatorics of the special fiber Xk , we introduce
the following terminology. We call a p-type T = (G, M, R, E, H0, H1) the
following data. We let M = ((Γi · Γ j)) be a symmetric (n × n)-matrix
with integer coefficients. When n > 1, we assume that M has nega-
tive diagonal entries, and non-negative entries otherwise. When n = 1,
we set M = (0). The matrix M will be called the intersection matrix.
We let R denote a vector of positive integers, with R := t(r1, . . . , rn), such
that MR = 0. The vector R is called the vector of multiplicities. We let
E := t(e(Γ1), . . . , e(Γn)), where e(Γi) = p fi for some non-negative inte-
ger fi . We let H0 :=t (h0(Γ1), . . . , h0(Γn)), where h0(Γi) = psi for some
non-negative integer si . We let H1 := t(h1(Γ1), . . . , h1(Γn)) where h1(Γi)
is a non-negative integer. We assume that for each i, e(Γi) divides (Γi · Γ j)

for all j, and divides 2h1(Γi)−2h0(Γi). We also assume that h0(Γi) divides
e(Γi) for all i. We let G denote the graph on n vertices such that the i-th
vertex is linked to the j-th vertex by exactly (Γi · Γ j) edges. Since the
graph G is completely determined by M, we may sometimes drop it from
the notation, and call p-type simply the data T = (M, R, E, H0, H1). The
genus of the p-type is the number g defined by the right-hand side of the
adjunction formula (32). We will say that a type is minimal if the inequality
(33) holds for each i = 1, . . . , n.
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Let us consider the case where g = 1. Let T = (M, R, E, H0, H1) be a
p-type of genus 1 with n > 1. For any pair of integers e = ps and m, we
obtain a new p-type (e, m)T := (eM, m R, eE, eH0, eH1). The reader will
easily check using (32) that (e, m)T has genus 1. When the residue field k
is algebraically closed, all geometric multiplicities are equal to 1, and we
denote the type (1, m)T simply by mT . We shall call (e, m)T a multiple
of T .

A.1. Note that when n > 1, H1 = (0, . . . , 0). In terms of curves of
genus 1: Let X/S be minimal. Let Γ be any irreducible component of Xk. If
h1(Γ) > 0, then Xk is irreducible. Indeed, since g = 1, Formula (32) gives
Γ ·Γ = 2h1(Γ)− 2h0(Γ). Since h0(Γ) divides h1(Γ), we find that Γ ·Γ ≤ 0
implies h1(Γ) = h0(Γ) and Γ · Γ = 0. Since the intersection matrix of Xk
is semi-definite negative, we find that Xk is a multiple of Γ.

The meaning of the diagrams below is as follows. A plain segment
adorned only with an integer r represents a smooth projective line defined
over k having multiplicity r. A dotted segment adorned with an integer r
represents a smooth projective line defined over purely inseparable exten-
sion of k degree p, and having multiplicity r. A plain segment adorned with
the symbols h0(C) = 1 or h0(C) = 4 represents a component of multipli-
city 1 that is not geometrically reduced, but has h0(C) = 1 or h0(C) = 4;
in case h0(C) = 1, we set e(C) = 2, and when h0(C) = 4, we set e(C) = 4.
Each irreducible component appearing in a type given below is such that
h1(C) = 0. A dotted segment intersects any other segment with intersection
multiplicity p, except in the case of the last such component on the right of
the diagram BC(2)

� , where the intersection multiplicity is 4.
We have adopted a notation compatible with the notation used for affine

Cartan matrices, where the size of a matrix is denoted by �+1. Set � := n−1.
Then, in the notation of each type below, the lower index is always equal
to n − 1.

Case p ≥ 5. Any p-type with p ≥ 5 is a multiple of a classical Kodaira
type. The list of the classical Kodaira types can be found, for instance, in
[55], p. 365.

Case p = 3. Any p-type with p = 3 is a multiple of a classical Kodaira
type, or a multiple of one of the following two types:

Type G(2)
2 :

Type G(1)

2 : (torsor)

(See Remark A.3 for the explanation of the label “torsor”).

Case p = 2. Any p-type with p = 2 is a multiple of a classical Kodaira
type, or a multiple of one of the following 9 families of 2-types. In the
diagrams below, � ≥ 1 unless otherwise indicated.



Néron models, Lie algebras, and reduction of curves of genus one 515

Type B(1)
� (� ≥ 3): (torsor)

Type B(21)
� :

Type B(22)
� :

Type B(23)
� : (torsor)

Type BC(2)
� : (torsor)

Type C(1)
� : (torsor)

Type C(2)
� (� ≥ 3):

Type F(2)
4 :

Type F(1)

4 : (torsor)

Let us explain why the above list of p-types T = (M, R, E, H0, H1)
is complete. Recall that since we list only the types which have more
than one component (n > 1), then H1 = (0, . . . , 0) (A.1), and the vec-
tor H0 is completely determined by the matrix M. Indeed, the adjunc-
tion formula gives Γ · Γ = −2h0(Γ). Let H denote the diagonal matrix
diag(h0(Γ1), . . . , h0(Γn)). Since h0(Γ) divides (Γ · Γ′) for all Γ′, we find
that the matrix A := −MH−1 has integer coefficients, and each coefficient
on the diagonal of A is equal to 2. Moreover, we have (t R)A = 0. The
reader will easily check that A is an affine Cartan matrix in the sense of
[41], p. 258. Such matrices have been classified, for instance in Proposi-
tion 2 of [41], p. 265. Starting with an affine Cartan matrix A with associated
vector R such that (t R)A = 0, we find from Proposition 2 that this matrix
is symmetrizable, that is, that there exists a diagonal integer matrix H such
that AH is symmetric. The reader will check that −AH is the intersection
matrix associated with a p-type of genus 1, taking as vector H0 the transpose
of the vector (1, . . . , 1)H . In all cases but for the affine Cartan matrix B(2)

� ,
we take the vector E to be equal to H0. In the case of B(2)

� , we obtain
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three different 2-types, B(21)
� , B(22)

� , and B(23)
� , each having the same inter-

section matrix and vector H0 = (1, . . . , 1), but vectors E(21) = (1, . . . , 1),
E(22) = (1, . . . , 1, 2) and E(23) = (2, 1, . . . , 1, 2).

A.2. Let us note the following fact: If tX = 1, then Xk is either irreducible,
or its type is a multiple of In for some n ≥ 2. This statement follows
immediately from the classification of affine Cartan matrices.

Remark A.3. All possible types of reduction not labeled with the word
‘torsor’ appear as the reduction type of an elliptic curve. Specific equations
can be found in [57]. All types labeled ‘torsor’ probably appear as reduction
types of curves of genus 1, although we are not able to prove it. An example
of reduction of type BC(2)

1 is given in [34], 1.5. We prove the existence of
reductions of the form (ps, m)In with n ≥ 2 in 8.8.

An example of reduction G(1)
2 is given as follows. Let K be of mixed

characteristic 3, with imperfect residue field k and uniformizing element π.
Fix an element c ∈ OK whose image in k is not a cube, and consider the
cubic curve X/S defined by the equation x3 +πy3 + cπz3 = 0. In the affine
chart x3 + πy3 + cπ = 0, this curve has a singular point (π, x, y3 + c). The
special fiber of this chart is an affine line over k of multiplicity 3. The reader
will check that the special fiber of the blow-up of this singular point consists
of two rational curves defined over k[y]/(y3 + c), and that this blow-up is
regular.
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algébriques sur une base de dimension 1. Bull. Soc. Math. Fr. 33, 5–79 (1973)

[4] Artin, M., Winters, G.: Degenerated fibres and stable reduction of curves. Top-
ology 10, 373–383 (1971)
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Manuscr. Math. 98, 275–293 (1999)

[9] Chai, C.-L., Yu, J.-K.: Congruences of Néron models for tori and the Artin con-
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de Riemann-Roch. Lect. Notes Math. 225. Berlin: Springer 1971

[EGA] Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique. Publ. Math.,
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