# Field k

Finite field of size 2

## The Module M

The module M is the direct sum of permutation module with point stabilizers being the Young subgroups corresponding to partitions of lenght at most 5. . The dimension of M is 18223 .

The dimensions of the irreducible submodules modules are 64, 40, 14, 8, 6, 1 .

The simple module number 1 has dimension 64 and corresponds to the partition [ 5, 2, 1 ] .
The simple module number 2 has dimension 40 and corresponds to the partition [ 4, 3, 1 ] .
The simple module number 3 has dimension 14 and corresponds to the partition [ 6, 2 ] .
The simple module number 4 has dimension 8 and corresponds to the partition [ 5, 3 ] .
The simple module number 5 has dimension 6 and corresponds to the partition [ 7, 1 ] .
The simple module number 6 has dimension 1 and corresponds to the partition [ 8 ] .

The module M has radical filtration (Loewy series)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2

The module M has socle filtration (socle series)
2, 2, 2, 2, 2, 2, 2, 2, 2, 2

3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

#### The module M has simple direct summands:

60 copies of simple module number 1
1 copy of simple module number 6

1
1

socle layers
1
1

6
5
6

socle layers
6
5
6

3
5
4
5
3

socle layers
3
5
4
5
3

5, 6
3, 6
5

socle layers
5
3, 6
5, 6

5
3, 6
5, 6
3
5

socle layers
5
3
5, 6
3, 6
5

5, 6
3, 4, 6
5, 5
3, 4
5

socle layers
5
3, 4
5, 5
3, 4, 6
5, 6

6
2, 5
4, 6, 6
3, 6
5, 6
2
6
3
6
2
6

socle layers
6
2
6
3
6
2
5, 6
3, 6
4, 6, 6
2, 5
6

3, 6
5, 5, 6
3, 4, 6
5, 5
3, 5
4, 6
5
3

socle layers
3
5
4, 6
3, 5
5, 5
3, 4, 6
5, 5, 6
3, 6

5
3, 4, 6
5, 5, 6
2, 3, 3, 4
5, 5, 6
3, 4, 6
5

socle layers
5
3, 4, 6
5, 5, 6
2, 3, 3, 4
5, 5, 6
3, 4, 6
5

3, 5
3, 4, 5, 6, 6
2, 3, 4, 5, 5
3, 4, 5, 5, 6
3, 3, 4, 5, 6
5, 6
2
6
3

socle layers
3
6
2
5, 6
3, 3, 4, 5, 6
3, 4, 5, 5, 6
2, 3, 4, 5, 5
3, 4, 5, 6, 6
3, 5

2
4, 6
3, 6
3, 5, 6
2, 5, 6
2, 4, 6
3, 5, 6
3, 5, 6
2, 4, 6
2, 6
3, 6
3, 6
6
2

socle layers
2
6
3, 6
3, 6
2, 6
2, 4, 6
3, 5, 6
3, 5, 6
2, 4, 6
2, 5, 6
3, 5, 6
3, 6
4, 6
2

3
5, 6
2, 3, 4
5, 5, 6
3, 3, 4, 5, 6
3, 4, 5, 6, 6
2, 5, 5
3, 4, 6
3, 5
6
2
6
3

socle layers
3
6
2
6
3, 5
3, 4, 6
2, 5, 5
3, 4, 5, 6, 6
3, 3, 4, 5, 6
5, 5, 6
2, 3, 4
5, 6
3

5
3, 4, 6
5, 5, 6
2, 3, 3, 4, 5
3, 4, 5, 5, 6, 6
3, 4, 5, 5, 6, 6
2, 3, 3, 4, 5
5, 5, 6
3, 4, 6
5

socle layers
5
3, 4, 6
5, 5, 6
2, 3, 3, 4, 5
3, 4, 5, 5, 6, 6
3, 4, 5, 5, 6, 6
2, 3, 3, 4, 5
5, 5, 6
3, 4, 6
5

4
2, 4, 5
3, 4, 5, 6
3, 4, 5, 6, 6
3, 5, 5, 6
2, 3, 3, 4, 5, 5
3, 4, 5, 5, 6, 6
3, 4, 5, 6, 6
2, 3, 4, 5
5
4

socle layers
4
5
2, 3, 4, 5
3, 4, 5, 6, 6
3, 4, 5, 5, 6, 6
2, 3, 3, 4, 5, 5
3, 5, 5, 6
3, 4, 5, 6, 6
3, 4, 5, 6
2, 4, 5
4

#### 15). 2 direct summands of the form:

3, 3, 6
2, 5, 5, 5, 6
2, 3, 4, 4, 4, 6, 6
3, 5, 5, 5, 6, 6
3, 3, 3, 3, 4, 5, 5, 6, 6
2, 4, 5, 5, 6, 6
2, 4, 5, 6
3, 3, 5, 6
3, 6
2, 6
2, 6
3, 6

socle layers
3, 6
2, 6
2, 6
3, 6
3, 3, 5, 6
2, 4, 5, 6
2, 4, 5, 5, 6, 6
3, 3, 3, 3, 4, 5, 5, 6, 6
3, 5, 5, 5, 6, 6
2, 3, 4, 4, 4, 6, 6
2, 5, 5, 5, 6
3, 3, 6

#### 16). 1 direct summand of the form:

2, 3, 4, 5, 6
2, 3, 4, 4, 5, 5, 6, 6, 6
2, 3, 3, 3, 4, 5, 5, 6, 6
3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6
2, 3, 3, 3, 4, 5, 5, 6, 6
2, 3, 4, 5, 5, 5, 6, 6
2, 3, 3, 4, 5, 6, 6
5, 6, 6
2, 3, 4
6, 6
2, 3

socle layers
2, 3
6, 6
2, 3, 4
5, 6, 6
2, 3, 3, 4, 5, 6, 6
2, 3, 4, 5, 5, 5, 6, 6
2, 3, 3, 3, 4, 5, 5, 6, 6
3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6
2, 3, 3, 3, 4, 5, 5, 6, 6
2, 3, 4, 4, 5, 5, 6, 6, 6
2, 3, 4, 5, 6

## The Action Algebra

The action algebra A is the image of kG in the k-endomorphism ring of M. It's simple modules are the irreducible submodules of M.

The dimensions of the projective modules are 128, 384, 599, 384, 592, 867 .

#### The cartan matrix of A is

2, 0, 0, 0, 0, 0
0, 6, 6, 3, 4, 12
0, 6, 14, 8, 14, 15
0, 3, 8, 9, 12, 8
0, 4, 14, 12, 21, 14
0, 12, 15, 8, 14, 29

The determinant of the Cartan matrix is 2330.

#### The blocks of A consist of the following irreducible modules:

(1). 1
(2). 2, 3, 4, 5, 6

1
1

socle layers
1
1

2
4, 6
3, 6
3, 5, 6
2, 5, 6
2, 4, 6
3, 5, 6
3, 5, 6
2, 4, 6
2, 6
3, 6
3, 6
6
2

socle layers
2
6
3, 6
3, 6
2, 6
2, 4, 6
3, 5, 6
3, 5, 6
2, 4, 6
2, 5, 6
3, 5, 6
3, 6
4, 6
2

#### Projective module number 3

3
3, 5, 6
2, 3, 4, 5, 6
2, 3, 4, 5, 5, 6
3, 3, 4, 5, 5, 5, 6, 6
3, 3, 3, 4, 4, 5, 5, 6, 6, 6
2, 3, 4, 5, 5, 5, 6, 6
2, 3, 4, 5, 6
3, 4, 5, 6
3, 6
2, 6
2, 6
3

socle layers
3
6
2, 3
6, 6
2, 3, 5
3, 4, 6, 6
2, 3, 5, 5, 5
3, 3, 4, 4, 5, 6, 6, 6
2, 3, 3, 4, 5, 5, 5, 6
3, 4, 5, 5, 5, 6, 6, 6
2, 3, 3, 3, 4, 5, 6
4, 5, 5, 6, 6
2, 3, 4

4
2, 4, 5
3, 4, 5, 6
3, 4, 5, 6, 6
3, 5, 5, 6
2, 3, 3, 4, 5, 5
3, 4, 5, 5, 6, 6
3, 4, 5, 6, 6
2, 3, 4, 5
5
4

socle layers
4
5
2, 3, 4, 5
3, 4, 5, 6, 6
3, 4, 5, 5, 6, 6
2, 3, 3, 4, 5, 5
3, 5, 5, 6
3, 4, 5, 6, 6
3, 4, 5, 6
2, 4, 5
4

#### Projective module number 5

5
3, 4, 5, 6
3, 4, 5, 5, 6, 6
2, 3, 3, 4, 5, 5, 5, 6
2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6
3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6
2, 3, 3, 3, 4, 4, 5, 5, 6, 6
2, 3, 4, 5, 5, 5, 6
3, 4, 5, 6
4, 5

socle layers
5
3, 4, 5, 6
3, 4, 5, 5, 6, 6
2, 3, 3, 4, 5, 5, 5, 6
2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6
3, 3, 4, 5, 5, 5, 5, 6, 6, 6
2, 3, 3, 3, 4, 4, 5, 5, 6, 6
3, 4, 5, 5, 5, 6, 6
2, 3, 4, 4, 5, 6
4, 5

#### Projective module number 6

6
2, 3, 5, 6
2, 3, 4, 5, 5, 6, 6, 6
2, 3, 4, 4, 5, 6, 6, 6, 6
2, 3, 3, 4, 5, 5, 6, 6, 6
2, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6
2, 3, 3, 4, 4, 5, 5, 6, 6, 6
2, 3, 4, 4, 5, 6, 6, 6
2, 3, 5, 6, 6
2, 3, 6, 6
2, 3, 6, 6
2, 3, 6, 6
2

socle layers
6
3, 6
2, 3, 6
2, 2, 6, 6
2, 3, 6, 6
3, 3, 5, 5, 6, 6
2, 3, 5, 5, 6, 6
2, 2, 4, 4, 4, 6, 6, 6
2, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6
3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6
2, 3, 3, 4, 5, 6, 6, 6
2, 4, 4, 4, 5, 6, 6, 6, 6
2, 2, 3, 5, 6

The degrees of the splitting fields are 1, 1, 1, 1, 1, 1 .

## The Basic Algebra H of the Schur Algebra

The dimension of H is 958 .

The dimensions of the irreducible H-modules are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .

### The Simple modules for H correspond to the following direct summands of the module M.

Simple H-module 1 corresponds to the direct summand of M isomorphic to simple A-module 1.
Simple H-module 2 corresponds to the direct summand of M isomorphic to simple A-module 6.
Simple H-module 3 corresponds to the direct summand of M isomorphic to the nonsimple A-module 1.
Simple H-module 4 corresponds to the direct summand of M isomorphic to the nonsimple A-module 2.
Simple H-module 5 corresponds to the direct summand of M isomorphic to the nonsimple A-module 3.
Simple H-module 6 corresponds to the direct summand of M isomorphic to the nonsimple A-module 4.
Simple H-module 7 corresponds to the direct summand of M isomorphic to the nonsimple A-module 5.
Simple H-module 8 corresponds to the direct summand of M isomorphic to the nonsimple A-module 6.
Simple H-module 9 corresponds to the direct summand of M isomorphic to the nonsimple A-module 7.
Simple H-module 10 corresponds to the direct summand of M isomorphic to the nonsimple A-module 8.
Simple H-module 11 corresponds to the direct summand of M isomorphic to the nonsimple A-module 9.
Simple H-module 12 corresponds to the direct summand of M isomorphic to the nonsimple A-module 10.
Simple H-module 13 corresponds to the direct summand of M isomorphic to the nonsimple A-module 11.
Simple H-module 14 corresponds to the direct summand of M isomorphic to the nonsimple A-module 12.
Simple H-module 15 corresponds to the direct summand of M isomorphic to the nonsimple A-module 13.
Simple H-module 16 corresponds to the direct summand of M isomorphic to the nonsimple A-module 14.
Simple H-module 17 corresponds to the direct summand of M isomorphic to the nonsimple A-module 15.
Simple H-module 18 corresponds to the direct summand of M isomorphic to the nonsimple A-module 16.

The degrees of the splitting fields are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .

The dimensions of the projective modules of H are 2, 64, 34, 27, 66, 33, 19, 3, 42, 98, 60, 33, 130, 78, 8, 52, 158, 51 .

#### The cartan matrix of H is

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 6, 1, 2, 4, 3, 1, 0, 2, 8, 4, 2, 8, 6, 0, 4, 10, 3
0, 1, 6, 0, 3, 0, 0, 0, 3, 2, 0, 0, 6, 2, 0, 0, 8, 3
0, 2, 0, 2, 2, 1, 0, 0, 0, 4, 2, 1, 4, 2, 0, 2, 4, 1
0, 4, 3, 2, 7, 2, 0, 0, 2, 7, 4, 1, 10, 6, 0, 2, 12, 4
0, 3, 0, 1, 2, 3, 1, 0, 1, 4, 3, 2, 4, 3, 0, 2, 4, 0
0, 1, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 2, 1, 1, 2, 2, 0
1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 2, 3, 0, 2, 1, 2, 0, 5, 3, 2, 2, 6, 2, 1, 2, 8, 1
0, 8, 2, 4, 7, 4, 1, 0, 3, 13, 6, 3, 13, 8, 0, 6, 16, 4
0, 4, 0, 2, 4, 3, 2, 0, 2, 6, 6, 3, 8, 5, 1, 4, 8, 2
0, 2, 0, 1, 1, 2, 2, 0, 2, 3, 3, 3, 4, 2, 1, 3, 4, 0
0, 8, 6, 4, 10, 4, 2, 0, 6, 13, 8, 4, 20, 10, 1, 6, 22, 6
0, 6, 2, 2, 6, 3, 1, 0, 2, 8, 5, 2, 10, 9, 0, 4, 12, 6
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
0, 4, 0, 2, 2, 2, 2, 0, 2, 6, 4, 3, 6, 4, 1, 5, 7, 2
0, 10, 8, 4, 12, 4, 2, 0, 8, 16, 8, 4, 22, 12, 1, 7, 30, 10
0, 3, 3, 1, 4, 0, 0, 0, 1, 4, 2, 0, 6, 6, 0, 2, 10, 9

The determinant of the Cartan matrix is 1.

#### The blocks of H consist of the following irreducible modules:

(1). 1, 8
(2). 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

1
8

socle layers
1
8

#### Projective module number 2

2
6, 10, 13, 14, 17
2, 11, 16, 17, 18
5, 9, 10, 10, 12, 13, 14
2, 4, 7, 13, 16, 17, 17, 17
3, 5, 6, 9, 10, 10, 11, 13, 14, 17
2, 4, 11, 13, 16, 17, 18
10, 10, 12, 13, 13, 14
2, 5, 11, 16, 17, 17
6, 10, 13, 14, 17
2, 5, 18
14

socle layers
2
6, 10
2, 16, 17, 17
10, 10, 12, 13
2, 4, 11, 14, 16, 17
5, 6, 9, 10, 10, 13, 14, 17
2, 4, 5, 7, 13, 16, 17, 17
9, 10, 10, 11, 12, 13, 13, 18
2, 11, 11, 13, 14, 16, 17, 17
3, 5, 6, 10, 13, 13, 14, 17, 18
2, 5, 14, 17
14, 18

#### Projective module number 3

3
13, 17
3, 5, 9, 18
13, 13, 14, 17, 17
3, 3, 10, 18
2, 17
5, 9, 14, 17
13, 13, 17, 18
3, 10
17
5, 9
13, 17
3

socle layers
3
13, 17
5, 9
17
3, 10
13, 13, 17, 18
5, 9, 14, 17
2, 17
3, 3, 10, 18
13, 13, 14, 17, 17
3, 5, 9, 18
13, 17
3

4
10, 13
11, 16, 17
10, 12, 13
2, 5, 16, 17
6, 10, 14, 17
2, 4, 18
10, 13, 14
11, 17
13
5

socle layers
4
10
16, 17
10, 12, 13
11, 16, 17
2, 10, 13
4, 5, 6
2, 13, 17
10, 11
13, 14, 14, 17
5, 18

#### Projective module number 5

5
13, 14, 17
3, 10, 11, 18
2, 13, 17
4, 5, 5, 6, 9, 14, 17
2, 10, 13, 13, 13, 14, 17, 17, 18
3, 10, 10, 11, 11, 14, 16, 17, 18
10, 12, 13, 13, 17, 17
2, 5, 5, 5, 9, 16, 17
6, 10, 13, 14, 17, 17
2, 3, 4, 18
10, 13, 14
11, 17
13
5

socle layers
5
13
11, 17
10, 13, 14
2, 4
6, 10, 17
2, 5, 5, 9, 16, 17
10, 12, 13, 13, 17, 17
10, 10, 11, 11, 14, 16, 17
2, 10, 13, 13, 14, 17, 17
3, 4, 5, 5, 6, 9, 18
2, 13, 13, 14, 17, 17
3, 5, 10, 11, 18, 18
13, 13, 14, 14, 17, 17
3, 5, 18

#### Projective module number 6

6
2, 11, 12
6, 7, 10, 13, 14, 17
11, 12, 16, 17
5, 6, 9, 10
2, 4, 13
10, 13, 14, 17
11, 16, 17
10, 13
2, 5
14

socle layers
6
2
10, 12
11, 16, 17
6, 10, 13, 14, 17
2, 4, 5, 7
9, 10, 12, 13
11, 11, 16, 17
6, 10, 13, 13, 14, 17
2, 5
14

7
9, 11, 12
6, 13, 16, 17
10, 15
2, 16
12, 14
7, 17
9, 11
13

socle layers
7
12
16
9, 15
16, 17
10, 11, 12
6, 7, 13, 17
2, 9, 11
13, 14

8
1
8

socle layers
8
1
8

#### Projective module number 9

9
7, 13, 17
3, 9, 10, 11, 12
2, 13, 16, 17, 17
5, 6, 9, 10, 14, 15, 17
2, 13, 13, 16, 17, 18
3, 10, 12, 14
7, 17, 17
5, 9, 9, 11
13, 13, 17
3

socle layers
9
17
7, 10
12, 13, 17
5, 9, 16
2, 9, 15, 17
3, 10, 16, 17
10, 11, 12, 13, 13, 14, 17, 17
3, 5, 6, 7, 9, 13, 17, 18
2, 9, 11, 13, 17
3, 13, 14

#### Projective module number 10

10
2, 4, 16, 17
5, 6, 9, 10, 10, 12, 13, 14, 17
2, 2, 4, 7, 11, 13, 13, 16, 16, 17, 17, 17, 18
3, 6, 9, 10, 10, 10, 10, 10, 11, 11, 12, 13, 13, 14, 14, 17
2, 2, 4, 5, 11, 13, 13, 16, 16, 17, 17, 17, 17, 18
5, 5, 6, 9, 10, 10, 10, 12, 13, 13, 14, 14, 17
2, 2, 4, 5, 11, 13, 16, 17, 17, 17, 18
3, 6, 10, 10, 13, 13, 14, 14, 17
2, 5, 11, 17, 18
13, 14
5

socle layers
10
2, 4
6, 10, 16, 17
2, 5, 9, 10, 12, 16, 17
2, 4, 10, 12, 13, 13, 16, 17, 17, 17
6, 10, 10, 10, 10, 11, 11, 16, 17
2, 2, 4, 7, 10, 13, 13, 13, 14, 16, 17, 17, 17, 17
4, 5, 5, 6, 9, 9, 10, 10, 11, 12, 13, 13
2, 2, 11, 11, 13, 13, 14, 14, 16, 17, 17
3, 5, 5, 6, 10, 10, 11, 13, 13, 14, 17, 18, 18
2, 5, 13, 13, 14, 14, 14, 17, 17, 17
3, 5, 14, 18, 18

#### Projective module number 11

11
6, 7, 13
2, 4, 5, 9, 11, 11, 12
6, 10, 13, 13, 13, 14, 14, 16, 17, 17
10, 10, 11, 15, 16, 17, 18
2, 10, 12, 13, 16, 17
2, 5, 5, 12, 14, 16, 17
6, 7, 10, 14, 17, 17
2, 4, 9, 11, 18
10, 13, 13, 14
11, 17
13
5

socle layers
11
13
4
6, 10
2, 5, 7, 16, 17
10, 12, 12, 13, 17
10, 11, 11, 14, 16, 16, 17
2, 9, 10, 13, 13, 14, 15, 17
4, 5, 5, 6, 16, 17
2, 10, 11, 12, 13, 17
6, 7, 10, 11, 13, 17, 18
2, 9, 11, 13, 14, 14, 17
5, 13, 14, 18

#### Projective module number 12

12
6, 7, 16, 17
9, 10, 11, 12, 15
2, 4, 6, 13, 16
10, 12, 13, 14, 17
7, 11, 16, 17, 17
9, 10, 11, 13
2, 5, 13
14

socle layers
12
16, 17
6, 10
2, 4, 7, 15
9, 10, 12, 13, 16
11, 11, 12, 16, 17
6, 7, 10, 13, 13, 14, 17, 17
2, 5, 9, 11
13, 14

#### Projective module number 13

13
2, 3, 4, 5, 9, 11
6, 7, 10, 13, 13, 13, 13, 13, 14, 14, 17, 17, 17
2, 3, 3, 4, 5, 9, 10, 10, 11, 11, 11, 12, 16, 17, 18, 18
2, 10, 10, 12, 13, 13, 13, 13, 14, 14, 16, 17, 17, 17, 17
2, 5, 5, 5, 6, 9, 9, 10, 10, 11, 14, 15, 16, 16, 17, 17, 17, 18
2, 6, 10, 10, 12, 13, 13, 13, 13, 14, 16, 17, 17, 17, 17, 18
2, 2, 3, 3, 4, 5, 5, 10, 12, 14, 16, 17, 18
6, 7, 10, 10, 13, 14, 14, 17, 17, 17
2, 4, 5, 9, 9, 11, 11, 17, 18
10, 13, 13, 13, 13, 14, 17
3, 5, 11, 17
13
5

socle layers
13
11
13
2, 4, 4, 5, 9
6, 10, 10, 17
2, 3, 5, 7, 10, 16, 16, 17, 17, 17
10, 10, 12, 12, 12, 13, 13, 13, 13, 13, 17, 17
5, 9, 10, 10, 11, 11, 11, 14, 14, 16, 16, 16, 17, 17
2, 2, 2, 9, 10, 10, 13, 13, 13, 14, 14, 15, 17, 17, 17, 17
3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 9, 10, 16, 17, 18
2, 2, 10, 11, 12, 13, 13, 13, 13, 14, 17, 17, 17, 17
3, 5, 6, 7, 9, 10, 10, 11, 11, 13, 13, 17, 18, 18, 18
2, 9, 11, 13, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17
3, 3, 5, 5, 13, 14, 18, 18

#### Projective module number 14

14
2, 5, 18
6, 10, 13, 13, 14, 14, 17, 17
2, 3, 11, 11, 16, 17, 18, 18
5, 9, 10, 10, 12, 13, 13, 14
2, 4, 5, 7, 13, 16, 17, 17, 17
3, 5, 6, 9, 10, 10, 11, 13, 14, 14, 17, 17
2, 4, 11, 13, 16, 17, 18, 18
10, 10, 12, 13, 13, 14
2, 5, 11, 16, 17, 17
6, 10, 13, 14, 17
2, 5, 18
14

socle layers
14
2, 5
6, 10, 13
2, 11, 16, 17, 17
10, 10, 12, 13, 13, 14, 18
2, 4, 11, 14, 16, 17, 17
5, 5, 6, 9, 10, 10, 13, 14, 17
2, 4, 5, 7, 13, 16, 17, 17
3, 9, 10, 10, 11, 12, 13, 13, 14, 18, 18
2, 11, 11, 13, 14, 16, 17, 17, 17
3, 5, 6, 10, 13, 13, 14, 17, 18, 18
2, 5, 14, 17
14, 18

15
16
12
7, 17
9, 11
13

socle layers
15
16
12
7, 17
9, 11
13

#### Projective module number 16

16
10, 12, 15
2, 4, 7, 16, 16, 17
6, 9, 10, 10, 11, 12, 13, 14, 17
2, 4, 7, 11, 13, 16, 17, 17, 18
9, 10, 10, 11, 12, 13, 13, 14
2, 5, 11, 13, 16, 17, 17
6, 10, 13, 14, 17
2, 5, 18
14

socle layers
16
10, 12
2, 4, 16, 17
6, 10, 10
2, 4, 7, 13, 15, 16, 17, 17
9, 10, 10, 11, 12, 13, 16
2, 11, 11, 12, 13, 14, 16, 17
5, 6, 7, 10, 13, 13, 14, 17, 17, 18
2, 5, 9, 11, 14, 17
13, 14, 18

#### Projective module number 17

17
2, 3, 5, 9, 10, 12, 18
2, 4, 6, 7, 10, 13, 13, 13, 14, 14, 16, 17, 17, 17, 17, 17, 17
3, 3, 5, 6, 9, 9, 10, 10, 10, 11, 11, 13, 14, 15, 16, 17, 17, 18, 18, 18
2, 2, 2, 4, 5, 9, 10, 11, 12, 13, 13, 13, 13, 16, 16, 17, 17, 17, 18
2, 3, 4, 5, 5, 9, 10, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 17, 17, 17
2, 3, 5, 6, 7, 10, 11, 13, 13, 13, 13, 14, 14, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18
3, 5, 5, 6, 9, 9, 10, 10, 10, 11, 11, 13, 14, 16, 17, 17, 18, 18
2, 2, 4, 5, 10, 13, 13, 13, 17, 17, 18
2, 3, 5, 5, 9, 10, 13, 14, 14
11, 13, 14, 17, 17, 17
3, 13, 18
5

socle layers
17
10
2, 2, 4, 5, 9
6, 10, 10, 13, 17, 17
2, 5, 9, 10, 11, 12, 16, 16, 17, 17, 18
3, 10, 10, 12, 13, 13, 13, 13, 14, 14, 16, 17, 17, 17, 17, 17, 17
2, 4, 5, 5, 6, 9, 10, 10, 10, 11, 11, 13, 16, 17, 17
2, 2, 2, 4, 5, 7, 9, 10, 10, 13, 13, 13, 14, 15, 17, 17, 17
3, 3, 4, 5, 5, 6, 9, 9, 10, 10, 11, 12, 13, 16, 16, 17, 18, 18, 18
2, 10, 11, 11, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 16, 17, 17, 17, 17, 17, 17, 17
2, 3, 3, 3, 5, 5, 5, 6, 7, 9, 10, 10, 11, 13, 13, 14, 17, 17, 18, 18, 18, 18
2, 5, 9, 11, 13, 13, 13, 14, 14, 14, 17, 17, 17, 17
3, 3, 5, 13, 14, 18, 18

#### Projective module number 18

18
14, 17
2, 3, 5, 18, 18
10, 13, 13, 14, 14, 17, 17, 17
3, 11, 16, 17, 18, 18, 18
5, 9, 10, 13
2, 4, 5, 13, 17
3, 10, 13, 14, 14, 17, 17
11, 16, 17, 18, 18
10, 13
2, 5
14, 17
18

socle layers
18
14, 17
2, 5
10, 13
11, 16, 17, 18, 18
3, 10, 13, 14, 14, 17, 17
2, 4, 5, 13, 17
5, 9, 10, 13
3, 11, 16, 17, 18, 18, 18
10, 13, 13, 14, 14, 17, 17, 17
2, 3, 5, 18, 18
14, 17
18

### A presentation for H is the quotient of a polynomial ring P in noncommuting variables b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 , b_8 , b_9 , b_10 , b_11 , b_12 , b_13 , b_14 , b_15 , b_16 , b_17 , b_18 , z_1 , z_2 , z_3 , z_4 , z_5 , z_6 , z_7 , z_8 , z_9 , z_10 , z_11 , z_12 , z_13 , z_14 , z_15 , z_16 , z_17 , z_18 , z_19 , z_20 , z_21 , z_22 , z_23 , z_24 , z_25 , z_26 , z_27 , z_28 , z_29 , z_30 , z_31 , z_32 , z_33 , z_34 , z_35 , z_36 , z_37 , z_38 , z_39 , z_40 , z_41 , z_42 , z_43 , z_44 , z_45 , z_46 , z_47 , z_48 , z_49 , z_50 , z_51 , z_52 , z_53 , z_54 , z_55 , z_56 , by an ideal of relations.

The generators designated by a subscripted 'b' are generators for subspaces determined by primitive idempotents. The generators given by subscripted 'z' are generators for the radical.

A Groebner basis for the ideal of relation consists of the elements:
z_8*z_54*z_56*z_52*z_27*z_51 + z_7*z_36*z_8*z_51 + z_8*z_50*z_11*z_39 ,
z_8*z_54*z_56*z_54*z_56*z_54 + z_8*z_54*z_55*z_43 + z_8*z_54*z_56*z_54 ,
z_29*z_19*z_33*z_47*z_44*z_46 + z_30*z_37*z_9*z_27*z_53 + z_28*z_16 ,
z_33*z_47*z_44*z_46*z_32*z_18 + z_34*z_52*z_25*z_10*z_40 + z_31*z_15 ,
z_40*z_29*z_19*z_33*z_47*z_44 + z_39*z_23*z_52*z_26 ,
z_40*z_30*z_37*z_9*z_27*z_53 + z_39*z_23*z_53 + z_40*z_28*z_16 + z_40*z_29*z_19 ,
z_40*z_30*z_37*z_9*z_27*z_54 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_43*z_56*z_54*z_56*z_54*z_55 + z_42*z_13*z_50*z_12 ,
z_46*z_34*z_52*z_25*z_10*z_40 + z_46*z_31*z_15 ,
z_54*z_56*z_54*z_56*z_54*z_55 ,
z_3*z_27*z_50*z_12*z_42 + z_3*z_27*z_50 + z_4*z_38 ,
z_4*z_37*z_9*z_27*z_52 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 ,
z_4*z_37*z_9*z_27*z_53 + z_2*z_16 + z_6*z_53 ,
z_4*z_37*z_9*z_27*z_54 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_4*z_40*z_30*z_37*z_9 + z_6*z_48*z_3 ,
z_4*z_40*z_30*z_37*z_10 + z_2*z_14*z_4 + z_4*z_37*z_10 + z_4*z_38*z_11 + z_4*z_40*z_30 + z_6*z_48*z_4 + z_6*z_51*z_22 ,
z_6*z_52*z_26*z_45*z_25 ,
z_6*z_52*z_26*z_45*z_27 ,
z_6*z_53*z_31*z_15*z_30 + z_6*z_48*z_4 ,
z_6*z_53*z_32*z_18*z_30 + z_2*z_14*z_4 + z_4*z_37*z_10 + z_4*z_40*z_30 + z_5*z_42*z_11 + z_6*z_51*z_22 ,
z_6*z_53*z_34*z_48*z_5 + z_3*z_27*z_50*z_12 + z_4*z_35*z_5 + z_5*z_42*z_12 + z_6*z_48*z_5 ,
z_6*z_53*z_34*z_52*z_25 + z_4*z_40*z_30*z_37 ,
z_6*z_53*z_34*z_52*z_26 + z_2*z_16*z_33 + z_6*z_53*z_33 ,
z_6*z_53*z_34*z_52*z_27 + z_6*z_48*z_3*z_27 ,
z_8*z_51*z_23*z_49*z_7 + z_7*z_36*z_7 + z_7*z_38*z_11 + z_8*z_51*z_22 ,
z_8*z_51*z_23*z_49*z_8 + z_8*z_54*z_56*z_52*z_27 + z_8*z_54*z_56*z_54*z_56 ,
z_8*z_51*z_23*z_52*z_27 + z_8*z_54*z_56*z_52*z_27 + z_7*z_36*z_8 + z_7*z_38*z_13 + z_8*z_50*z_13 ,
z_8*z_54*z_55*z_43*z_56 + z_8*z_54*z_56*z_54*z_56 + z_7*z_38*z_13 + z_8*z_50*z_13 ,
z_8*z_54*z_56*z_48*z_3 + z_8*z_54*z_56*z_52 ,
z_8*z_54*z_56*z_48*z_5 + z_8*z_54*z_56*z_54*z_55 ,
z_8*z_54*z_56*z_49*z_8 + z_8*z_54*z_56*z_52*z_27 ,
z_8*z_54*z_56*z_52*z_26 ,
z_9*z_27*z_48*z_4*z_40 + z_10*z_40*z_28*z_15 ,
z_9*z_27*z_52*z_25*z_10 + z_9*z_27*z_48*z_4 ,
z_9*z_27*z_52*z_27*z_50 + z_9*z_27*z_50 + z_10*z_38 ,
z_9*z_27*z_52*z_27*z_52 ,
z_9*z_27*z_53*z_34*z_48 ,
z_9*z_27*z_53*z_34*z_51 ,
z_9*z_27*z_53*z_34*z_52 + z_9*z_27*z_52 ,
z_10*z_38*z_13*z_52*z_27 + z_9*z_27*z_52*z_27 ,
z_10*z_40*z_28*z_15*z_30 + z_9*z_27*z_48*z_4 + z_10*z_35*z_4 ,
z_11*z_35*z_3*z_27*z_50 + z_13*z_54*z_56*z_50 + z_11*z_38 ,
z_11*z_35*z_3*z_27*z_52 + z_13*z_52*z_26*z_45 + z_12*z_41*z_3 + z_13*z_48*z_3 ,
z_12*z_42*z_11*z_40*z_30 + z_11*z_39*z_22 + z_12*z_41*z_4 + z_13*z_48*z_4 + z_13*z_49*z_7 ,
z_12*z_42*z_13*z_48*z_2 + z_13*z_48*z_6*z_53*z_31 ,
z_12*z_42*z_13*z_48*z_3 ,
z_12*z_42*z_13*z_48*z_4 + z_11*z_38*z_11 ,
z_12*z_42*z_13*z_48*z_5 + z_12*z_41*z_5 + z_13*z_48*z_5 + z_13*z_50*z_12 ,
z_12*z_42*z_13*z_48*z_6 + z_13*z_50*z_13 ,
z_13*z_48*z_6*z_51*z_22 + z_13*z_54*z_56*z_50*z_11 + z_12*z_41*z_4 + z_13*z_48*z_4 ,
z_13*z_52*z_26*z_45*z_25 + z_11*z_37 ,
z_13*z_52*z_26*z_45*z_27 + z_13*z_48*z_3*z_27 + z_11*z_35*z_6 + z_12*z_42*z_13 + z_13*z_54*z_56 ,
z_13*z_52*z_27*z_50*z_11 + z_13*z_54*z_56*z_50*z_11 + z_12*z_41*z_4 + z_13*z_49*z_7 ,
z_13*z_52*z_27*z_50*z_12 + z_12*z_41*z_5 + z_13*z_50*z_12 + z_13*z_54*z_55 ,
z_13*z_52*z_27*z_50*z_13 + z_13*z_48*z_3*z_27 + z_11*z_39*z_23 + z_12*z_42*z_13 + z_13*z_48*z_6 + z_13*z_49*z_8 + z_13*z_50*z_13 ,
z_13*z_54*z_55*z_43*z_56 + z_13*z_49*z_8 + z_13*z_54*z_56 ,
z_13*z_54*z_56*z_49*z_7 ,
z_13*z_54*z_56*z_49*z_8 ,
z_13*z_54*z_56*z_50*z_12 + z_13*z_50*z_12 ,
z_13*z_54*z_56*z_50*z_13 + z_13*z_49*z_8 + z_13*z_54*z_56 ,
z_13*z_54*z_56*z_54*z_55 + z_13*z_50*z_12 ,
z_13*z_54*z_56*z_54*z_56 + z_13*z_49*z_8 + z_13*z_54*z_56 ,
z_16*z_31*z_14*z_3*z_27 + z_16*z_34*z_52*z_27 ,
z_16*z_34*z_52*z_27*z_50 + z_14*z_5*z_42 + z_15*z_30*z_38 ,
z_22*z_35*z_3*z_27*z_50 + z_23*z_52*z_27*z_50 + z_22*z_38 ,
z_22*z_35*z_3*z_27*z_52 ,
z_23*z_49*z_8*z_51*z_22 + z_22*z_38*z_11 + z_23*z_49*z_7 ,
z_23*z_49*z_8*z_54*z_56 + z_22*z_35*z_6 + z_23*z_49*z_8 ,
z_23*z_52*z_27*z_50*z_11 + z_23*z_49*z_7 ,
z_23*z_52*z_27*z_50*z_12 + z_23*z_48*z_5 ,
z_23*z_52*z_27*z_50*z_13 + z_22*z_35*z_6 + z_22*z_38*z_13 + z_23*z_49*z_8 ,
z_23*z_52*z_27*z_51*z_22 + z_22*z_35*z_4 + z_22*z_38*z_11 ,
z_23*z_52*z_27*z_51*z_23 + z_22*z_38*z_13 ,
z_23*z_53*z_33*z_47*z_44 + z_23*z_52*z_26 ,
z_23*z_53*z_34*z_52*z_25 ,
z_23*z_53*z_34*z_52*z_26 ,
z_23*z_53*z_34*z_52*z_27 + z_21*z_19*z_34 + z_23*z_53*z_34 ,
z_24*z_6*z_51*z_22*z_38 + z_27*z_50*z_13*z_50 ,
z_25*z_10*z_38*z_13*z_52 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_25*z_10*z_40*z_28*z_15 + z_27*z_48*z_4*z_40 + z_27*z_53*z_31*z_15 ,
z_26*z_45*z_24*z_4*z_38 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 + z_24*z_4*z_38 + z_24*z_5*z_42 ,
z_26*z_45*z_24*z_5*z_43 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_26*z_45*z_24*z_6*z_54 + z_27*z_54*z_56*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_26*z_45*z_25*z_10*z_40 + z_27*z_50*z_11*z_40 + z_27*z_53*z_32*z_18 + z_24*z_4*z_40 ,
z_27*z_50*z_11*z_40*z_30 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_40*z_30 + z_26*z_45*z_25*z_10 + z_27*z_50*z_11 + z_27*z_51*z_22 + z_24*z_4 ,
z_27*z_50*z_12*z_42*z_11 + z_25*z_10*z_35*z_4 ,
z_27*z_50*z_12*z_42*z_12 + z_27*z_48*z_5 + z_27*z_50*z_12 ,
z_27*z_50*z_13*z_52*z_27 + z_24*z_3*z_27 + z_25*z_9*z_27 + z_26*z_45*z_27 + z_27*z_52*z_27 + z_27*z_54*z_56 ,
z_27*z_51*z_23*z_49*z_7 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 ,
z_27*z_51*z_23*z_49*z_8 + z_27*z_54*z_56 ,
z_27*z_51*z_23*z_52*z_27 + z_24*z_6*z_52*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_24*z_3*z_27 + z_25*z_9*z_27 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 ,
z_27*z_52*z_24*z_5*z_42 + z_27*z_50*z_12*z_42 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 ,
z_27*z_52*z_24*z_6*z_54 ,
z_27*z_52*z_25*z_10*z_35 + z_27*z_53*z_34*z_48 ,
z_27*z_52*z_25*z_10*z_38 + z_27*z_50*z_12*z_42 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 ,
z_27*z_52*z_25*z_10*z_40 + z_27*z_53*z_31*z_15 ,
z_27*z_52*z_26*z_45*z_25 + z_24*z_4*z_37 ,
z_27*z_52*z_26*z_45*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 ,
z_27*z_52*z_27*z_50*z_11 + z_25*z_10*z_35*z_4 ,
z_27*z_52*z_27*z_50*z_12 + z_24*z_5*z_42*z_12 + z_25*z_10*z_38*z_12 + z_27*z_48*z_5 + z_27*z_50*z_12 ,
z_27*z_52*z_27*z_50*z_13 + z_27*z_54*z_56 ,
z_27*z_52*z_27*z_52*z_26 ,
z_27*z_52*z_27*z_52*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 ,
z_27*z_53*z_31*z_15*z_30 + z_27*z_52*z_24*z_4 ,
z_27*z_53*z_32*z_18*z_30 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_35*z_4 + z_25*z_10*z_40*z_30 + z_26*z_45*z_25*z_10 + z_27*z_52*z_25*z_10 + z_27*z_48*z_4 + z_27*z_50*z_11 + z_27*z_51*z_22 + z_24*z_4 ,
z_27*z_53*z_32*z_19*z_31 + z_26*z_45*z_24*z_2 + z_27*z_53*z_31 ,
z_27*z_53*z_34*z_48*z_5 + z_24*z_5*z_42*z_12 + z_25*z_10*z_38*z_12 ,
z_27*z_53*z_34*z_51*z_22 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_35*z_4 + z_25*z_10*z_40*z_30 + z_26*z_45*z_25*z_10 + z_27*z_52*z_25*z_10 + z_27*z_48*z_4 + z_27*z_50*z_11 + z_27*z_51*z_22 + z_24*z_4 ,
z_27*z_53*z_34*z_51*z_23 + z_27*z_52*z_24*z_6 ,
z_27*z_53*z_34*z_52*z_25 + z_27*z_52*z_25 ,
z_27*z_53*z_34*z_52*z_26 + z_24*z_3*z_26 + z_25*z_9*z_26 + z_26*z_45*z_26 + z_27*z_52*z_26 + z_27*z_53*z_33 ,
z_27*z_53*z_34*z_52*z_27 + z_24*z_6*z_52*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_26*z_45*z_27 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 + z_27*z_52*z_27 + z_27*z_54*z_56 ,
z_27*z_54*z_56*z_54*z_55 ,
z_27*z_54*z_56*z_54*z_56 ,
z_30*z_35*z_3*z_27*z_50 + z_30*z_35*z_5*z_42 ,
z_30*z_35*z_3*z_27*z_52 + z_30*z_38*z_11*z_35*z_3 ,
z_30*z_35*z_6*z_52*z_24 + z_30*z_38*z_11*z_35 + z_30*z_38*z_13*z_48 ,
z_30*z_37*z_9*z_27*z_52 + z_30*z_35*z_6*z_52 ,
z_30*z_38*z_11*z_40*z_30 + z_30*z_39*z_22*z_35*z_4 + z_28*z_15*z_30 + z_30*z_35*z_4 + z_30*z_37*z_10 + z_30*z_38*z_11 + z_30*z_39*z_22 ,
z_30*z_38*z_12*z_42*z_12 + z_30*z_38*z_13*z_54*z_55 + z_30*z_39*z_22*z_35*z_5 ,
z_30*z_38*z_13*z_48*z_2 + z_28*z_16*z_31 ,
z_30*z_38*z_13*z_48*z_3 ,
z_30*z_38*z_13*z_48*z_4 + z_30*z_39*z_22*z_35*z_4 + z_28*z_15*z_30 + z_30*z_35*z_4 ,
z_30*z_38*z_13*z_52*z_27 + z_30*z_35*z_3*z_27 + z_29*z_19*z_34 + z_30*z_39*z_23 ,
z_30*z_38*z_13*z_54*z_56 ,
z_30*z_39*z_22*z_35*z_3 ,
z_30*z_39*z_22*z_35*z_6 ,
z_30*z_39*z_23*z_52*z_26 ,
z_30*z_39*z_23*z_52*z_27 + z_29*z_19*z_34 + z_30*z_39*z_23 ,
z_33*z_47*z_44*z_46*z_34 + z_31*z_14*z_3*z_27 + z_34*z_52*z_27 ,
z_34*z_52*z_25*z_10*z_35 + z_34*z_48 ,
z_34*z_52*z_25*z_10*z_38 + z_34*z_52*z_27*z_50 ,
z_34*z_52*z_26*z_45*z_25 ,
z_34*z_52*z_26*z_45*z_27 ,
z_34*z_52*z_27*z_50*z_11 ,
z_34*z_52*z_27*z_50*z_12 + z_34*z_48*z_5 ,
z_34*z_52*z_27*z_50*z_13 ,
z_35*z_3*z_27*z_50*z_12 + z_36*z_8*z_54*z_55 + z_38*z_12*z_42*z_12 + z_38*z_13*z_48*z_5 + z_39*z_22*z_35*z_5 ,
z_36*z_8*z_54*z_55*z_43 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_36*z_8*z_54*z_56*z_48 ,
z_36*z_8*z_54*z_56*z_49 + z_35*z_6*z_49 ,
z_36*z_8*z_54*z_56*z_52 ,
z_36*z_8*z_54*z_56*z_54 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_37*z_9*z_27*z_52*z_25 + z_40*z_30*z_35*z_4*z_37 + z_35*z_4*z_37 ,
z_37*z_9*z_27*z_52*z_27 + z_40*z_30*z_37*z_9*z_27 + z_35*z_6*z_52*z_27 + z_38*z_13*z_52*z_27 + z_39*z_23*z_52*z_27 + z_35*z_3*z_27 ,
z_37*z_9*z_27*z_53*z_33 + z_40*z_30*z_37*z_9*z_26 + z_39*z_23*z_52*z_26 + z_40*z_28*z_16*z_33 + z_35*z_3*z_26 ,
z_37*z_9*z_27*z_53*z_34 + z_40*z_30*z_37*z_9*z_27 + z_36*z_8*z_54*z_56 + z_38*z_13*z_54*z_56 + z_39*z_23*z_49*z_8 + z_39*z_23*z_52*z_27 + z_40*z_30*z_38*z_13 + z_40*z_30*z_39*z_23 + z_35*z_6 + z_36*z_8 ,
z_38*z_11*z_35*z_3*z_27 + z_40*z_30*z_37*z_9*z_27 + z_35*z_6*z_52*z_27 + z_38*z_13*z_52*z_27 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 + z_39*z_23*z_52*z_27 + z_35*z_3*z_27 ,
z_38*z_13*z_48*z_2*z_15 + z_37*z_10*z_40 + z_38*z_11*z_40 + z_40*z_29*z_18 ,
z_38*z_13*z_48*z_3*z_26 ,
z_38*z_13*z_48*z_3*z_27 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 ,
z_38*z_13*z_48*z_4*z_38 + z_39*z_23*z_52*z_27*z_50 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_38*z_11*z_38 + z_39*z_22*z_38 ,
z_38*z_13*z_48*z_4*z_40 + z_37*z_10*z_40 + z_38*z_11*z_40 + z_40*z_29*z_18 ,
z_38*z_13*z_48*z_6*z_51 + z_36*z_8*z_51 + z_38*z_11*z_39 ,
z_38*z_13*z_48*z_6*z_52 + z_38*z_11*z_35*z_3 + z_38*z_13*z_48*z_3 ,
z_38*z_13*z_48*z_6*z_53 ,
z_38*z_13*z_49*z_7*z_36 + z_39*z_23*z_52*z_27*z_49 + z_36*z_7*z_36 + z_38*z_13*z_49 + z_39*z_23*z_49 ,
z_38*z_13*z_52*z_27*z_50 + z_39*z_23*z_52*z_27*z_50 + z_35*z_5*z_42 + z_36*z_8*z_50 + z_39*z_22*z_38 ,
z_38*z_13*z_54*z_55*z_43 + z_39*z_23*z_49*z_8*z_54 + z_37*z_9*z_27*z_54 ,
z_38*z_13*z_54*z_56*z_49 + z_39*z_23*z_52*z_27*z_49 ,
z_38*z_13*z_54*z_56*z_50 + z_39*z_23*z_52*z_27*z_50 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_38*z_11*z_38 + z_39*z_22*z_38 ,
z_38*z_13*z_54*z_56*z_54 + z_39*z_23*z_49*z_8*z_54 ,
z_39*z_22*z_35*z_3*z_27 + z_40*z_30*z_35*z_3*z_27 + z_40*z_30*z_37*z_9*z_27 + z_38*z_13*z_52*z_27 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 + z_39*z_23*z_52*z_27 + z_35*z_3*z_27 ,
z_39*z_23*z_49*z_7*z_36 + z_35*z_6*z_49 + z_36*z_7*z_36 + z_38*z_13*z_49 + z_39*z_23*z_49 ,
z_39*z_23*z_49*z_8*z_51 + z_36*z_8*z_51 + z_38*z_11*z_39 ,
z_39*z_23*z_52*z_27*z_51 + z_35*z_6*z_51 + z_38*z_11*z_39 ,
z_40*z_29*z_19*z_31*z_15 + z_39*z_21*z_18 + z_40*z_29*z_18 ,
z_40*z_30*z_35*z_5*z_42 + z_35*z_3*z_27*z_50 + z_35*z_5*z_42 ,
z_40*z_30*z_35*z_6*z_51 + z_39*z_21*z_17 + z_40*z_30*z_39 ,
z_40*z_30*z_35*z_6*z_52 + z_35*z_3*z_27*z_52 + z_38*z_11*z_35*z_3 + z_39*z_22*z_35*z_3 ,
z_40*z_30*z_38*z_11*z_35 + z_35*z_6*z_52*z_24 + z_37*z_10*z_35 + z_38*z_11*z_35 + z_39*z_22*z_35 + z_39*z_23*z_48 ,
z_40*z_30*z_38*z_11*z_38 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_38*z_11*z_38 ,
z_40*z_30*z_38*z_12*z_42 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_36*z_8*z_50 + z_38*z_11*z_38 + z_39*z_22*z_38 ,
z_40*z_30*z_38*z_13*z_48 + z_35*z_6*z_52*z_24 + z_38*z_11*z_35 + z_38*z_13*z_48 ,
z_40*z_30*z_38*z_13*z_52 + z_40*z_30*z_39*z_23*z_52 + z_35*z_3*z_27*z_52 + z_37*z_9*z_27*z_52 + z_38*z_11*z_35*z_3 + z_39*z_22*z_35*z_3 + z_35*z_6*z_52 ,
z_40*z_30*z_38*z_13*z_54 + z_35*z_6*z_54 + z_36*z_8*z_54 ,
z_40*z_30*z_39*z_22*z_35 + z_39*z_23*z_48 ,
z_41*z_6*z_52*z_26*z_45 + z_42*z_13*z_48*z_6*z_52 + z_42*z_11*z_35*z_3 + z_41*z_6*z_52 + z_42*z_13*z_52 ,
z_41*z_6*z_53*z_31*z_15 + z_42*z_13*z_48*z_4*z_40 ,
z_41*z_6*z_53*z_32*z_18 + z_42*z_13*z_48*z_4*z_40 + z_43*z_56*z_50*z_11*z_40 + z_41*z_2*z_15 + z_41*z_4*z_40 ,
z_42*z_12*z_42*z_11*z_40 + z_42*z_13*z_48*z_4*z_40 + z_41*z_2*z_15 + z_41*z_4*z_40 ,
z_42*z_12*z_42*z_13*z_48 + z_41*z_6*z_48 + z_42*z_11*z_35 + z_42*z_12*z_41 ,
z_42*z_13*z_48*z_2*z_15 + z_42*z_13*z_48*z_4*z_40 ,
z_42*z_13*z_48*z_3*z_26 + z_41*z_6*z_52*z_26 + z_42*z_13*z_52*z_26 ,
z_42*z_13*z_48*z_3*z_27 + z_42*z_11*z_39*z_23 + z_42*z_12*z_42*z_13 + z_42*z_13*z_48*z_6 + z_43*z_56*z_49*z_8 ,
z_42*z_13*z_48*z_4*z_38 + z_42*z_13*z_50 ,
z_42*z_13*z_48*z_6*z_51 ,
z_42*z_13*z_48*z_6*z_53 + z_41*z_2*z_16 + z_41*z_6*z_53 ,
z_42*z_13*z_52*z_26*z_45 + z_42*z_13*z_48*z_3 + z_41*z_6*z_52 + z_42*z_13*z_52 ,
z_42*z_13*z_52*z_27*z_50 + z_41*z_5*z_42 + z_42*z_13*z_50 + z_43*z_56*z_50 ,
z_43*z_56*z_49*z_8*z_54 + z_43*z_56*z_54*z_56*z_54 + z_42*z_12*z_43 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_43*z_56*z_50*z_13*z_49 + z_42*z_13*z_49 + z_43*z_56*z_49 ,
z_43*z_56*z_50*z_13*z_54 + z_42*z_13*z_54 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_43*z_56*z_54*z_55*z_42 + z_42*z_13*z_50 ,
z_43*z_56*z_54*z_55*z_43 + z_42*z_13*z_54 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_43*z_56*z_54*z_56*z_49 + z_42*z_13*z_49 + z_43*z_56*z_49 ,
z_43*z_56*z_54*z_56*z_50 + z_42*z_13*z_50 ,
z_43*z_56*z_54*z_56*z_52 ,
z_44*z_46*z_34*z_51*z_23 ,
z_45*z_24*z_6*z_54*z_56 + z_45*z_27*z_50*z_13 ,
z_45*z_25*z_10*z_40*z_28 + z_45*z_24*z_2 + z_46*z_31 ,
z_45*z_25*z_10*z_40*z_30 + z_46*z_34*z_52*z_25*z_10 + z_45*z_27*z_51*z_22 + z_45*z_24*z_4 ,
z_45*z_27*z_50*z_12*z_42 ,
z_45*z_27*z_50*z_13*z_50 ,
z_45*z_27*z_50*z_13*z_52 ,
z_46*z_34*z_52*z_26*z_45 + z_45*z_27*z_52 ,
z_46*z_34*z_52*z_27*z_50 + z_45*z_24*z_4*z_38 + z_45*z_27*z_50 ,
z_47*z_44*z_46*z_34*z_51 + z_45*z_27*z_51 ,
z_48*z_6*z_48*z_3*z_27 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_53*z_34 + z_52*z_27*z_54*z_56 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 ,
z_48*z_6*z_51*z_22*z_38 + z_53*z_34*z_52*z_27*z_50 + z_48*z_4*z_38 + z_50*z_12*z_42 + z_54*z_55*z_42 ,
z_48*z_6*z_53*z_31*z_15 + z_52*z_27*z_48*z_4*z_40 ,
z_49*z_8*z_51*z_22*z_38 ,
z_49*z_8*z_54*z_56*z_48 + z_48*z_4*z_35 ,
z_49*z_8*z_54*z_56*z_49 + z_52*z_27*z_49 ,
z_49*z_8*z_54*z_56*z_52 ,
z_49*z_8*z_54*z_56*z_54 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 + z_54*z_55*z_43 + z_54*z_56*z_54 ,
z_50*z_12*z_42*z_11*z_40 + z_52*z_27*z_48*z_4*z_40 + z_48*z_2*z_15 + z_48*z_4*z_40 ,
z_50*z_13*z_52*z_27*z_50 + z_48*z_4*z_38 + z_50*z_12*z_42 + z_50*z_13*z_50 + z_51*z_22*z_38 + z_54*z_56*z_50 ,
z_51*z_22*z_35*z_3*z_27 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_26*z_45*z_27 + z_52*z_27*z_53*z_34 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 + z_54*z_56*z_52*z_27 ,
z_51*z_23*z_49*z_7*z_36 + z_48*z_6*z_49 + z_50*z_13*z_49 + z_51*z_23*z_49 + z_54*z_56*z_49 ,
z_51*z_23*z_49*z_8*z_51 + z_54*z_56*z_52*z_27*z_51 ,
z_51*z_23*z_49*z_8*z_54 + z_54*z_56*z_54*z_56*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 ,
z_51*z_23*z_52*z_27*z_49 + z_54*z_56*z_50*z_13*z_49 + z_48*z_6*z_49 ,
z_51*z_23*z_52*z_27*z_50 + z_50*z_13*z_50 + z_51*z_22*z_38 + z_54*z_55*z_42 + z_54*z_56*z_50 ,
z_51*z_23*z_52*z_27*z_51 + z_50*z_11*z_39 ,
z_52*z_24*z_5*z_42*z_12 + z_50*z_12*z_42*z_12 + z_51*z_22*z_35*z_5 + z_54*z_56*z_54*z_55 ,
z_52*z_24*z_6*z_54*z_56 + z_49*z_8*z_54*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_52*z_27 ,
z_52*z_25*z_10*z_35*z_4 + z_48*z_5*z_42*z_11 + z_50*z_12*z_42*z_11 + z_54*z_55*z_42*z_11 ,
z_52*z_25*z_10*z_35*z_5 + z_50*z_12*z_42*z_12 + z_51*z_22*z_35*z_5 + z_52*z_27*z_50*z_12 + z_53*z_34*z_48*z_5 + z_54*z_56*z_48*z_5 + z_54*z_56*z_50*z_12 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_52*z_25*z_10*z_38*z_12 + z_50*z_12*z_42*z_12 + z_51*z_22*z_35*z_5 + z_54*z_56*z_54*z_55 ,
z_52*z_25*z_10*z_38*z_13 + z_49*z_8*z_54*z_56 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_48*z_6 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_52*z_27*z_53*z_34 + z_52*z_27*z_54*z_56 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 + z_54*z_56*z_49*z_8 + z_54*z_56*z_52*z_27 ,
z_52*z_25*z_10*z_40*z_28 + z_48*z_6*z_53*z_31 + z_53*z_32*z_19*z_31 ,
z_52*z_25*z_10*z_40*z_30 + z_48*z_6*z_51*z_22 + z_49*z_8*z_51*z_22 + z_50*z_12*z_42*z_11 + z_51*z_22*z_35*z_4 + z_52*z_27*z_48*z_4 + z_52*z_27*z_50*z_11 + z_52*z_27*z_51*z_22 + z_53*z_32*z_18*z_30 + z_53*z_34*z_51*z_22 + z_54*z_56*z_49*z_7 + z_52*z_24*z_4 ,
z_52*z_26*z_45*z_25*z_10 + z_48*z_5*z_42*z_11 + z_48*z_6*z_51*z_22 + z_51*z_22*z_35*z_4 + z_54*z_56*z_49*z_7 ,
z_52*z_27*z_50*z_11*z_40 + z_48*z_4*z_40 + z_51*z_22*z_40 + z_53*z_31*z_15 + z_53*z_32*z_18 ,
z_52*z_27*z_50*z_12*z_42 + z_53*z_34*z_52*z_27*z_50 + z_48*z_4*z_38 + z_48*z_5*z_42 ,
z_52*z_27*z_50*z_13*z_50 + z_53*z_34*z_52*z_27*z_50 + z_48*z_4*z_38 + z_50*z_12*z_42 + z_54*z_55*z_42 ,
z_52*z_27*z_50*z_13*z_52 + z_48*z_6*z_48*z_3 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_50*z_13*z_52 + z_51*z_23*z_52 + z_52*z_24*z_3 + z_52*z_25*z_9 + z_52*z_26*z_45 + z_54*z_56*z_52 ,
z_52*z_27*z_51*z_23*z_49 + z_48*z_6*z_49 + z_49*z_7*z_36 + z_52*z_27*z_49 ,
z_52*z_27*z_51*z_23*z_52 + z_48*z_6*z_48*z_3 + z_51*z_22*z_35*z_3 + z_52*z_27*z_48*z_3 + z_52*z_24*z_3 + z_52*z_25*z_9 + z_54*z_56*z_52 ,
z_52*z_27*z_52*z_26*z_45 + z_48*z_6*z_48*z_3 + z_51*z_22*z_35*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_50*z_13*z_52 + z_51*z_23*z_52 + z_52*z_26*z_45 ,
z_52*z_27*z_52*z_27*z_50 + z_48*z_5*z_42 + z_50*z_12*z_42 + z_54*z_55*z_42 ,
z_52*z_27*z_52*z_27*z_52 + z_48*z_6*z_48*z_3 ,
z_52*z_27*z_53*z_34*z_48 ,
z_52*z_27*z_53*z_34*z_51 + z_53*z_32*z_17 + z_53*z_34*z_51 ,
z_52*z_27*z_53*z_34*z_52 + z_52*z_27*z_48*z_3 + z_52*z_27*z_52 ,
z_52*z_27*z_54*z_56*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 ,
z_53*z_31*z_14*z_3*z_27 + z_52*z_27*z_53*z_34 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 ,
z_53*z_33*z_47*z_44*z_46 + z_52*z_27*z_53 + z_53*z_32*z_19 ,
z_53*z_34*z_52*z_25*z_10 + z_48*z_6*z_51*z_22 + z_50*z_11*z_40*z_30 + z_52*z_27*z_50*z_11 + z_53*z_32*z_18*z_30 + z_48*z_4 + z_49*z_7 ,
z_53*z_34*z_52*z_26*z_45 + z_52*z_27*z_48*z_3 + z_52*z_27*z_52 ,
z_54*z_56*z_48*z_3*z_26 + z_54*z_56*z_52*z_26 ,
z_54*z_56*z_49*z_8*z_54 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_48*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_52*z_27*z_54 + z_54*z_56*z_54 ,
z_54*z_56*z_50*z_11*z_40 ,
z_54*z_56*z_50*z_12*z_43 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 + z_54*z_55*z_43 + z_54*z_56*z_54 ,
z_54*z_56*z_50*z_13*z_54 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 + z_54*z_55*z_43 + z_54*z_56*z_54 ,
z_54*z_56*z_52*z_27*z_52 ,
z_54*z_56*z_52*z_27*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 ,
z_54*z_56*z_54*z_55*z_42 + z_54*z_55*z_42 + z_54*z_56*z_50 ,
z_54*z_56*z_54*z_55*z_43 + z_52*z_24*z_6*z_54 + z_48*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_52*z_27*z_54 + z_54*z_56*z_54 ,
z_54*z_56*z_54*z_56*z_49 + z_48*z_6*z_49 ,
z_54*z_56*z_54*z_56*z_50 + z_54*z_55*z_42 + z_54*z_56*z_50 ,
z_54*z_56*z_54*z_56*z_52 ,
z_56*z_49*z_8*z_54*z_56 + z_56*z_52*z_24*z_6 + z_56*z_48*z_6 + z_56*z_49*z_8 + z_56*z_50*z_13 + z_56*z_54*z_56 ,
z_56*z_50*z_11*z_40*z_30 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_56*z_48*z_4 + z_56*z_49*z_7 ,
z_56*z_52*z_24*z_6*z_54 + z_56*z_50*z_12*z_43 + z_56*z_50*z_13*z_54 + z_56*z_52*z_27*z_54 ,
z_56*z_52*z_25*z_10*z_35 + z_55*z_41 + z_56*z_48 ,
z_56*z_52*z_25*z_10*z_38 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 ,
z_56*z_52*z_25*z_10*z_40 + z_56*z_48*z_4*z_40 ,
z_56*z_52*z_27*z_51*z_22 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_55*z_42*z_11 + z_56*z_50*z_11 ,
z_56*z_52*z_27*z_51*z_23 + z_56*z_52*z_24*z_6 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_56*z_48*z_6 + z_56*z_50*z_13 ,
z_56*z_52*z_27*z_52*z_26 + z_56*z_48*z_3*z_26 + z_56*z_52*z_26 ,
z_56*z_52*z_27*z_52*z_27 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_52*z_27 ,
z_56*z_52*z_27*z_54*z_56 + z_55*z_41*z_6 + z_56*z_48*z_6 ,
z_56*z_54*z_55*z_42*z_11 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_55*z_42*z_11 + z_56*z_50*z_11 ,
z_56*z_54*z_55*z_43*z_56 + z_56*z_52*z_24*z_6 + z_55*z_41*z_6 + z_55*z_43*z_56 + z_56*z_48*z_6 + z_56*z_49*z_8 + z_56*z_52*z_27 + z_56*z_54*z_56 ,
z_56*z_54*z_56*z_49*z_7 + z_56*z_52*z_24*z_4 ,
z_56*z_54*z_56*z_49*z_8 + z_56*z_52*z_24*z_6 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_49*z_8 + z_56*z_50*z_13 + z_56*z_52*z_27 + z_56*z_54*z_56 ,
z_56*z_54*z_56*z_50*z_11 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_55*z_42*z_11 + z_56*z_50*z_11 ,
z_56*z_54*z_56*z_50*z_12 + z_56*z_54*z_56*z_54*z_55 + z_55*z_41*z_5 + z_56*z_50*z_12 + z_56*z_54*z_55 ,
z_56*z_54*z_56*z_50*z_13 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_56*z_49*z_8 + z_56*z_54*z_56 ,
z_56*z_54*z_56*z_52*z_26 + z_56*z_48*z_3*z_26 + z_56*z_52*z_26 ,
z_56*z_54*z_56*z_52*z_27 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_52*z_27 ,
z_56*z_54*z_56*z_54*z_56 + z_55*z_41*z_6 + z_55*z_43*z_56 + z_56*z_50*z_13 + z_56*z_52*z_27 ,
z_2*z_14*z_5*z_42 + z_3*z_27*z_50 + z_5*z_42 ,
z_3*z_26*z_45*z_24 + z_6*z_52*z_24 ,
z_3*z_26*z_45*z_25 + z_4*z_37 ,
z_3*z_26*z_45*z_26 + z_6*z_52*z_26 + z_6*z_53*z_33 ,
z_3*z_26*z_45*z_27 + z_4*z_37*z_9*z_27 + z_6*z_49*z_8 ,
z_3*z_27*z_50*z_11 + z_4*z_38*z_11 ,
z_3*z_27*z_50*z_13 + z_6*z_49*z_8 + z_6*z_54*z_56 ,
z_3*z_27*z_51*z_22 + z_2*z_14*z_4 + z_4*z_37*z_10 + z_4*z_40*z_30 + z_5*z_42*z_11 ,
z_3*z_27*z_51*z_23 + z_6*z_48*z_6 + z_6*z_49*z_8 + z_6*z_51*z_23 ,
z_3*z_27*z_52*z_24 + z_4*z_35 + z_6*z_48 ,
z_3*z_27*z_52*z_25 + z_4*z_40*z_30*z_37 ,
z_3*z_27*z_52*z_26 + z_6*z_52*z_26 ,
z_3*z_27*z_52*z_27 + z_4*z_37*z_9*z_27 + z_6*z_48*z_3*z_27 ,
z_3*z_27*z_54*z_56 + z_6*z_49*z_8 ,
z_4*z_35*z_5*z_42 ,
z_4*z_35*z_5*z_43 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_4*z_37*z_9*z_26 + z_2*z_16*z_33 + z_6*z_52*z_26 + z_6*z_53*z_33 ,
z_4*z_37*z_10*z_35 + z_4*z_35 ,
z_4*z_37*z_10*z_40 + z_6*z_53*z_31*z_15 + z_2*z_15 + z_4*z_40 ,
z_4*z_38*z_11*z_35 ,
z_4*z_38*z_11*z_38 ,
z_4*z_38*z_11*z_39 ,
z_4*z_38*z_11*z_40 + z_6*z_53*z_31*z_15 + z_6*z_53*z_32*z_18 + z_2*z_15 + z_4*z_40 ,
z_4*z_40*z_30*z_35 + z_6*z_53*z_34*z_48 ,
z_4*z_40*z_30*z_38 + z_4*z_38 + z_5*z_42 ,
z_4*z_40*z_30*z_39 + z_3*z_27*z_51 + z_6*z_51 ,
z_5*z_42*z_11*z_35 ,
z_5*z_42*z_11*z_38 ,
z_5*z_42*z_11*z_39 ,
z_5*z_42*z_11*z_40 + z_6*z_53*z_32*z_18 + z_2*z_15 + z_4*z_40 ,
z_5*z_42*z_12*z_41 ,
z_5*z_42*z_12*z_42 + z_6*z_51*z_22*z_38 + z_3*z_27*z_50 + z_4*z_38 ,
z_5*z_42*z_12*z_43 + z_3*z_27*z_54 ,
z_6*z_48*z_2*z_15 ,
z_6*z_48*z_3*z_26 + z_2*z_16*z_33 + z_6*z_53*z_33 ,
z_6*z_48*z_4*z_35 ,
z_6*z_48*z_4*z_37 ,
z_6*z_48*z_4*z_38 + z_6*z_51*z_22*z_38 ,
z_6*z_48*z_4*z_40 ,
z_6*z_48*z_5*z_42 + z_6*z_51*z_22*z_38 ,
z_6*z_48*z_6*z_48 ,
z_6*z_48*z_6*z_49 ,
z_6*z_48*z_6*z_51 ,
z_6*z_48*z_6*z_52 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 ,
z_6*z_48*z_6*z_53 ,
z_6*z_48*z_6*z_54 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_6*z_49*z_8*z_51 ,
z_6*z_49*z_8*z_54 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_6*z_51*z_22*z_35 + z_6*z_53*z_34*z_48 + z_4*z_35 ,
z_6*z_51*z_22*z_40 + z_6*z_53*z_32*z_18 ,
z_6*z_51*z_23*z_49 + z_6*z_49 ,
z_6*z_51*z_23*z_52 + z_6*z_52*z_26*z_45 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 + z_6*z_48*z_3 ,
z_6*z_52*z_24*z_3 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_6*z_48*z_3 ,
z_6*z_52*z_24*z_4 + z_2*z_14*z_4 + z_4*z_40*z_30 ,
z_6*z_52*z_24*z_5 + z_4*z_35*z_5 + z_5*z_42*z_12 + z_6*z_48*z_5 ,
z_6*z_52*z_24*z_6 + z_6*z_48*z_6 + z_6*z_49*z_8 + z_6*z_51*z_23 + z_6*z_54*z_56 ,
z_6*z_52*z_27*z_48 + z_6*z_53*z_34*z_48 + z_6*z_48 ,
z_6*z_52*z_27*z_49 ,
z_6*z_52*z_27*z_50 + z_4*z_38 + z_5*z_42 ,
z_6*z_52*z_27*z_51 + z_3*z_27*z_51 + z_6*z_51 ,
z_6*z_52*z_27*z_52 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 + z_6*z_48*z_3 ,
z_6*z_52*z_27*z_53 + z_2*z_16 + z_6*z_53 ,
z_6*z_52*z_27*z_54 ,
z_6*z_53*z_31*z_14 + z_4*z_35 + z_6*z_48 ,
z_6*z_53*z_32*z_17 + z_3*z_27*z_51 + z_6*z_51 ,
z_6*z_53*z_32*z_19 + z_2*z_16 + z_6*z_53 ,
z_6*z_53*z_33*z_47 ,
z_6*z_53*z_34*z_51 + z_3*z_27*z_51 + z_6*z_51 ,
z_6*z_54*z_56*z_48 ,
z_6*z_54*z_56*z_49 + z_6*z_49 ,
z_6*z_54*z_56*z_50 ,
z_6*z_54*z_56*z_52 ,
z_6*z_54*z_56*z_54 + z_5*z_43 + z_6*z_54 ,
z_7*z_36*z_7*z_36 + z_8*z_54*z_56*z_49 + z_8*z_49 ,
z_7*z_36*z_8*z_50 + z_8*z_51*z_22*z_38 ,
z_7*z_36*z_8*z_54 ,
z_7*z_38*z_11*z_35 + z_8*z_54*z_56*z_48 ,
z_7*z_38*z_11*z_38 ,
z_7*z_38*z_11*z_39 + z_8*z_50*z_11*z_39 ,
z_7*z_38*z_11*z_40 ,
z_7*z_38*z_13*z_48 + z_8*z_54*z_56*z_48 ,
z_7*z_38*z_13*z_49 + z_8*z_50*z_13*z_49 + z_8*z_49 ,
z_7*z_38*z_13*z_52 + z_8*z_51*z_23*z_52 ,
z_7*z_38*z_13*z_54 + z_8*z_54*z_55*z_43 ,
z_8*z_50*z_11*z_40 ,
z_8*z_50*z_13*z_50 ,
z_8*z_50*z_13*z_52 + z_8*z_51*z_23*z_52 ,
z_8*z_50*z_13*z_54 + z_8*z_54*z_55*z_43 ,
z_8*z_51*z_22*z_35 + z_8*z_54*z_56*z_48 ,
z_8*z_51*z_22*z_40 ,
z_8*z_54*z_55*z_42 ,
z_8*z_54*z_56*z_50 + z_7*z_38 + z_8*z_50 ,
z_9*z_26*z_45*z_24 + z_9*z_27*z_48 ,
z_9*z_26*z_45*z_25 ,
z_9*z_26*z_45*z_26 + z_9*z_27*z_53*z_33 ,
z_9*z_26*z_45*z_27 ,
z_9*z_27*z_48*z_3 + z_10*z_38*z_13*z_52 ,
z_9*z_27*z_48*z_5 + z_10*z_38*z_12 ,
z_9*z_27*z_48*z_6 + z_10*z_38*z_13 ,
z_9*z_27*z_50*z_11 ,
z_9*z_27*z_50*z_12 + z_10*z_38*z_12 ,
z_9*z_27*z_50*z_13 + z_10*z_38*z_13 ,
z_9*z_27*z_52*z_24 + z_9*z_27*z_48 + z_10*z_35 ,
z_9*z_27*z_52*z_26 ,
z_9*z_27*z_53*z_31 + z_10*z_40*z_28 ,
z_9*z_27*z_53*z_32 ,
z_9*z_27*z_54*z_56 ,
z_10*z_35*z_4*z_37 ,
z_10*z_35*z_4*z_38 ,
z_10*z_35*z_5*z_42 + z_9*z_27*z_50 + z_10*z_38 ,
z_10*z_35*z_5*z_43 + z_9*z_27*z_54 ,
z_10*z_38*z_12*z_42 ,
z_10*z_38*z_13*z_48 ,
z_10*z_38*z_13*z_49 ,
z_10*z_38*z_13*z_54 + z_9*z_27*z_54 ,
z_10*z_40*z_28*z_16 ,
z_10*z_40*z_30*z_35 + z_9*z_27*z_48 + z_10*z_35 ,
z_10*z_40*z_30*z_37 ,
z_10*z_40*z_30*z_38 + z_10*z_38 ,
z_10*z_40*z_30*z_39 ,
z_11*z_35*z_3*z_26 + z_13*z_48*z_3*z_26 + z_13*z_52*z_26 ,
z_11*z_35*z_4*z_37 + z_11*z_37 ,
z_11*z_35*z_4*z_38 + z_13*z_48*z_4*z_38 + z_11*z_38 ,
z_11*z_35*z_6*z_49 + z_13*z_54*z_56*z_49 ,
z_11*z_35*z_6*z_51 + z_13*z_48*z_6*z_51 ,
z_11*z_35*z_6*z_52 + z_13*z_48*z_6*z_52 + z_13*z_52*z_26*z_45 ,
z_11*z_35*z_6*z_54 + z_13*z_54*z_55*z_43 ,
z_11*z_38*z_11*z_35 ,
z_11*z_38*z_11*z_38 ,
z_11*z_38*z_11*z_39 ,
z_11*z_38*z_11*z_40 + z_13*z_48*z_2*z_15 + z_13*z_48*z_4*z_40 ,
z_11*z_39*z_22*z_35 + z_12*z_41 + z_13*z_48 ,
z_11*z_39*z_22*z_38 + z_13*z_54*z_56*z_50 + z_13*z_50 ,
z_11*z_39*z_23*z_48 ,
z_11*z_39*z_23*z_49 + z_13*z_49*z_7*z_36 ,
z_11*z_39*z_23*z_52 + z_13*z_52*z_25*z_9 + z_13*z_48*z_3 ,
z_11*z_39*z_23*z_53 ,
z_11*z_40*z_30*z_35 + z_11*z_35 + z_13*z_48 ,
z_11*z_40*z_30*z_37 + z_13*z_52*z_25 + z_11*z_37 ,
z_11*z_40*z_30*z_38 + z_12*z_42 ,
z_11*z_40*z_30*z_39 ,
z_12*z_41*z_3*z_26 + z_13*z_48*z_3*z_26 ,
z_12*z_41*z_3*z_27 + z_11*z_35*z_6 + z_12*z_42*z_13 + z_13*z_54*z_56 ,
z_12*z_41*z_4*z_37 ,
z_12*z_41*z_4*z_40 + z_13*z_48*z_4*z_40 ,
z_12*z_41*z_5*z_42 + z_13*z_48*z_4*z_38 + z_11*z_38 ,
z_12*z_42*z_11*z_35 + z_12*z_42*z_13*z_48 + z_12*z_41 + z_13*z_48 ,
z_12*z_42*z_11*z_38 + z_13*z_48*z_4*z_38 + z_13*z_54*z_56*z_50 ,
z_12*z_42*z_11*z_39 ,
z_12*z_42*z_12*z_41 + z_12*z_42*z_13*z_48 ,
z_12*z_42*z_12*z_42 + z_13*z_48*z_4*z_38 + z_13*z_54*z_56*z_50 + z_13*z_50 ,
z_12*z_42*z_12*z_43 + z_13*z_54*z_55*z_43 + z_13*z_54*z_56*z_54 + z_12*z_43 + z_13*z_54 ,
z_12*z_42*z_13*z_49 ,
z_12*z_42*z_13*z_50 ,
z_12*z_42*z_13*z_52 + z_13*z_48*z_6*z_52 ,
z_12*z_42*z_13*z_54 + z_13*z_54*z_55*z_43 + z_13*z_54*z_56*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_48*z_4*z_35 ,
z_13*z_48*z_4*z_37 ,
z_13*z_48*z_5*z_42 + z_13*z_54*z_56*z_50 + z_11*z_38 ,
z_13*z_48*z_6*z_48 + z_12*z_41 + z_13*z_48 ,
z_13*z_48*z_6*z_49 + z_13*z_54*z_56*z_49 ,
z_13*z_48*z_6*z_54 + z_13*z_54*z_55*z_43 ,
z_13*z_49*z_8*z_51 ,
z_13*z_49*z_8*z_54 + z_13*z_54*z_56*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_50*z_12*z_42 ,
z_13*z_50*z_12*z_43 + z_12*z_43 + z_13*z_54 ,
z_13*z_50*z_13*z_49 ,
z_13*z_50*z_13*z_50 ,
z_13*z_50*z_13*z_52 + z_12*z_41*z_3 + z_13*z_48*z_3 ,
z_13*z_50*z_13*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_52*z_25*z_10 + z_11*z_39*z_22 + z_12*z_42*z_11 + z_13*z_49*z_7 ,
z_13*z_52*z_27*z_48 + z_11*z_35 + z_12*z_41 ,
z_13*z_52*z_27*z_49 + z_13*z_54*z_56*z_49 ,
z_13*z_52*z_27*z_51 + z_11*z_39 ,
z_13*z_52*z_27*z_52 + z_11*z_35*z_3 + z_12*z_41*z_3 ,
z_13*z_52*z_27*z_53 ,
z_13*z_52*z_27*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_54*z_55*z_42 + z_13*z_54*z_56*z_50 ,
z_13*z_54*z_56*z_48 ,
z_13*z_54*z_56*z_52 ,
z_14*z_3*z_26*z_45 + z_14*z_6*z_52 ,
z_14*z_3*z_27*z_50 + z_14*z_5*z_42 ,
z_14*z_3*z_27*z_51 + z_16*z_34*z_51 ,
z_14*z_3*z_27*z_52 + z_16*z_31*z_14*z_3 ,
z_14*z_3*z_27*z_54 ,
z_14*z_5*z_42*z_11 + z_16*z_34*z_51*z_22 + z_14*z_4 + z_15*z_30 ,
z_14*z_5*z_42*z_12 + z_16*z_31*z_14*z_5 ,
z_14*z_6*z_52*z_24 + z_16*z_31*z_14 ,
z_14*z_6*z_52*z_26 + z_14*z_3*z_26 + z_16*z_33 ,
z_14*z_6*z_52*z_27 + z_16*z_34*z_52*z_27 ,
z_15*z_30*z_37*z_9 + z_16*z_31*z_14*z_3 ,
z_15*z_30*z_37*z_10 + z_16*z_31*z_15*z_30 + z_14*z_4 + z_15*z_30 ,
z_15*z_30*z_38*z_11 + z_16*z_34*z_51*z_22 + z_14*z_4 + z_15*z_30 ,
z_15*z_30*z_38*z_12 + z_16*z_31*z_14*z_5 + z_16*z_34*z_48*z_5 ,
z_15*z_30*z_38*z_13 ,
z_16*z_32*z_18*z_30 + z_16*z_34*z_51*z_22 ,
z_16*z_34*z_51*z_23 + z_14*z_6 + z_16*z_34 ,
z_16*z_34*z_52*z_25 + z_15*z_30*z_37 ,
z_16*z_34*z_52*z_26 + z_14*z_3*z_26 + z_16*z_33 ,
z_19*z_31*z_14*z_3 ,
z_19*z_31*z_15*z_30 + z_19*z_34*z_51*z_22 ,
z_19*z_34*z_51*z_23 ,
z_19*z_34*z_52*z_25 ,
z_19*z_34*z_52*z_26 ,
z_19*z_34*z_52*z_27 + z_17*z_23 + z_19*z_34 ,
z_21*z_19*z_34*z_51 + z_23*z_53*z_32*z_17 ,
z_21*z_19*z_34*z_52 + z_23*z_53*z_34*z_52 ,
z_22*z_35*z_3*z_26 ,
z_22*z_35*z_4*z_37 ,
z_22*z_35*z_4*z_38 + z_23*z_52*z_27*z_50 + z_22*z_38 ,
z_22*z_35*z_5*z_42 + z_23*z_52*z_27*z_50 + z_22*z_38 ,
z_22*z_35*z_5*z_43 + z_23*z_49*z_8*z_54 ,
z_22*z_35*z_6*z_49 + z_23*z_52*z_27*z_49 ,
z_22*z_35*z_6*z_51 + z_23*z_49*z_8*z_51 ,
z_22*z_35*z_6*z_52 ,
z_22*z_35*z_6*z_54 + z_23*z_49*z_8*z_54 ,
z_22*z_38*z_11*z_35 ,
z_22*z_38*z_11*z_38 ,
z_22*z_38*z_11*z_39 + z_23*z_49*z_8*z_51 ,
z_22*z_38*z_11*z_40 ,
z_22*z_38*z_13*z_48 ,
z_22*z_38*z_13*z_49 + z_23*z_49*z_7*z_36 + z_23*z_52*z_27*z_49 ,
z_22*z_38*z_13*z_52 + z_22*z_35*z_3 ,
z_22*z_38*z_13*z_54 ,
z_22*z_40*z_30*z_35 + z_23*z_48 ,
z_22*z_40*z_30*z_37 ,
z_22*z_40*z_30*z_38 ,
z_22*z_40*z_30*z_39 ,
z_23*z_48*z_4*z_35 ,
z_23*z_48*z_4*z_37 ,
z_23*z_48*z_4*z_38 ,
z_23*z_48*z_4*z_40 ,
z_23*z_48*z_5*z_42 ,
z_23*z_52*z_26*z_45 ,
z_23*z_52*z_27*z_48 + z_23*z_48 ,
z_23*z_52*z_27*z_52 ,
z_23*z_52*z_27*z_53 + z_21*z_19 + z_23*z_53 ,
z_23*z_52*z_27*z_54 ,
z_23*z_53*z_31*z_14 + z_23*z_48 ,
z_23*z_53*z_31*z_15 + z_21*z_18 + z_22*z_40 ,
z_23*z_53*z_32*z_18 + z_21*z_18 + z_22*z_40 ,
z_23*z_53*z_32*z_19 ,
z_23*z_53*z_34*z_48 ,
z_23*z_53*z_34*z_51 ,
z_24*z_2*z_14*z_4 + z_26*z_45*z_24*z_4 + z_27*z_48*z_4 ,
z_24*z_2*z_14*z_5 + z_24*z_5*z_42*z_12 + z_25*z_10*z_35*z_5 + z_26*z_45*z_24*z_5 + z_27*z_50*z_12 ,
z_24*z_3*z_26*z_45 + z_26*z_45*z_26*z_45 + z_27*z_51*z_23*z_52 + z_27*z_53*z_34*z_52 + z_24*z_6*z_52 + z_24*z_3 + z_25*z_9 ,
z_24*z_3*z_27*z_50 + z_27*z_50*z_13*z_50 + z_24*z_4*z_38 ,
z_24*z_3*z_27*z_51 + z_24*z_6*z_51 ,
z_24*z_3*z_27*z_52 + z_26*z_45*z_26*z_45 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_24*z_3*z_27*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 ,
z_24*z_4*z_37*z_9 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_24*z_4*z_37*z_10 + z_24*z_6*z_48*z_4 + z_25*z_10*z_35*z_4 ,
z_24*z_4*z_38*z_11 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_35*z_4 ,
z_24*z_4*z_40*z_30 + z_25*z_10*z_35*z_4 + z_26*z_45*z_24*z_4 + z_27*z_48*z_4 ,
z_24*z_5*z_42*z_11 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 ,
z_24*z_6*z_48*z_2 ,
z_24*z_6*z_48*z_3 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_24*z_6*z_48*z_5 + z_25*z_10*z_35*z_5 + z_25*z_10*z_38*z_12 ,
z_24*z_6*z_48*z_6 ,
z_24*z_6*z_51*z_23 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 ,
z_24*z_6*z_52*z_24 + z_27*z_53*z_34*z_48 + z_25*z_10*z_35 ,
z_24*z_6*z_52*z_26 ,
z_24*z_6*z_53*z_31 + z_25*z_10*z_40*z_28 ,
z_24*z_6*z_53*z_32 ,
z_24*z_6*z_53*z_33 + z_26*z_45*z_26 + z_27*z_52*z_26 + z_27*z_53*z_33 ,
z_24*z_6*z_53*z_34 + z_26*z_45*z_24*z_6 + z_27*z_48*z_6 + z_27*z_54*z_56 ,
z_25*z_9*z_26*z_45 + z_27*z_50*z_13*z_52 + z_27*z_52*z_27*z_52 + z_27*z_53*z_34*z_52 + z_24*z_6*z_52 + z_27*z_48*z_3 + z_24*z_3 + z_25*z_9 + z_27*z_52 ,
z_25*z_9*z_27*z_48 + z_24*z_6*z_48 + z_25*z_10*z_35 ,
z_25*z_9*z_27*z_50 + z_27*z_50*z_13*z_50 + z_25*z_10*z_38 ,
z_25*z_9*z_27*z_52 + z_26*z_45*z_26*z_45 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 ,
z_25*z_9*z_27*z_53 + z_24*z_6*z_53 ,
z_25*z_9*z_27*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 ,
z_26*z_45*z_24*z_3 + z_26*z_45*z_26*z_45 + z_27*z_51*z_23*z_52 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_24*z_3 + z_25*z_9 ,
z_26*z_45*z_25*z_9 + z_26*z_45*z_26*z_45 + z_27*z_50*z_13*z_52 + z_27*z_52*z_26*z_45 + z_27*z_52*z_27*z_52 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_24*z_3 + z_25*z_9 ,
z_26*z_45*z_27*z_48 + z_27*z_53*z_34*z_48 + z_24*z_2*z_14 + z_26*z_45*z_24 + z_27*z_48 ,
z_26*z_45*z_27*z_50 + z_27*z_50*z_12*z_42 + z_24*z_4*z_38 + z_24*z_5*z_42 ,
z_26*z_45*z_27*z_51 ,
z_26*z_45*z_27*z_52 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_52*z_27*z_52 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_48*z_3*z_26 + z_27*z_52*z_26 ,
z_27*z_48*z_3*z_27 + z_27*z_52*z_27 ,
z_27*z_48*z_4*z_35 ,
z_27*z_48*z_4*z_37 + z_24*z_4*z_37 ,
z_27*z_48*z_4*z_38 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 ,
z_27*z_48*z_5*z_42 + z_27*z_50*z_12*z_42 + z_27*z_50*z_13*z_50 ,
z_27*z_48*z_6*z_48 + z_27*z_53*z_34*z_48 ,
z_27*z_48*z_6*z_49 ,
z_27*z_48*z_6*z_51 ,
z_27*z_48*z_6*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_48*z_6*z_53 + z_27*z_53*z_32*z_19 ,
z_27*z_48*z_6*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_27*z_50*z_11*z_39 + z_24*z_6*z_51 ,
z_27*z_50*z_12*z_43 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_27*z_50*z_13*z_49 + z_27*z_51*z_23*z_49 + z_27*z_49 ,
z_27*z_50*z_13*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_27*z_51*z_22*z_35 + z_24*z_2*z_14 + z_24*z_6*z_48 + z_26*z_45*z_24 + z_27*z_48 ,
z_27*z_51*z_22*z_38 + z_24*z_5*z_42 + z_25*z_10*z_38 ,
z_27*z_51*z_22*z_40 + z_27*z_53*z_32*z_18 ,
z_27*z_52*z_24*z_3 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_52*z_25*z_9 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_52*z_27*z_48 + z_24*z_2*z_14 + z_24*z_6*z_48 + z_26*z_45*z_24 + z_27*z_48 ,
z_27*z_52*z_27*z_49 ,
z_27*z_52*z_27*z_51 ,
z_27*z_52*z_27*z_53 + z_27*z_53*z_32*z_19 ,
z_27*z_52*z_27*z_54 + z_27*z_54*z_56*z_54 ,
z_27*z_53*z_31*z_14 + z_27*z_52*z_24 ,
z_27*z_53*z_32*z_17 + z_27*z_53*z_34*z_51 ,
z_27*z_53*z_33*z_47 ,
z_27*z_54*z_56*z_48 ,
z_27*z_54*z_56*z_49 ,
z_27*z_54*z_56*z_50 ,
z_27*z_54*z_56*z_52 ,
z_28*z_15*z_30*z_37 + z_30*z_35*z_4*z_37 ,
z_28*z_15*z_30*z_38 + z_30*z_35*z_5*z_42 + z_30*z_38*z_11*z_38 ,
z_28*z_16*z_31*z_14 + z_30*z_38*z_11*z_35 + z_30*z_38*z_13*z_48 ,
z_28*z_16*z_31*z_15 + z_30*z_37*z_10*z_40 + z_30*z_38*z_11*z_40 ,
z_28*z_16*z_32*z_18 + z_29*z_19*z_31*z_15 ,
z_28*z_16*z_32*z_19 ,
z_29*z_19*z_31*z_14 + z_30*z_39*z_22*z_35 ,
z_29*z_19*z_34*z_51 + z_30*z_35*z_6*z_51 ,
z_29*z_19*z_34*z_52 + z_30*z_39*z_23*z_52 ,
z_30*z_35*z_3*z_26 + z_28*z_16*z_33 ,
z_30*z_35*z_4*z_38 + z_30*z_35*z_5*z_42 + z_30*z_38*z_11*z_38 ,
z_30*z_35*z_5*z_43 ,
z_30*z_35*z_6*z_49 ,
z_30*z_35*z_6*z_54 ,
z_30*z_37*z_10*z_35 + z_30*z_38*z_13*z_48 + z_30*z_39*z_22*z_35 ,
z_30*z_38*z_11*z_39 ,
z_30*z_38*z_13*z_49 ,
z_30*z_39*z_22*z_38 ,
z_30*z_39*z_23*z_48 ,
z_30*z_39*z_23*z_49 ,
z_30*z_39*z_23*z_53 ,
z_31*z_14*z_3*z_26 + z_34*z_52*z_26 ,
z_31*z_14*z_5*z_42 + z_34*z_52*z_27*z_50 ,
z_31*z_15*z_30*z_37 ,
z_31*z_15*z_30*z_38 + z_34*z_52*z_27*z_50 ,
z_32*z_19*z_31*z_14 + z_34*z_48 ,
z_32*z_19*z_31*z_15 ,
z_34*z_48*z_5*z_42 ,
z_34*z_51*z_22*z_35 + z_34*z_48 ,
z_34*z_51*z_22*z_38 ,
z_34*z_51*z_22*z_40 ,
z_34*z_51*z_23*z_49 ,
z_34*z_51*z_23*z_52 + z_34*z_52*z_26*z_45 ,
z_34*z_52*z_25*z_9 + z_31*z_14*z_3 ,
z_34*z_52*z_27*z_48 + z_34*z_48 ,
z_34*z_52*z_27*z_49 ,
z_34*z_52*z_27*z_51 + z_32*z_17 + z_34*z_51 ,
z_34*z_52*z_27*z_52 ,
z_34*z_52*z_27*z_53 ,
z_34*z_52*z_27*z_54 ,
z_35*z_3*z_26*z_45 + z_40*z_30*z_35*z_3 + z_35*z_6*z_52 ,
z_35*z_3*z_27*z_51 + z_35*z_6*z_51 + z_39*z_21*z_17 + z_40*z_30*z_39 ,
z_35*z_3*z_27*z_54 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_35*z_4*z_37*z_9 + z_38*z_11*z_35*z_3 + z_39*z_22*z_35*z_3 ,
z_35*z_4*z_37*z_10 + z_38*z_11*z_35*z_4 + z_39*z_22*z_35*z_4 + z_40*z_28*z_15*z_30 + z_40*z_30*z_35*z_4 ,
z_35*z_4*z_38*z_11 + z_38*z_13*z_48*z_4 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 + z_39*z_23*z_48*z_4 + z_40*z_28*z_15*z_30 + z_40*z_30*z_35*z_4 ,
z_35*z_5*z_42*z_11 + z_38*z_13*z_48*z_4 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 ,
z_35*z_5*z_42*z_12 + z_36*z_8*z_54*z_55 + z_38*z_13*z_48*z_5 + z_38*z_13*z_54*z_55 ,
z_35*z_6*z_49*z_8 ,
z_35*z_6*z_51*z_22 + z_38*z_13*z_49*z_7 + z_39*z_22*z_35*z_4 + z_39*z_22*z_38*z_11 ,
z_35*z_6*z_51*z_23 + z_38*z_11*z_39*z_23 + z_39*z_22*z_38*z_13 ,
z_35*z_6*z_52*z_26 ,
z_35*z_6*z_54*z_56 + z_36*z_8*z_54*z_56 ,
z_36*z_7*z_36*z_7 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 ,
z_36*z_7*z_36*z_8 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 ,
z_36*z_8*z_50*z_11 + z_39*z_22*z_38*z_11 ,
z_36*z_8*z_50*z_13 + z_36*z_8*z_54*z_56 + z_38*z_11*z_39*z_23 ,
z_36*z_8*z_51*z_22 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 + z_39*z_23*z_49*z_7 ,
z_36*z_8*z_51*z_23 + z_38*z_11*z_39*z_23 + z_39*z_22*z_35*z_6 + z_39*z_23*z_49*z_8 ,
z_37*z_9*z_26*z_45 + z_38*z_13*z_48*z_3 + z_39*z_22*z_35*z_3 + z_40*z_30*z_35*z_3 + z_40*z_30*z_37*z_9 + z_38*z_13*z_52 + z_39*z_23*z_52 + z_35*z_3 ,
z_37*z_9*z_27*z_48 + z_37*z_10*z_35 + z_38*z_11*z_35 + z_38*z_13*z_48 + z_39*z_23*z_48 ,
z_37*z_9*z_27*z_50 + z_38*z_12*z_42 ,
z_37*z_10*z_35*z_4 + z_38*z_11*z_40*z_30 + z_38*z_13*z_49*z_7 + z_39*z_22*z_35*z_4 + z_39*z_22*z_38*z_11 + z_39*z_23*z_48*z_4 + z_39*z_23*z_49*z_7 + z_40*z_28*z_15*z_30 + z_40*z_30*z_35*z_4 + z_40*z_30*z_37*z_10 + z_40*z_30*z_38*z_11 + z_36*z_7 + z_37*z_10 + z_38*z_11 + z_39*z_22 ,
z_37*z_10*z_35*z_5 + z_38*z_12*z_42*z_12 + z_38*z_13*z_48*z_5 + z_38*z_13*z_54*z_55 + z_39*z_23*z_48*z_5 ,
z_37*z_10*z_40*z_28 + z_38*z_13*z_48*z_2 + z_40*z_29*z_19*z_31 ,
z_37*z_10*z_40*z_30 + z_38*z_11*z_35*z_4 + z_38*z_11*z_40*z_30 + z_38*z_13*z_48*z_4 + z_40*z_30*z_39*z_22 ,
z_38*z_11*z_35*z_6 + z_38*z_13*z_48*z_6 ,
z_38*z_11*z_38*z_11 ,
z_38*z_11*z_39*z_22 + z_38*z_13*z_49*z_7 ,
z_38*z_12*z_42*z_11 ,
z_38*z_12*z_42*z_13 + z_38*z_13*z_48*z_6 + z_39*z_22*z_35*z_6 ,
z_38*z_13*z_49*z_8 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 + z_39*z_23*z_49*z_8 ,
z_38*z_13*z_52*z_25 ,
z_38*z_13*z_52*z_26 ,
z_39*z_23*z_53*z_31 + z_40*z_29*z_19*z_31 ,
z_39*z_23*z_53*z_32 + z_39*z_21 + z_40*z_29 ,
z_39*z_23*z_53*z_33 + z_40*z_29*z_19*z_33 ,
z_39*z_23*z_53*z_34 + z_40*z_30*z_39*z_23 ,
z_40*z_28*z_16*z_32 + z_39*z_21 + z_40*z_29 ,
z_41*z_2*z_14*z_4 + z_41*z_4*z_40*z_30 + z_42*z_11*z_35*z_4 ,
z_41*z_2*z_14*z_5 + z_42*z_12*z_41*z_5 + z_42*z_13*z_48*z_5 + z_43*z_56*z_54*z_55 + z_41*z_5 + z_43*z_55 ,
z_41*z_2*z_16*z_33 + z_41*z_6*z_53*z_33 + z_42*z_13*z_52*z_26 ,
z_41*z_3*z_27*z_50 + z_42*z_13*z_50 + z_43*z_56*z_50 ,
z_41*z_3*z_27*z_51 + z_41*z_6*z_51 + z_42*z_11*z_39 ,
z_41*z_3*z_27*z_54 + z_42*z_12*z_43 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_41*z_4*z_37*z_9 + z_41*z_6*z_52 + z_42*z_13*z_52 ,
z_41*z_4*z_37*z_10 + z_42*z_11*z_39*z_22 + z_42*z_12*z_42*z_11 + z_43*z_56*z_49*z_7 ,
z_41*z_5*z_42*z_11 + z_42*z_13*z_48*z_4 + z_43*z_56*z_49*z_7 + z_43*z_56*z_50*z_11 ,
z_41*z_5*z_42*z_12 + z_42*z_12*z_41*z_5 ,
z_41*z_6*z_48*z_2 + z_41*z_6*z_53*z_31 + z_42*z_13*z_48*z_2 ,
z_41*z_6*z_48*z_3 + z_42*z_11*z_35*z_3 + z_42*z_13*z_48*z_3 ,
z_41*z_6*z_48*z_4 + z_42*z_11*z_35*z_4 + z_42*z_13*z_48*z_4 ,
z_41*z_6*z_48*z_5 + z_42*z_12*z_41*z_5 + z_43*z_56*z_54*z_55 ,
z_41*z_6*z_48*z_6 + z_42*z_11*z_39*z_23 + z_43*z_56*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 ,
z_41*z_6*z_51*z_22 + z_42*z_11*z_35*z_4 + z_42*z_12*z_42*z_11 + z_42*z_13*z_48*z_4 + z_43*z_56*z_50*z_11 ,
z_41*z_6*z_51*z_23 + z_42*z_13*z_48*z_6 + z_43*z_56*z_50*z_13 ,
z_41*z_6*z_52*z_24 + z_42*z_11*z_35 ,
z_41*z_6*z_52*z_27 + z_42*z_11*z_39*z_23 + z_42*z_12*z_42*z_13 + z_42*z_13*z_48*z_6 + z_42*z_13*z_52*z_27 + z_43*z_56*z_49*z_8 ,
z_41*z_6*z_53*z_34 + z_42*z_11*z_39*z_23 + z_43*z_56*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 + z_41*z_3*z_27 + z_41*z_6 + z_42*z_13 + z_43*z_56 ,
z_42*z_11*z_35*z_6 + z_42*z_11*z_39*z_23 + z_42*z_13*z_48*z_6 ,
z_42*z_11*z_38*z_11 ,
z_42*z_12*z_41*z_3 + z_42*z_13*z_48*z_3 ,
z_42*z_12*z_41*z_4 + z_42*z_13*z_48*z_4 ,
z_42*z_13*z_49*z_7 + z_43*z_56*z_49*z_7 ,
z_42*z_13*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 ,
z_42*z_13*z_50*z_13 + z_43*z_56*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 ,
z_42*z_13*z_52*z_25 + z_41*z_4*z_37 ,
z_42*z_13*z_54*z_55 + z_43*z_56*z_54*z_55 ,
z_42*z_13*z_54*z_56 + z_43*z_56*z_49*z_8 ,
z_43*z_55*z_43*z_56 + z_43*z_56*z_50*z_13 ,
z_43*z_56*z_50*z_12 + z_43*z_56*z_54*z_55 ,
z_44*z_46*z_32*z_19 ,
z_44*z_46*z_34*z_48 ,
z_44*z_46*z_34*z_52 ,
z_45*z_24*z_2*z_14 + z_46*z_31*z_14 + z_46*z_34*z_48 ,
z_45*z_24*z_3*z_26 + z_45*z_26 + z_46*z_33 ,
z_45*z_24*z_3*z_27 + z_45*z_27*z_50*z_13 + z_46*z_34*z_52*z_27 + z_47*z_44*z_46*z_34 + z_45*z_27 ,
z_45*z_24*z_4*z_37 ,
z_45*z_24*z_4*z_40 + z_46*z_31*z_15 ,
z_45*z_24*z_5*z_42 + z_45*z_27*z_50 ,
z_45*z_24*z_6*z_48 + z_46*z_34*z_48 ,
z_45*z_24*z_6*z_51 ,
z_45*z_24*z_6*z_52 + z_45*z_24*z_3 + z_45*z_25*z_9 + z_45*z_26*z_45 + z_45*z_27*z_52 + z_46*z_34*z_52 ,
z_45*z_24*z_6*z_53 + z_46*z_32*z_19 ,
z_45*z_25*z_9*z_26 + z_46*z_34*z_52*z_26 + z_45*z_26 + z_46*z_33 ,
z_45*z_25*z_9*z_27 + z_45*z_27*z_50*z_13 + z_47*z_44*z_46*z_34 + z_45*z_27 ,
z_45*z_25*z_10*z_35 + z_45*z_27*z_48 + z_46*z_34*z_48 ,
z_45*z_25*z_10*z_38 + z_45*z_27*z_50 ,
z_45*z_26*z_45*z_24 + z_45*z_27*z_48 + z_46*z_31*z_14 ,
z_45*z_26*z_45*z_25 + z_46*z_34*z_52*z_25 ,
z_45*z_26*z_45*z_26 ,
z_45*z_26*z_45*z_27 + z_46*z_34*z_52*z_27 ,
z_45*z_27*z_48*z_3 ,
z_45*z_27*z_48*z_4 ,
z_45*z_27*z_48*z_5 + z_45*z_27*z_50*z_12 ,
z_45*z_27*z_48*z_6 + z_45*z_27*z_50*z_13 ,
z_45*z_27*z_50*z_11 ,
z_45*z_27*z_51*z_23 ,
z_45*z_27*z_52*z_24 + z_46*z_34*z_48 ,
z_45*z_27*z_52*z_25 ,
z_45*z_27*z_52*z_26 ,
z_45*z_27*z_52*z_27 ,
z_46*z_31*z_14*z_3 + z_45*z_24*z_3 + z_45*z_25*z_9 + z_45*z_27*z_52 ,
z_46*z_32*z_18*z_30 + z_46*z_34*z_51*z_22 ,
z_46*z_32*z_19*z_31 + z_45*z_24*z_2 + z_46*z_31 ,
z_48*z_3*z_26*z_45 + z_48*z_6*z_48*z_3 + z_51*z_22*z_35*z_3 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_48*z_6*z_52 ,
z_48*z_3*z_27*z_50 + z_48*z_4*z_38 + z_50*z_13*z_50 ,
z_48*z_3*z_27*z_51 + z_48*z_6*z_51 ,
z_48*z_3*z_27*z_52 + z_48*z_6*z_48*z_3 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_50*z_13*z_52 + z_51*z_23*z_52 + z_52*z_26*z_45 + z_52*z_27*z_52 + z_54*z_56*z_52 ,
z_48*z_3*z_27*z_54 + z_52*z_27*z_54 ,
z_48*z_4*z_35*z_5 + z_54*z_56*z_48*z_5 + z_54*z_56*z_50*z_12 + z_54*z_56*z_54*z_55 ,
z_48*z_4*z_37*z_9 + z_51*z_22*z_35*z_3 + z_54*z_56*z_48*z_3 ,
z_48*z_4*z_37*z_10 + z_50*z_12*z_42*z_11 + z_51*z_22*z_35*z_4 + z_54*z_56*z_49*z_7 ,
z_48*z_4*z_38*z_11 + z_50*z_12*z_42*z_11 + z_54*z_55*z_42*z_11 ,
z_48*z_4*z_40*z_30 + z_48*z_5*z_42*z_11 + z_50*z_12*z_42*z_11 + z_52*z_27*z_48*z_4 + z_53*z_31*z_15*z_30 + z_54*z_55*z_42*z_11 ,
z_48*z_5*z_42*z_12 + z_50*z_12*z_42*z_12 + z_52*z_27*z_50*z_12 + z_53*z_34*z_48*z_5 + z_54*z_56*z_48*z_5 + z_54*z_56*z_54*z_55 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_48*z_6*z_48*z_2 ,
z_48*z_6*z_48*z_4 + z_48*z_6*z_51*z_22 + z_54*z_55*z_42*z_11 ,
z_48*z_6*z_48*z_5 + z_52*z_27*z_50*z_12 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_48*z_6*z_48*z_6 + z_52*z_27*z_54*z_56 ,
z_48*z_6*z_49*z_8 + z_52*z_27*z_54*z_56 ,
z_48*z_6*z_51*z_23 + z_49*z_8*z_54*z_56 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_48*z_6 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_52*z_27*z_53*z_34 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_48*z_6*z_52*z_24 + z_52*z_25*z_10*z_35 + z_48*z_6*z_48 + z_51*z_22*z_35 + z_54*z_56*z_48 ,
z_48*z_6*z_52*z_26 + z_54*z_56*z_52*z_26 ,
z_48*z_6*z_52*z_27 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_52*z_27 ,
z_48*z_6*z_53*z_32 ,
z_48*z_6*z_53*z_33 + z_52*z_27*z_52*z_26 + z_53*z_34*z_52*z_26 + z_54*z_56*z_52*z_26 ,
z_48*z_6*z_53*z_34 + z_51*z_23*z_49*z_8 + z_52*z_27*z_48*z_6 + z_52*z_27*z_54*z_56 + z_53*z_34*z_51*z_23 + z_54*z_55*z_43*z_56 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 ,
z_48*z_6*z_54*z_56 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_49*z_7*z_36*z_7 + z_49*z_8*z_51*z_22 + z_54*z_55*z_42*z_11 ,
z_49*z_7*z_36*z_8 ,
z_49*z_8*z_51*z_23 + z_49*z_8*z_54*z_56 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_49*z_8*z_54*z_55 + z_54*z_56*z_48*z_5 + z_54*z_56*z_54*z_55 ,
z_50*z_11*z_39*z_22 + z_51*z_22*z_35*z_4 + z_51*z_23*z_49*z_7 + z_54*z_55*z_42*z_11 + z_54*z_56*z_50*z_11 ,
z_50*z_11*z_39*z_23 + z_52*z_26*z_45*z_27 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_53*z_34*z_51*z_23 + z_54*z_56*z_50*z_13 + z_54*z_56*z_54*z_56 + z_52*z_24*z_6 + z_48*z_6 + z_49*z_8 + z_50*z_13 + z_51*z_23 + z_54*z_56 ,
z_50*z_12*z_42*z_13 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 ,
z_50*z_13*z_49*z_7 + z_51*z_23*z_49*z_7 + z_54*z_55*z_42*z_11 + z_54*z_56*z_49*z_7 + z_54*z_56*z_50*z_11 ,
z_50*z_13*z_49*z_8 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_56*z_49*z_8 ,
z_50*z_13*z_50*z_12 + z_54*z_56*z_48*z_5 + z_54*z_56*z_50*z_12 + z_54*z_56*z_54*z_55 ,
z_50*z_13*z_50*z_13 + z_52*z_27*z_54*z_56 ,
z_50*z_13*z_52*z_25 + z_48*z_4*z_37 ,
z_50*z_13*z_52*z_26 ,
z_50*z_13*z_54*z_55 + z_54*z_56*z_50*z_12 + z_54*z_56*z_54*z_55 ,
z_50*z_13*z_54*z_56 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_51*z_22*z_35*z_6 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_51*z_22*z_38*z_11 + z_51*z_23*z_49*z_7 + z_54*z_55*z_42*z_11 + z_54*z_56*z_50*z_11 ,
z_51*z_22*z_38*z_13 + z_52*z_26*z_45*z_27 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_53*z_34*z_51*z_23 + z_54*z_56*z_50*z_13 + z_54*z_56*z_54*z_56 + z_52*z_24*z_6 + z_48*z_6 + z_49*z_8 + z_50*z_13 + z_51*z_23 + z_54*z_56 ,
z_51*z_22*z_40*z_30 + z_53*z_34*z_51*z_22 ,
z_51*z_23*z_52*z_26 ,
z_52*z_24*z_3*z_26 + z_53*z_33*z_47*z_44 + z_53*z_34*z_52*z_26 + z_48*z_3*z_26 + z_52*z_26 ,
z_52*z_24*z_4*z_37 + z_52*z_26*z_45*z_25 + z_48*z_4*z_37 ,
z_52*z_24*z_4*z_38 + z_52*z_24*z_5*z_42 + z_48*z_5*z_42 + z_50*z_12*z_42 + z_50*z_13*z_50 + z_54*z_55*z_42 ,
z_52*z_24*z_4*z_40 + z_48*z_2*z_15 + z_53*z_31*z_15 ,
z_52*z_24*z_5*z_43 + z_52*z_24*z_6*z_54 + z_48*z_6*z_54 + z_50*z_12*z_43 + z_54*z_55*z_43 ,
z_52*z_24*z_6*z_48 + z_48*z_4*z_35 + z_48*z_6*z_48 + z_53*z_34*z_48 ,
z_52*z_24*z_6*z_51 + z_48*z_6*z_51 + z_49*z_8*z_51 ,
z_52*z_24*z_6*z_52 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_48*z_6*z_52 + z_52*z_26*z_45 + z_52*z_27*z_52 ,
z_52*z_24*z_6*z_53 + z_48*z_6*z_53 + z_53*z_32*z_19 ,
z_52*z_25*z_9*z_26 + z_52*z_27*z_52*z_26 + z_53*z_33*z_47*z_44 + z_53*z_34*z_52*z_26 + z_54*z_56*z_52*z_26 + z_48*z_3*z_26 + z_52*z_26 ,
z_52*z_26*z_45*z_24 + z_48*z_6*z_48 + z_51*z_22*z_35 + z_53*z_34*z_48 + z_54*z_56*z_48 ,
z_52*z_26*z_45*z_26 + z_53*z_34*z_52*z_26 + z_54*z_56*z_52*z_26 ,
z_52*z_27*z_48*z_5 + z_53*z_34*z_48*z_5 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_52*z_27*z_52*z_24 + z_53*z_34*z_48 ,
z_52*z_27*z_52*z_25 ,
z_52*z_27*z_53*z_31 + z_53*z_32*z_19*z_31 ,
z_52*z_27*z_53*z_32 + z_51*z_21 + z_53*z_32 ,
z_52*z_27*z_53*z_33 + z_53*z_34*z_52*z_26 ,
z_54*z_55*z_42*z_13 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_54*z_56*z_48*z_4 + z_54*z_56*z_49*z_7 ,
z_54*z_56*z_48*z_6 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_54*z_56 ,
z_54*z_56*z_52*z_24 + z_48*z_4*z_35 ,
z_54*z_56*z_52*z_25 ,
z_55*z_41*z_5*z_42 + z_55*z_42 + z_56*z_50 ,
z_55*z_41*z_6*z_48 + z_55*z_41 + z_56*z_48 ,
z_55*z_41*z_6*z_51 + z_56*z_52*z_27*z_51 ,
z_55*z_41*z_6*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_55*z_41*z_6*z_53 ,
z_55*z_42*z_11*z_35 + z_56*z_52*z_24 ,
z_55*z_42*z_11*z_38 ,
z_55*z_42*z_11*z_39 ,
z_55*z_42*z_11*z_40 + z_56*z_48*z_4*z_40 + z_56*z_50*z_11*z_40 ,
z_55*z_42*z_13*z_48 + z_56*z_52*z_24 ,
z_55*z_42*z_13*z_49 + z_56*z_54*z_56*z_49 ,
z_55*z_42*z_13*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 ,
z_55*z_42*z_13*z_52 + z_56*z_52*z_27*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_55*z_42*z_13*z_54 + z_56*z_50*z_13*z_54 + z_56*z_52*z_27*z_54 ,
z_55*z_43*z_56*z_49 + z_56*z_50*z_13*z_49 ,
z_55*z_43*z_56*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_55*z_43*z_56*z_54 + z_56*z_54*z_55*z_43 ,
z_56*z_48*z_3*z_27 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_48*z_6 ,
z_56*z_48*z_4*z_35 + z_55*z_41 + z_56*z_48 ,
z_56*z_48*z_4*z_37 + z_56*z_52*z_25 ,
z_56*z_48*z_4*z_38 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_56*z_48*z_5*z_42 + z_55*z_42 + z_56*z_50 ,
z_56*z_48*z_6*z_48 + z_55*z_41 + z_56*z_48 ,
z_56*z_48*z_6*z_49 + z_56*z_50*z_13*z_49 + z_56*z_54*z_56*z_49 ,
z_56*z_48*z_6*z_51 + z_56*z_52*z_27*z_51 ,
z_56*z_48*z_6*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_56*z_48*z_6*z_53 ,
z_56*z_48*z_6*z_54 + z_56*z_50*z_13*z_54 + z_56*z_54*z_55*z_43 ,
z_56*z_49*z_7*z_36 ,
z_56*z_49*z_8*z_51 + z_56*z_52*z_27*z_51 ,
z_56*z_50*z_11*z_39 ,
z_56*z_50*z_12*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_56*z_50*z_13*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 ,
z_56*z_50*z_13*z_52 + z_56*z_52*z_27*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_56*z_52*z_24*z_3 + z_56*z_52*z_27*z_52 ,
z_56*z_52*z_24*z_5 + z_56*z_48*z_5 + z_56*z_50*z_12 + z_56*z_54*z_55 ,
z_56*z_52*z_25*z_9 + z_56*z_52*z_27*z_52 ,
z_56*z_52*z_26*z_45 + z_56*z_52*z_27*z_52 + z_56*z_54*z_56*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_56*z_52*z_27*z_48 + z_56*z_52*z_24 ,
z_56*z_52*z_27*z_49 ,
z_56*z_52*z_27*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_56*z_52*z_27*z_53 ,
z_56*z_54*z_56*z_48 + z_56*z_52*z_24 ,
z_2*z_14*z_3 + z_3*z_26*z_45 + z_6*z_52 ,
z_2*z_14*z_6 + z_6*z_53*z_34 ,
z_2*z_15*z_30 + z_4*z_37*z_10 + z_4*z_38*z_11 + z_4*z_40*z_30 + z_6*z_51*z_22 ,
z_2*z_16*z_31 + z_6*z_48*z_2 + z_6*z_53*z_31 ,
z_2*z_16*z_32 + z_6*z_53*z_32 ,
z_2*z_16*z_34 + z_6*z_48*z_6 + z_6*z_49*z_8 + z_6*z_53*z_34 ,
z_3*z_27*z_48 + z_6*z_52*z_24 + z_4*z_35 ,
z_3*z_27*z_49 ,
z_3*z_27*z_53 + z_6*z_53 ,
z_4*z_35*z_3 ,
z_4*z_35*z_4 ,
z_4*z_35*z_6 + z_6*z_49*z_8 ,
z_4*z_38*z_12 + z_5*z_42*z_12 + z_6*z_48*z_5 ,
z_4*z_38*z_13 + z_6*z_54*z_56 ,
z_4*z_40*z_28 + z_6*z_48*z_2 ,
z_4*z_40*z_29 + z_6*z_53*z_32 ,
z_5*z_42*z_13 + z_6*z_49*z_8 + z_6*z_54*z_56 ,
z_5*z_43*z_55 ,
z_5*z_43*z_56 + z_6*z_49*z_8 + z_6*z_54*z_56 ,
z_6*z_49*z_7 ,
z_6*z_51*z_21 + z_6*z_53*z_32 ,
z_6*z_52*z_25 + z_4*z_37 ,
z_6*z_54*z_55 ,
z_7*z_38*z_12 + z_8*z_54*z_55 ,
z_8*z_49*z_7 ,
z_8*z_49*z_8 ,
z_8*z_50*z_12 + z_8*z_54*z_55 ,
z_8*z_51*z_21 ,
z_9*z_27*z_49 ,
z_9*z_27*z_51 ,
z_10*z_35*z_3 ,
z_10*z_35*z_6 + z_10*z_38*z_13 ,
z_10*z_38*z_11 ,
z_10*z_40*z_29 ,
z_11*z_35*z_5 + z_12*z_41*z_5 + z_13*z_48*z_5 + z_13*z_50*z_12 + z_13*z_54*z_55 ,
z_11*z_37*z_9 + z_12*z_41*z_3 + z_13*z_48*z_3 ,
z_11*z_37*z_10 + z_11*z_38*z_11 + z_12*z_41*z_4 + z_13*z_48*z_4 ,
z_11*z_38*z_12 + z_12*z_41*z_5 + z_13*z_48*z_5 ,
z_11*z_38*z_13 ,
z_11*z_39*z_21 ,
z_11*z_40*z_28 + z_13*z_48*z_2 ,
z_11*z_40*z_29 ,
z_12*z_41*z_2 + z_13*z_48*z_2 ,
z_12*z_41*z_6 + z_13*z_48*z_6 ,
z_12*z_43*z_55 + z_13*z_54*z_55 ,
z_12*z_43*z_56 + z_13*z_54*z_56 ,
z_13*z_50*z_11 ,
z_13*z_52*z_24 + z_11*z_35 ,
z_14*z_4*z_35 + z_16*z_34*z_48 ,
z_14*z_4*z_37 + z_15*z_30*z_37 ,
z_14*z_4*z_38 + z_15*z_30*z_38 ,
z_14*z_4*z_40 + z_16*z_31*z_15 ,
z_14*z_5*z_43 ,
z_14*z_6*z_48 + z_16*z_34*z_48 ,
z_14*z_6*z_49 ,
z_14*z_6*z_51 + z_16*z_34*z_51 ,
z_14*z_6*z_53 ,
z_14*z_6*z_54 ,
z_15*z_30*z_35 ,
z_15*z_30*z_39 + z_16*z_34*z_51 ,
z_16*z_32*z_17 + z_16*z_34*z_51 ,
z_16*z_33*z_47 ,
z_17*z_23*z_48 ,
z_17*z_23*z_49 ,
z_17*z_23*z_52 + z_19*z_34*z_52 ,
z_17*z_23*z_53 ,
z_18*z_30*z_35 + z_19*z_31*z_14 ,
z_18*z_30*z_37 ,
z_18*z_30*z_38 ,
z_18*z_30*z_39 ,
z_19*z_34*z_48 ,
z_21*z_17*z_23 + z_23*z_53*z_34 ,
z_21*z_18*z_30 + z_22*z_40*z_30 + z_23*z_48*z_4 ,
z_21*z_19*z_31 + z_23*z_53*z_31 ,
z_21*z_19*z_33 + z_23*z_53*z_33 ,
z_22*z_38*z_12 + z_23*z_48*z_5 ,
z_22*z_40*z_28 + z_23*z_53*z_31 ,
z_22*z_40*z_29 ,
z_23*z_48*z_2 ,
z_23*z_48*z_3 ,
z_23*z_48*z_6 ,
z_23*z_52*z_24 + z_22*z_35 ,
z_23*z_52*z_25 ,
z_24*z_2*z_15 + z_24*z_4*z_40 ,
z_24*z_2*z_16 + z_24*z_6*z_53 ,
z_24*z_4*z_35 ,
z_24*z_6*z_49 + z_27*z_49 ,
z_27*z_48*z_2 + z_27*z_53*z_31 ,
z_27*z_49*z_7 ,
z_27*z_49*z_8 ,
z_27*z_51*z_21 + z_27*z_53*z_32 ,
z_27*z_54*z_55 ,
z_28*z_16*z_34 + z_30*z_35*z_6 ,
z_29*z_18*z_30 + z_30*z_39*z_22 ,
z_30*z_39*z_21 ,
z_31*z_14*z_4 + z_31*z_15*z_30 ,
z_31*z_14*z_6 + z_34*z_51*z_23 ,
z_32*z_17*z_23 + z_34*z_51*z_23 ,
z_32*z_19*z_33 + z_34*z_52*z_26 ,
z_32*z_19*z_34 + z_34*z_51*z_23 ,
z_34*z_48*z_2 ,
z_34*z_48*z_3 ,
z_34*z_48*z_4 ,
z_34*z_48*z_6 ,
z_34*z_51*z_21 ,
z_34*z_52*z_24 + z_31*z_14 + z_34*z_48 ,
z_35*z_4*z_35 ,
z_35*z_4*z_40 + z_37*z_10*z_40 + z_38*z_11*z_40 + z_39*z_21*z_18 + z_40*z_28*z_15 ,
z_35*z_6*z_48 + z_37*z_10*z_35 + z_38*z_13*z_48 + z_39*z_22*z_35 + z_39*z_23*z_48 ,
z_35*z_6*z_53 + z_40*z_28*z_16 ,
z_36*z_7*z_38 + z_36*z_8*z_50 ,
z_36*z_8*z_49 ,
z_37*z_10*z_38 + z_38*z_11*z_38 + z_38*z_12*z_42 ,
z_38*z_11*z_37 ,
z_38*z_12*z_41 + z_38*z_13*z_48 ,
z_38*z_12*z_43 + z_38*z_13*z_54 ,
z_38*z_13*z_50 ,
z_39*z_21*z_19 + z_40*z_29*z_19 ,
z_39*z_22*z_40 + z_40*z_29*z_18 ,
z_41*z_4*z_35 + z_41*z_6*z_48 + z_42*z_11*z_35 + z_42*z_12*z_41 ,
z_41*z_4*z_38 + z_43*z_56*z_50 ,
z_41*z_5*z_43 + z_42*z_13*z_54 + z_43*z_56*z_54 ,
z_41*z_6*z_49 + z_42*z_13*z_49 + z_43*z_56*z_49 ,
z_41*z_6*z_54 + z_43*z_55*z_43 ,
z_42*z_11*z_37 ,
z_43*z_55*z_41 ,
z_43*z_55*z_42 + z_43*z_56*z_50 ,
z_43*z_56*z_48 ,
z_43*z_56*z_52 ,
z_44*z_46*z_31 ,
z_44*z_46*z_33 ,
z_45*z_27*z_49 ,
z_45*z_27*z_53 + z_46*z_32*z_19 ,
z_45*z_27*z_54 ,
z_46*z_32*z_17 + z_46*z_34*z_51 ,
z_46*z_33*z_47 ,
z_48*z_2*z_14 + z_48*z_4*z_35 + z_48*z_6*z_48 + z_51*z_22*z_35 + z_52*z_27*z_48 + z_53*z_31*z_14 + z_53*z_34*z_48 + z_54*z_56*z_48 ,
z_48*z_2*z_16 + z_48*z_6*z_53 ,
z_48*z_5*z_43 + z_48*z_6*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 ,
z_49*z_7*z_38 + z_54*z_55*z_42 ,
z_49*z_8*z_49 ,
z_49*z_8*z_50 + z_54*z_55*z_42 ,
z_50*z_11*z_35 + z_54*z_56*z_48 ,
z_50*z_11*z_37 ,
z_50*z_11*z_38 ,
z_50*z_12*z_41 + z_54*z_56*z_48 ,
z_50*z_13*z_48 + z_54*z_56*z_48 ,
z_51*z_21*z_17 + z_53*z_34*z_51 ,
z_51*z_21*z_18 + z_51*z_22*z_40 ,
z_51*z_21*z_19 + z_53*z_32*z_19 ,
z_51*z_23*z_48 + z_53*z_34*z_48 ,
z_51*z_23*z_53 + z_53*z_32*z_19 ,
z_52*z_24*z_2 + z_48*z_2 + z_53*z_31 ,
z_54*z_55*z_41 + z_54*z_56*z_48 ,
z_55*z_41*z_2 ,
z_55*z_41*z_3 + z_56*z_48*z_3 ,
z_55*z_41*z_4 + z_56*z_48*z_4 ,
z_55*z_42*z_12 + z_56*z_48*z_5 + z_56*z_54*z_55 ,
z_55*z_43*z_55 + z_56*z_50*z_12 + z_56*z_54*z_55 ,
z_56*z_48*z_2 ,
b_2^2 + b_2 ,
b_2*b_3 ,
b_2*b_4 ,
b_2*b_5 ,
b_2*b_6 ,
b_2*b_7 ,
b_2*b_8 ,
b_2*b_9 ,
b_2*b_10 ,
b_2*b_11 ,
b_2*b_12 ,
b_2*b_13 ,
b_2*b_14 ,
b_2*b_15 ,
b_2*b_16 ,
b_2*b_17 ,
b_2*b_18 ,
b_2*z_1 ,
b_2*z_2 + z_2 ,
b_2*z_3 + z_3 ,
b_2*z_4 + z_4 ,
b_2*z_5 + z_5 ,
b_2*z_6 + z_6 ,
b_2*z_7 ,
b_2*z_8 ,
b_2*z_9 ,
b_2*z_10 ,
b_2*z_11 ,
b_2*z_12 ,
b_2*z_13 ,
b_2*z_14 ,
b_2*z_15 ,
b_2*z_16 ,
b_2*z_17 ,
b_2*z_18 ,
b_2*z_19 ,
b_2*z_20 ,
b_2*z_21 ,
b_2*z_22 ,
b_2*z_23 ,
b_2*z_24 ,
b_2*z_25 ,
b_2*z_26 ,
b_2*z_27 ,
b_2*z_28 ,
b_2*z_29 ,
b_2*z_30 ,
b_2*z_31 ,
b_2*z_32 ,
b_2*z_33 ,
b_2*z_34 ,
b_2*z_35 ,
b_2*z_36 ,
b_2*z_37 ,
b_2*z_38 ,
b_2*z_39 ,
b_2*z_40 ,
b_2*z_41 ,
b_2*z_42 ,
b_2*z_43 ,
b_2*z_44 ,
b_2*z_45 ,
b_2*z_46 ,
b_2*z_47 ,
b_2*z_48 ,
b_2*z_49 ,
b_2*z_50 ,
b_2*z_51 ,
b_2*z_52 ,
b_2*z_53 ,
b_2*z_54 ,
b_2*z_55 ,
b_2*z_56 ,
b_3*b_2 ,
b_3^2 + b_3 ,
b_3*b_4 ,
b_3*b_5 ,
b_3*b_6 ,
b_3*b_7 ,
b_3*b_8 ,
b_3*b_9 ,
b_3*b_10 ,
b_3*b_11 ,
b_3*b_12 ,
b_3*b_13 ,
b_3*b_14 ,
b_3*b_15 ,
b_3*b_16 ,
b_3*b_17 ,
b_3*b_18 ,
b_3*z_1 ,
b_3*z_2 ,
b_3*z_3 ,
b_3*z_4 ,
b_3*z_5 ,
b_3*z_6 ,
b_3*z_7 + z_7 ,
b_3*z_8 + z_8 ,
b_3*z_9 ,
b_3*z_10 ,
b_3*z_11 ,
b_3*z_12 ,
b_3*z_13 ,
b_3*z_14 ,
b_3*z_15 ,
b_3*z_16 ,
b_3*z_17 ,
b_3*z_18 ,
b_3*z_19 ,
b_3*z_20 ,
b_3*z_21 ,
b_3*z_22 ,
b_3*z_23 ,
b_3*z_24 ,
b_3*z_25 ,
b_3*z_26 ,
b_3*z_27 ,
b_3*z_28 ,
b_3*z_29 ,
b_3*z_30 ,
b_3*z_31 ,
b_3*z_32 ,
b_3*z_33 ,
b_3*z_34 ,
b_3*z_35 ,
b_3*z_36 ,
b_3*z_37 ,
b_3*z_38 ,
b_3*z_39 ,
b_3*z_40 ,
b_3*z_41 ,
b_3*z_42 ,
b_3*z_43 ,
b_3*z_44 ,
b_3*z_45 ,
b_3*z_46 ,
b_3*z_47 ,
b_3*z_48 ,
b_3*z_49 ,
b_3*z_50 ,
b_3*z_51 ,
b_3*z_52 ,
b_3*z_53 ,
b_3*z_54 ,
b_3*z_55 ,
b_3*z_56 ,
b_4*b_2 ,
b_4*b_3 ,
b_4^2 + b_4 ,
b_4*b_5 ,
b_4*b_6 ,
b_4*b_7 ,
b_4*b_8 ,
b_4*b_9 ,
b_4*b_10 ,
b_4*b_11 ,
b_4*b_12 ,
b_4*b_13 ,
b_4*b_14 ,
b_4*b_15 ,
b_4*b_16 ,
b_4*b_17 ,
b_4*b_18 ,
b_4*z_1 ,
b_4*z_2 ,
b_4*z_3 ,
b_4*z_4 ,
b_4*z_5 ,
b_4*z_6 ,
b_4*z_7 ,
b_4*z_8 ,
b_4*z_9 + z_9 ,
b_4*z_10 + z_10 ,
b_4*z_11 ,
b_4*z_12 ,
b_4*z_13 ,
b_4*z_14 ,
b_4*z_15 ,
b_4*z_16 ,
b_4*z_17 ,
b_4*z_18 ,
b_4*z_19 ,
b_4*z_20 ,
b_4*z_21 ,
b_4*z_22 ,
b_4*z_23 ,
b_4*z_24 ,
b_4*z_25 ,
b_4*z_26 ,
b_4*z_27 ,
b_4*z_28 ,
b_4*z_29 ,
b_4*z_30 ,
b_4*z_31 ,
b_4*z_32 ,
b_4*z_33 ,
b_4*z_34 ,
b_4*z_35 ,
b_4*z_36 ,
b_4*z_37 ,
b_4*z_38 ,
b_4*z_39 ,
b_4*z_40 ,
b_4*z_41 ,
b_4*z_42 ,
b_4*z_43 ,
b_4*z_44 ,
b_4*z_45 ,
b_4*z_46 ,
b_4*z_47 ,
b_4*z_48 ,
b_4*z_49 ,
b_4*z_50 ,
b_4*z_51 ,
b_4*z_52 ,
b_4*z_53 ,
b_4*z_54 ,
b_4*z_55 ,
b_4*z_56 ,
b_5*b_2 ,
b_5*b_3 ,
b_5*b_4 ,
b_5^2 + b_5 ,
b_5*b_6 ,
b_5*b_7 ,
b_5*b_8 ,
b_5*b_9 ,
b_5*b_10 ,
b_5*b_11 ,
b_5*b_12 ,
b_5*b_13 ,
b_5*b_14 ,
b_5*b_15 ,
b_5*b_16 ,
b_5*b_17 ,
b_5*b_18 ,
b_5*z_1 ,
b_5*z_2 ,
b_5*z_3 ,
b_5*z_4 ,
b_5*z_5 ,
b_5*z_6 ,
b_5*z_7 ,
b_5*z_8 ,
b_5*z_9 ,
b_5*z_10 ,
b_5*z_11 + z_11 ,
b_5*z_12 + z_12 ,
b_5*z_13 + z_13 ,
b_5*z_14 ,
b_5*z_15 ,
b_5*z_16 ,
b_5*z_17 ,
b_5*z_18 ,
b_5*z_19 ,
b_5*z_20 ,
b_5*z_21 ,
b_5*z_22 ,
b_5*z_23 ,
b_5*z_24 ,
b_5*z_25 ,
b_5*z_26 ,
b_5*z_27 ,
b_5*z_28 ,
b_5*z_29 ,
b_5*z_30 ,
b_5*z_31 ,
b_5*z_32 ,
b_5*z_33 ,
b_5*z_34 ,
b_5*z_35 ,
b_5*z_36 ,
b_5*z_37 ,
b_5*z_38 ,
b_5*z_39 ,
b_5*z_40 ,
b_5*z_41 ,
b_5*z_42 ,
b_5*z_43 ,
b_5*z_44 ,
b_5*z_45 ,
b_5*z_46 ,
b_5*z_47 ,
b_5*z_48 ,
b_5*z_49 ,
b_5*z_50 ,
b_5*z_51 ,
b_5*z_52 ,
b_5*z_53 ,
b_5*z_54 ,
b_5*z_55 ,
b_5*z_56 ,
b_6*b_2 ,
b_6*b_3 ,
b_6*b_4 ,
b_6*b_5 ,
b_6^2 + b_6 ,
b_6*b_7 ,
b_6*b_8 ,
b_6*b_9 ,
b_6*b_10 ,
b_6*b_11 ,
b_6*b_12 ,
b_6*b_13 ,
b_6*b_14 ,
b_6*b_15 ,
b_6*b_16 ,
b_6*b_17 ,
b_6*b_18 ,
b_6*z_1 ,
b_6*z_2 ,
b_6*z_3 ,
b_6*z_4 ,
b_6*z_5 ,
b_6*z_6 ,
b_6*z_7 ,
b_6*z_8 ,
b_6*z_9 ,
b_6*z_10 ,
b_6*z_11 ,
b_6*z_12 ,
b_6*z_13 ,
b_6*z_14 + z_14 ,
b_6*z_15 + z_15 ,
b_6*z_16 + z_16 ,
b_6*z_17 ,
b_6*z_18 ,
b_6*z_19 ,
b_6*z_20 ,
b_6*z_21 ,
b_6*z_22 ,
b_6*z_23 ,
b_6*z_24 ,
b_6*z_25 ,
b_6*z_26 ,
b_6*z_27 ,
b_6*z_28 ,
b_6*z_29 ,
b_6*z_30 ,
b_6*z_31 ,
b_6*z_32 ,
b_6*z_33 ,
b_6*z_34 ,
b_6*z_35 ,
b_6*z_36 ,
b_6*z_37 ,
b_6*z_38 ,
b_6*z_39 ,
b_6*z_40 ,
b_6*z_41 ,
b_6*z_42 ,
b_6*z_43 ,
b_6*z_44 ,
b_6*z_45 ,
b_6*z_46 ,
b_6*z_47 ,
b_6*z_48 ,
b_6*z_49 ,
b_6*z_50 ,
b_6*z_51 ,
b_6*z_52 ,
b_6*z_53 ,
b_6*z_54 ,
b_6*z_55 ,
b_6*z_56 ,
b_7*b_2 ,
b_7*b_3 ,
b_7*b_4 ,
b_7*b_5 ,
b_7*b_6 ,
b_7^2 + b_7 ,
b_7*b_8 ,
b_7*b_9 ,
b_7*b_10 ,
b_7*b_11 ,
b_7*b_12 ,
b_7*b_13 ,
b_7*b_14 ,
b_7*b_15 ,
b_7*b_16 ,
b_7*b_17 ,
b_7*b_18 ,
b_7*z_1 ,
b_7*z_2 ,
b_7*z_3 ,
b_7*z_4 ,
b_7*z_5 ,
b_7*z_6 ,
b_7*z_7 ,
b_7*z_8 ,
b_7*z_9 ,
b_7*z_10 ,
b_7*z_11 ,
b_7*z_12 ,
b_7*z_13 ,
b_7*z_14 ,
b_7*z_15 ,
b_7*z_16 ,
b_7*z_17 + z_17 ,
b_7*z_18 + z_18 ,
b_7*z_19 + z_19 ,
b_7*z_20 ,
b_7*z_21 ,
b_7*z_22 ,
b_7*z_23 ,
b_7*z_24 ,
b_7*z_25 ,
b_7*z_26 ,
b_7*z_27 ,
b_7*z_28 ,
b_7*z_29 ,
b_7*z_30 ,
b_7*z_31 ,
b_7*z_32 ,
b_7*z_33 ,
b_7*z_34 ,
b_7*z_35 ,
b_7*z_36 ,
b_7*z_37 ,
b_7*z_38 ,
b_7*z_39 ,
b_7*z_40 ,
b_7*z_41 ,
b_7*z_42 ,
b_7*z_43 ,
b_7*z_44 ,
b_7*z_45 ,
b_7*z_46 ,
b_7*z_47 ,
b_7*z_48 ,
b_7*z_49 ,
b_7*z_50 ,
b_7*z_51 ,
b_7*z_52 ,
b_7*z_53 ,
b_7*z_54 ,
b_7*z_55 ,
b_7*z_56 ,
b_8*b_2 ,
b_8*b_3 ,
b_8*b_4 ,
b_8*b_5 ,
b_8*b_6 ,
b_8*b_7 ,
b_8^2 + b_8 ,
b_8*b_9 ,
b_8*b_10 ,
b_8*b_11 ,
b_8*b_12 ,
b_8*b_13 ,
b_8*b_14 ,
b_8*b_15 ,
b_8*b_16 ,
b_8*b_17 ,
b_8*b_18 ,
b_8*z_1 ,
b_8*z_2 ,
b_8*z_3 ,
b_8*z_4 ,
b_8*z_5 ,
b_8*z_6 ,
b_8*z_7 ,
b_8*z_8 ,
b_8*z_9 ,
b_8*z_10 ,
b_8*z_11 ,
b_8*z_12 ,
b_8*z_13 ,
b_8*z_14 ,
b_8*z_15 ,
b_8*z_16 ,
b_8*z_17 ,
b_8*z_18 ,
b_8*z_19 ,
b_8*z_20 + z_20 ,
b_8*z_21 ,
b_8*z_22 ,
b_8*z_23 ,
b_8*z_24 ,
b_8*z_25 ,
b_8*z_26 ,
b_8*z_27 ,
b_8*z_28 ,
b_8*z_29 ,
b_8*z_30 ,
b_8*z_31 ,
b_8*z_32 ,
b_8*z_33 ,
b_8*z_34 ,
b_8*z_35 ,
b_8*z_36 ,
b_8*z_37 ,
b_8*z_38 ,
b_8*z_39 ,
b_8*z_40 ,
b_8*z_41 ,
b_8*z_42 ,
b_8*z_43 ,
b_8*z_44 ,
b_8*z_45 ,
b_8*z_46 ,
b_8*z_47 ,
b_8*z_48 ,
b_8*z_49 ,
b_8*z_50 ,
b_8*z_51 ,
b_8*z_52 ,
b_8*z_53 ,
b_8*z_54 ,
b_8*z_55 ,
b_8*z_56 ,
b_9*b_2 ,
b_9*b_3 ,
b_9*b_4 ,
b_9*b_5 ,
b_9*b_6 ,
b_9*b_7 ,
b_9*b_8 ,
b_9^2 + b_9 ,
b_9*b_10 ,
b_9*b_11 ,
b_9*b_12 ,
b_9*b_13 ,
b_9*b_14 ,
b_9*b_15 ,
b_9*b_16 ,
b_9*b_17 ,
b_9*b_18 ,
b_9*z_1 ,
b_9*z_2 ,
b_9*z_3 ,
b_9*z_4 ,
b_9*z_5 ,
b_9*z_6 ,
b_9*z_7 ,
b_9*z_8 ,
b_9*z_9 ,
b_9*z_10 ,
b_9*z_11 ,
b_9*z_12 ,
b_9*z_13 ,
b_9*z_14 ,
b_9*z_15 ,
b_9*z_16 ,
b_9*z_17 ,
b_9*z_18 ,
b_9*z_19 ,
b_9*z_20 ,
b_9*z_21 + z_21 ,
b_9*z_22 + z_22 ,
b_9*z_23 + z_23 ,
b_9*z_24 ,
b_9*z_25 ,
b_9*z_26 ,
b_9*z_27 ,
b_9*z_28 ,
b_9*z_29 ,
b_9*z_30 ,
b_9*z_31 ,
b_9*z_32 ,
b_9*z_33 ,
b_9*z_34 ,
b_9*z_35 ,
b_9*z_36 ,
b_9*z_37 ,
b_9*z_38 ,
b_9*z_39 ,
b_9*z_40 ,
b_9*z_41 ,
b_9*z_42 ,
b_9*z_43 ,
b_9*z_44 ,
b_9*z_45 ,
b_9*z_46 ,
b_9*z_47 ,
b_9*z_48 ,
b_9*z_49 ,
b_9*z_50 ,
b_9*z_51 ,
b_9*z_52 ,
b_9*z_53 ,
b_9*z_54 ,
b_9*z_55 ,
b_9*z_56 ,
b_10*b_2 ,
b_10*b_3 ,
b_10*b_4 ,
b_10*b_5 ,
b_10*b_6 ,
b_10*b_7 ,
b_10*b_8 ,
b_10*b_9 ,
b_10^2 + b_10 ,
b_10*b_11 ,
b_10*b_12 ,
b_10*b_13 ,
b_10*b_14 ,
b_10*b_15 ,
b_10*b_16 ,
b_10*b_17 ,
b_10*b_18 ,
b_10*z_1 ,
b_10*z_2 ,
b_10*z_3 ,
b_10*z_4 ,
b_10*z_5 ,
b_10*z_6 ,
b_10*z_7 ,
b_10*z_8 ,
b_10*z_9 ,
b_10*z_10 ,
b_10*z_11 ,
b_10*z_12 ,
b_10*z_13 ,
b_10*z_14 ,
b_10*z_15 ,
b_10*z_16 ,
b_10*z_17 ,
b_10*z_18 ,
b_10*z_19 ,
b_10*z_20 ,
b_10*z_21 ,
b_10*z_22 ,
b_10*z_23 ,
b_10*z_24 + z_24 ,
b_10*z_25 + z_25 ,
b_10*z_26 + z_26 ,
b_10*z_27 + z_27 ,
b_10*z_28 ,
b_10*z_29 ,
b_10*z_30 ,
b_10*z_31 ,
b_10*z_32 ,
b_10*z_33 ,
b_10*z_34 ,
b_10*z_35 ,
b_10*z_36 ,
b_10*z_37 ,
b_10*z_38 ,
b_10*z_39 ,
b_10*z_40 ,
b_10*z_41 ,
b_10*z_42 ,
b_10*z_43 ,
b_10*z_44 ,
b_10*z_45 ,
b_10*z_46 ,
b_10*z_47 ,
b_10*z_48 ,
b_10*z_49 ,
b_10*z_50 ,
b_10*z_51 ,
b_10*z_52 ,
b_10*z_53 ,
b_10*z_54 ,
b_10*z_55 ,
b_10*z_56 ,
b_11*b_2 ,
b_11*b_3 ,
b_11*b_4 ,
b_11*b_5 ,
b_11*b_6 ,
b_11*b_7 ,
b_11*b_8 ,
b_11*b_9 ,
b_11*b_10 ,
b_11^2 + b_11 ,
b_11*b_12 ,
b_11*b_13 ,
b_11*b_14 ,
b_11*b_15 ,
b_11*b_16 ,
b_11*b_17 ,
b_11*b_18 ,
b_11*z_1 ,
b_11*z_2 ,
b_11*z_3 ,
b_11*z_4 ,
b_11*z_5 ,
b_11*z_6 ,
b_11*z_7 ,
b_11*z_8 ,
b_11*z_9 ,
b_11*z_10 ,
b_11*z_11 ,
b_11*z_12 ,
b_11*z_13 ,
b_11*z_14 ,
b_11*z_15 ,
b_11*z_16 ,
b_11*z_17 ,
b_11*z_18 ,
b_11*z_19 ,
b_11*z_20 ,
b_11*z_21 ,
b_11*z_22 ,
b_11*z_23 ,
b_11*z_24 ,
b_11*z_25 ,
b_11*z_26 ,
b_11*z_27 ,
b_11*z_28 + z_28 ,
b_11*z_29 + z_29 ,
b_11*z_30 + z_30 ,
b_11*z_31 ,
b_11*z_32 ,
b_11*z_33 ,
b_11*z_34 ,
b_11*z_35 ,
b_11*z_36 ,
b_11*z_37 ,
b_11*z_38 ,
b_11*z_39 ,
b_11*z_40 ,
b_11*z_41 ,
b_11*z_42 ,
b_11*z_43 ,
b_11*z_44 ,
b_11*z_45 ,
b_11*z_46 ,
b_11*z_47 ,
b_11*z_48 ,
b_11*z_49 ,
b_11*z_50 ,
b_11*z_51 ,
b_11*z_52 ,
b_11*z_53 ,
b_11*z_54 ,
b_11*z_55 ,
b_11*z_56 ,
b_12*b_2 ,
b_12*b_3 ,
b_12*b_4 ,
b_12*b_5 ,
b_12*b_6 ,
b_12*b_7 ,
b_12*b_8 ,
b_12*b_9 ,
b_12*b_10 ,
b_12*b_11 ,
b_12^2 + b_12 ,
b_12*b_13 ,
b_12*b_14 ,
b_12*b_15 ,
b_12*b_16 ,
b_12*b_17 ,
b_12*b_18 ,
b_12*z_1 ,
b_12*z_2 ,
b_12*z_3 ,
b_12*z_4 ,
b_12*z_5 ,
b_12*z_6 ,
b_12*z_7 ,
b_12*z_8 ,
b_12*z_9 ,
b_12*z_10 ,
b_12*z_11 ,
b_12*z_12 ,
b_12*z_13 ,
b_12*z_14 ,
b_12*z_15 ,
b_12*z_16 ,
b_12*z_17 ,
b_12*z_18 ,
b_12*z_19 ,
b_12*z_20 ,
b_12*z_21 ,
b_12*z_22 ,
b_12*z_23 ,
b_12*z_24 ,
b_12*z_25 ,
b_12*z_26 ,
b_12*z_27 ,
b_12*z_28 ,
b_12*z_29 ,
b_12*z_30 ,
b_12*z_31 + z_31 ,
b_12*z_32 + z_32 ,
b_12*z_33 + z_33 ,
b_12*z_34 + z_34 ,
b_12*z_35 ,
b_12*z_36 ,
b_12*z_37 ,
b_12*z_38 ,
b_12*z_39 ,
b_12*z_40 ,
b_12*z_41 ,
b_12*z_42 ,
b_12*z_43 ,
b_12*z_44 ,
b_12*z_45 ,
b_12*z_46 ,
b_12*z_47 ,
b_12*z_48 ,
b_12*z_49 ,
b_12*z_50 ,
b_12*z_51 ,
b_12*z_52 ,
b_12*z_53 ,
b_12*z_54 ,
b_12*z_55 ,
b_12*z_56 ,
b_13*b_2 ,
b_13*b_3 ,
b_13*b_4 ,
b_13*b_5 ,
b_13*b_6 ,
b_13*b_7 ,
b_13*b_8 ,
b_13*b_9 ,
b_13*b_10 ,
b_13*b_11 ,
b_13*b_12 ,
b_13^2 + b_13 ,
b_13*b_14 ,
b_13*b_15 ,
b_13*b_16 ,
b_13*b_17 ,
b_13*b_18 ,
b_13*z_1 ,
b_13*z_2 ,
b_13*z_3 ,
b_13*z_4 ,
b_13*z_5 ,
b_13*z_6 ,
b_13*z_7 ,
b_13*z_8 ,
b_13*z_9 ,
b_13*z_10 ,
b_13*z_11 ,
b_13*z_12 ,
b_13*z_13 ,
b_13*z_14 ,
b_13*z_15 ,
b_13*z_16 ,
b_13*z_17 ,
b_13*z_18 ,
b_13*z_19 ,
b_13*z_20 ,
b_13*z_21 ,
b_13*z_22 ,
b_13*z_23 ,
b_13*z_24 ,
b_13*z_25 ,
b_13*z_26 ,
b_13*z_27 ,
b_13*z_28 ,
b_13*z_29 ,
b_13*z_30 ,
b_13*z_31 ,
b_13*z_32 ,
b_13*z_33 ,
b_13*z_34 ,
b_13*z_35 + z_35 ,
b_13*z_36 + z_36 ,
b_13*z_37 + z_37 ,
b_13*z_38 + z_38 ,
b_13*z_39 + z_39 ,
b_13*z_40 + z_40 ,
b_13*z_41 ,
b_13*z_42 ,
b_13*z_43 ,
b_13*z_44 ,
b_13*z_45 ,
b_13*z_46 ,
b_13*z_47 ,
b_13*z_48 ,
b_13*z_49 ,
b_13*z_50 ,
b_13*z_51 ,
b_13*z_52 ,
b_13*z_53 ,
b_13*z_54 ,
b_13*z_55 ,
b_13*z_56 ,
b_14*b_2 ,
b_14*b_3 ,
b_14*b_4 ,
b_14*b_5 ,
b_14*b_6 ,
b_14*b_7 ,
b_14*b_8 ,
b_14*b_9 ,
b_14*b_10 ,
b_14*b_11 ,
b_14*b_12 ,
b_14*b_13 ,
b_14^2 + b_14 ,
b_14*b_15 ,
b_14*b_16 ,
b_14*b_17 ,
b_14*b_18 ,
b_14*z_1 ,
b_14*z_2 ,
b_14*z_3 ,
b_14*z_4 ,
b_14*z_5 ,
b_14*z_6 ,
b_14*z_7 ,
b_14*z_8 ,
b_14*z_9 ,
b_14*z_10 ,
b_14*z_11 ,
b_14*z_12 ,
b_14*z_13 ,
b_14*z_14 ,
b_14*z_15 ,
b_14*z_16 ,
b_14*z_17 ,
b_14*z_18 ,
b_14*z_19 ,
b_14*z_20 ,
b_14*z_21 ,
b_14*z_22 ,
b_14*z_23 ,
b_14*z_24 ,
b_14*z_25 ,
b_14*z_26 ,
b_14*z_27 ,
b_14*z_28 ,
b_14*z_29 ,
b_14*z_30 ,
b_14*z_31 ,
b_14*z_32 ,
b_14*z_33 ,
b_14*z_34 ,
b_14*z_35 ,
b_14*z_36 ,
b_14*z_37 ,
b_14*z_38 ,
b_14*z_39 ,
b_14*z_40 ,
b_14*z_41 + z_41 ,
b_14*z_42 + z_42 ,
b_14*z_43 + z_43 ,
b_14*z_44 ,
b_14*z_45 ,
b_14*z_46 ,
b_14*z_47 ,
b_14*z_48 ,
b_14*z_49 ,
b_14*z_50 ,
b_14*z_51 ,
b_14*z_52 ,
b_14*z_53 ,
b_14*z_54 ,
b_14*z_55 ,
b_14*z_56 ,
b_15*b_2 ,
b_15*b_3 ,
b_15*b_4 ,
b_15*b_5 ,
b_15*b_6 ,
b_15*b_7 ,
b_15*b_8 ,
b_15*b_9 ,
b_15*b_10 ,
b_15*b_11 ,
b_15*b_12 ,
b_15*b_13 ,
b_15*b_14 ,
b_15^2 + b_15 ,
b_15*b_16 ,
b_15*b_17 ,
b_15*b_18 ,
b_15*z_1 ,
b_15*z_2 ,
b_15*z_3 ,
b_15*z_4 ,
b_15*z_5 ,
b_15*z_6 ,
b_15*z_7 ,
b_15*z_8 ,
b_15*z_9 ,
b_15*z_10 ,
b_15*z_11 ,
b_15*z_12 ,
b_15*z_13 ,
b_15*z_14 ,
b_15*z_15 ,
b_15*z_16 ,
b_15*z_17 ,
b_15*z_18 ,
b_15*z_19 ,
b_15*z_20 ,
b_15*z_21 ,
b_15*z_22 ,
b_15*z_23 ,
b_15*z_24 ,
b_15*z_25 ,
b_15*z_26 ,
b_15*z_27 ,
b_15*z_28 ,
b_15*z_29 ,
b_15*z_30 ,
b_15*z_31 ,
b_15*z_32 ,
b_15*z_33 ,
b_15*z_34 ,
b_15*z_35 ,
b_15*z_36 ,
b_15*z_37 ,
b_15*z_38 ,
b_15*z_39 ,
b_15*z_40 ,
b_15*z_41 ,
b_15*z_42 ,
b_15*z_43 ,
b_15*z_44 + z_44 ,
b_15*z_45 ,
b_15*z_46 ,
b_15*z_47 ,
b_15*z_48 ,
b_15*z_49 ,
b_15*z_50 ,
b_15*z_51 ,
b_15*z_52 ,
b_15*z_53 ,
b_15*z_54 ,
b_15*z_55 ,
b_15*z_56 ,
b_16*b_2 ,
b_16*b_3 ,
b_16*b_4 ,
b_16*b_5 ,
b_16*b_6 ,
b_16*b_7 ,
b_16*b_8 ,
b_16*b_9 ,
b_16*b_10 ,
b_16*b_11 ,
b_16*b_12 ,
b_16*b_13 ,
b_16*b_14 ,
b_16*b_15 ,
b_16^2 + b_16 ,
b_16*b_17 ,
b_16*b_18 ,
b_16*z_1 ,
b_16*z_2 ,
b_16*z_3 ,
b_16*z_4 ,
b_16*z_5 ,
b_16*z_6 ,
b_16*z_7 ,
b_16*z_8 ,
b_16*z_9 ,
b_16*z_10 ,
b_16*z_11 ,
b_16*z_12 ,
b_16*z_13 ,
b_16*z_14 ,
b_16*z_15 ,
b_16*z_16 ,
b_16*z_17 ,
b_16*z_18 ,
b_16*z_19 ,
b_16*z_20 ,
b_16*z_21 ,
b_16*z_22 ,
b_16*z_23 ,
b_16*z_24 ,
b_16*z_25 ,
b_16*z_26 ,
b_16*z_27 ,
b_16*z_28 ,
b_16*z_29 ,
b_16*z_30 ,
b_16*z_31 ,
b_16*z_32 ,
b_16*z_33 ,
b_16*z_34 ,
b_16*z_35 ,
b_16*z_36 ,
b_16*z_37 ,
b_16*z_38 ,
b_16*z_39 ,
b_16*z_40 ,
b_16*z_41 ,
b_16*z_42 ,
b_16*z_43 ,
b_16*z_44 ,
b_16*z_45 + z_45 ,
b_16*z_46 + z_46 ,
b_16*z_47 + z_47 ,
b_16*z_48 ,
b_16*z_49 ,
b_16*z_50 ,
b_16*z_51 ,
b_16*z_52 ,
b_16*z_53 ,
b_16*z_54 ,
b_16*z_55 ,
b_16*z_56 ,
b_17*b_2 ,
b_17*b_3 ,
b_17*b_4 ,
b_17*b_5 ,
b_17*b_6 ,
b_17*b_7 ,
b_17*b_8 ,
b_17*b_9 ,
b_17*b_10 ,
b_17*b_11 ,
b_17*b_12 ,
b_17*b_13 ,
b_17*b_14 ,
b_17*b_15 ,
b_17*b_16 ,
b_17^2 + b_17 ,
b_17*b_18 ,
b_17*z_1 ,
b_17*z_2 ,
b_17*z_3 ,
b_17*z_4 ,
b_17*z_5 ,
b_17*z_6 ,
b_17*z_7 ,
b_17*z_8 ,
b_17*z_9 ,
b_17*z_10 ,
b_17*z_11 ,
b_17*z_12 ,
b_17*z_13 ,
b_17*z_14 ,
b_17*z_15 ,
b_17*z_16 ,
b_17*z_17 ,
b_17*z_18 ,
b_17*z_19 ,
b_17*z_20 ,
b_17*z_21 ,
b_17*z_22 ,
b_17*z_23 ,
b_17*z_24 ,
b_17*z_25 ,
b_17*z_26 ,
b_17*z_27 ,
b_17*z_28 ,
b_17*z_29 ,
b_17*z_30 ,
b_17*z_31 ,
b_17*z_32 ,
b_17*z_33 ,
b_17*z_34 ,
b_17*z_35 ,
b_17*z_36 ,
b_17*z_37 ,
b_17*z_38 ,
b_17*z_39 ,
b_17*z_40 ,
b_17*z_41 ,
b_17*z_42 ,
b_17*z_43 ,
b_17*z_44 ,
b_17*z_45 ,
b_17*z_46 ,
b_17*z_47 ,
b_17*z_48 + z_48 ,
b_17*z_49 + z_49 ,
b_17*z_50 + z_50 ,
b_17*z_51 + z_51 ,
b_17*z_52 + z_52 ,
b_17*z_53 + z_53 ,
b_17*z_54 + z_54 ,
b_17*z_55 ,
b_17*z_56 ,
b_18*b_2 ,
b_18*b_3 ,
b_18*b_4 ,
b_18*b_5 ,
b_18*b_6 ,
b_18*b_7 ,
b_18*b_8 ,
b_18*b_9 ,
b_18*b_10 ,
b_18*b_11 ,
b_18*b_12 ,
b_18*b_13 ,
b_18*b_14 ,
b_18*b_15 ,
b_18*b_16 ,
b_18*b_17 ,
b_18^2 + b_18 ,
b_18*z_1 ,
b_18*z_2 ,
b_18*z_3 ,
b_18*z_4 ,
b_18*z_5 ,
b_18*z_6 ,
b_18*z_7 ,
b_18*z_8 ,
b_18*z_9 ,
b_18*z_10 ,
b_18*z_11 ,
b_18*z_12 ,
b_18*z_13 ,
b_18*z_14 ,
b_18*z_15 ,
b_18*z_16 ,
b_18*z_17 ,
b_18*z_18 ,
b_18*z_19 ,
b_18*z_20 ,
b_18*z_21 ,
b_18*z_22 ,
b_18*z_23 ,
b_18*z_24 ,
b_18*z_25 ,
b_18*z_26 ,
b_18*z_27 ,
b_18*z_28 ,
b_18*z_29 ,
b_18*z_30 ,
b_18*z_31 ,
b_18*z_32 ,
b_18*z_33 ,
b_18*z_34 ,
b_18*z_35 ,
b_18*z_36 ,
b_18*z_37 ,
b_18*z_38 ,
b_18*z_39 ,
b_18*z_40 ,
b_18*z_41 ,
b_18*z_42 ,
b_18*z_43 ,
b_18*z_44 ,
b_18*z_45 ,
b_18*z_46 ,
b_18*z_47 ,
b_18*z_48 ,
b_18*z_49 ,
b_18*z_50 ,
b_18*z_51 ,
b_18*z_52 ,
b_18*z_53 ,
b_18*z_54 ,
b_18*z_55 + z_55 ,
b_18*z_56 + z_56 ,
z_1*b_2 ,
z_1*b_3 ,
z_1*b_4 ,
z_1*b_5 ,
z_1*b_6 ,
z_1*b_7 ,
z_1*b_8 + z_1 ,
z_1*b_9 ,
z_1*b_10 ,
z_1*b_11 ,
z_1*b_12 ,
z_1*b_13 ,
z_1*b_14 ,
z_1*b_15 ,
z_1*b_16 ,
z_1*b_17 ,
z_1*b_18 ,
z_1^2 ,
z_1*z_2 ,
z_1*z_3 ,
z_1*z_4 ,
z_1*z_5 ,
z_1*z_6 ,
z_1*z_7 ,
z_1*z_8 ,
z_1*z_9 ,
z_1*z_10 ,
z_1*z_11 ,
z_1*z_12 ,
z_1*z_13 ,
z_1*z_14 ,
z_1*z_15 ,
z_1*z_16 ,
z_1*z_17 ,
z_1*z_18 ,
z_1*z_19 ,
z_1*z_20 ,
z_1*z_21 ,
z_1*z_22 ,
z_1*z_23 ,
z_1*z_24 ,
z_1*z_25 ,
z_1*z_26 ,
z_1*z_27 ,
z_1*z_28 ,
z_1*z_29 ,
z_1*z_30 ,
z_1*z_31 ,
z_1*z_32 ,
z_1*z_33 ,
z_1*z_34 ,
z_1*z_35 ,
z_1*z_36 ,
z_1*z_37 ,
z_1*z_38 ,
z_1*z_39 ,
z_1*z_40 ,
z_1*z_41 ,
z_1*z_42 ,
z_1*z_43 ,
z_1*z_44 ,
z_1*z_45 ,
z_1*z_46 ,
z_1*z_47 ,
z_1*z_48 ,
z_1*z_49 ,
z_1*z_50 ,
z_1*z_51 ,
z_1*z_52 ,
z_1*z_53 ,
z_1*z_54 ,
z_1*z_55 ,
z_1*z_56 ,
z_2*b_2 ,
z_2*b_3 ,
z_2*b_4 ,
z_2*b_5 ,
z_2*b_6 + z_2 ,
z_2*b_7 ,
z_2*b_8 ,
z_2*b_9 ,
z_2*b_10 ,
z_2*b_11 ,
z_2*b_12 ,
z_2*b_13 ,
z_2*b_14 ,
z_2*b_15 ,
z_2*b_16 ,
z_2*b_17 ,
z_2*b_18 ,
z_2*z_1 ,
z_2^2 ,
z_2*z_3 ,
z_2*z_4 ,
z_2*z_5 ,
z_2*z_6 ,
z_2*z_7 ,
z_2*z_8 ,
z_2*z_9 ,
z_2*z_10 ,
z_2*z_11 ,
z_2*z_12 ,
z_2*z_13 ,
z_2*z_17 ,
z_2*z_18 ,
z_2*z_19 ,
z_2*z_20 ,
z_2*z_21 ,
z_2*z_22 ,
z_2*z_23 ,
z_2*z_24 ,
z_2*z_25 ,
z_2*z_26 ,
z_2*z_27 ,
z_2*z_28 ,
z_2*z_29 ,
z_2*z_30 ,
z_2*z_31 ,
z_2*z_32 ,
z_2*z_33 ,
z_2*z_34 ,
z_2*z_35 ,
z_2*z_36 ,
z_2*z_37 ,
z_2*z_38 ,
z_2*z_39 ,
z_2*z_40 ,
z_2*z_41 ,
z_2*z_42 ,
z_2*z_43 ,
z_2*z_44 ,
z_2*z_45 ,
z_2*z_46 ,
z_2*z_47 ,
z_2*z_48 ,
z_2*z_49 ,
z_2*z_50 ,
z_2*z_51 ,
z_2*z_52 ,
z_2*z_53 ,
z_2*z_54 ,
z_2*z_55 ,
z_2*z_56 ,
z_3*b_2 ,
z_3*b_3 ,
z_3*b_4 ,
z_3*b_5 ,
z_3*b_6 ,
z_3*b_7 ,
z_3*b_8 ,
z_3*b_9 ,
z_3*b_10 + z_3 ,
z_3*b_11 ,
z_3*b_12 ,
z_3*b_13 ,
z_3*b_14 ,
z_3*b_15 ,
z_3*b_16 ,
z_3*b_17 ,
z_3*b_18 ,
z_3*z_1 ,
z_3*z_2 ,
z_3^2 ,
z_3*z_4 ,
z_3*z_5 ,
z_3*z_6 ,
z_3*z_7 ,
z_3*z_8 ,
z_3*z_9 ,
z_3*z_10 ,
z_3*z_11 ,
z_3*z_12 ,
z_3*z_13 ,
z_3*z_14 ,
z_3*z_15 ,
z_3*z_16 ,
z_3*z_17 ,
z_3*z_18 ,
z_3*z_19 ,
z_3*z_20 ,
z_3*z_21 ,
z_3*z_22 ,
z_3*z_23 ,
z_3*z_24 + z_4*z_35 + z_6*z_48 ,
z_3*z_25 ,
z_3*z_28 ,
z_3*z_29 ,
z_3*z_30 ,
z_3*z_31 ,
z_3*z_32 ,
z_3*z_33 ,
z_3*z_34 ,
z_3*z_35 ,
z_3*z_36 ,
z_3*z_37 ,
z_3*z_38 ,
z_3*z_39 ,
z_3*z_40 ,
z_3*z_41 ,
z_3*z_42 ,
z_3*z_43 ,
z_3*z_44 ,
z_3*z_45 ,
z_3*z_46 ,
z_3*z_47 ,
z_3*z_48 ,
z_3*z_49 ,
z_3*z_50 ,
z_3*z_51 ,
z_3*z_52 ,
z_3*z_53 ,
z_3*z_54 ,
z_3*z_55 ,
z_3*z_56 ,
z_4*b_2 ,
z_4*b_3 ,
z_4*b_4 ,
z_4*b_5 ,
z_4*b_6 ,
z_4*b_7 ,
z_4*b_8 ,
z_4*b_9 ,
z_4*b_10 ,
z_4*b_11 ,
z_4*b_12 ,
z_4*b_13 + z_4 ,
z_4*b_14 ,
z_4*b_15 ,
z_4*b_16 ,
z_4*b_17 ,
z_4*b_18 ,
z_4*z_1 ,
z_4*z_2 ,
z_4*z_3 ,
z_4^2 ,
z_4*z_5 ,
z_4*z_6 ,
z_4*z_7 ,
z_4*z_8 ,
z_4*z_9 ,
z_4*z_10 ,
z_4*z_11 ,
z_4*z_12 ,
z_4*z_13 ,
z_4*z_14 ,
z_4*z_15 ,
z_4*z_16 ,
z_4*z_17 ,
z_4*z_18 ,
z_4*z_19 ,
z_4*z_20 ,
z_4*z_21 ,
z_4*z_22 ,
z_4*z_23 ,
z_4*z_24 ,
z_4*z_25 ,
z_4*z_26 ,
z_4*z_27 ,
z_4*z_28 ,
z_4*z_29 ,
z_4*z_30 ,
z_4*z_31 ,
z_4*z_32 ,
z_4*z_33 ,
z_4*z_34 ,
z_4*z_36 ,
z_4*z_39 + z_6*z_51 ,
z_4*z_41 ,
z_4*z_42 ,
z_4*z_43 ,
z_4*z_44 ,
z_4*z_45 ,
z_4*z_46 ,
z_4*z_47 ,
z_4*z_48 ,
z_4*z_49 ,
z_4*z_50 ,
z_4*z_51 ,
z_4*z_52 ,
z_4*z_53 ,
z_4*z_54 ,
z_4*z_55 ,
z_4*z_56 ,
z_5*b_2 ,
z_5*b_3 ,
z_5*b_4 ,
z_5*b_5 ,
z_5*b_6 ,
z_5*b_7 ,
z_5*b_8 ,
z_5*b_9 ,
z_5*b_10 ,
z_5*b_11 ,
z_5*b_12 ,
z_5*b_13 ,
z_5*b_14 + z_5 ,
z_5*b_15 ,
z_5*b_16 ,
z_5*b_17 ,
z_5*b_18 ,
z_5*z_1 ,
z_5*z_2 ,
z_5*z_3 ,
z_5*z_4 ,
z_5^2 ,
z_5*z_6 ,
z_5*z_7 ,
z_5*z_8 ,
z_5*z_9 ,
z_5*z_10 ,
z_5*z_11 ,
z_5*z_12 ,
z_5*z_13 ,
z_5*z_14 ,
z_5*z_15 ,
z_5*z_16 ,
z_5*z_17 ,
z_5*z_18 ,
z_5*z_19 ,
z_5*z_20 ,
z_5*z_21 ,
z_5*z_22 ,
z_5*z_23 ,
z_5*z_24 ,
z_5*z_25 ,
z_5*z_26 ,
z_5*z_27 ,
z_5*z_28 ,
z_5*z_29 ,
z_5*z_30 ,
z_5*z_31 ,
z_5*z_32 ,
z_5*z_33 ,
z_5*z_34 ,
z_5*z_35 ,
z_5*z_36 ,
z_5*z_37 ,
z_5*z_38 ,
z_5*z_39 ,
z_5*z_40 ,
z_5*z_41 ,
z_5*z_44 ,
z_5*z_45 ,
z_5*z_46 ,
z_5*z_47 ,
z_5*z_48 ,
z_5*z_49 ,
z_5*z_50 ,
z_5*z_51 ,
z_5*z_52 ,
z_5*z_53 ,
z_5*z_54 ,
z_5*z_55 ,
z_5*z_56 ,
z_6*b_2 ,
z_6*b_3 ,
z_6*b_4 ,
z_6*b_5 ,
z_6*b_6 ,
z_6*b_7 ,
z_6*b_8 ,
z_6*b_9 ,
z_6*b_10 ,
z_6*b_11 ,
z_6*b_12 ,
z_6*b_13 ,
z_6*b_14 ,
z_6*b_15 ,
z_6*b_16 ,
z_6*b_17 + z_6 ,
z_6*b_18 ,
z_6*z_1 ,
z_6*z_2 ,
z_6*z_3 ,
z_6*z_4 ,
z_6*z_5 ,
z_6^2 ,
z_6*z_7 ,
z_6*z_8 ,
z_6*z_9 ,
z_6*z_10 ,
z_6*z_11 ,
z_6*z_12 ,
z_6*z_13 ,
z_6*z_14 ,
z_6*z_15 ,
z_6*z_16 ,
z_6*z_17 ,
z_6*z_18 ,
z_6*z_19 ,
z_6*z_20 ,
z_6*z_21 ,
z_6*z_22 ,
z_6*z_23 ,
z_6*z_24 ,
z_6*z_25 ,
z_6*z_26 ,
z_6*z_27 ,
z_6*z_28 ,
z_6*z_29 ,
z_6*z_30 ,
z_6*z_31 ,
z_6*z_32 ,
z_6*z_33 ,
z_6*z_34 ,
z_6*z_35 ,
z_6*z_36 ,
z_6*z_37 ,
z_6*z_38 ,
z_6*z_39 ,
z_6*z_40 ,
z_6*z_41 ,
z_6*z_42 ,
z_6*z_43 ,
z_6*z_44 ,
z_6*z_45 ,
z_6*z_46 ,
z_6*z_47 ,
z_6*z_50 ,
z_6*z_55 ,
z_6*z_56 ,
z_7*b_2 ,
z_7*b_3 ,
z_7*b_4 ,
z_7*b_5 ,
z_7*b_6 ,
z_7*b_7 ,
z_7*b_8 ,
z_7*b_9 ,
z_7*b_10 ,
z_7*b_11 ,
z_7*b_12 ,
z_7*b_13 + z_7 ,
z_7*b_14 ,
z_7*b_15 ,
z_7*b_16 ,
z_7*b_17 ,
z_7*b_18 ,
z_7*z_1 ,
z_7*z_2 ,
z_7*z_3 ,
z_7*z_4 ,
z_7*z_5 ,
z_7*z_6 ,
z_7^2 ,
z_7*z_8 ,
z_7*z_9 ,
z_7*z_10 ,
z_7*z_11 ,
z_7*z_12 ,
z_7*z_13 ,
z_7*z_14 ,
z_7*z_15 ,
z_7*z_16 ,
z_7*z_17 ,
z_7*z_18 ,
z_7*z_19 ,
z_7*z_20 ,
z_7*z_21 ,
z_7*z_22 ,
z_7*z_23 ,
z_7*z_24 ,
z_7*z_25 ,
z_7*z_26 ,
z_7*z_27 ,
z_7*z_28 ,
z_7*z_29 ,
z_7*z_30 ,
z_7*z_31 ,
z_7*z_32 ,
z_7*z_33 ,
z_7*z_34 ,
z_7*z_35 ,
z_7*z_37 ,
z_7*z_39 + z_8*z_51 ,
z_7*z_40 ,
z_7*z_41 ,
z_7*z_42 ,
z_7*z_43 ,
z_7*z_44 ,
z_7*z_45 ,
z_7*z_46 ,
z_7*z_47 ,
z_7*z_48 ,
z_7*z_49 ,
z_7*z_50 ,
z_7*z_51 ,
z_7*z_52 ,
z_7*z_53 ,
z_7*z_54 ,
z_7*z_55 ,
z_7*z_56 ,
z_8*b_2 ,
z_8*b_3 ,
z_8*b_4 ,
z_8*b_5 ,
z_8*b_6 ,
z_8*b_7 ,
z_8*b_8 ,
z_8*b_9 ,
z_8*b_10 ,
z_8*b_11 ,
z_8*b_12 ,
z_8*b_13 ,
z_8*b_14 ,
z_8*b_15 ,
z_8*b_16 ,
z_8*b_17 + z_8 ,
z_8*b_18 ,
z_8*z_1 ,
z_8*z_2 ,
z_8*z_3 ,
z_8*z_4 ,
z_8*z_5 ,
z_8*z_6 ,
z_8*z_7 ,
z_8^2 ,
z_8*z_9 ,
z_8*z_10 ,
z_8*z_11 ,
z_8*z_12 ,
z_8*z_13 ,
z_8*z_14 ,
z_8*z_15 ,
z_8*z_16 ,
z_8*z_17 ,
z_8*z_18 ,
z_8*z_19 ,
z_8*z_20 ,
z_8*z_21 ,
z_8*z_22 ,
z_8*z_23 ,
z_8*z_24 ,
z_8*z_25 ,
z_8*z_26 ,
z_8*z_27 ,
z_8*z_28 ,
z_8*z_29 ,
z_8*z_30 ,
z_8*z_31 ,
z_8*z_32 ,
z_8*z_33 ,
z_8*z_34 ,
z_8*z_35 ,
z_8*z_36 ,
z_8*z_37 ,
z_8*z_38 ,
z_8*z_39 ,
z_8*z_40 ,
z_8*z_41 ,
z_8*z_42 ,
z_8*z_43 ,
z_8*z_44 ,
z_8*z_45 ,
z_8*z_46 ,
z_8*z_47 ,
z_8*z_48 ,
z_8*z_52 ,
z_8*z_53 ,
z_8*z_55 ,
z_8*z_56 ,
z_9*b_2 ,
z_9*b_3 ,
z_9*b_4 ,
z_9*b_5 ,
z_9*b_6 ,
z_9*b_7 ,
z_9*b_8 ,
z_9*b_9 ,
z_9*b_10 + z_9 ,
z_9*b_11 ,
z_9*b_12 ,
z_9*b_13 ,
z_9*b_14 ,
z_9*b_15 ,
z_9*b_16 ,
z_9*b_17 ,
z_9*b_18 ,
z_9*z_1 ,
z_9*z_2 ,
z_9*z_3 ,
z_9*z_4 ,
z_9*z_5 ,
z_9*z_6 ,
z_9*z_7 ,
z_9*z_8 ,
z_9^2 ,
z_9*z_10 ,
z_9*z_11 ,
z_9*z_12 ,
z_9*z_13 ,
z_9*z_14 ,
z_9*z_15 ,
z_9*z_16 ,
z_9*z_17 ,
z_9*z_18 ,
z_9*z_19 ,
z_9*z_20 ,
z_9*z_21 ,
z_9*z_22 ,
z_9*z_23 ,
z_9*z_24 ,
z_9*z_25 ,
z_9*z_28 ,
z_9*z_29 ,
z_9*z_30 ,
z_9*z_31 ,
z_9*z_32 ,
z_9*z_33 ,
z_9*z_34 ,
z_9*z_35 ,
z_9*z_36 ,
z_9*z_37 ,
z_9*z_38 ,
z_9*z_39 ,
z_9*z_40 ,
z_9*z_41 ,
z_9*z_42 ,
z_9*z_43 ,
z_9*z_44 ,
z_9*z_45 ,
z_9*z_46 ,
z_9*z_47 ,
z_9*z_48 ,
z_9*z_49 ,
z_9*z_50 ,
z_9*z_51 ,
z_9*z_52 ,
z_9*z_53 ,
z_9*z_54 ,
z_9*z_55 ,
z_9*z_56 ,
z_10*b_2 ,
z_10*b_3 ,
z_10*b_4 ,
z_10*b_5 ,
z_10*b_6 ,
z_10*b_7 ,
z_10*b_8 ,
z_10*b_9 ,
z_10*b_10 ,
z_10*b_11 ,
z_10*b_12 ,
z_10*b_13 + z_10 ,
z_10*b_14 ,
z_10*b_15 ,
z_10*b_16 ,
z_10*b_17 ,
z_10*b_18 ,
z_10*z_1 ,
z_10*z_2 ,
z_10*z_3 ,
z_10*z_4 ,
z_10*z_5 ,
z_10*z_6 ,
z_10*z_7 ,
z_10*z_8 ,
z_10*z_9 ,
z_10^2 ,
z_10*z_11 ,
z_10*z_12 ,
z_10*z_13 ,
z_10*z_14 ,
z_10*z_15 ,
z_10*z_16 ,
z_10*z_17 ,
z_10*z_18 ,
z_10*z_19 ,
z_10*z_20 ,
z_10*z_21 ,
z_10*z_22 ,
z_10*z_23 ,
z_10*z_24 ,
z_10*z_25 ,
z_10*z_26 ,
z_10*z_27 ,
z_10*z_28 ,
z_10*z_29 ,
z_10*z_30 ,
z_10*z_31 ,
z_10*z_32 ,
z_10*z_33 ,
z_10*z_34 ,
z_10*z_36 ,
z_10*z_37 ,
z_10*z_39 ,
z_10*z_41 ,
z_10*z_42 ,
z_10*z_43 ,
z_10*z_44 ,
z_10*z_45 ,
z_10*z_46 ,
z_10*z_47 ,
z_10*z_48 ,
z_10*z_49 ,
z_10*z_50 ,
z_10*z_51 ,
z_10*z_52 ,
z_10*z_53 ,
z_10*z_54 ,
z_10*z_55 ,
z_10*z_56 ,
z_11*b_2 ,
z_11*b_3 ,
z_11*b_4 ,
z_11*b_5 ,
z_11*b_6 ,
z_11*b_7 ,
z_11*b_8 ,
z_11*b_9 ,
z_11*b_10 ,
z_11*b_11 ,
z_11*b_12 ,
z_11*b_13 + z_11 ,
z_11*b_14 ,
z_11*b_15 ,
z_11*b_16 ,
z_11*b_17 ,
z_11*b_18 ,
z_11*z_1 ,
z_11*z_2 ,
z_11*z_3 ,
z_11*z_4 ,
z_11*z_5 ,
z_11*z_6 ,
z_11*z_7 ,
z_11*z_8 ,
z_11*z_9 ,
z_11*z_10 ,
z_11^2 ,
z_11*z_12 ,
z_11*z_13 ,
z_11*z_14 ,
z_11*z_15 ,
z_11*z_16 ,
z_11*z_17 ,
z_11*z_18 ,
z_11*z_19 ,
z_11*z_20 ,
z_11*z_21 ,
z_11*z_22 ,
z_11*z_23 ,
z_11*z_24 ,
z_11*z_25 ,
z_11*z_26 ,
z_11*z_27 ,
z_11*z_28 ,
z_11*z_29 ,
z_11*z_30 ,
z_11*z_31 ,
z_11*z_32 ,
z_11*z_33 ,
z_11*z_34 ,
z_11*z_36 + z_13*z_49 ,
z_11*z_41 ,
z_11*z_42 ,
z_11*z_43 ,
z_11*z_44 ,
z_11*z_45 ,
z_11*z_46 ,
z_11*z_47 ,
z_11*z_48 ,
z_11*z_49 ,
z_11*z_50 ,
z_11*z_51 ,
z_11*z_52 ,
z_11*z_53 ,
z_11*z_54 ,
z_11*z_55 ,
z_11*z_56 ,
z_12*b_2 ,
z_12*b_3 ,
z_12*b_4 ,
z_12*b_5 ,
z_12*b_6 ,
z_12*b_7 ,
z_12*b_8 ,
z_12*b_9 ,
z_12*b_10 ,
z_12*b_11 ,
z_12*b_12 ,
z_12*b_13 ,
z_12*b_14 + z_12 ,
z_12*b_15 ,
z_12*b_16 ,
z_12*b_17 ,
z_12*b_18 ,
z_12*z_1 ,
z_12*z_2 ,
z_12*z_3 ,
z_12*z_4 ,
z_12*z_5 ,
z_12*z_6 ,
z_12*z_7 ,
z_12*z_8 ,
z_12*z_9 ,
z_12*z_10 ,
z_12*z_11 ,
z_12^2 ,
z_12*z_13 ,
z_12*z_14 ,
z_12*z_15 ,
z_12*z_16 ,
z_12*z_17 ,
z_12*z_18 ,
z_12*z_19 ,
z_12*z_20 ,
z_12*z_21 ,
z_12*z_22 ,
z_12*z_23 ,
z_12*z_24 ,
z_12*z_25 ,
z_12*z_26 ,
z_12*z_27 ,
z_12*z_28 ,
z_12*z_29 ,
z_12*z_30 ,
z_12*z_31 ,
z_12*z_32 ,
z_12*z_33 ,
z_12*z_34 ,
z_12*z_35 ,
z_12*z_36 ,
z_12*z_37 ,
z_12*z_38 ,
z_12*z_39 ,
z_12*z_40 ,
z_12*z_44 ,
z_12*z_45 ,
z_12*z_46 ,
z_12*z_47 ,
z_12*z_48 ,
z_12*z_49 ,
z_12*z_50 ,
z_12*z_51 ,
z_12*z_52 ,
z_12*z_53 ,
z_12*z_54 ,
z_12*z_55 ,
z_12*z_56 ,
z_13*b_2 ,
z_13*b_3 ,
z_13*b_4 ,
z_13*b_5 ,
z_13*b_6 ,
z_13*b_7 ,
z_13*b_8 ,
z_13*b_9 ,
z_13*b_10 ,
z_13*b_11 ,
z_13*b_12 ,
z_13*b_13 ,
z_13*b_14 ,
z_13*b_15 ,
z_13*b_16 ,
z_13*b_17 + z_13 ,
z_13*b_18 ,
z_13*z_1 ,
z_13*z_2 ,
z_13*z_3 ,
z_13*z_4 ,
z_13*z_5 ,
z_13*z_6 ,
z_13*z_7 ,
z_13*z_8 ,
z_13*z_9 ,
z_13*z_10 ,
z_13*z_11 ,
z_13*z_12 ,
z_13^2 ,
z_13*z_14 ,
z_13*z_15 ,
z_13*z_16 ,
z_13*z_17 ,
z_13*z_18 ,
z_13*z_19 ,
z_13*z_20 ,
z_13*z_21 ,
z_13*z_22 ,
z_13*z_23 ,
z_13*z_24 ,
z_13*z_25 ,
z_13*z_26 ,
z_13*z_27 ,
z_13*z_28 ,
z_13*z_29 ,
z_13*z_30 ,
z_13*z_31 ,
z_13*z_32 ,
z_13*z_33 ,
z_13*z_34 ,
z_13*z_35 ,
z_13*z_36 ,
z_13*z_37 ,
z_13*z_38 ,
z_13*z_39 ,
z_13*z_40 ,
z_13*z_41 ,
z_13*z_42 ,
z_13*z_43 ,
z_13*z_44 ,
z_13*z_45 ,
z_13*z_46 ,
z_13*z_47 ,
z_13*z_51 ,
z_13*z_53 ,
z_13*z_55 ,
z_13*z_56 ,
z_14*b_2 + z_14 ,
z_14*b_3 ,
z_14*b_4 ,
z_14*b_5 ,
z_14*b_6 ,
z_14*b_7 ,
z_14*b_8 ,
z_14*b_9 ,
z_14*b_10 ,
z_14*b_11 ,
z_14*b_12 ,
z_14*b_13 ,
z_14*b_14 ,
z_14*b_15 ,
z_14*b_16 ,
z_14*b_17 ,
z_14*b_18 ,
z_14*z_1 ,
z_14*z_2 ,
z_14*z_7 ,
z_14*z_8 ,
z_14*z_9 ,
z_14*z_10 ,
z_14*z_11 ,
z_14*z_12 ,
z_14*z_13 ,
z_14^2 ,
z_14*z_15 ,
z_14*z_16 ,
z_14*z_17 ,
z_14*z_18 ,
z_14*z_19 ,
z_14*z_20 ,
z_14*z_21 ,
z_14*z_22 ,
z_14*z_23 ,
z_14*z_24 ,
z_14*z_25 ,
z_14*z_26 ,
z_14*z_27 ,
z_14*z_28 ,
z_14*z_29 ,
z_14*z_30 ,
z_14*z_31 ,
z_14*z_32 ,
z_14*z_33 ,
z_14*z_34 ,
z_14*z_35 ,
z_14*z_36 ,
z_14*z_37 ,
z_14*z_38 ,
z_14*z_39 ,
z_14*z_40 ,
z_14*z_41 ,
z_14*z_42 ,
z_14*z_43 ,
z_14*z_44 ,
z_14*z_45 ,
z_14*z_46 ,
z_14*z_47 ,
z_14*z_48 ,
z_14*z_49 ,
z_14*z_50 ,
z_14*z_51 ,
z_14*z_52 ,
z_14*z_53 ,
z_14*z_54 ,
z_14*z_55 ,
z_14*z_56 ,
z_15*b_2 ,
z_15*b_3 ,
z_15*b_4 ,
z_15*b_5 ,
z_15*b_6 ,
z_15*b_7 ,
z_15*b_8 ,
z_15*b_9 ,
z_15*b_10 ,
z_15*b_11 + z_15 ,
z_15*b_12 ,
z_15*b_13 ,
z_15*b_14 ,
z_15*b_15 ,
z_15*b_16 ,
z_15*b_17 ,
z_15*b_18 ,
z_15*z_1 ,
z_15*z_2 ,
z_15*z_3 ,
z_15*z_4 ,
z_15*z_5 ,
z_15*z_6 ,
z_15*z_7 ,
z_15*z_8 ,
z_15*z_9 ,
z_15*z_10 ,
z_15*z_11 ,
z_15*z_12 ,
z_15*z_13 ,
z_15*z_14 ,
z_15^2 ,
z_15*z_16 ,
z_15*z_17 ,
z_15*z_18 ,
z_15*z_19 ,
z_15*z_20 ,
z_15*z_21 ,
z_15*z_22 ,
z_15*z_23 ,
z_15*z_24 ,
z_15*z_25 ,
z_15*z_26 ,
z_15*z_27 ,
z_15*z_28 ,
z_15*z_29 + z_16*z_32 ,
z_15*z_31 ,
z_15*z_32 ,
z_15*z_33 ,
z_15*z_34 ,
z_15*z_35 ,
z_15*z_36 ,
z_15*z_37 ,
z_15*z_38 ,
z_15*z_39 ,
z_15*z_40 ,
z_15*z_41 ,
z_15*z_42 ,
z_15*z_43 ,
z_15*z_44 ,
z_15*z_45 ,
z_15*z_46 ,
z_15*z_47 ,
z_15*z_48 ,
z_15*z_49 ,
z_15*z_50 ,
z_15*z_51 ,
z_15*z_52 ,
z_15*z_53 ,
z_15*z_54 ,
z_15*z_55 ,
z_15*z_56 ,
z_16*b_2 ,
z_16*b_3 ,
z_16*b_4 ,
z_16*b_5 ,
z_16*b_6 ,
z_16*b_7 ,
z_16*b_8 ,
z_16*b_9 ,
z_16*b_10 ,
z_16*b_11 ,
z_16*b_12 + z_16 ,
z_16*b_13 ,
z_16*b_14 ,
z_16*b_15 ,
z_16*b_16 ,
z_16*b_17 ,
z_16*b_18 ,
z_16*z_1 ,
z_16*z_2 ,
z_16*z_3 ,
z_16*z_4 ,
z_16*z_5 ,
z_16*z_6 ,
z_16*z_7 ,
z_16*z_8 ,
z_16*z_9 ,
z_16*z_10 ,
z_16*z_11 ,
z_16*z_12 ,
z_16*z_13 ,
z_16*z_14 ,
z_16*z_15 ,
z_16^2 ,
z_16*z_17 ,
z_16*z_18 ,
z_16*z_19 ,
z_16*z_20 ,
z_16*z_21 ,
z_16*z_22 ,
z_16*z_23 ,
z_16*z_24 ,
z_16*z_25 ,
z_16*z_26 ,
z_16*z_27 ,
z_16*z_28 ,
z_16*z_29 ,
z_16*z_30 ,
z_16*z_35 ,
z_16*z_36 ,
z_16*z_37 ,
z_16*z_38 ,
z_16*z_39 ,
z_16*z_40 ,
z_16*z_41 ,
z_16*z_42 ,
z_16*z_43 ,
z_16*z_44 ,
z_16*z_45 ,
z_16*z_46 ,
z_16*z_47 ,
z_16*z_48 ,
z_16*z_49 ,
z_16*z_50 ,
z_16*z_51 ,
z_16*z_52 ,
z_16*z_53 ,
z_16*z_54 ,
z_16*z_55 ,
z_16*z_56 ,
z_17*b_2 ,
z_17*b_3 ,
z_17*b_4 ,
z_17*b_5 ,
z_17*b_6 ,
z_17*b_7 ,
z_17*b_8 ,
z_17*b_9 + z_17 ,
z_17*b_10 ,
z_17*b_11 ,
z_17*b_12 ,
z_17*b_13 ,
z_17*b_14 ,
z_17*b_15 ,
z_17*b_16 ,
z_17*b_17 ,
z_17*b_18 ,
z_17*z_1 ,
z_17*z_2 ,
z_17*z_3 ,
z_17*z_4 ,
z_17*z_5 ,
z_17*z_6 ,
z_17*z_7 ,
z_17*z_8 ,
z_17*z_9 ,
z_17*z_10 ,
z_17*z_11 ,
z_17*z_12 ,
z_17*z_13 ,
z_17*z_14 ,
z_17*z_15 ,
z_17*z_16 ,
z_17^2 ,
z_17*z_18 ,
z_17*z_19 ,
z_17*z_20 ,
z_17*z_21 ,
z_17*z_22 + z_18*z_30 ,
z_17*z_24 ,
z_17*z_25 ,
z_17*z_26 ,
z_17*z_27 ,
z_17*z_28 ,
z_17*z_29 ,
z_17*z_30 ,
z_17*z_31 ,
z_17*z_32 ,
z_17*z_33 ,
z_17*z_34 ,
z_17*z_35 ,
z_17*z_36 ,
z_17*z_37 ,
z_17*z_38 ,
z_17*z_39 ,
z_17*z_40 ,
z_17*z_41 ,
z_17*z_42 ,
z_17*z_43 ,
z_17*z_44 ,
z_17*z_45 ,
z_17*z_46 ,
z_17*z_47 ,
z_17*z_48 ,
z_17*z_49 ,
z_17*z_50 ,
z_17*z_51 ,
z_17*z_52 ,
z_17*z_53 ,
z_17*z_54 ,
z_17*z_55 ,
z_17*z_56 ,
z_18*b_2 ,
z_18*b_3 ,
z_18*b_4 ,
z_18*b_5 ,
z_18*b_6 ,
z_18*b_7 ,
z_18*b_8 ,
z_18*b_9 ,
z_18*b_10 ,
z_18*b_11 + z_18 ,
z_18*b_12 ,
z_18*b_13 ,
z_18*b_14 ,
z_18*b_15 ,
z_18*b_16 ,
z_18*b_17 ,
z_18*b_18 ,
z_18*z_1 ,
z_18*z_2 ,
z_18*z_3 ,
z_18*z_4 ,
z_18*z_5 ,
z_18*z_6 ,
z_18*z_7 ,
z_18*z_8 ,
z_18*z_9 ,
z_18*z_10 ,
z_18*z_11 ,
z_18*z_12 ,
z_18*z_13 ,
z_18*z_14 ,
z_18*z_15 ,
z_18*z_16 ,
z_18*z_17 ,
z_18^2 ,
z_18*z_19 ,
z_18*z_20 ,
z_18*z_21 ,
z_18*z_22 ,
z_18*z_23 ,
z_18*z_24 ,
z_18*z_25 ,
z_18*z_26 ,
z_18*z_27 ,
z_18*z_28 + z_19*z_31 ,
z_18*z_29 ,
z_18*z_31 ,
z_18*z_32 ,
z_18*z_33 ,
z_18*z_34 ,
z_18*z_35 ,
z_18*z_36 ,
z_18*z_37 ,
z_18*z_38 ,
z_18*z_39 ,
z_18*z_40 ,
z_18*z_41 ,
z_18*z_42 ,
z_18*z_43 ,
z_18*z_44 ,
z_18*z_45 ,
z_18*z_46 ,
z_18*z_47 ,
z_18*z_48 ,
z_18*z_49 ,
z_18*z_50 ,
z_18*z_51 ,
z_18*z_52 ,
z_18*z_53 ,
z_18*z_54 ,
z_18*z_55 ,
z_18*z_56 ,
z_19*b_2 ,
z_19*b_3 ,
z_19*b_4 ,
z_19*b_5 ,
z_19*b_6 ,
z_19*b_7 ,
z_19*b_8 ,
z_19*b_9 ,
z_19*b_10 ,
z_19*b_11 ,
z_19*b_12 + z_19 ,
z_19*b_13 ,
z_19*b_14 ,
z_19*b_15 ,
z_19*b_16 ,
z_19*b_17 ,
z_19*b_18 ,
z_19*z_1 ,
z_19*z_2 ,
z_19*z_3 ,
z_19*z_4 ,
z_19*z_5 ,
z_19*z_6 ,
z_19*z_7 ,
z_19*z_8 ,
z_19*z_9 ,
z_19*z_10 ,
z_19*z_11 ,
z_19*z_12 ,
z_19*z_13 ,
z_19*z_14 ,
z_19*z_15 ,
z_19*z_16 ,
z_19*z_17 ,
z_19*z_18 ,
z_19^2 ,
z_19*z_20 ,
z_19*z_21 ,
z_19*z_22 ,
z_19*z_23 ,
z_19*z_24 ,
z_19*z_25 ,
z_19*z_26 ,
z_19*z_27 ,
z_19*z_28 ,
z_19*z_29 ,
z_19*z_30 ,
z_19*z_32 ,
z_19*z_35 ,
z_19*z_36 ,
z_19*z_37 ,
z_19*z_38 ,
z_19*z_39 ,
z_19*z_40 ,
z_19*z_41 ,
z_19*z_42 ,
z_19*z_43 ,
z_19*z_44 ,
z_19*z_45 ,
z_19*z_46 ,
z_19*z_47 ,
z_19*z_48 ,
z_19*z_49 ,
z_19*z_50 ,
z_19*z_51 ,
z_19*z_52 ,
z_19*z_53 ,
z_19*z_54 ,
z_19*z_55 ,
z_19*z_56 ,
z_20*b_2 ,
z_20*b_3 ,
z_20*b_4 ,
z_20*b_5 ,
z_20*b_6 ,
z_20*b_7 ,
z_20*b_8 ,
z_20*b_9 ,
z_20*b_10 ,
z_20*b_11 ,
z_20*b_12 ,
z_20*b_13 ,
z_20*b_14 ,
z_20*b_15 ,
z_20*b_16 ,
z_20*b_17 ,
z_20*b_18 ,
z_20*z_2 ,
z_20*z_3 ,
z_20*z_4 ,
z_20*z_5 ,
z_20*z_6 ,
z_20*z_7 ,
z_20*z_8 ,
z_20*z_9 ,
z_20*z_10 ,
z_20*z_11 ,
z_20*z_12 ,
z_20*z_13 ,
z_20*z_14 ,
z_20*z_15 ,
z_20*z_16 ,
z_20*z_17 ,
z_20*z_18 ,
z_20*z_19 ,
z_20^2 ,
z_20*z_21 ,
z_20*z_22 ,
z_20*z_23 ,
z_20*z_24 ,
z_20*z_25 ,
z_20*z_26 ,
z_20*z_27 ,
z_20*z_28 ,
z_20*z_29 ,
z_20*z_30 ,
z_20*z_31 ,
z_20*z_32 ,
z_20*z_33 ,
z_20*z_34 ,
z_20*z_35 ,
z_20*z_36 ,
z_20*z_37 ,
z_20*z_38 ,
z_20*z_39 ,
z_20*z_40 ,
z_20*z_41 ,
z_20*z_42 ,
z_20*z_43 ,
z_20*z_44 ,
z_20*z_45 ,
z_20*z_46 ,
z_20*z_47 ,
z_20*z_48 ,
z_20*z_49 ,
z_20*z_50 ,
z_20*z_51 ,
z_20*z_52 ,
z_20*z_53 ,
z_20*z_54 ,
z_20*z_55 ,
z_20*z_56 ,
z_21*b_2 ,
z_21*b_3 ,
z_21*b_4 ,
z_21*b_5 ,
z_21*b_6 ,
z_21*b_7 + z_21 ,
z_21*b_8 ,
z_21*b_9 ,
z_21*b_10 ,
z_21*b_11 ,
z_21*b_12 ,
z_21*b_13 ,
z_21*b_14 ,
z_21*b_15 ,
z_21*b_16 ,
z_21*b_17 ,
z_21*b_18 ,
z_21*z_1 ,
z_21*z_2 ,
z_21*z_3 ,
z_21*z_4 ,
z_21*z_5 ,
z_21*z_6 ,
z_21*z_7 ,
z_21*z_8 ,
z_21*z_9 ,
z_21*z_10 ,
z_21*z_11 ,
z_21*z_12 ,
z_21*z_13 ,
z_21*z_14 ,
z_21*z_15 ,
z_21*z_16 ,
z_21*z_20 ,
z_21^2 ,
z_21*z_22 ,
z_21*z_23 ,
z_21*z_24 ,
z_21*z_25 ,
z_21*z_26 ,
z_21*z_27 ,
z_21*z_28 ,
z_21*z_29 ,
z_21*z_30 ,
z_21*z_31 ,
z_21*z_32 ,
z_21*z_33 ,
z_21*z_34 ,
z_21*z_35 ,
z_21*z_36 ,
z_21*z_37 ,
z_21*z_38 ,
z_21*z_39 ,
z_21*z_40 ,
z_21*z_41 ,
z_21*z_42 ,
z_21*z_43 ,
z_21*z_44 ,
z_21*z_45 ,
z_21*z_46 ,
z_21*z_47 ,
z_21*z_48 ,
z_21*z_49 ,
z_21*z_50 ,
z_21*z_51 ,
z_21*z_52 ,
z_21*z_53 ,
z_21*z_54 ,
z_21*z_55 ,
z_21*z_56 ,
z_22*b_2 ,
z_22*b_3 ,
z_22*b_4 ,
z_22*b_5 ,
z_22*b_6 ,
z_22*b_7 ,
z_22*b_8 ,
z_22*b_9 ,
z_22*b_10 ,
z_22*b_11 ,
z_22*b_12 ,
z_22*b_13 + z_22 ,
z_22*b_14 ,
z_22*b_15 ,
z_22*b_16 ,
z_22*b_17 ,
z_22*b_18 ,
z_22*z_1 ,
z_22*z_2 ,
z_22*z_3 ,
z_22*z_4 ,
z_22*z_5 ,
z_22*z_6 ,
z_22*z_7 ,
z_22*z_8 ,
z_22*z_9 ,
z_22*z_10 ,
z_22*z_11 ,
z_22*z_12 ,
z_22*z_13 ,
z_22*z_14 ,
z_22*z_15 ,
z_22*z_16 ,
z_22*z_17 ,
z_22*z_18 ,
z_22*z_19 ,
z_22*z_20 ,
z_22*z_21 ,
z_22^2 ,
z_22*z_23 ,
z_22*z_24 ,
z_22*z_25 ,
z_22*z_26 ,
z_22*z_27 ,
z_22*z_28 ,
z_22*z_29 ,
z_22*z_30 ,
z_22*z_31 ,
z_22*z_32 ,
z_22*z_33 ,
z_22*z_34 ,
z_22*z_36 + z_23*z_49 ,
z_22*z_37 ,
z_22*z_39 ,
z_22*z_41 ,
z_22*z_42 ,
z_22*z_43 ,
z_22*z_44 ,
z_22*z_45 ,
z_22*z_46 ,
z_22*z_47 ,
z_22*z_48 ,
z_22*z_49 ,
z_22*z_50 ,
z_22*z_51 ,
z_22*z_52 ,
z_22*z_53 ,
z_22*z_54 ,
z_22*z_55 ,
z_22*z_56 ,
z_23*b_2 ,
z_23*b_3 ,
z_23*b_4 ,
z_23*b_5 ,
z_23*b_6 ,
z_23*b_7 ,
z_23*b_8 ,
z_23*b_9 ,
z_23*b_10 ,
z_23*b_11 ,
z_23*b_12 ,
z_23*b_13 ,
z_23*b_14 ,
z_23*b_15 ,
z_23*b_16 ,
z_23*b_17 + z_23 ,
z_23*b_18 ,
z_23*z_1 ,
z_23*z_2 ,
z_23*z_3 ,
z_23*z_4 ,
z_23*z_5 ,
z_23*z_6 ,
z_23*z_7 ,
z_23*z_8 ,
z_23*z_9 ,
z_23*z_10 ,
z_23*z_11 ,
z_23*z_12 ,
z_23*z_13 ,
z_23*z_14 ,
z_23*z_15 ,
z_23*z_16 ,
z_23*z_17 ,
z_23*z_18 ,
z_23*z_19 ,
z_23*z_20 ,
z_23*z_21 ,
z_23*z_22 ,
z_23^2 ,
z_23*z_24 ,
z_23*z_25 ,
z_23*z_26 ,
z_23*z_27 ,
z_23*z_28 ,
z_23*z_29 ,
z_23*z_30 ,
z_23*z_31 ,
z_23*z_32 ,
z_23*z_33 ,
z_23*z_34 ,
z_23*z_35 ,
z_23*z_36 ,
z_23*z_37 ,
z_23*z_38 ,
z_23*z_39 ,
z_23*z_40 ,
z_23*z_41 ,
z_23*z_42 ,
z_23*z_43 ,
z_23*z_44 ,
z_23*z_45 ,
z_23*z_46 ,
z_23*z_47 ,
z_23*z_50 ,
z_23*z_51 ,
z_23*z_54 ,
z_23*z_55 ,
z_23*z_56 ,
z_24*b_2 + z_24 ,
z_24*b_3 ,
z_24*b_4 ,
z_24*b_5 ,
z_24*b_6 ,
z_24*b_7 ,
z_24*b_8 ,
z_24*b_9 ,
z_24*b_10 ,
z_24*b_11 ,
z_24*b_12 ,
z_24*b_13 ,
z_24*b_14 ,
z_24*b_15 ,
z_24*b_16 ,
z_24*b_17 ,
z_24*b_18 ,
z_24*z_1 ,
z_24*z_7 ,
z_24*z_8 ,
z_24*z_9 ,
z_24*z_10 ,
z_24*z_11 ,
z_24*z_12 ,
z_24*z_13 ,
z_24*z_14 ,
z_24*z_15 ,
z_24*z_16 ,
z_24*z_17 ,
z_24*z_18 ,
z_24*z_19 ,
z_24*z_20 ,
z_24*z_21 ,
z_24*z_22 ,
z_24*z_23 ,
z_24^2 ,
z_24*z_25 ,
z_24*z_26 ,
z_24*z_27 ,
z_24*z_28 ,
z_24*z_29 ,
z_24*z_30 ,
z_24*z_31 ,
z_24*z_32 ,
z_24*z_33 ,
z_24*z_34 ,
z_24*z_35 ,
z_24*z_36 ,
z_24*z_37 ,
z_24*z_38 ,
z_24*z_39 ,
z_24*z_40 ,
z_24*z_41 ,
z_24*z_42 ,
z_24*z_43 ,
z_24*z_44 ,
z_24*z_45 ,
z_24*z_46 ,
z_24*z_47 ,
z_24*z_48 ,
z_24*z_49 ,
z_24*z_50 ,
z_24*z_51 ,
z_24*z_52 ,
z_24*z_53 ,
z_24*z_54 ,
z_24*z_55 ,
z_24*z_56 ,
z_25*b_2 ,
z_25*b_3 ,
z_25*b_4 + z_25 ,
z_25*b_5 ,
z_25*b_6 ,
z_25*b_7 ,
z_25*b_8 ,
z_25*b_9 ,
z_25*b_10 ,
z_25*b_11 ,
z_25*b_12 ,
z_25*b_13 ,
z_25*b_14 ,
z_25*b_15 ,
z_25*b_16 ,
z_25*b_17 ,
z_25*b_18 ,
z_25*z_1 ,
z_25*z_2 ,
z_25*z_3 ,
z_25*z_4 ,
z_25*z_5 ,
z_25*z_6 ,
z_25*z_7 ,
z_25*z_8 ,
z_25*z_11 ,
z_25*z_12 ,
z_25*z_13 ,
z_25*z_14 ,
z_25*z_15 ,
z_25*z_16 ,
z_25*z_17 ,
z_25*z_18 ,
z_25*z_19 ,
z_25*z_20 ,
z_25*z_21 ,
z_25*z_22 ,
z_25*z_23 ,
z_25*z_24 ,
z_25^2 ,
z_25*z_26 ,
z_25*z_27 ,
z_25*z_28 ,
z_25*z_29 ,
z_25*z_30 ,
z_25*z_31 ,
z_25*z_32 ,
z_25*z_33 ,
z_25*z_34 ,
z_25*z_35 ,
z_25*z_36 ,
z_25*z_37 ,
z_25*z_38 ,
z_25*z_39 ,
z_25*z_40 ,
z_25*z_41 ,
z_25*z_42 ,
z_25*z_43 ,
z_25*z_44 ,
z_25*z_45 ,
z_25*z_46 ,
z_25*z_47 ,
z_25*z_48 ,
z_25*z_49 ,
z_25*z_50 ,
z_25*z_51 ,
z_25*z_52 ,
z_25*z_53 ,
z_25*z_54 ,
z_25*z_55 ,
z_25*z_56 ,
z_26*b_2 ,
z_26*b_3 ,
z_26*b_4 ,
z_26*b_5 ,
z_26*b_6 ,
z_26*b_7 ,
z_26*b_8 ,
z_26*b_9 ,
z_26*b_10 ,
z_26*b_11 ,
z_26*b_12 ,
z_26*b_13 ,
z_26*b_14 ,
z_26*b_15 ,
z_26*b_16 + z_26 ,
z_26*b_17 ,
z_26*b_18 ,
z_26*z_1 ,
z_26*z_2 ,
z_26*z_3 ,
z_26*z_4 ,
z_26*z_5 ,
z_26*z_6 ,
z_26*z_7 ,
z_26*z_8 ,
z_26*z_9 ,
z_26*z_10 ,
z_26*z_11 ,
z_26*z_12 ,
z_26*z_13 ,
z_26*z_14 ,
z_26*z_15 ,
z_26*z_16 ,
z_26*z_17 ,
z_26*z_18 ,
z_26*z_19 ,
z_26*z_20 ,
z_26*z_21 ,
z_26*z_22 ,
z_26*z_23 ,
z_26*z_24 ,
z_26*z_25 ,
z_26^2 ,
z_26*z_27 ,
z_26*z_28 ,
z_26*z_29 ,
z_26*z_30 ,
z_26*z_31 ,
z_26*z_32 ,
z_26*z_33 ,
z_26*z_34 ,
z_26*z_35 ,
z_26*z_36 ,
z_26*z_37 ,
z_26*z_38 ,
z_26*z_39 ,
z_26*z_40 ,
z_26*z_41 ,
z_26*z_42 ,
z_26*z_43 ,
z_26*z_44 ,
z_26*z_46 + z_27*z_53 ,
z_26*z_47 ,
z_26*z_48 ,
z_26*z_49 ,
z_26*z_50 ,
z_26*z_51 ,
z_26*z_52 ,
z_26*z_53 ,
z_26*z_54 ,
z_26*z_55 ,
z_26*z_56 ,
z_27*b_2 ,
z_27*b_3 ,
z_27*b_4 ,
z_27*b_5 ,
z_27*b_6 ,
z_27*b_7 ,
z_27*b_8 ,
z_27*b_9 ,
z_27*b_10 ,
z_27*b_11 ,
z_27*b_12 ,
z_27*b_13 ,
z_27*b_14 ,
z_27*b_15 ,
z_27*b_16 ,
z_27*b_17 + z_27 ,
z_27*b_18 ,
z_27*z_1 ,
z_27*z_2 ,
z_27*z_3 ,
z_27*z_4 ,
z_27*z_5 ,
z_27*z_6 ,
z_27*z_7 ,
z_27*z_8 ,
z_27*z_9 ,
z_27*z_10 ,
z_27*z_11 ,
z_27*z_12 ,
z_27*z_13 ,
z_27*z_14 ,
z_27*z_15 ,
z_27*z_16 ,
z_27*z_17 ,
z_27*z_18 ,
z_27*z_19 ,
z_27*z_20 ,
z_27*z_21 ,
z_27*z_22 ,
z_27*z_23 ,
z_27*z_24 ,
z_27*z_25 ,
z_27*z_26 ,
z_27^2 ,
z_27*z_28 ,
z_27*z_29 ,
z_27*z_30 ,
z_27*z_31 ,
z_27*z_32 ,
z_27*z_33 ,
z_27*z_34 ,
z_27*z_35 ,
z_27*z_36 ,
z_27*z_37 ,
z_27*z_38 ,
z_27*z_39 ,
z_27*z_40 ,
z_27*z_41 ,
z_27*z_42 ,
z_27*z_43 ,
z_27*z_44 ,
z_27*z_45 ,
z_27*z_46 ,
z_27*z_47 ,
z_27*z_55 ,
z_27*z_56 ,
z_28*b_2 ,
z_28*b_3 ,
z_28*b_4 ,
z_28*b_5 ,
z_28*b_6 + z_28 ,
z_28*b_7 ,
z_28*b_8 ,
z_28*b_9 ,
z_28*b_10 ,
z_28*b_11 ,
z_28*b_12 ,
z_28*b_13 ,
z_28*b_14 ,
z_28*b_15 ,
z_28*b_16 ,
z_28*b_17 ,
z_28*b_18 ,
z_28*z_1 ,
z_28*z_2 ,
z_28*z_3 ,
z_28*z_4 ,
z_28*z_5 ,
z_28*z_6 ,
z_28*z_7 ,
z_28*z_8 ,
z_28*z_9 ,
z_28*z_10 ,
z_28*z_11 ,
z_28*z_12 ,
z_28*z_13 ,
z_28*z_14 + z_30*z_35 ,
z_28*z_17 ,
z_28*z_18 ,
z_28*z_19 ,
z_28*z_20 ,
z_28*z_21 ,
z_28*z_22 ,
z_28*z_23 ,
z_28*z_24 ,
z_28*z_25 ,
z_28*z_26 ,
z_28*z_27 ,
z_28^2 ,
z_28*z_29 ,
z_28*z_30 ,
z_28*z_31 ,
z_28*z_32 ,
z_28*z_33 ,
z_28*z_34 ,
z_28*z_35 ,
z_28*z_36 ,
z_28*z_37 ,
z_28*z_38 ,
z_28*z_39 ,
z_28*z_40 ,
z_28*z_41 ,
z_28*z_42 ,
z_28*z_43 ,
z_28*z_44 ,
z_28*z_45 ,
z_28*z_46 ,
z_28*z_47 ,
z_28*z_48 ,
z_28*z_49 ,
z_28*z_50 ,
z_28*z_51 ,
z_28*z_52 ,
z_28*z_53 ,
z_28*z_54 ,
z_28*z_55 ,
z_28*z_56 ,
z_29*b_2 ,
z_29*b_3 ,
z_29*b_4 ,
z_29*b_5 ,
z_29*b_6 ,
z_29*b_7 + z_29 ,
z_29*b_8 ,
z_29*b_9 ,
z_29*b_10 ,
z_29*b_11 ,
z_29*b_12 ,
z_29*b_13 ,
z_29*b_14 ,
z_29*b_15 ,
z_29*b_16 ,
z_29*b_17 ,
z_29*b_18 ,
z_29*z_1 ,
z_29*z_2 ,
z_29*z_3 ,
z_29*z_4 ,
z_29*z_5 ,
z_29*z_6 ,
z_29*z_7 ,
z_29*z_8 ,
z_29*z_9 ,
z_29*z_10 ,
z_29*z_11 ,
z_29*z_12 ,
z_29*z_13 ,
z_29*z_14 ,
z_29*z_15 ,
z_29*z_16 ,
z_29*z_17 + z_30*z_39 ,
z_29*z_20 ,
z_29*z_21 ,
z_29*z_22 ,
z_29*z_23 ,
z_29*z_24 ,
z_29*z_25 ,
z_29*z_26 ,
z_29*z_27 ,
z_29*z_28 ,
z_29^2 ,
z_29*z_30 ,
z_29*z_31 ,
z_29*z_32 ,
z_29*z_33 ,
z_29*z_34 ,
z_29*z_35 ,
z_29*z_36 ,
z_29*z_37 ,
z_29*z_38 ,
z_29*z_39 ,
z_29*z_40 ,
z_29*z_41 ,
z_29*z_42 ,
z_29*z_43 ,
z_29*z_44 ,
z_29*z_45 ,
z_29*z_46 ,
z_29*z_47 ,
z_29*z_48 ,
z_29*z_49 ,
z_29*z_50 ,
z_29*z_51 ,
z_29*z_52 ,
z_29*z_53 ,
z_29*z_54 ,
z_29*z_55 ,
z_29*z_56 ,
z_30*b_2 ,
z_30*b_3 ,
z_30*b_4 ,
z_30*b_5 ,
z_30*b_6 ,
z_30*b_7 ,
z_30*b_8 ,
z_30*b_9 ,
z_30*b_10 ,
z_30*b_11 ,
z_30*b_12 ,
z_30*b_13 + z_30 ,
z_30*b_14 ,
z_30*b_15 ,
z_30*b_16 ,
z_30*b_17 ,
z_30*b_18 ,
z_30*z_1 ,
z_30*z_2 ,
z_30*z_3 ,
z_30*z_4 ,
z_30*z_5 ,
z_30*z_6 ,
z_30*z_7 ,
z_30*z_8 ,
z_30*z_9 ,
z_30*z_10 ,
z_30*z_11 ,
z_30*z_12 ,
z_30*z_13 ,
z_30*z_14 ,
z_30*z_15 ,
z_30*z_16 ,
z_30*z_17 ,
z_30*z_18 ,
z_30*z_19 ,
z_30*z_20 ,
z_30*z_21 ,
z_30*z_22 ,
z_30*z_23 ,
z_30*z_24 ,
z_30*z_25 ,
z_30*z_26 ,
z_30*z_27 ,
z_30*z_28 ,
z_30*z_29 ,
z_30^2 ,
z_30*z_31 ,
z_30*z_32 ,
z_30*z_33 ,
z_30*z_34 ,
z_30*z_36 ,
z_30*z_40 ,
z_30*z_41 ,
z_30*z_42 ,
z_30*z_43 ,
z_30*z_44 ,
z_30*z_45 ,
z_30*z_46 ,
z_30*z_47 ,
z_30*z_48 ,
z_30*z_49 ,
z_30*z_50 ,
z_30*z_51 ,
z_30*z_52 ,
z_30*z_53 ,
z_30*z_54 ,
z_30*z_55 ,
z_30*z_56 ,
z_31*b_2 ,
z_31*b_3 ,
z_31*b_4 ,
z_31*b_5 ,
z_31*b_6 + z_31 ,
z_31*b_7 ,
z_31*b_8 ,
z_31*b_9 ,
z_31*b_10 ,
z_31*b_11 ,
z_31*b_12 ,
z_31*b_13 ,
z_31*b_14 ,
z_31*b_15 ,
z_31*b_16 ,
z_31*b_17 ,
z_31*b_18 ,
z_31*z_1 ,
z_31*z_2 ,
z_31*z_3 ,
z_31*z_4 ,
z_31*z_5 ,
z_31*z_6 ,
z_31*z_7 ,
z_31*z_8 ,
z_31*z_9 ,
z_31*z_10 ,
z_31*z_11 ,
z_31*z_12 ,
z_31*z_13 ,
z_31*z_16 + z_32*z_19 ,
z_31*z_17 ,
z_31*z_18 ,
z_31*z_19 ,
z_31*z_20 ,
z_31*z_21 ,
z_31*z_22 ,
z_31*z_23 ,
z_31*z_24 ,
z_31*z_25 ,
z_31*z_26 ,
z_31*z_27 ,
z_31*z_28 ,
z_31*z_29 ,
z_31*z_30 ,
z_31^2 ,
z_31*z_32 ,
z_31*z_33 ,
z_31*z_34 ,
z_31*z_35 ,
z_31*z_36 ,
z_31*z_37 ,
z_31*z_38 ,
z_31*z_39 ,
z_31*z_40 ,
z_31*z_41 ,
z_31*z_42 ,
z_31*z_43 ,
z_31*z_44 ,
z_31*z_45 ,
z_31*z_46 ,
z_31*z_47 ,
z_31*z_48 ,
z_31*z_49 ,
z_31*z_50 ,
z_31*z_51 ,
z_31*z_52 ,
z_31*z_53 ,
z_31*z_54 ,
z_31*z_55 ,
z_31*z_56 ,
z_32*b_2 ,
z_32*b_3 ,
z_32*b_4 ,
z_32*b_5 ,
z_32*b_6 ,
z_32*b_7 + z_32 ,
z_32*b_8 ,
z_32*b_9 ,
z_32*b_10 ,
z_32*b_11 ,
z_32*b_12 ,
z_32*b_13 ,
z_32*b_14 ,
z_32*b_15 ,
z_32*b_16 ,
z_32*b_17 ,
z_32*b_18 ,
z_32*z_1 ,
z_32*z_2 ,
z_32*z_3 ,
z_32*z_4 ,
z_32*z_5 ,
z_32*z_6 ,
z_32*z_7 ,
z_32*z_8 ,
z_32*z_9 ,
z_32*z_10 ,
z_32*z_11 ,
z_32*z_12 ,
z_32*z_13 ,
z_32*z_14 ,
z_32*z_15 ,
z_32*z_16 ,
z_32*z_20 ,
z_32*z_21 ,
z_32*z_22 ,
z_32*z_23 ,
z_32*z_24 ,
z_32*z_25 ,
z_32*z_26 ,
z_32*z_27 ,
z_32*z_28 ,
z_32*z_29 ,
z_32*z_30 ,
z_32*z_31 ,
z_32^2 ,
z_32*z_33 ,
z_32*z_34 ,
z_32*z_35 ,
z_32*z_36 ,
z_32*z_37 ,
z_32*z_38 ,
z_32*z_39 ,
z_32*z_40 ,
z_32*z_41 ,
z_32*z_42 ,
z_32*z_43 ,
z_32*z_44 ,
z_32*z_45 ,
z_32*z_46 ,
z_32*z_47 ,
z_32*z_48 ,
z_32*z_49 ,
z_32*z_50 ,
z_32*z_51 ,
z_32*z_52 ,
z_32*z_53 ,
z_32*z_54 ,
z_32*z_55 ,
z_32*z_56 ,
z_33*b_2 ,
z_33*b_3 ,
z_33*b_4 ,
z_33*b_5 ,
z_33*b_6 ,
z_33*b_7 ,
z_33*b_8 ,
z_33*b_9 ,
z_33*b_10 ,
z_33*b_11 ,
z_33*b_12 ,
z_33*b_13 ,
z_33*b_14 ,
z_33*b_15 ,
z_33*b_16 + z_33 ,
z_33*b_17 ,
z_33*b_18 ,
z_33*z_1 ,
z_33*z_2 ,
z_33*z_3 ,
z_33*z_4 ,
z_33*z_5 ,
z_33*z_6 ,
z_33*z_7 ,
z_33*z_8 ,
z_33*z_9 ,
z_33*z_10 ,
z_33*z_11 ,
z_33*z_12 ,
z_33*z_13 ,
z_33*z_14 ,
z_33*z_15 ,
z_33*z_16 ,
z_33*z_17 ,
z_33*z_18 ,
z_33*z_19 ,
z_33*z_20 ,
z_33*z_21 ,
z_33*z_22 ,
z_33*z_23 ,
z_33*z_24 ,
z_33*z_25 ,
z_33*z_26 ,
z_33*z_27 ,
z_33*z_28 ,
z_33*z_29 ,
z_33*z_30 ,
z_33*z_31 ,
z_33*z_32 ,
z_33^2 ,
z_33*z_34 ,
z_33*z_35 ,
z_33*z_36 ,
z_33*z_37 ,
z_33*z_38 ,
z_33*z_39 ,
z_33*z_40 ,
z_33*z_41 ,
z_33*z_42 ,
z_33*z_43 ,
z_33*z_44 ,
z_33*z_45 + z_34*z_52 ,
z_33*z_46 ,
z_33*z_48 ,
z_33*z_49 ,
z_33*z_50 ,
z_33*z_51 ,
z_33*z_52 ,
z_33*z_53 ,
z_33*z_54 ,
z_33*z_55 ,
z_33*z_56 ,
z_34*b_2 ,
z_34*b_3 ,
z_34*b_4 ,
z_34*b_5 ,
z_34*b_6 ,
z_34*b_7 ,
z_34*b_8 ,
z_34*b_9 ,
z_34*b_10 ,
z_34*b_11 ,
z_34*b_12 ,
z_34*b_13 ,
z_34*b_14 ,
z_34*b_15 ,
z_34*b_16 ,
z_34*b_17 + z_34 ,
z_34*b_18 ,
z_34*z_1 ,
z_34*z_2 ,
z_34*z_3 ,
z_34*z_4 ,
z_34*z_5 ,
z_34*z_6 ,
z_34*z_7 ,
z_34*z_8 ,
z_34*z_9 ,
z_34*z_10 ,
z_34*z_11 ,
z_34*z_12 ,
z_34*z_13 ,
z_34*z_14 ,
z_34*z_15 ,
z_34*z_16 ,
z_34*z_17 ,
z_34*z_18 ,
z_34*z_19 ,
z_34*z_20 ,
z_34*z_21 ,
z_34*z_22 ,
z_34*z_23 ,
z_34*z_24 ,
z_34*z_25 ,
z_34*z_26 ,
z_34*z_27 ,
z_34*z_28 ,
z_34*z_29 ,
z_34*z_30 ,
z_34*z_31 ,
z_34*z_32 ,
z_34*z_33 ,
z_34^2 ,
z_34*z_35 ,
z_34*z_36 ,
z_34*z_37 ,
z_34*z_38 ,
z_34*z_39 ,
z_34*z_40 ,
z_34*z_41 ,
z_34*z_42 ,
z_34*z_43 ,
z_34*z_44 ,
z_34*z_45 ,
z_34*z_46 ,
z_34*z_47 ,
z_34*z_49 ,
z_34*z_50 ,
z_34*z_53 ,
z_34*z_54 ,
z_34*z_55 ,
z_34*z_56 ,
z_35*b_2 + z_35 ,
z_35*b_3 ,
z_35*b_4 ,
z_35*b_5 ,
z_35*b_6 ,
z_35*b_7 ,
z_35*b_8 ,
z_35*b_9 ,
z_35*b_10 ,
z_35*b_11 ,
z_35*b_12 ,
z_35*b_13 ,
z_35*b_14 ,
z_35*b_15 ,
z_35*b_16 ,
z_35*b_17 ,
z_35*b_18 ,
z_35*z_1 ,
z_35*z_2 + z_40*z_28 ,
z_35*z_7 ,
z_35*z_8 ,
z_35*z_9 ,
z_35*z_10 ,
z_35*z_11 ,
z_35*z_12 ,
z_35*z_13 ,
z_35*z_14 ,
z_35*z_15 ,
z_35*z_16 ,
z_35*z_17 ,
z_35*z_18 ,
z_35*z_19 ,
z_35*z_20 ,
z_35*z_21 ,
z_35*z_22 ,
z_35*z_23 ,
z_35*z_24 ,
z_35*z_25 ,
z_35*z_26 ,
z_35*z_27 ,
z_35*z_28 ,
z_35*z_29 ,
z_35*z_30 ,
z_35*z_31 ,
z_35*z_32 ,
z_35*z_33 ,
z_35*z_34 ,
z_35^2 ,
z_35*z_36 ,
z_35*z_37 ,
z_35*z_38 ,
z_35*z_39 ,
z_35*z_40 ,
z_35*z_41 ,
z_35*z_42 ,
z_35*z_43 ,
z_35*z_44 ,
z_35*z_45 ,
z_35*z_46 ,
z_35*z_47 ,
z_35*z_48 ,
z_35*z_49 ,
z_35*z_50 ,
z_35*z_51 ,
z_35*z_52 ,
z_35*z_53 ,
z_35*z_54 ,
z_35*z_55 ,
z_35*z_56 ,
z_36*b_2 ,
z_36*b_3 + z_36 ,
z_36*b_4 ,
z_36*b_5 ,
z_36*b_6 ,
z_36*b_7 ,
z_36*b_8 ,
z_36*b_9 ,
z_36*b_10 ,
z_36*b_11 ,
z_36*b_12 ,
z_36*b_13 ,
z_36*b_14 ,
z_36*b_15 ,
z_36*b_16 ,
z_36*b_17 ,
z_36*b_18 ,
z_36*z_1 ,
z_36*z_2 ,
z_36*z_3 ,
z_36*z_4 ,
z_36*z_5 ,
z_36*z_6 ,
z_36*z_9 ,
z_36*z_10 ,
z_36*z_11 ,
z_36*z_12 ,
z_36*z_13 ,
z_36*z_14 ,
z_36*z_15 ,
z_36*z_16 ,
z_36*z_17 ,
z_36*z_18 ,
z_36*z_19 ,
z_36*z_20 ,
z_36*z_21 ,
z_36*z_22 ,
z_36*z_23 ,
z_36*z_24 ,
z_36*z_25 ,
z_36*z_26 ,
z_36*z_27 ,
z_36*z_28 ,
z_36*z_29 ,
z_36*z_30 ,
z_36*z_31 ,
z_36*z_32 ,
z_36*z_33 ,
z_36*z_34 ,
z_36*z_35 ,
z_36^2 ,
z_36*z_37 ,
z_36*z_38 ,
z_36*z_39 ,
z_36*z_40 ,
z_36*z_41 ,
z_36*z_42 ,
z_36*z_43 ,
z_36*z_44 ,
z_36*z_45 ,
z_36*z_46 ,
z_36*z_47 ,
z_36*z_48 ,
z_36*z_49 ,
z_36*z_50 ,
z_36*z_51 ,
z_36*z_52 ,
z_36*z_53 ,
z_36*z_54 ,
z_36*z_55 ,
z_36*z_56 ,
z_37*b_2 ,
z_37*b_3 ,
z_37*b_4 + z_37 ,
z_37*b_5 ,
z_37*b_6 ,
z_37*b_7 ,
z_37*b_8 ,
z_37*b_9 ,
z_37*b_10 ,
z_37*b_11 ,
z_37*b_12 ,
z_37*b_13 ,
z_37*b_14 ,
z_37*b_15 ,
z_37*b_16 ,
z_37*b_17 ,
z_37*b_18 ,
z_37*z_1 ,
z_37*z_2 ,
z_37*z_3 ,
z_37*z_4 ,
z_37*z_5 ,
z_37*z_6 ,
z_37*z_7 ,
z_37*z_8 ,
z_37*z_11 ,
z_37*z_12 ,
z_37*z_13 ,
z_37*z_14 ,
z_37*z_15 ,
z_37*z_16 ,
z_37*z_17 ,
z_37*z_18 ,
z_37*z_19 ,
z_37*z_20 ,
z_37*z_21 ,
z_37*z_22 ,
z_37*z_23 ,
z_37*z_24 ,
z_37*z_25 ,
z_37*z_26 ,
z_37*z_27 ,
z_37*z_28 ,
z_37*z_29 ,
z_37*z_30 ,
z_37*z_31 ,
z_37*z_32 ,
z_37*z_33 ,
z_37*z_34 ,
z_37*z_35 ,
z_37*z_36 ,
z_37^2 ,
z_37*z_38 ,
z_37*z_39 ,
z_37*z_40 ,
z_37*z_41 ,
z_37*z_42 ,
z_37*z_43 ,
z_37*z_44 ,
z_37*z_45 ,
z_37*z_46 ,
z_37*z_47 ,
z_37*z_48 ,
z_37*z_49 ,
z_37*z_50 ,
z_37*z_51 ,
z_37*z_52 ,
z_37*z_53 ,
z_37*z_54 ,
z_37*z_55 ,
z_37*z_56 ,
z_38*b_2 ,
z_38*b_3 ,
z_38*b_4 ,
z_38*b_5 + z_38 ,
z_38*b_6 ,
z_38*b_7 ,
z_38*b_8 ,
z_38*b_9 ,
z_38*b_10 ,
z_38*b_11 ,
z_38*b_12 ,
z_38*b_13 ,
z_38*b_14 ,
z_38*b_15 ,
z_38*b_16 ,
z_38*b_17 ,
z_38*b_18 ,
z_38*z_1 ,
z_38*z_2 ,
z_38*z_3 ,
z_38*z_4 ,
z_38*z_5 ,
z_38*z_6 ,
z_38*z_7 ,
z_38*z_8 ,
z_38*z_9 ,
z_38*z_10 ,
z_38*z_14 ,
z_38*z_15 ,
z_38*z_16 ,
z_38*z_17 ,
z_38*z_18 ,
z_38*z_19 ,
z_38*z_20 ,
z_38*z_21 ,
z_38*z_22 ,
z_38*z_23 ,
z_38*z_24 ,
z_38*z_25 ,
z_38*z_26 ,
z_38*z_27 ,
z_38*z_28 ,
z_38*z_29 ,
z_38*z_30 ,
z_38*z_31 ,
z_38*z_32 ,
z_38*z_33 ,
z_38*z_34 ,
z_38*z_35 ,
z_38*z_36 ,
z_38*z_37 ,
z_38^2 ,
z_38*z_39 ,
z_38*z_40 ,
z_38*z_41 ,
z_38*z_42 ,
z_38*z_43 ,
z_38*z_44 ,
z_38*z_45 ,
z_38*z_46 ,
z_38*z_47 ,
z_38*z_48 ,
z_38*z_49 ,
z_38*z_50 ,
z_38*z_51 ,
z_38*z_52 ,
z_38*z_53 ,
z_38*z_54 ,
z_38*z_55 ,
z_38*z_56 ,
z_39*b_2 ,
z_39*b_3 ,
z_39*b_4 ,
z_39*b_5 ,
z_39*b_6 ,
z_39*b_7 ,
z_39*b_8 ,
z_39*b_9 + z_39 ,
z_39*b_10 ,
z_39*b_11 ,
z_39*b_12 ,
z_39*b_13 ,
z_39*b_14 ,
z_39*b_15 ,
z_39*b_16 ,
z_39*b_17 ,
z_39*b_18 ,
z_39*z_1 ,
z_39*z_2 ,
z_39*z_3 ,
z_39*z_4 ,
z_39*z_5 ,
z_39*z_6 ,
z_39*z_7 ,
z_39*z_8 ,
z_39*z_9 ,
z_39*z_10 ,
z_39*z_11 ,
z_39*z_12 ,
z_39*z_13 ,
z_39*z_14 ,
z_39*z_15 ,
z_39*z_16 ,
z_39*z_17 ,
z_39*z_18 ,
z_39*z_19 ,
z_39*z_20 ,
z_39*z_24 ,
z_39*z_25 ,
z_39*z_26 ,
z_39*z_27 ,
z_39*z_28 ,
z_39*z_29 ,
z_39*z_30 ,
z_39*z_31 ,
z_39*z_32 ,
z_39*z_33 ,
z_39*z_34 ,
z_39*z_35 ,
z_39*z_36 ,
z_39*z_37 ,
z_39*z_38 ,
z_39^2 ,
z_39*z_40 ,
z_39*z_41 ,
z_39*z_42 ,
z_39*z_43 ,
z_39*z_44 ,
z_39*z_45 ,
z_39*z_46 ,
z_39*z_47 ,
z_39*z_48 ,
z_39*z_49 ,
z_39*z_50 ,
z_39*z_51 ,
z_39*z_52 ,
z_39*z_53 ,
z_39*z_54 ,
z_39*z_55 ,
z_39*z_56 ,
z_40*b_2 ,
z_40*b_3 ,
z_40*b_4 ,
z_40*b_5 ,
z_40*b_6 ,
z_40*b_7 ,
z_40*b_8 ,
z_40*b_9 ,
z_40*b_10 ,
z_40*b_11 + z_40 ,
z_40*b_12 ,
z_40*b_13 ,
z_40*b_14 ,
z_40*b_15 ,
z_40*b_16 ,
z_40*b_17 ,
z_40*b_18 ,
z_40*z_1 ,
z_40*z_2 ,
z_40*z_3 ,
z_40*z_4 ,
z_40*z_5 ,
z_40*z_6 ,
z_40*z_7 ,
z_40*z_8 ,
z_40*z_9 ,
z_40*z_10 ,
z_40*z_11 ,
z_40*z_12 ,
z_40*z_13 ,
z_40*z_14 ,
z_40*z_15 ,
z_40*z_16 ,
z_40*z_17 ,
z_40*z_18 ,
z_40*z_19 ,
z_40*z_20 ,
z_40*z_21 ,
z_40*z_22 ,
z_40*z_23 ,
z_40*z_24 ,
z_40*z_25 ,
z_40*z_26 ,
z_40*z_27 ,
z_40*z_31 ,
z_40*z_32 ,
z_40*z_33 ,
z_40*z_34 ,
z_40*z_35 ,
z_40*z_36 ,
z_40*z_37 ,
z_40*z_38 ,
z_40*z_39 ,
z_40^2 ,
z_40*z_41 ,
z_40*z_42 ,
z_40*z_43 ,
z_40*z_44 ,
z_40*z_45 ,
z_40*z_46 ,
z_40*z_47 ,
z_40*z_48 ,
z_40*z_49 ,
z_40*z_50 ,
z_40*z_51 ,
z_40*z_52 ,
z_40*z_53 ,
z_40*z_54 ,
z_40*z_55 ,
z_40*z_56 ,
z_41*b_2 + z_41 ,
z_41*b_3 ,
z_41*b_4 ,
z_41*b_5 ,
z_41*b_6 ,
z_41*b_7 ,
z_41*b_8 ,
z_41*b_9 ,
z_41*b_10 ,
z_41*b_11 ,
z_41*b_12 ,
z_41*b_13 ,
z_41*b_14 ,
z_41*b_15 ,
z_41*b_16 ,
z_41*b_17 ,
z_41*b_18 ,
z_41*z_1 ,
z_41*z_7 ,
z_41*z_8 ,
z_41*z_9 ,
z_41*z_10 ,
z_41*z_11 ,
z_41*z_12 ,
z_41*z_13 ,
z_41*z_14 ,
z_41*z_15 ,
z_41*z_16 ,
z_41*z_17 ,
z_41*z_18 ,
z_41*z_19 ,
z_41*z_20 ,
z_41*z_21 ,
z_41*z_22 ,
z_41*z_23 ,
z_41*z_24 ,
z_41*z_25 ,
z_41*z_26 ,
z_41*z_27 ,
z_41*z_28 ,
z_41*z_29 ,
z_41*z_30 ,
z_41*z_31 ,
z_41*z_32 ,
z_41*z_33 ,
z_41*z_34 ,
z_41*z_35 ,
z_41*z_36 ,
z_41*z_37 ,
z_41*z_38 ,
z_41*z_39 ,
z_41*z_40 ,
z_41^2 ,
z_41*z_42 ,
z_41*z_43 ,
z_41*z_44 ,
z_41*z_45 ,
z_41*z_46 ,
z_41*z_47 ,
z_41*z_48 ,
z_41*z_49 ,
z_41*z_50 ,
z_41*z_51 ,
z_41*z_52 ,
z_41*z_53 ,
z_41*z_54 ,
z_41*z_55 ,
z_41*z_56 ,
z_42*b_2 ,
z_42*b_3 ,
z_42*b_4 ,
z_42*b_5 + z_42 ,
z_42*b_6 ,
z_42*b_7 ,
z_42*b_8 ,
z_42*b_9 ,
z_42*b_10 ,
z_42*b_11 ,
z_42*b_12 ,
z_42*b_13 ,
z_42*b_14 ,
z_42*b_15 ,
z_42*b_16 ,
z_42*b_17 ,
z_42*b_18 ,
z_42*z_1 ,
z_42*z_2 ,
z_42*z_3 ,
z_42*z_4 ,
z_42*z_5 ,
z_42*z_6 ,
z_42*z_7 ,
z_42*z_8 ,
z_42*z_9 ,
z_42*z_10 ,
z_42*z_14 ,
z_42*z_15 ,
z_42*z_16 ,
z_42*z_17 ,
z_42*z_18 ,
z_42*z_19 ,
z_42*z_20 ,
z_42*z_21 ,
z_42*z_22 ,
z_42*z_23 ,
z_42*z_24 ,
z_42*z_25 ,
z_42*z_26 ,
z_42*z_27 ,
z_42*z_28 ,
z_42*z_29 ,
z_42*z_30 ,
z_42*z_31 ,
z_42*z_32 ,
z_42*z_33 ,
z_42*z_34 ,
z_42*z_35 ,
z_42*z_36 ,
z_42*z_37 ,
z_42*z_38 ,
z_42*z_39 ,
z_42*z_40 ,
z_42*z_41 ,
z_42^2 ,
z_42*z_43 ,
z_42*z_44 ,
z_42*z_45 ,
z_42*z_46 ,
z_42*z_47 ,
z_42*z_48 ,
z_42*z_49 ,
z_42*z_50 ,
z_42*z_51 ,
z_42*z_52 ,
z_42*z_53 ,
z_42*z_54 ,
z_42*z_55 ,
z_42*z_56 ,
z_43*b_2 ,
z_43*b_3 ,
z_43*b_4 ,
z_43*b_5 ,
z_43*b_6 ,
z_43*b_7 ,
z_43*b_8 ,
z_43*b_9 ,
z_43*b_10 ,
z_43*b_11 ,
z_43*b_12 ,
z_43*b_13 ,
z_43*b_14 ,
z_43*b_15 ,
z_43*b_16 ,
z_43*b_17 ,
z_43*b_18 + z_43 ,
z_43*z_1 ,
z_43*z_2 ,
z_43*z_3 ,
z_43*z_4 ,
z_43*z_5 ,
z_43*z_6 ,
z_43*z_7 ,
z_43*z_8 ,
z_43*z_9 ,
z_43*z_10 ,
z_43*z_11 ,
z_43*z_12 ,
z_43*z_13 ,
z_43*z_14 ,
z_43*z_15 ,
z_43*z_16 ,
z_43*z_17 ,
z_43*z_18 ,
z_43*z_19 ,
z_43*z_20 ,
z_43*z_21 ,
z_43*z_22 ,
z_43*z_23 ,
z_43*z_24 ,
z_43*z_25 ,
z_43*z_26 ,
z_43*z_27 ,
z_43*z_28 ,
z_43*z_29 ,
z_43*z_30 ,
z_43*z_31 ,
z_43*z_32 ,
z_43*z_33 ,
z_43*z_34 ,
z_43*z_35 ,
z_43*z_36 ,
z_43*z_37 ,
z_43*z_38 ,
z_43*z_39 ,
z_43*z_40 ,
z_43*z_41 ,
z_43*z_42 ,
z_43^2 ,
z_43*z_44 ,
z_43*z_45 ,
z_43*z_46 ,
z_43*z_47 ,
z_43*z_48 ,
z_43*z_49 ,
z_43*z_50 ,
z_43*z_51 ,
z_43*z_52 ,
z_43*z_53 ,
z_43*z_54 ,
z_44*b_2 ,
z_44*b_3 ,
z_44*b_4 ,
z_44*b_5 ,
z_44*b_6 ,
z_44*b_7 ,
z_44*b_8 ,
z_44*b_9 ,
z_44*b_10 ,
z_44*b_11 ,
z_44*b_12 ,
z_44*b_13 ,
z_44*b_14 ,
z_44*b_15 ,
z_44*b_16 + z_44 ,
z_44*b_17 ,
z_44*b_18 ,
z_44*z_1 ,
z_44*z_2 ,
z_44*z_3 ,
z_44*z_4 ,
z_44*z_5 ,
z_44*z_6 ,
z_44*z_7 ,
z_44*z_8 ,
z_44*z_9 ,
z_44*z_10 ,
z_44*z_11 ,
z_44*z_12 ,
z_44*z_13 ,
z_44*z_14 ,
z_44*z_15 ,
z_44*z_16 ,
z_44*z_17 ,
z_44*z_18 ,
z_44*z_19 ,
z_44*z_20 ,
z_44*z_21 ,
z_44*z_22 ,
z_44*z_23 ,
z_44*z_24 ,
z_44*z_25 ,
z_44*z_26 ,
z_44*z_27 ,
z_44*z_28 ,
z_44*z_29 ,
z_44*z_30 ,
z_44*z_31 ,
z_44*z_32 ,
z_44*z_33 ,
z_44*z_34 ,
z_44*z_35 ,
z_44*z_36 ,
z_44*z_37 ,
z_44*z_38 ,
z_44*z_39 ,
z_44*z_40 ,
z_44*z_41 ,
z_44*z_42 ,
z_44*z_43 ,
z_44^2 ,
z_44*z_45 ,
z_44*z_47 ,
z_44*z_48 ,
z_44*z_49 ,
z_44*z_50 ,
z_44*z_51 ,
z_44*z_52 ,
z_44*z_53 ,
z_44*z_54 ,
z_44*z_55 ,
z_44*z_56 ,
z_45*b_2 ,
z_45*b_3 ,
z_45*b_4 ,
z_45*b_5 ,
z_45*b_6 ,
z_45*b_7 ,
z_45*b_8 ,
z_45*b_9 ,
z_45*b_10 + z_45 ,
z_45*b_11 ,
z_45*b_12 ,
z_45*b_13 ,
z_45*b_14 ,
z_45*b_15 ,
z_45*b_16 ,
z_45*b_17 ,
z_45*b_18 ,
z_45*z_1 ,
z_45*z_2 ,
z_45*z_3 ,
z_45*z_4 ,
z_45*z_5 ,
z_45*z_6 ,
z_45*z_7 ,
z_45*z_8 ,
z_45*z_9 ,
z_45*z_10 ,
z_45*z_11 ,
z_45*z_12 ,
z_45*z_13 ,
z_45*z_14 ,
z_45*z_15 ,
z_45*z_16 ,
z_45*z_17 ,
z_45*z_18 ,
z_45*z_19 ,
z_45*z_20 ,
z_45*z_21 ,
z_45*z_22 ,
z_45*z_23 ,
z_45*z_28 ,
z_45*z_29 ,
z_45*z_30 ,
z_45*z_31 ,
z_45*z_32 ,
z_45*z_33 ,
z_45*z_34 ,
z_45*z_35 ,
z_45*z_36 ,
z_45*z_37 ,
z_45*z_38 ,
z_45*z_39 ,
z_45*z_40 ,
z_45*z_41 ,
z_45*z_42 ,
z_45*z_43 ,
z_45*z_44 ,
z_45^2 ,
z_45*z_46 ,
z_45*z_47 ,
z_45*z_48 ,
z_45*z_49 ,
z_45*z_50 ,
z_45*z_51 ,
z_45*z_52 ,
z_45*z_53 ,
z_45*z_54 ,
z_45*z_55 ,
z_45*z_56 ,
z_46*b_2 ,
z_46*b_3 ,
z_46*b_4 ,
z_46*b_5 ,
z_46*b_6 ,
z_46*b_7 ,
z_46*b_8 ,
z_46*b_9 ,
z_46*b_10 ,
z_46*b_11 ,
z_46*b_12 + z_46 ,
z_46*b_13 ,
z_46*b_14 ,
z_46*b_15 ,
z_46*b_16 ,
z_46*b_17 ,
z_46*b_18 ,
z_46*z_1 ,
z_46*z_2 ,
z_46*z_3 ,
z_46*z_4 ,
z_46*z_5 ,
z_46*z_6 ,
z_46*z_7 ,
z_46*z_8 ,
z_46*z_9 ,
z_46*z_10 ,
z_46*z_11 ,
z_46*z_12 ,
z_46*z_13 ,
z_46*z_14 ,
z_46*z_15 ,
z_46*z_16 ,
z_46*z_17 ,
z_46*z_18 ,
z_46*z_19 ,
z_46*z_20 ,
z_46*z_21 ,
z_46*z_22 ,
z_46*z_23 ,
z_46*z_24 ,
z_46*z_25 ,
z_46*z_26 ,
z_46*z_27 ,
z_46*z_28 ,
z_46*z_29 ,
z_46*z_30 ,
z_46*z_35 ,
z_46*z_36 ,
z_46*z_37 ,
z_46*z_38 ,
z_46*z_39 ,
z_46*z_40 ,
z_46*z_41 ,
z_46*z_42 ,
z_46*z_43 ,
z_46*z_44 ,
z_46*z_45 ,
z_46^2 ,
z_46*z_47 ,
z_46*z_48 ,
z_46*z_49 ,
z_46*z_50 ,
z_46*z_51 ,
z_46*z_52 ,
z_46*z_53 ,
z_46*z_54 ,
z_46*z_55 ,
z_46*z_56 ,
z_47*b_2 ,
z_47*b_3 ,
z_47*b_4 ,
z_47*b_5 ,
z_47*b_6 ,
z_47*b_7 ,
z_47*b_8 ,
z_47*b_9 ,
z_47*b_10 ,
z_47*b_11 ,
z_47*b_12 ,
z_47*b_13 ,
z_47*b_14 ,
z_47*b_15 + z_47 ,
z_47*b_16 ,
z_47*b_17 ,
z_47*b_18 ,
z_47*z_1 ,
z_47*z_2 ,
z_47*z_3 ,
z_47*z_4 ,
z_47*z_5 ,
z_47*z_6 ,
z_47*z_7 ,
z_47*z_8 ,
z_47*z_9 ,
z_47*z_10 ,
z_47*z_11 ,
z_47*z_12 ,
z_47*z_13 ,
z_47*z_14 ,
z_47*z_15 ,
z_47*z_16 ,
z_47*z_17 ,
z_47*z_18 ,
z_47*z_19 ,
z_47*z_20 ,
z_47*z_21 ,
z_47*z_22 ,
z_47*z_23 ,
z_47*z_24 ,
z_47*z_25 ,
z_47*z_26 ,
z_47*z_27 ,
z_47*z_28 ,
z_47*z_29 ,
z_47*z_30 ,
z_47*z_31 ,
z_47*z_32 ,
z_47*z_33 ,
z_47*z_34 ,
z_47*z_35 ,
z_47*z_36 ,
z_47*z_37 ,
z_47*z_38 ,
z_47*z_39 ,
z_47*z_40 ,
z_47*z_41 ,
z_47*z_42 ,
z_47*z_43 ,
z_47*z_45 ,
z_47*z_46 ,
z_47^2 ,
z_47*z_48 ,
z_47*z_49 ,
z_47*z_50 ,
z_47*z_51 ,
z_47*z_52 ,
z_47*z_53 ,
z_47*z_54 ,
z_47*z_55 ,
z_47*z_56 ,
z_48*b_2 + z_48 ,
z_48*b_3 ,
z_48*b_4 ,
z_48*b_5 ,
z_48*b_6 ,
z_48*b_7 ,
z_48*b_8 ,
z_48*b_9 ,
z_48*b_10 ,
z_48*b_11 ,
z_48*b_12 ,
z_48*b_13 ,
z_48*b_14 ,
z_48*b_15 ,
z_48*b_16 ,
z_48*b_17 ,
z_48*b_18 ,
z_48*z_1 ,
z_48*z_7 ,
z_48*z_8 ,
z_48*z_9 ,
z_48*z_10 ,
z_48*z_11 ,
z_48*z_12 ,
z_48*z_13 ,
z_48*z_14 ,
z_48*z_15 ,
z_48*z_16 ,
z_48*z_17 ,
z_48*z_18 ,
z_48*z_19 ,
z_48*z_20 ,
z_48*z_21 ,
z_48*z_22 ,
z_48*z_23 ,
z_48*z_24 ,
z_48*z_25 ,
z_48*z_26 ,
z_48*z_27 ,
z_48*z_28 ,
z_48*z_29 ,
z_48*z_30 ,
z_48*z_31 ,
z_48*z_32 ,
z_48*z_33 ,
z_48*z_34 ,
z_48*z_35 ,
z_48*z_36 ,
z_48*z_37 ,
z_48*z_38 ,
z_48*z_39 ,
z_48*z_40 ,
z_48*z_41 ,
z_48*z_42 ,
z_48*z_43 ,
z_48*z_44 ,
z_48*z_45 ,
z_48*z_46 ,
z_48*z_47 ,
z_48^2 ,
z_48*z_49 ,
z_48*z_50 ,
z_48*z_51 ,
z_48*z_52 ,
z_48*z_53 ,
z_48*z_54 ,
z_48*z_55 ,
z_48*z_56 ,
z_49*b_2 ,
z_49*b_3 + z_49 ,
z_49*b_4 ,
z_49*b_5 ,
z_49*b_6 ,
z_49*b_7 ,
z_49*b_8 ,
z_49*b_9 ,
z_49*b_10 ,
z_49*b_11 ,
z_49*b_12 ,
z_49*b_13 ,
z_49*b_14 ,
z_49*b_15 ,
z_49*b_16 ,
z_49*b_17 ,
z_49*b_18 ,
z_49*z_1 ,
z_49*z_2 ,
z_49*z_3 ,
z_49*z_4 ,
z_49*z_5 ,
z_49*z_6 ,
z_49*z_9 ,
z_49*z_10 ,
z_49*z_11 ,
z_49*z_12 ,
z_49*z_13 ,
z_49*z_14 ,
z_49*z_15 ,
z_49*z_16 ,
z_49*z_17 ,
z_49*z_18 ,
z_49*z_19 ,
z_49*z_20 ,
z_49*z_21 ,
z_49*z_22 ,
z_49*z_23 ,
z_49*z_24 ,
z_49*z_25 ,
z_49*z_26 ,
z_49*z_27 ,
z_49*z_28 ,
z_49*z_29 ,
z_49*z_30 ,
z_49*z_31 ,
z_49*z_32 ,
z_49*z_33 ,
z_49*z_34 ,
z_49*z_35 ,
z_49*z_36 ,
z_49*z_37 ,
z_49*z_38 ,
z_49*z_39 ,
z_49*z_40 ,
z_49*z_41 ,
z_49*z_42 ,
z_49*z_43 ,
z_49*z_44 ,
z_49*z_45 ,
z_49*z_46 ,
z_49*z_47 ,
z_49*z_48 ,
z_49^2 ,
z_49*z_50 ,
z_49*z_51 ,
z_49*z_52 ,
z_49*z_53 ,
z_49*z_54 ,
z_49*z_55 ,
z_49*z_56 ,
z_50*b_2 ,
z_50*b_3 ,
z_50*b_4 ,
z_50*b_5 + z_50 ,
z_50*b_6 ,
z_50*b_7 ,
z_50*b_8 ,
z_50*b_9 ,
z_50*b_10 ,
z_50*b_11 ,
z_50*b_12 ,
z_50*b_13 ,
z_50*b_14 ,
z_50*b_15 ,
z_50*b_16 ,
z_50*b_17 ,
z_50*b_18 ,
z_50*z_1 ,
z_50*z_2 ,
z_50*z_3 ,
z_50*z_4 ,
z_50*z_5 ,
z_50*z_6 ,
z_50*z_7 ,
z_50*z_8 ,
z_50*z_9 ,
z_50*z_10 ,
z_50*z_14 ,
z_50*z_15 ,
z_50*z_16 ,
z_50*z_17 ,
z_50*z_18 ,
z_50*z_19 ,
z_50*z_20 ,
z_50*z_21 ,
z_50*z_22 ,
z_50*z_23 ,
z_50*z_24 ,
z_50*z_25 ,
z_50*z_26 ,
z_50*z_27 ,
z_50*z_28 ,
z_50*z_29 ,
z_50*z_30 ,
z_50*z_31 ,
z_50*z_32 ,
z_50*z_33 ,
z_50*z_34 ,
z_50*z_35 ,
z_50*z_36 ,
z_50*z_37 ,
z_50*z_38 ,
z_50*z_39 ,
z_50*z_40 ,
z_50*z_41 ,
z_50*z_42 ,
z_50*z_43 ,
z_50*z_44 ,
z_50*z_45 ,
z_50*z_46 ,
z_50*z_47 ,
z_50*z_48 ,
z_50*z_49 ,
z_50^2 ,
z_50*z_51 ,
z_50*z_52 ,
z_50*z_53 ,
z_50*z_54 ,
z_50*z_55 ,
z_50*z_56 ,
z_51*b_2 ,
z_51*b_3 ,
z_51*b_4 ,
z_51*b_5 ,
z_51*b_6 ,
z_51*b_7 ,
z_51*b_8 ,
z_51*b_9 + z_51 ,
z_51*b_10 ,
z_51*b_11 ,
z_51*b_12 ,
z_51*b_13 ,
z_51*b_14 ,
z_51*b_15 ,
z_51*b_16 ,
z_51*b_17 ,
z_51*b_18 ,
z_51*z_1 ,
z_51*z_2 ,
z_51*z_3 ,
z_51*z_4 ,
z_51*z_5 ,
z_51*z_6 ,
z_51*z_7 ,
z_51*z_8 ,
z_51*z_9 ,
z_51*z_10 ,
z_51*z_11 ,
z_51*z_12 ,
z_51*z_13 ,
z_51*z_14 ,
z_51*z_15 ,
z_51*z_16 ,
z_51*z_17 ,
z_51*z_18 ,
z_51*z_19 ,
z_51*z_20 ,
z_51*z_24 ,
z_51*z_25 ,
z_51*z_26 ,
z_51*z_27 ,
z_51*z_28 ,
z_51*z_29 ,
z_51*z_30 ,
z_51*z_31 ,
z_51*z_32 ,
z_51*z_33 ,
z_51*z_34 ,
z_51*z_35 ,
z_51*z_36 ,
z_51*z_37 ,
z_51*z_38 ,
z_51*z_39 ,
z_51*z_40 ,
z_51*z_41 ,
z_51*z_42 ,
z_51*z_43 ,
z_51*z_44 ,
z_51*z_45 ,
z_51*z_46 ,
z_51*z_47 ,
z_51*z_48 ,
z_51*z_49 ,
z_51*z_50 ,
z_51^2 ,
z_51*z_52 ,
z_51*z_53 ,
z_51*z_54 ,
z_51*z_55 ,
z_51*z_56 ,
z_52*b_2 ,
z_52*b_3 ,
z_52*b_4 ,
z_52*b_5 ,
z_52*b_6 ,
z_52*b_7 ,
z_52*b_8 ,
z_52*b_9 ,
z_52*b_10 + z_52 ,
z_52*b_11 ,
z_52*b_12 ,
z_52*b_13 ,
z_52*b_14 ,
z_52*b_15 ,
z_52*b_16 ,
z_52*b_17 ,
z_52*b_18 ,
z_52*z_1 ,
z_52*z_2 ,
z_52*z_3 ,
z_52*z_4 ,
z_52*z_5 ,
z_52*z_6 ,
z_52*z_7 ,
z_52*z_8 ,
z_52*z_9 ,
z_52*z_10 ,
z_52*z_11 ,
z_52*z_12 ,
z_52*z_13 ,
z_52*z_14 ,
z_52*z_15 ,
z_52*z_16 ,
z_52*z_17 ,
z_52*z_18 ,
z_52*z_19 ,
z_52*z_20 ,
z_52*z_21 ,
z_52*z_22 ,
z_52*z_23 ,
z_52*z_28 ,
z_52*z_29 ,
z_52*z_30 ,
z_52*z_31 ,
z_52*z_32 ,
z_52*z_33 ,
z_52*z_34 ,
z_52*z_35 ,
z_52*z_36 ,
z_52*z_37 ,
z_52*z_38 ,
z_52*z_39 ,
z_52*z_40 ,
z_52*z_41 ,
z_52*z_42 ,
z_52*z_43 ,
z_52*z_44 ,
z_52*z_45 ,
z_52*z_46 ,
z_52*z_47 ,
z_52*z_48 ,
z_52*z_49 ,
z_52*z_50 ,
z_52*z_51 ,
z_52^2 ,
z_52*z_53 ,
z_52*z_54 ,
z_52*z_55 ,
z_52*z_56 ,
z_53*b_2 ,
z_53*b_3 ,
z_53*b_4 ,
z_53*b_5 ,
z_53*b_6 ,
z_53*b_7 ,
z_53*b_8 ,
z_53*b_9 ,
z_53*b_10 ,
z_53*b_11 ,
z_53*b_12 + z_53 ,
z_53*b_13 ,
z_53*b_14 ,
z_53*b_15 ,
z_53*b_16 ,
z_53*b_17 ,
z_53*b_18 ,
z_53*z_1 ,
z_53*z_2 ,
z_53*z_3 ,
z_53*z_4 ,
z_53*z_5 ,
z_53*z_6 ,
z_53*z_7 ,
z_53*z_8 ,
z_53*z_9 ,
z_53*z_10 ,
z_53*z_11 ,
z_53*z_12 ,
z_53*z_13 ,
z_53*z_14 ,
z_53*z_15 ,
z_53*z_16 ,
z_53*z_17 ,
z_53*z_18 ,
z_53*z_19 ,
z_53*z_20 ,
z_53*z_21 ,
z_53*z_22 ,
z_53*z_23 ,
z_53*z_24 ,
z_53*z_25 ,
z_53*z_26 ,
z_53*z_27 ,
z_53*z_28 ,
z_53*z_29 ,
z_53*z_30 ,
z_53*z_35 ,
z_53*z_36 ,
z_53*z_37 ,
z_53*z_38 ,
z_53*z_39 ,
z_53*z_40 ,
z_53*z_41 ,
z_53*z_42 ,
z_53*z_43 ,
z_53*z_44 ,
z_53*z_45 ,
z_53*z_46 ,
z_53*z_47 ,
z_53*z_48 ,
z_53*z_49 ,
z_53*z_50 ,
z_53*z_51 ,
z_53*z_52 ,
z_53^2 ,
z_53*z_54 ,
z_53*z_55 ,
z_53*z_56 ,
z_54*b_2 ,
z_54*b_3 ,
z_54*b_4 ,
z_54*b_5 ,
z_54*b_6 ,
z_54*b_7 ,
z_54*b_8 ,
z_54*b_9 ,
z_54*b_10 ,
z_54*b_11 ,
z_54*b_12 ,
z_54*b_13 ,
z_54*b_14 ,
z_54*b_15 ,
z_54*b_16 ,
z_54*b_17 ,
z_54*b_18 + z_54 ,
z_54*z_1 ,
z_54*z_2 ,
z_54*z_3 ,
z_54*z_4 ,
z_54*z_5 ,
z_54*z_6 ,
z_54*z_7 ,
z_54*z_8 ,
z_54*z_9 ,
z_54*z_10 ,
z_54*z_11 ,
z_54*z_12 ,
z_54*z_13 ,
z_54*z_14 ,
z_54*z_15 ,
z_54*z_16 ,
z_54*z_17 ,
z_54*z_18 ,
z_54*z_19 ,
z_54*z_20 ,
z_54*z_21 ,
z_54*z_22 ,
z_54*z_23 ,
z_54*z_24 ,
z_54*z_25 ,
z_54*z_26 ,
z_54*z_27 ,
z_54*z_28 ,
z_54*z_29 ,
z_54*z_30 ,
z_54*z_31 ,
z_54*z_32 ,
z_54*z_33 ,
z_54*z_34 ,
z_54*z_35 ,
z_54*z_36 ,
z_54*z_37 ,
z_54*z_38 ,
z_54*z_39 ,
z_54*z_40 ,
z_54*z_41 ,
z_54*z_42 ,
z_54*z_43 ,
z_54*z_44 ,
z_54*z_45 ,
z_54*z_46 ,
z_54*z_47 ,
z_54*z_48 ,
z_54*z_49 ,
z_54*z_50 ,
z_54*z_51 ,
z_54*z_52 ,
z_54*z_53 ,
z_54^2 ,
z_55*b_2 ,
z_55*b_3 ,
z_55*b_4 ,
z_55*b_5 ,
z_55*b_6 ,
z_55*b_7 ,
z_55*b_8 ,
z_55*b_9 ,
z_55*b_10 ,
z_55*b_11 ,
z_55*b_12 ,
z_55*b_13 ,
z_55*b_14 + z_55 ,
z_55*b_15 ,
z_55*b_16 ,
z_55*b_17 ,
z_55*b_18 ,
z_55*z_1 ,
z_55*z_2 ,
z_55*z_3 ,
z_55*z_4 ,
z_55*z_5 ,
z_55*z_6 ,
z_55*z_7 ,
z_55*z_8 ,
z_55*z_9 ,
z_55*z_10 ,
z_55*z_11 ,
z_55*z_12 ,
z_55*z_13 ,
z_55*z_14 ,
z_55*z_15 ,
z_55*z_16 ,
z_55*z_17 ,
z_55*z_18 ,
z_55*z_19 ,
z_55*z_20 ,
z_55*z_21 ,
z_55*z_22 ,
z_55*z_23 ,
z_55*z_24 ,
z_55*z_25 ,
z_55*z_26 ,
z_55*z_27 ,
z_55*z_28 ,
z_55*z_29 ,
z_55*z_30 ,
z_55*z_31 ,
z_55*z_32 ,
z_55*z_33 ,
z_55*z_34 ,
z_55*z_35 ,
z_55*z_36 ,
z_55*z_37 ,
z_55*z_38 ,
z_55*z_39 ,
z_55*z_40 ,
z_55*z_44 ,
z_55*z_45 ,
z_55*z_46 ,
z_55*z_47 ,
z_55*z_48 ,
z_55*z_49 ,
z_55*z_50 ,
z_55*z_51 ,
z_55*z_52 ,
z_55*z_53 ,
z_55*z_54 ,
z_55^2 ,
z_55*z_56 ,
z_56*b_2 ,
z_56*b_3 ,
z_56*b_4 ,
z_56*b_5 ,
z_56*b_6 ,
z_56*b_7 ,
z_56*b_8 ,
z_56*b_9 ,
z_56*b_10 ,
z_56*b_11 ,
z_56*b_12 ,
z_56*b_13 ,
z_56*b_14 ,
z_56*b_15 ,
z_56*b_16 ,
z_56*b_17 + z_56 ,
z_56*b_18 ,
z_56*z_1 ,
z_56*z_2 ,
z_56*z_3 ,
z_56*z_4 ,
z_56*z_5 ,
z_56*z_6 ,
z_56*z_7 ,
z_56*z_8 ,
z_56*z_9 ,
z_56*z_10 ,
z_56*z_11 ,
z_56*z_12 ,
z_56*z_13 ,
z_56*z_14 ,
z_56*z_15 ,
z_56*z_16 ,
z_56*z_17 ,
z_56*z_18 ,
z_56*z_19 ,
z_56*z_20 ,
z_56*z_21 ,
z_56*z_22 ,
z_56*z_23 ,
z_56*z_24 ,
z_56*z_25 ,
z_56*z_26 ,
z_56*z_27 ,
z_56*z_28 ,
z_56*z_29 ,
z_56*z_30 ,
z_56*z_31 ,
z_56*z_32 ,
z_56*z_33 ,
z_56*z_34 ,
z_56*z_35 ,
z_56*z_36 ,
z_56*z_37 ,
z_56*z_38 ,
z_56*z_39 ,
z_56*z_40 ,
z_56*z_41 ,
z_56*z_42 ,
z_56*z_43 ,
z_56*z_44 ,
z_56*z_45 ,
z_56*z_46 ,
z_56*z_47 ,
z_56*z_51 ,
z_56*z_53 ,
z_56*z_55 ,
z_56^2 ,
b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 + b_9 + b_10 + b_11 + b_12 + b_13 + b_14 + b_15 + b_16 + b_17 + b_18 + 1 .

# The ideal of relations is not generated by the elements of degree at most 2. The following relation were not contained in the ideal generated by the relations of degree 2:

z_8*z_54*z_56*z_52*z_27*z_51 + z_7*z_36*z_8*z_51 + z_8*z_50*z_11*z_39 ,
z_8*z_54*z_56*z_54*z_56*z_54 + z_8*z_54*z_55*z_43 + z_8*z_54*z_56*z_54 ,
z_29*z_19*z_33*z_47*z_44*z_46 + z_30*z_37*z_9*z_27*z_53 + z_28*z_16 ,
z_33*z_47*z_44*z_46*z_32*z_18 + z_34*z_52*z_25*z_10*z_40 + z_31*z_15 ,
z_40*z_29*z_19*z_33*z_47*z_44 + z_39*z_23*z_52*z_26 ,
z_40*z_30*z_37*z_9*z_27*z_53 + z_39*z_23*z_53 + z_40*z_28*z_16 + z_40*z_29*z_19 ,
z_40*z_30*z_37*z_9*z_27*z_54 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_43*z_56*z_54*z_56*z_54*z_55 + z_42*z_13*z_50*z_12 ,
z_46*z_34*z_52*z_25*z_10*z_40 + z_46*z_31*z_15 ,
z_54*z_56*z_54*z_56*z_54*z_55 ,
z_3*z_27*z_50*z_12*z_42 + z_3*z_27*z_50 + z_4*z_38 ,
z_4*z_37*z_9*z_27*z_52 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 ,
z_4*z_37*z_9*z_27*z_53 + z_2*z_16 + z_6*z_53 ,
z_4*z_37*z_9*z_27*z_54 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_4*z_40*z_30*z_37*z_9 + z_6*z_48*z_3 ,
z_4*z_40*z_30*z_37*z_10 + z_2*z_14*z_4 + z_4*z_37*z_10 + z_4*z_38*z_11 + z_4*z_40*z_30 + z_6*z_48*z_4 + z_6*z_51*z_22 ,
z_6*z_52*z_26*z_45*z_25 ,
z_6*z_52*z_26*z_45*z_27 ,
z_6*z_53*z_31*z_15*z_30 + z_6*z_48*z_4 ,
z_6*z_53*z_32*z_18*z_30 + z_2*z_14*z_4 + z_4*z_37*z_10 + z_4*z_40*z_30 + z_5*z_42*z_11 + z_6*z_51*z_22 ,
z_6*z_53*z_34*z_48*z_5 + z_3*z_27*z_50*z_12 + z_4*z_35*z_5 + z_5*z_42*z_12 + z_6*z_48*z_5 ,
z_6*z_53*z_34*z_52*z_25 + z_4*z_40*z_30*z_37 ,
z_6*z_53*z_34*z_52*z_26 + z_2*z_16*z_33 + z_6*z_53*z_33 ,
z_6*z_53*z_34*z_52*z_27 + z_6*z_48*z_3*z_27 ,
z_8*z_51*z_23*z_49*z_7 + z_7*z_36*z_7 + z_7*z_38*z_11 + z_8*z_51*z_22 ,
z_8*z_51*z_23*z_49*z_8 + z_8*z_54*z_56*z_52*z_27 + z_8*z_54*z_56*z_54*z_56 ,
z_8*z_51*z_23*z_52*z_27 + z_8*z_54*z_56*z_52*z_27 + z_7*z_36*z_8 + z_7*z_38*z_13 + z_8*z_50*z_13 ,
z_8*z_54*z_55*z_43*z_56 + z_8*z_54*z_56*z_54*z_56 + z_7*z_38*z_13 + z_8*z_50*z_13 ,
z_8*z_54*z_56*z_48*z_3 + z_8*z_54*z_56*z_52 ,
z_8*z_54*z_56*z_48*z_5 + z_8*z_54*z_56*z_54*z_55 ,
z_8*z_54*z_56*z_49*z_8 + z_8*z_54*z_56*z_52*z_27 ,
z_8*z_54*z_56*z_52*z_26 ,
z_9*z_27*z_48*z_4*z_40 + z_10*z_40*z_28*z_15 ,
z_9*z_27*z_52*z_25*z_10 + z_9*z_27*z_48*z_4 ,
z_9*z_27*z_52*z_27*z_50 + z_9*z_27*z_50 + z_10*z_38 ,
z_9*z_27*z_52*z_27*z_52 ,
z_9*z_27*z_53*z_34*z_48 ,
z_9*z_27*z_53*z_34*z_51 ,
z_9*z_27*z_53*z_34*z_52 + z_9*z_27*z_52 ,
z_10*z_38*z_13*z_52*z_27 + z_9*z_27*z_52*z_27 ,
z_10*z_40*z_28*z_15*z_30 + z_9*z_27*z_48*z_4 + z_10*z_35*z_4 ,
z_11*z_35*z_3*z_27*z_50 + z_13*z_54*z_56*z_50 + z_11*z_38 ,
z_11*z_35*z_3*z_27*z_52 + z_13*z_52*z_26*z_45 + z_12*z_41*z_3 + z_13*z_48*z_3 ,
z_12*z_42*z_11*z_40*z_30 + z_11*z_39*z_22 + z_12*z_41*z_4 + z_13*z_48*z_4 + z_13*z_49*z_7 ,
z_12*z_42*z_13*z_48*z_2 + z_13*z_48*z_6*z_53*z_31 ,
z_12*z_42*z_13*z_48*z_3 ,
z_12*z_42*z_13*z_48*z_4 + z_11*z_38*z_11 ,
z_12*z_42*z_13*z_48*z_5 + z_12*z_41*z_5 + z_13*z_48*z_5 + z_13*z_50*z_12 ,
z_12*z_42*z_13*z_48*z_6 + z_13*z_50*z_13 ,
z_13*z_48*z_6*z_51*z_22 + z_13*z_54*z_56*z_50*z_11 + z_12*z_41*z_4 + z_13*z_48*z_4 ,
z_13*z_52*z_26*z_45*z_25 + z_11*z_37 ,
z_13*z_52*z_26*z_45*z_27 + z_13*z_48*z_3*z_27 + z_11*z_35*z_6 + z_12*z_42*z_13 + z_13*z_54*z_56 ,
z_13*z_52*z_27*z_50*z_11 + z_13*z_54*z_56*z_50*z_11 + z_12*z_41*z_4 + z_13*z_49*z_7 ,
z_13*z_52*z_27*z_50*z_12 + z_12*z_41*z_5 + z_13*z_50*z_12 + z_13*z_54*z_55 ,
z_13*z_52*z_27*z_50*z_13 + z_13*z_48*z_3*z_27 + z_11*z_39*z_23 + z_12*z_42*z_13 + z_13*z_48*z_6 + z_13*z_49*z_8 + z_13*z_50*z_13 ,
z_13*z_54*z_55*z_43*z_56 + z_13*z_49*z_8 + z_13*z_54*z_56 ,
z_13*z_54*z_56*z_49*z_7 ,
z_13*z_54*z_56*z_49*z_8 ,
z_13*z_54*z_56*z_50*z_12 + z_13*z_50*z_12 ,
z_13*z_54*z_56*z_50*z_13 + z_13*z_49*z_8 + z_13*z_54*z_56 ,
z_13*z_54*z_56*z_54*z_55 + z_13*z_50*z_12 ,
z_13*z_54*z_56*z_54*z_56 + z_13*z_49*z_8 + z_13*z_54*z_56 ,
z_16*z_31*z_14*z_3*z_27 + z_16*z_34*z_52*z_27 ,
z_16*z_34*z_52*z_27*z_50 + z_14*z_5*z_42 + z_15*z_30*z_38 ,
z_22*z_35*z_3*z_27*z_50 + z_23*z_52*z_27*z_50 + z_22*z_38 ,
z_22*z_35*z_3*z_27*z_52 ,
z_23*z_49*z_8*z_51*z_22 + z_22*z_38*z_11 + z_23*z_49*z_7 ,
z_23*z_49*z_8*z_54*z_56 + z_22*z_35*z_6 + z_23*z_49*z_8 ,
z_23*z_52*z_27*z_50*z_11 + z_23*z_49*z_7 ,
z_23*z_52*z_27*z_50*z_12 + z_23*z_48*z_5 ,
z_23*z_52*z_27*z_50*z_13 + z_22*z_35*z_6 + z_22*z_38*z_13 + z_23*z_49*z_8 ,
z_23*z_52*z_27*z_51*z_22 + z_22*z_35*z_4 + z_22*z_38*z_11 ,
z_23*z_52*z_27*z_51*z_23 + z_22*z_38*z_13 ,
z_23*z_53*z_33*z_47*z_44 + z_23*z_52*z_26 ,
z_23*z_53*z_34*z_52*z_25 ,
z_23*z_53*z_34*z_52*z_26 ,
z_23*z_53*z_34*z_52*z_27 + z_21*z_19*z_34 + z_23*z_53*z_34 ,
z_24*z_6*z_51*z_22*z_38 + z_27*z_50*z_13*z_50 ,
z_25*z_10*z_38*z_13*z_52 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_25*z_10*z_40*z_28*z_15 + z_27*z_48*z_4*z_40 + z_27*z_53*z_31*z_15 ,
z_26*z_45*z_24*z_4*z_38 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 + z_24*z_4*z_38 + z_24*z_5*z_42 ,
z_26*z_45*z_24*z_5*z_43 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_26*z_45*z_24*z_6*z_54 + z_27*z_54*z_56*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_26*z_45*z_25*z_10*z_40 + z_27*z_50*z_11*z_40 + z_27*z_53*z_32*z_18 + z_24*z_4*z_40 ,
z_27*z_50*z_11*z_40*z_30 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_40*z_30 + z_26*z_45*z_25*z_10 + z_27*z_50*z_11 + z_27*z_51*z_22 + z_24*z_4 ,
z_27*z_50*z_12*z_42*z_11 + z_25*z_10*z_35*z_4 ,
z_27*z_50*z_12*z_42*z_12 + z_27*z_48*z_5 + z_27*z_50*z_12 ,
z_27*z_50*z_13*z_52*z_27 + z_24*z_3*z_27 + z_25*z_9*z_27 + z_26*z_45*z_27 + z_27*z_52*z_27 + z_27*z_54*z_56 ,
z_27*z_51*z_23*z_49*z_7 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 ,
z_27*z_51*z_23*z_49*z_8 + z_27*z_54*z_56 ,
z_27*z_51*z_23*z_52*z_27 + z_24*z_6*z_52*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_24*z_3*z_27 + z_25*z_9*z_27 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 ,
z_27*z_52*z_24*z_5*z_42 + z_27*z_50*z_12*z_42 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 ,
z_27*z_52*z_24*z_6*z_54 ,
z_27*z_52*z_25*z_10*z_35 + z_27*z_53*z_34*z_48 ,
z_27*z_52*z_25*z_10*z_38 + z_27*z_50*z_12*z_42 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 ,
z_27*z_52*z_25*z_10*z_40 + z_27*z_53*z_31*z_15 ,
z_27*z_52*z_26*z_45*z_25 + z_24*z_4*z_37 ,
z_27*z_52*z_26*z_45*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 ,
z_27*z_52*z_27*z_50*z_11 + z_25*z_10*z_35*z_4 ,
z_27*z_52*z_27*z_50*z_12 + z_24*z_5*z_42*z_12 + z_25*z_10*z_38*z_12 + z_27*z_48*z_5 + z_27*z_50*z_12 ,
z_27*z_52*z_27*z_50*z_13 + z_27*z_54*z_56 ,
z_27*z_52*z_27*z_52*z_26 ,
z_27*z_52*z_27*z_52*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 ,
z_27*z_53*z_31*z_15*z_30 + z_27*z_52*z_24*z_4 ,
z_27*z_53*z_32*z_18*z_30 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_35*z_4 + z_25*z_10*z_40*z_30 + z_26*z_45*z_25*z_10 + z_27*z_52*z_25*z_10 + z_27*z_48*z_4 + z_27*z_50*z_11 + z_27*z_51*z_22 + z_24*z_4 ,
z_27*z_53*z_32*z_19*z_31 + z_26*z_45*z_24*z_2 + z_27*z_53*z_31 ,
z_27*z_53*z_34*z_48*z_5 + z_24*z_5*z_42*z_12 + z_25*z_10*z_38*z_12 ,
z_27*z_53*z_34*z_51*z_22 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_35*z_4 + z_25*z_10*z_40*z_30 + z_26*z_45*z_25*z_10 + z_27*z_52*z_25*z_10 + z_27*z_48*z_4 + z_27*z_50*z_11 + z_27*z_51*z_22 + z_24*z_4 ,
z_27*z_53*z_34*z_51*z_23 + z_27*z_52*z_24*z_6 ,
z_27*z_53*z_34*z_52*z_25 + z_27*z_52*z_25 ,
z_27*z_53*z_34*z_52*z_26 + z_24*z_3*z_26 + z_25*z_9*z_26 + z_26*z_45*z_26 + z_27*z_52*z_26 + z_27*z_53*z_33 ,
z_27*z_53*z_34*z_52*z_27 + z_24*z_6*z_52*z_27 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 + z_26*z_45*z_27 + z_27*z_48*z_6 + z_27*z_50*z_13 + z_27*z_51*z_23 + z_27*z_52*z_27 + z_27*z_54*z_56 ,
z_27*z_54*z_56*z_54*z_55 ,
z_27*z_54*z_56*z_54*z_56 ,
z_30*z_35*z_3*z_27*z_50 + z_30*z_35*z_5*z_42 ,
z_30*z_35*z_3*z_27*z_52 + z_30*z_38*z_11*z_35*z_3 ,
z_30*z_35*z_6*z_52*z_24 + z_30*z_38*z_11*z_35 + z_30*z_38*z_13*z_48 ,
z_30*z_37*z_9*z_27*z_52 + z_30*z_35*z_6*z_52 ,
z_30*z_38*z_11*z_40*z_30 + z_30*z_39*z_22*z_35*z_4 + z_28*z_15*z_30 + z_30*z_35*z_4 + z_30*z_37*z_10 + z_30*z_38*z_11 + z_30*z_39*z_22 ,
z_30*z_38*z_12*z_42*z_12 + z_30*z_38*z_13*z_54*z_55 + z_30*z_39*z_22*z_35*z_5 ,
z_30*z_38*z_13*z_48*z_2 + z_28*z_16*z_31 ,
z_30*z_38*z_13*z_48*z_3 ,
z_30*z_38*z_13*z_48*z_4 + z_30*z_39*z_22*z_35*z_4 + z_28*z_15*z_30 + z_30*z_35*z_4 ,
z_30*z_38*z_13*z_52*z_27 + z_30*z_35*z_3*z_27 + z_29*z_19*z_34 + z_30*z_39*z_23 ,
z_30*z_38*z_13*z_54*z_56 ,
z_30*z_39*z_22*z_35*z_3 ,
z_30*z_39*z_22*z_35*z_6 ,
z_30*z_39*z_23*z_52*z_26 ,
z_30*z_39*z_23*z_52*z_27 + z_29*z_19*z_34 + z_30*z_39*z_23 ,
z_33*z_47*z_44*z_46*z_34 + z_31*z_14*z_3*z_27 + z_34*z_52*z_27 ,
z_34*z_52*z_25*z_10*z_35 + z_34*z_48 ,
z_34*z_52*z_25*z_10*z_38 + z_34*z_52*z_27*z_50 ,
z_34*z_52*z_26*z_45*z_25 ,
z_34*z_52*z_26*z_45*z_27 ,
z_34*z_52*z_27*z_50*z_11 ,
z_34*z_52*z_27*z_50*z_12 + z_34*z_48*z_5 ,
z_34*z_52*z_27*z_50*z_13 ,
z_35*z_3*z_27*z_50*z_12 + z_36*z_8*z_54*z_55 + z_38*z_12*z_42*z_12 + z_38*z_13*z_48*z_5 + z_39*z_22*z_35*z_5 ,
z_36*z_8*z_54*z_55*z_43 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_36*z_8*z_54*z_56*z_48 ,
z_36*z_8*z_54*z_56*z_49 + z_35*z_6*z_49 ,
z_36*z_8*z_54*z_56*z_52 ,
z_36*z_8*z_54*z_56*z_54 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_37*z_9*z_27*z_52*z_25 + z_40*z_30*z_35*z_4*z_37 + z_35*z_4*z_37 ,
z_37*z_9*z_27*z_52*z_27 + z_40*z_30*z_37*z_9*z_27 + z_35*z_6*z_52*z_27 + z_38*z_13*z_52*z_27 + z_39*z_23*z_52*z_27 + z_35*z_3*z_27 ,
z_37*z_9*z_27*z_53*z_33 + z_40*z_30*z_37*z_9*z_26 + z_39*z_23*z_52*z_26 + z_40*z_28*z_16*z_33 + z_35*z_3*z_26 ,
z_37*z_9*z_27*z_53*z_34 + z_40*z_30*z_37*z_9*z_27 + z_36*z_8*z_54*z_56 + z_38*z_13*z_54*z_56 + z_39*z_23*z_49*z_8 + z_39*z_23*z_52*z_27 + z_40*z_30*z_38*z_13 + z_40*z_30*z_39*z_23 + z_35*z_6 + z_36*z_8 ,
z_38*z_11*z_35*z_3*z_27 + z_40*z_30*z_37*z_9*z_27 + z_35*z_6*z_52*z_27 + z_38*z_13*z_52*z_27 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 + z_39*z_23*z_52*z_27 + z_35*z_3*z_27 ,
z_38*z_13*z_48*z_2*z_15 + z_37*z_10*z_40 + z_38*z_11*z_40 + z_40*z_29*z_18 ,
z_38*z_13*z_48*z_3*z_26 ,
z_38*z_13*z_48*z_3*z_27 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 ,
z_38*z_13*z_48*z_4*z_38 + z_39*z_23*z_52*z_27*z_50 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_38*z_11*z_38 + z_39*z_22*z_38 ,
z_38*z_13*z_48*z_4*z_40 + z_37*z_10*z_40 + z_38*z_11*z_40 + z_40*z_29*z_18 ,
z_38*z_13*z_48*z_6*z_51 + z_36*z_8*z_51 + z_38*z_11*z_39 ,
z_38*z_13*z_48*z_6*z_52 + z_38*z_11*z_35*z_3 + z_38*z_13*z_48*z_3 ,
z_38*z_13*z_48*z_6*z_53 ,
z_38*z_13*z_49*z_7*z_36 + z_39*z_23*z_52*z_27*z_49 + z_36*z_7*z_36 + z_38*z_13*z_49 + z_39*z_23*z_49 ,
z_38*z_13*z_52*z_27*z_50 + z_39*z_23*z_52*z_27*z_50 + z_35*z_5*z_42 + z_36*z_8*z_50 + z_39*z_22*z_38 ,
z_38*z_13*z_54*z_55*z_43 + z_39*z_23*z_49*z_8*z_54 + z_37*z_9*z_27*z_54 ,
z_38*z_13*z_54*z_56*z_49 + z_39*z_23*z_52*z_27*z_49 ,
z_38*z_13*z_54*z_56*z_50 + z_39*z_23*z_52*z_27*z_50 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_38*z_11*z_38 + z_39*z_22*z_38 ,
z_38*z_13*z_54*z_56*z_54 + z_39*z_23*z_49*z_8*z_54 ,
z_39*z_22*z_35*z_3*z_27 + z_40*z_30*z_35*z_3*z_27 + z_40*z_30*z_37*z_9*z_27 + z_38*z_13*z_52*z_27 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 + z_39*z_23*z_52*z_27 + z_35*z_3*z_27 ,
z_39*z_23*z_49*z_7*z_36 + z_35*z_6*z_49 + z_36*z_7*z_36 + z_38*z_13*z_49 + z_39*z_23*z_49 ,
z_39*z_23*z_49*z_8*z_51 + z_36*z_8*z_51 + z_38*z_11*z_39 ,
z_39*z_23*z_52*z_27*z_51 + z_35*z_6*z_51 + z_38*z_11*z_39 ,
z_40*z_29*z_19*z_31*z_15 + z_39*z_21*z_18 + z_40*z_29*z_18 ,
z_40*z_30*z_35*z_5*z_42 + z_35*z_3*z_27*z_50 + z_35*z_5*z_42 ,
z_40*z_30*z_35*z_6*z_51 + z_39*z_21*z_17 + z_40*z_30*z_39 ,
z_40*z_30*z_35*z_6*z_52 + z_35*z_3*z_27*z_52 + z_38*z_11*z_35*z_3 + z_39*z_22*z_35*z_3 ,
z_40*z_30*z_38*z_11*z_35 + z_35*z_6*z_52*z_24 + z_37*z_10*z_35 + z_38*z_11*z_35 + z_39*z_22*z_35 + z_39*z_23*z_48 ,
z_40*z_30*z_38*z_11*z_38 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_38*z_11*z_38 ,
z_40*z_30*z_38*z_12*z_42 + z_35*z_3*z_27*z_50 + z_35*z_4*z_38 + z_36*z_8*z_50 + z_38*z_11*z_38 + z_39*z_22*z_38 ,
z_40*z_30*z_38*z_13*z_48 + z_35*z_6*z_52*z_24 + z_38*z_11*z_35 + z_38*z_13*z_48 ,
z_40*z_30*z_38*z_13*z_52 + z_40*z_30*z_39*z_23*z_52 + z_35*z_3*z_27*z_52 + z_37*z_9*z_27*z_52 + z_38*z_11*z_35*z_3 + z_39*z_22*z_35*z_3 + z_35*z_6*z_52 ,
z_40*z_30*z_38*z_13*z_54 + z_35*z_6*z_54 + z_36*z_8*z_54 ,
z_40*z_30*z_39*z_22*z_35 + z_39*z_23*z_48 ,
z_41*z_6*z_52*z_26*z_45 + z_42*z_13*z_48*z_6*z_52 + z_42*z_11*z_35*z_3 + z_41*z_6*z_52 + z_42*z_13*z_52 ,
z_41*z_6*z_53*z_31*z_15 + z_42*z_13*z_48*z_4*z_40 ,
z_41*z_6*z_53*z_32*z_18 + z_42*z_13*z_48*z_4*z_40 + z_43*z_56*z_50*z_11*z_40 + z_41*z_2*z_15 + z_41*z_4*z_40 ,
z_42*z_12*z_42*z_11*z_40 + z_42*z_13*z_48*z_4*z_40 + z_41*z_2*z_15 + z_41*z_4*z_40 ,
z_42*z_12*z_42*z_13*z_48 + z_41*z_6*z_48 + z_42*z_11*z_35 + z_42*z_12*z_41 ,
z_42*z_13*z_48*z_2*z_15 + z_42*z_13*z_48*z_4*z_40 ,
z_42*z_13*z_48*z_3*z_26 + z_41*z_6*z_52*z_26 + z_42*z_13*z_52*z_26 ,
z_42*z_13*z_48*z_3*z_27 + z_42*z_11*z_39*z_23 + z_42*z_12*z_42*z_13 + z_42*z_13*z_48*z_6 + z_43*z_56*z_49*z_8 ,
z_42*z_13*z_48*z_4*z_38 + z_42*z_13*z_50 ,
z_42*z_13*z_48*z_6*z_51 ,
z_42*z_13*z_48*z_6*z_53 + z_41*z_2*z_16 + z_41*z_6*z_53 ,
z_42*z_13*z_52*z_26*z_45 + z_42*z_13*z_48*z_3 + z_41*z_6*z_52 + z_42*z_13*z_52 ,
z_42*z_13*z_52*z_27*z_50 + z_41*z_5*z_42 + z_42*z_13*z_50 + z_43*z_56*z_50 ,
z_43*z_56*z_49*z_8*z_54 + z_43*z_56*z_54*z_56*z_54 + z_42*z_12*z_43 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_43*z_56*z_50*z_13*z_49 + z_42*z_13*z_49 + z_43*z_56*z_49 ,
z_43*z_56*z_50*z_13*z_54 + z_42*z_13*z_54 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_43*z_56*z_54*z_55*z_42 + z_42*z_13*z_50 ,
z_43*z_56*z_54*z_55*z_43 + z_42*z_13*z_54 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_43*z_56*z_54*z_56*z_49 + z_42*z_13*z_49 + z_43*z_56*z_49 ,
z_43*z_56*z_54*z_56*z_50 + z_42*z_13*z_50 ,
z_43*z_56*z_54*z_56*z_52 ,
z_44*z_46*z_34*z_51*z_23 ,
z_45*z_24*z_6*z_54*z_56 + z_45*z_27*z_50*z_13 ,
z_45*z_25*z_10*z_40*z_28 + z_45*z_24*z_2 + z_46*z_31 ,
z_45*z_25*z_10*z_40*z_30 + z_46*z_34*z_52*z_25*z_10 + z_45*z_27*z_51*z_22 + z_45*z_24*z_4 ,
z_45*z_27*z_50*z_12*z_42 ,
z_45*z_27*z_50*z_13*z_50 ,
z_45*z_27*z_50*z_13*z_52 ,
z_46*z_34*z_52*z_26*z_45 + z_45*z_27*z_52 ,
z_46*z_34*z_52*z_27*z_50 + z_45*z_24*z_4*z_38 + z_45*z_27*z_50 ,
z_47*z_44*z_46*z_34*z_51 + z_45*z_27*z_51 ,
z_48*z_6*z_48*z_3*z_27 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_53*z_34 + z_52*z_27*z_54*z_56 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 ,
z_48*z_6*z_51*z_22*z_38 + z_53*z_34*z_52*z_27*z_50 + z_48*z_4*z_38 + z_50*z_12*z_42 + z_54*z_55*z_42 ,
z_48*z_6*z_53*z_31*z_15 + z_52*z_27*z_48*z_4*z_40 ,
z_49*z_8*z_51*z_22*z_38 ,
z_49*z_8*z_54*z_56*z_48 + z_48*z_4*z_35 ,
z_49*z_8*z_54*z_56*z_49 + z_52*z_27*z_49 ,
z_49*z_8*z_54*z_56*z_52 ,
z_49*z_8*z_54*z_56*z_54 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 + z_54*z_55*z_43 + z_54*z_56*z_54 ,
z_50*z_12*z_42*z_11*z_40 + z_52*z_27*z_48*z_4*z_40 + z_48*z_2*z_15 + z_48*z_4*z_40 ,
z_50*z_13*z_52*z_27*z_50 + z_48*z_4*z_38 + z_50*z_12*z_42 + z_50*z_13*z_50 + z_51*z_22*z_38 + z_54*z_56*z_50 ,
z_51*z_22*z_35*z_3*z_27 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_26*z_45*z_27 + z_52*z_27*z_53*z_34 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 + z_54*z_56*z_52*z_27 ,
z_51*z_23*z_49*z_7*z_36 + z_48*z_6*z_49 + z_50*z_13*z_49 + z_51*z_23*z_49 + z_54*z_56*z_49 ,
z_51*z_23*z_49*z_8*z_51 + z_54*z_56*z_52*z_27*z_51 ,
z_51*z_23*z_49*z_8*z_54 + z_54*z_56*z_54*z_56*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 ,
z_51*z_23*z_52*z_27*z_49 + z_54*z_56*z_50*z_13*z_49 + z_48*z_6*z_49 ,
z_51*z_23*z_52*z_27*z_50 + z_50*z_13*z_50 + z_51*z_22*z_38 + z_54*z_55*z_42 + z_54*z_56*z_50 ,
z_51*z_23*z_52*z_27*z_51 + z_50*z_11*z_39 ,
z_52*z_24*z_5*z_42*z_12 + z_50*z_12*z_42*z_12 + z_51*z_22*z_35*z_5 + z_54*z_56*z_54*z_55 ,
z_52*z_24*z_6*z_54*z_56 + z_49*z_8*z_54*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_52*z_27 ,
z_52*z_25*z_10*z_35*z_4 + z_48*z_5*z_42*z_11 + z_50*z_12*z_42*z_11 + z_54*z_55*z_42*z_11 ,
z_52*z_25*z_10*z_35*z_5 + z_50*z_12*z_42*z_12 + z_51*z_22*z_35*z_5 + z_52*z_27*z_50*z_12 + z_53*z_34*z_48*z_5 + z_54*z_56*z_48*z_5 + z_54*z_56*z_50*z_12 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_52*z_25*z_10*z_38*z_12 + z_50*z_12*z_42*z_12 + z_51*z_22*z_35*z_5 + z_54*z_56*z_54*z_55 ,
z_52*z_25*z_10*z_38*z_13 + z_49*z_8*z_54*z_56 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_48*z_6 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_52*z_27*z_53*z_34 + z_52*z_27*z_54*z_56 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 + z_54*z_56*z_49*z_8 + z_54*z_56*z_52*z_27 ,
z_52*z_25*z_10*z_40*z_28 + z_48*z_6*z_53*z_31 + z_53*z_32*z_19*z_31 ,
z_52*z_25*z_10*z_40*z_30 + z_48*z_6*z_51*z_22 + z_49*z_8*z_51*z_22 + z_50*z_12*z_42*z_11 + z_51*z_22*z_35*z_4 + z_52*z_27*z_48*z_4 + z_52*z_27*z_50*z_11 + z_52*z_27*z_51*z_22 + z_53*z_32*z_18*z_30 + z_53*z_34*z_51*z_22 + z_54*z_56*z_49*z_7 + z_52*z_24*z_4 ,
z_52*z_26*z_45*z_25*z_10 + z_48*z_5*z_42*z_11 + z_48*z_6*z_51*z_22 + z_51*z_22*z_35*z_4 + z_54*z_56*z_49*z_7 ,
z_52*z_27*z_50*z_11*z_40 + z_48*z_4*z_40 + z_51*z_22*z_40 + z_53*z_31*z_15 + z_53*z_32*z_18 ,
z_52*z_27*z_50*z_12*z_42 + z_53*z_34*z_52*z_27*z_50 + z_48*z_4*z_38 + z_48*z_5*z_42 ,
z_52*z_27*z_50*z_13*z_50 + z_53*z_34*z_52*z_27*z_50 + z_48*z_4*z_38 + z_50*z_12*z_42 + z_54*z_55*z_42 ,
z_52*z_27*z_50*z_13*z_52 + z_48*z_6*z_48*z_3 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_50*z_13*z_52 + z_51*z_23*z_52 + z_52*z_24*z_3 + z_52*z_25*z_9 + z_52*z_26*z_45 + z_54*z_56*z_52 ,
z_52*z_27*z_51*z_23*z_49 + z_48*z_6*z_49 + z_49*z_7*z_36 + z_52*z_27*z_49 ,
z_52*z_27*z_51*z_23*z_52 + z_48*z_6*z_48*z_3 + z_51*z_22*z_35*z_3 + z_52*z_27*z_48*z_3 + z_52*z_24*z_3 + z_52*z_25*z_9 + z_54*z_56*z_52 ,
z_52*z_27*z_52*z_26*z_45 + z_48*z_6*z_48*z_3 + z_51*z_22*z_35*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_50*z_13*z_52 + z_51*z_23*z_52 + z_52*z_26*z_45 ,
z_52*z_27*z_52*z_27*z_50 + z_48*z_5*z_42 + z_50*z_12*z_42 + z_54*z_55*z_42 ,
z_52*z_27*z_52*z_27*z_52 + z_48*z_6*z_48*z_3 ,
z_52*z_27*z_53*z_34*z_48 ,
z_52*z_27*z_53*z_34*z_51 + z_53*z_32*z_17 + z_53*z_34*z_51 ,
z_52*z_27*z_53*z_34*z_52 + z_52*z_27*z_48*z_3 + z_52*z_27*z_52 ,
z_52*z_27*z_54*z_56*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 ,
z_53*z_31*z_14*z_3*z_27 + z_52*z_27*z_53*z_34 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 ,
z_53*z_33*z_47*z_44*z_46 + z_52*z_27*z_53 + z_53*z_32*z_19 ,
z_53*z_34*z_52*z_25*z_10 + z_48*z_6*z_51*z_22 + z_50*z_11*z_40*z_30 + z_52*z_27*z_50*z_11 + z_53*z_32*z_18*z_30 + z_48*z_4 + z_49*z_7 ,
z_53*z_34*z_52*z_26*z_45 + z_52*z_27*z_48*z_3 + z_52*z_27*z_52 ,
z_54*z_56*z_48*z_3*z_26 + z_54*z_56*z_52*z_26 ,
z_54*z_56*z_49*z_8*z_54 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_48*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_52*z_27*z_54 + z_54*z_56*z_54 ,
z_54*z_56*z_50*z_11*z_40 ,
z_54*z_56*z_50*z_12*z_43 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 + z_54*z_55*z_43 + z_54*z_56*z_54 ,
z_54*z_56*z_50*z_13*z_54 + z_54*z_56*z_54*z_56*z_54 + z_52*z_24*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 + z_54*z_55*z_43 + z_54*z_56*z_54 ,
z_54*z_56*z_52*z_27*z_52 ,
z_54*z_56*z_52*z_27*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 ,
z_54*z_56*z_54*z_55*z_42 + z_54*z_55*z_42 + z_54*z_56*z_50 ,
z_54*z_56*z_54*z_55*z_43 + z_52*z_24*z_6*z_54 + z_48*z_6*z_54 + z_49*z_8*z_54 + z_50*z_12*z_43 + z_52*z_27*z_54 + z_54*z_56*z_54 ,
z_54*z_56*z_54*z_56*z_49 + z_48*z_6*z_49 ,
z_54*z_56*z_54*z_56*z_50 + z_54*z_55*z_42 + z_54*z_56*z_50 ,
z_54*z_56*z_54*z_56*z_52 ,
z_56*z_49*z_8*z_54*z_56 + z_56*z_52*z_24*z_6 + z_56*z_48*z_6 + z_56*z_49*z_8 + z_56*z_50*z_13 + z_56*z_54*z_56 ,
z_56*z_50*z_11*z_40*z_30 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_56*z_48*z_4 + z_56*z_49*z_7 ,
z_56*z_52*z_24*z_6*z_54 + z_56*z_50*z_12*z_43 + z_56*z_50*z_13*z_54 + z_56*z_52*z_27*z_54 ,
z_56*z_52*z_25*z_10*z_35 + z_55*z_41 + z_56*z_48 ,
z_56*z_52*z_25*z_10*z_38 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 ,
z_56*z_52*z_25*z_10*z_40 + z_56*z_48*z_4*z_40 ,
z_56*z_52*z_27*z_51*z_22 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_55*z_42*z_11 + z_56*z_50*z_11 ,
z_56*z_52*z_27*z_51*z_23 + z_56*z_52*z_24*z_6 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_56*z_48*z_6 + z_56*z_50*z_13 ,
z_56*z_52*z_27*z_52*z_26 + z_56*z_48*z_3*z_26 + z_56*z_52*z_26 ,
z_56*z_52*z_27*z_52*z_27 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_52*z_27 ,
z_56*z_52*z_27*z_54*z_56 + z_55*z_41*z_6 + z_56*z_48*z_6 ,
z_56*z_54*z_55*z_42*z_11 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_55*z_42*z_11 + z_56*z_50*z_11 ,
z_56*z_54*z_55*z_43*z_56 + z_56*z_52*z_24*z_6 + z_55*z_41*z_6 + z_55*z_43*z_56 + z_56*z_48*z_6 + z_56*z_49*z_8 + z_56*z_52*z_27 + z_56*z_54*z_56 ,
z_56*z_54*z_56*z_49*z_7 + z_56*z_52*z_24*z_4 ,
z_56*z_54*z_56*z_49*z_8 + z_56*z_52*z_24*z_6 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_49*z_8 + z_56*z_50*z_13 + z_56*z_52*z_27 + z_56*z_54*z_56 ,
z_56*z_54*z_56*z_50*z_11 + z_56*z_52*z_24*z_4 + z_56*z_52*z_25*z_10 + z_55*z_42*z_11 + z_56*z_50*z_11 ,
z_56*z_54*z_56*z_50*z_12 + z_56*z_54*z_56*z_54*z_55 + z_55*z_41*z_5 + z_56*z_50*z_12 + z_56*z_54*z_55 ,
z_56*z_54*z_56*z_50*z_13 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_56*z_49*z_8 + z_56*z_54*z_56 ,
z_56*z_54*z_56*z_52*z_26 + z_56*z_48*z_3*z_26 + z_56*z_52*z_26 ,
z_56*z_54*z_56*z_52*z_27 + z_55*z_41*z_6 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_52*z_27 ,
z_56*z_54*z_56*z_54*z_56 + z_55*z_41*z_6 + z_55*z_43*z_56 + z_56*z_50*z_13 + z_56*z_52*z_27 ,
z_2*z_14*z_5*z_42 + z_3*z_27*z_50 + z_5*z_42 ,
z_3*z_26*z_45*z_24 + z_6*z_52*z_24 ,
z_3*z_26*z_45*z_25 + z_4*z_37 ,
z_3*z_26*z_45*z_26 + z_6*z_52*z_26 + z_6*z_53*z_33 ,
z_3*z_26*z_45*z_27 + z_4*z_37*z_9*z_27 + z_6*z_49*z_8 ,
z_3*z_27*z_50*z_11 + z_4*z_38*z_11 ,
z_3*z_27*z_50*z_13 + z_6*z_49*z_8 + z_6*z_54*z_56 ,
z_3*z_27*z_51*z_22 + z_2*z_14*z_4 + z_4*z_37*z_10 + z_4*z_40*z_30 + z_5*z_42*z_11 ,
z_3*z_27*z_51*z_23 + z_6*z_48*z_6 + z_6*z_49*z_8 + z_6*z_51*z_23 ,
z_3*z_27*z_52*z_24 + z_4*z_35 + z_6*z_48 ,
z_3*z_27*z_52*z_25 + z_4*z_40*z_30*z_37 ,
z_3*z_27*z_52*z_26 + z_6*z_52*z_26 ,
z_3*z_27*z_52*z_27 + z_4*z_37*z_9*z_27 + z_6*z_48*z_3*z_27 ,
z_3*z_27*z_54*z_56 + z_6*z_49*z_8 ,
z_4*z_35*z_5*z_42 ,
z_4*z_35*z_5*z_43 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_4*z_37*z_9*z_26 + z_2*z_16*z_33 + z_6*z_52*z_26 + z_6*z_53*z_33 ,
z_4*z_37*z_10*z_35 + z_4*z_35 ,
z_4*z_37*z_10*z_40 + z_6*z_53*z_31*z_15 + z_2*z_15 + z_4*z_40 ,
z_4*z_38*z_11*z_35 ,
z_4*z_38*z_11*z_38 ,
z_4*z_38*z_11*z_39 ,
z_4*z_38*z_11*z_40 + z_6*z_53*z_31*z_15 + z_6*z_53*z_32*z_18 + z_2*z_15 + z_4*z_40 ,
z_4*z_40*z_30*z_35 + z_6*z_53*z_34*z_48 ,
z_4*z_40*z_30*z_38 + z_4*z_38 + z_5*z_42 ,
z_4*z_40*z_30*z_39 + z_3*z_27*z_51 + z_6*z_51 ,
z_5*z_42*z_11*z_35 ,
z_5*z_42*z_11*z_38 ,
z_5*z_42*z_11*z_39 ,
z_5*z_42*z_11*z_40 + z_6*z_53*z_32*z_18 + z_2*z_15 + z_4*z_40 ,
z_5*z_42*z_12*z_41 ,
z_5*z_42*z_12*z_42 + z_6*z_51*z_22*z_38 + z_3*z_27*z_50 + z_4*z_38 ,
z_5*z_42*z_12*z_43 + z_3*z_27*z_54 ,
z_6*z_48*z_2*z_15 ,
z_6*z_48*z_3*z_26 + z_2*z_16*z_33 + z_6*z_53*z_33 ,
z_6*z_48*z_4*z_35 ,
z_6*z_48*z_4*z_37 ,
z_6*z_48*z_4*z_38 + z_6*z_51*z_22*z_38 ,
z_6*z_48*z_4*z_40 ,
z_6*z_48*z_5*z_42 + z_6*z_51*z_22*z_38 ,
z_6*z_48*z_6*z_48 ,
z_6*z_48*z_6*z_49 ,
z_6*z_48*z_6*z_51 ,
z_6*z_48*z_6*z_52 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 ,
z_6*z_48*z_6*z_53 ,
z_6*z_48*z_6*z_54 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_6*z_49*z_8*z_51 ,
z_6*z_49*z_8*z_54 + z_3*z_27*z_54 + z_5*z_43 + z_6*z_54 ,
z_6*z_51*z_22*z_35 + z_6*z_53*z_34*z_48 + z_4*z_35 ,
z_6*z_51*z_22*z_40 + z_6*z_53*z_32*z_18 ,
z_6*z_51*z_23*z_49 + z_6*z_49 ,
z_6*z_51*z_23*z_52 + z_6*z_52*z_26*z_45 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 + z_6*z_48*z_3 ,
z_6*z_52*z_24*z_3 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_6*z_48*z_3 ,
z_6*z_52*z_24*z_4 + z_2*z_14*z_4 + z_4*z_40*z_30 ,
z_6*z_52*z_24*z_5 + z_4*z_35*z_5 + z_5*z_42*z_12 + z_6*z_48*z_5 ,
z_6*z_52*z_24*z_6 + z_6*z_48*z_6 + z_6*z_49*z_8 + z_6*z_51*z_23 + z_6*z_54*z_56 ,
z_6*z_52*z_27*z_48 + z_6*z_53*z_34*z_48 + z_6*z_48 ,
z_6*z_52*z_27*z_49 ,
z_6*z_52*z_27*z_50 + z_4*z_38 + z_5*z_42 ,
z_6*z_52*z_27*z_51 + z_3*z_27*z_51 + z_6*z_51 ,
z_6*z_52*z_27*z_52 + z_6*z_53*z_34*z_52 + z_3*z_27*z_52 + z_4*z_37*z_9 + z_6*z_48*z_3 ,
z_6*z_52*z_27*z_53 + z_2*z_16 + z_6*z_53 ,
z_6*z_52*z_27*z_54 ,
z_6*z_53*z_31*z_14 + z_4*z_35 + z_6*z_48 ,
z_6*z_53*z_32*z_17 + z_3*z_27*z_51 + z_6*z_51 ,
z_6*z_53*z_32*z_19 + z_2*z_16 + z_6*z_53 ,
z_6*z_53*z_33*z_47 ,
z_6*z_53*z_34*z_51 + z_3*z_27*z_51 + z_6*z_51 ,
z_6*z_54*z_56*z_48 ,
z_6*z_54*z_56*z_49 + z_6*z_49 ,
z_6*z_54*z_56*z_50 ,
z_6*z_54*z_56*z_52 ,
z_6*z_54*z_56*z_54 + z_5*z_43 + z_6*z_54 ,
z_7*z_36*z_7*z_36 + z_8*z_54*z_56*z_49 + z_8*z_49 ,
z_7*z_36*z_8*z_50 + z_8*z_51*z_22*z_38 ,
z_7*z_36*z_8*z_54 ,
z_7*z_38*z_11*z_35 + z_8*z_54*z_56*z_48 ,
z_7*z_38*z_11*z_38 ,
z_7*z_38*z_11*z_39 + z_8*z_50*z_11*z_39 ,
z_7*z_38*z_11*z_40 ,
z_7*z_38*z_13*z_48 + z_8*z_54*z_56*z_48 ,
z_7*z_38*z_13*z_49 + z_8*z_50*z_13*z_49 + z_8*z_49 ,
z_7*z_38*z_13*z_52 + z_8*z_51*z_23*z_52 ,
z_7*z_38*z_13*z_54 + z_8*z_54*z_55*z_43 ,
z_8*z_50*z_11*z_40 ,
z_8*z_50*z_13*z_50 ,
z_8*z_50*z_13*z_52 + z_8*z_51*z_23*z_52 ,
z_8*z_50*z_13*z_54 + z_8*z_54*z_55*z_43 ,
z_8*z_51*z_22*z_35 + z_8*z_54*z_56*z_48 ,
z_8*z_51*z_22*z_40 ,
z_8*z_54*z_55*z_42 ,
z_8*z_54*z_56*z_50 + z_7*z_38 + z_8*z_50 ,
z_9*z_26*z_45*z_24 + z_9*z_27*z_48 ,
z_9*z_26*z_45*z_25 ,
z_9*z_26*z_45*z_26 + z_9*z_27*z_53*z_33 ,
z_9*z_26*z_45*z_27 ,
z_9*z_27*z_48*z_3 + z_10*z_38*z_13*z_52 ,
z_9*z_27*z_48*z_5 + z_10*z_38*z_12 ,
z_9*z_27*z_48*z_6 + z_10*z_38*z_13 ,
z_9*z_27*z_50*z_11 ,
z_9*z_27*z_50*z_12 + z_10*z_38*z_12 ,
z_9*z_27*z_50*z_13 + z_10*z_38*z_13 ,
z_9*z_27*z_52*z_24 + z_9*z_27*z_48 + z_10*z_35 ,
z_9*z_27*z_52*z_26 ,
z_9*z_27*z_53*z_31 + z_10*z_40*z_28 ,
z_9*z_27*z_53*z_32 ,
z_9*z_27*z_54*z_56 ,
z_10*z_35*z_4*z_37 ,
z_10*z_35*z_4*z_38 ,
z_10*z_35*z_5*z_42 + z_9*z_27*z_50 + z_10*z_38 ,
z_10*z_35*z_5*z_43 + z_9*z_27*z_54 ,
z_10*z_38*z_12*z_42 ,
z_10*z_38*z_13*z_48 ,
z_10*z_38*z_13*z_49 ,
z_10*z_38*z_13*z_54 + z_9*z_27*z_54 ,
z_10*z_40*z_28*z_16 ,
z_10*z_40*z_30*z_35 + z_9*z_27*z_48 + z_10*z_35 ,
z_10*z_40*z_30*z_37 ,
z_10*z_40*z_30*z_38 + z_10*z_38 ,
z_10*z_40*z_30*z_39 ,
z_11*z_35*z_3*z_26 + z_13*z_48*z_3*z_26 + z_13*z_52*z_26 ,
z_11*z_35*z_4*z_37 + z_11*z_37 ,
z_11*z_35*z_4*z_38 + z_13*z_48*z_4*z_38 + z_11*z_38 ,
z_11*z_35*z_6*z_49 + z_13*z_54*z_56*z_49 ,
z_11*z_35*z_6*z_51 + z_13*z_48*z_6*z_51 ,
z_11*z_35*z_6*z_52 + z_13*z_48*z_6*z_52 + z_13*z_52*z_26*z_45 ,
z_11*z_35*z_6*z_54 + z_13*z_54*z_55*z_43 ,
z_11*z_38*z_11*z_35 ,
z_11*z_38*z_11*z_38 ,
z_11*z_38*z_11*z_39 ,
z_11*z_38*z_11*z_40 + z_13*z_48*z_2*z_15 + z_13*z_48*z_4*z_40 ,
z_11*z_39*z_22*z_35 + z_12*z_41 + z_13*z_48 ,
z_11*z_39*z_22*z_38 + z_13*z_54*z_56*z_50 + z_13*z_50 ,
z_11*z_39*z_23*z_48 ,
z_11*z_39*z_23*z_49 + z_13*z_49*z_7*z_36 ,
z_11*z_39*z_23*z_52 + z_13*z_52*z_25*z_9 + z_13*z_48*z_3 ,
z_11*z_39*z_23*z_53 ,
z_11*z_40*z_30*z_35 + z_11*z_35 + z_13*z_48 ,
z_11*z_40*z_30*z_37 + z_13*z_52*z_25 + z_11*z_37 ,
z_11*z_40*z_30*z_38 + z_12*z_42 ,
z_11*z_40*z_30*z_39 ,
z_12*z_41*z_3*z_26 + z_13*z_48*z_3*z_26 ,
z_12*z_41*z_3*z_27 + z_11*z_35*z_6 + z_12*z_42*z_13 + z_13*z_54*z_56 ,
z_12*z_41*z_4*z_37 ,
z_12*z_41*z_4*z_40 + z_13*z_48*z_4*z_40 ,
z_12*z_41*z_5*z_42 + z_13*z_48*z_4*z_38 + z_11*z_38 ,
z_12*z_42*z_11*z_35 + z_12*z_42*z_13*z_48 + z_12*z_41 + z_13*z_48 ,
z_12*z_42*z_11*z_38 + z_13*z_48*z_4*z_38 + z_13*z_54*z_56*z_50 ,
z_12*z_42*z_11*z_39 ,
z_12*z_42*z_12*z_41 + z_12*z_42*z_13*z_48 ,
z_12*z_42*z_12*z_42 + z_13*z_48*z_4*z_38 + z_13*z_54*z_56*z_50 + z_13*z_50 ,
z_12*z_42*z_12*z_43 + z_13*z_54*z_55*z_43 + z_13*z_54*z_56*z_54 + z_12*z_43 + z_13*z_54 ,
z_12*z_42*z_13*z_49 ,
z_12*z_42*z_13*z_50 ,
z_12*z_42*z_13*z_52 + z_13*z_48*z_6*z_52 ,
z_12*z_42*z_13*z_54 + z_13*z_54*z_55*z_43 + z_13*z_54*z_56*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_48*z_4*z_35 ,
z_13*z_48*z_4*z_37 ,
z_13*z_48*z_5*z_42 + z_13*z_54*z_56*z_50 + z_11*z_38 ,
z_13*z_48*z_6*z_48 + z_12*z_41 + z_13*z_48 ,
z_13*z_48*z_6*z_49 + z_13*z_54*z_56*z_49 ,
z_13*z_48*z_6*z_54 + z_13*z_54*z_55*z_43 ,
z_13*z_49*z_8*z_51 ,
z_13*z_49*z_8*z_54 + z_13*z_54*z_56*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_50*z_12*z_42 ,
z_13*z_50*z_12*z_43 + z_12*z_43 + z_13*z_54 ,
z_13*z_50*z_13*z_49 ,
z_13*z_50*z_13*z_50 ,
z_13*z_50*z_13*z_52 + z_12*z_41*z_3 + z_13*z_48*z_3 ,
z_13*z_50*z_13*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_52*z_25*z_10 + z_11*z_39*z_22 + z_12*z_42*z_11 + z_13*z_49*z_7 ,
z_13*z_52*z_27*z_48 + z_11*z_35 + z_12*z_41 ,
z_13*z_52*z_27*z_49 + z_13*z_54*z_56*z_49 ,
z_13*z_52*z_27*z_51 + z_11*z_39 ,
z_13*z_52*z_27*z_52 + z_11*z_35*z_3 + z_12*z_41*z_3 ,
z_13*z_52*z_27*z_53 ,
z_13*z_52*z_27*z_54 + z_12*z_43 + z_13*z_54 ,
z_13*z_54*z_55*z_42 + z_13*z_54*z_56*z_50 ,
z_13*z_54*z_56*z_48 ,
z_13*z_54*z_56*z_52 ,
z_14*z_3*z_26*z_45 + z_14*z_6*z_52 ,
z_14*z_3*z_27*z_50 + z_14*z_5*z_42 ,
z_14*z_3*z_27*z_51 + z_16*z_34*z_51 ,
z_14*z_3*z_27*z_52 + z_16*z_31*z_14*z_3 ,
z_14*z_3*z_27*z_54 ,
z_14*z_5*z_42*z_11 + z_16*z_34*z_51*z_22 + z_14*z_4 + z_15*z_30 ,
z_14*z_5*z_42*z_12 + z_16*z_31*z_14*z_5 ,
z_14*z_6*z_52*z_24 + z_16*z_31*z_14 ,
z_14*z_6*z_52*z_26 + z_14*z_3*z_26 + z_16*z_33 ,
z_14*z_6*z_52*z_27 + z_16*z_34*z_52*z_27 ,
z_15*z_30*z_37*z_9 + z_16*z_31*z_14*z_3 ,
z_15*z_30*z_37*z_10 + z_16*z_31*z_15*z_30 + z_14*z_4 + z_15*z_30 ,
z_15*z_30*z_38*z_11 + z_16*z_34*z_51*z_22 + z_14*z_4 + z_15*z_30 ,
z_15*z_30*z_38*z_12 + z_16*z_31*z_14*z_5 + z_16*z_34*z_48*z_5 ,
z_15*z_30*z_38*z_13 ,
z_16*z_32*z_18*z_30 + z_16*z_34*z_51*z_22 ,
z_16*z_34*z_51*z_23 + z_14*z_6 + z_16*z_34 ,
z_16*z_34*z_52*z_25 + z_15*z_30*z_37 ,
z_16*z_34*z_52*z_26 + z_14*z_3*z_26 + z_16*z_33 ,
z_19*z_31*z_14*z_3 ,
z_19*z_31*z_15*z_30 + z_19*z_34*z_51*z_22 ,
z_19*z_34*z_51*z_23 ,
z_19*z_34*z_52*z_25 ,
z_19*z_34*z_52*z_26 ,
z_19*z_34*z_52*z_27 + z_17*z_23 + z_19*z_34 ,
z_21*z_19*z_34*z_51 + z_23*z_53*z_32*z_17 ,
z_21*z_19*z_34*z_52 + z_23*z_53*z_34*z_52 ,
z_22*z_35*z_3*z_26 ,
z_22*z_35*z_4*z_37 ,
z_22*z_35*z_4*z_38 + z_23*z_52*z_27*z_50 + z_22*z_38 ,
z_22*z_35*z_5*z_42 + z_23*z_52*z_27*z_50 + z_22*z_38 ,
z_22*z_35*z_5*z_43 + z_23*z_49*z_8*z_54 ,
z_22*z_35*z_6*z_49 + z_23*z_52*z_27*z_49 ,
z_22*z_35*z_6*z_51 + z_23*z_49*z_8*z_51 ,
z_22*z_35*z_6*z_52 ,
z_22*z_35*z_6*z_54 + z_23*z_49*z_8*z_54 ,
z_22*z_38*z_11*z_35 ,
z_22*z_38*z_11*z_38 ,
z_22*z_38*z_11*z_39 + z_23*z_49*z_8*z_51 ,
z_22*z_38*z_11*z_40 ,
z_22*z_38*z_13*z_48 ,
z_22*z_38*z_13*z_49 + z_23*z_49*z_7*z_36 + z_23*z_52*z_27*z_49 ,
z_22*z_38*z_13*z_52 + z_22*z_35*z_3 ,
z_22*z_38*z_13*z_54 ,
z_22*z_40*z_30*z_35 + z_23*z_48 ,
z_22*z_40*z_30*z_37 ,
z_22*z_40*z_30*z_38 ,
z_22*z_40*z_30*z_39 ,
z_23*z_48*z_4*z_35 ,
z_23*z_48*z_4*z_37 ,
z_23*z_48*z_4*z_38 ,
z_23*z_48*z_4*z_40 ,
z_23*z_48*z_5*z_42 ,
z_23*z_52*z_26*z_45 ,
z_23*z_52*z_27*z_48 + z_23*z_48 ,
z_23*z_52*z_27*z_52 ,
z_23*z_52*z_27*z_53 + z_21*z_19 + z_23*z_53 ,
z_23*z_52*z_27*z_54 ,
z_23*z_53*z_31*z_14 + z_23*z_48 ,
z_23*z_53*z_31*z_15 + z_21*z_18 + z_22*z_40 ,
z_23*z_53*z_32*z_18 + z_21*z_18 + z_22*z_40 ,
z_23*z_53*z_32*z_19 ,
z_23*z_53*z_34*z_48 ,
z_23*z_53*z_34*z_51 ,
z_24*z_2*z_14*z_4 + z_26*z_45*z_24*z_4 + z_27*z_48*z_4 ,
z_24*z_2*z_14*z_5 + z_24*z_5*z_42*z_12 + z_25*z_10*z_35*z_5 + z_26*z_45*z_24*z_5 + z_27*z_50*z_12 ,
z_24*z_3*z_26*z_45 + z_26*z_45*z_26*z_45 + z_27*z_51*z_23*z_52 + z_27*z_53*z_34*z_52 + z_24*z_6*z_52 + z_24*z_3 + z_25*z_9 ,
z_24*z_3*z_27*z_50 + z_27*z_50*z_13*z_50 + z_24*z_4*z_38 ,
z_24*z_3*z_27*z_51 + z_24*z_6*z_51 ,
z_24*z_3*z_27*z_52 + z_26*z_45*z_26*z_45 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_24*z_3*z_27*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 ,
z_24*z_4*z_37*z_9 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_24*z_4*z_37*z_10 + z_24*z_6*z_48*z_4 + z_25*z_10*z_35*z_4 ,
z_24*z_4*z_38*z_11 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 + z_25*z_10*z_35*z_4 ,
z_24*z_4*z_40*z_30 + z_25*z_10*z_35*z_4 + z_26*z_45*z_24*z_4 + z_27*z_48*z_4 ,
z_24*z_5*z_42*z_11 + z_24*z_6*z_48*z_4 + z_24*z_6*z_51*z_22 ,
z_24*z_6*z_48*z_2 ,
z_24*z_6*z_48*z_3 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_24*z_6*z_48*z_5 + z_25*z_10*z_35*z_5 + z_25*z_10*z_38*z_12 ,
z_24*z_6*z_48*z_6 ,
z_24*z_6*z_51*z_23 + z_24*z_6*z_54*z_56 + z_25*z_10*z_38*z_13 ,
z_24*z_6*z_52*z_24 + z_27*z_53*z_34*z_48 + z_25*z_10*z_35 ,
z_24*z_6*z_52*z_26 ,
z_24*z_6*z_53*z_31 + z_25*z_10*z_40*z_28 ,
z_24*z_6*z_53*z_32 ,
z_24*z_6*z_53*z_33 + z_26*z_45*z_26 + z_27*z_52*z_26 + z_27*z_53*z_33 ,
z_24*z_6*z_53*z_34 + z_26*z_45*z_24*z_6 + z_27*z_48*z_6 + z_27*z_54*z_56 ,
z_25*z_9*z_26*z_45 + z_27*z_50*z_13*z_52 + z_27*z_52*z_27*z_52 + z_27*z_53*z_34*z_52 + z_24*z_6*z_52 + z_27*z_48*z_3 + z_24*z_3 + z_25*z_9 + z_27*z_52 ,
z_25*z_9*z_27*z_48 + z_24*z_6*z_48 + z_25*z_10*z_35 ,
z_25*z_9*z_27*z_50 + z_27*z_50*z_13*z_50 + z_25*z_10*z_38 ,
z_25*z_9*z_27*z_52 + z_26*z_45*z_26*z_45 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 ,
z_25*z_9*z_27*z_53 + z_24*z_6*z_53 ,
z_25*z_9*z_27*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 ,
z_26*z_45*z_24*z_3 + z_26*z_45*z_26*z_45 + z_27*z_51*z_23*z_52 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_24*z_3 + z_25*z_9 ,
z_26*z_45*z_25*z_9 + z_26*z_45*z_26*z_45 + z_27*z_50*z_13*z_52 + z_27*z_52*z_26*z_45 + z_27*z_52*z_27*z_52 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_24*z_3 + z_25*z_9 ,
z_26*z_45*z_27*z_48 + z_27*z_53*z_34*z_48 + z_24*z_2*z_14 + z_26*z_45*z_24 + z_27*z_48 ,
z_26*z_45*z_27*z_50 + z_27*z_50*z_12*z_42 + z_24*z_4*z_38 + z_24*z_5*z_42 ,
z_26*z_45*z_27*z_51 ,
z_26*z_45*z_27*z_52 + z_27*z_50*z_13*z_52 + z_27*z_51*z_23*z_52 + z_27*z_52*z_26*z_45 + z_27*z_52*z_27*z_52 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_48*z_3*z_26 + z_27*z_52*z_26 ,
z_27*z_48*z_3*z_27 + z_27*z_52*z_27 ,
z_27*z_48*z_4*z_35 ,
z_27*z_48*z_4*z_37 + z_24*z_4*z_37 ,
z_27*z_48*z_4*z_38 + z_27*z_50*z_13*z_50 + z_27*z_52*z_27*z_50 ,
z_27*z_48*z_5*z_42 + z_27*z_50*z_12*z_42 + z_27*z_50*z_13*z_50 ,
z_27*z_48*z_6*z_48 + z_27*z_53*z_34*z_48 ,
z_27*z_48*z_6*z_49 ,
z_27*z_48*z_6*z_51 ,
z_27*z_48*z_6*z_52 + z_27*z_52*z_26*z_45 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_48*z_6*z_53 + z_27*z_53*z_32*z_19 ,
z_27*z_48*z_6*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_27*z_50*z_11*z_39 + z_24*z_6*z_51 ,
z_27*z_50*z_12*z_43 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_27*z_50*z_13*z_49 + z_27*z_51*z_23*z_49 + z_27*z_49 ,
z_27*z_50*z_13*z_54 + z_24*z_5*z_43 + z_24*z_6*z_54 + z_27*z_54 ,
z_27*z_51*z_22*z_35 + z_24*z_2*z_14 + z_24*z_6*z_48 + z_26*z_45*z_24 + z_27*z_48 ,
z_27*z_51*z_22*z_38 + z_24*z_5*z_42 + z_25*z_10*z_38 ,
z_27*z_51*z_22*z_40 + z_27*z_53*z_32*z_18 ,
z_27*z_52*z_24*z_3 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_52*z_25*z_9 + z_27*z_53*z_34*z_52 + z_27*z_48*z_3 + z_27*z_52 ,
z_27*z_52*z_27*z_48 + z_24*z_2*z_14 + z_24*z_6*z_48 + z_26*z_45*z_24 + z_27*z_48 ,
z_27*z_52*z_27*z_49 ,
z_27*z_52*z_27*z_51 ,
z_27*z_52*z_27*z_53 + z_27*z_53*z_32*z_19 ,
z_27*z_52*z_27*z_54 + z_27*z_54*z_56*z_54 ,
z_27*z_53*z_31*z_14 + z_27*z_52*z_24 ,
z_27*z_53*z_32*z_17 + z_27*z_53*z_34*z_51 ,
z_27*z_53*z_33*z_47 ,
z_27*z_54*z_56*z_48 ,
z_27*z_54*z_56*z_49 ,
z_27*z_54*z_56*z_50 ,
z_27*z_54*z_56*z_52 ,
z_28*z_15*z_30*z_37 + z_30*z_35*z_4*z_37 ,
z_28*z_15*z_30*z_38 + z_30*z_35*z_5*z_42 + z_30*z_38*z_11*z_38 ,
z_28*z_16*z_31*z_14 + z_30*z_38*z_11*z_35 + z_30*z_38*z_13*z_48 ,
z_28*z_16*z_31*z_15 + z_30*z_37*z_10*z_40 + z_30*z_38*z_11*z_40 ,
z_28*z_16*z_32*z_18 + z_29*z_19*z_31*z_15 ,
z_28*z_16*z_32*z_19 ,
z_29*z_19*z_34*z_51 + z_30*z_35*z_6*z_51 ,
z_29*z_19*z_34*z_52 + z_30*z_39*z_23*z_52 ,
z_30*z_35*z_3*z_26 + z_28*z_16*z_33 ,
z_30*z_35*z_4*z_38 + z_30*z_35*z_5*z_42 + z_30*z_38*z_11*z_38 ,
z_30*z_35*z_5*z_43 ,
z_30*z_35*z_6*z_49 ,
z_30*z_35*z_6*z_54 ,
z_30*z_37*z_10*z_35 + z_30*z_38*z_13*z_48 + z_30*z_39*z_22*z_35 ,
z_30*z_38*z_11*z_39 ,
z_30*z_38*z_13*z_49 ,
z_30*z_39*z_22*z_38 ,
z_30*z_39*z_23*z_48 ,
z_30*z_39*z_23*z_53 ,
z_31*z_14*z_3*z_26 + z_34*z_52*z_26 ,
z_31*z_14*z_5*z_42 + z_34*z_52*z_27*z_50 ,
z_31*z_15*z_30*z_37 ,
z_31*z_15*z_30*z_38 + z_34*z_52*z_27*z_50 ,
z_32*z_19*z_31*z_14 + z_34*z_48 ,
z_32*z_19*z_31*z_15 ,
z_34*z_48*z_5*z_42 ,
z_34*z_51*z_22*z_35 + z_34*z_48 ,
z_34*z_51*z_22*z_38 ,
z_34*z_51*z_22*z_40 ,
z_34*z_51*z_23*z_49 ,
z_34*z_51*z_23*z_52 + z_34*z_52*z_26*z_45 ,
z_34*z_52*z_25*z_9 + z_31*z_14*z_3 ,
z_34*z_52*z_27*z_48 + z_34*z_48 ,
z_34*z_52*z_27*z_49 ,
z_34*z_52*z_27*z_51 + z_32*z_17 + z_34*z_51 ,
z_34*z_52*z_27*z_52 ,
z_34*z_52*z_27*z_53 ,
z_34*z_52*z_27*z_54 ,
z_35*z_3*z_26*z_45 + z_40*z_30*z_35*z_3 + z_35*z_6*z_52 ,
z_35*z_3*z_27*z_51 + z_35*z_6*z_51 + z_39*z_21*z_17 + z_40*z_30*z_39 ,
z_35*z_3*z_27*z_54 + z_35*z_5*z_43 + z_35*z_6*z_54 ,
z_35*z_4*z_37*z_9 + z_38*z_11*z_35*z_3 + z_39*z_22*z_35*z_3 ,
z_35*z_4*z_37*z_10 + z_38*z_11*z_35*z_4 + z_39*z_22*z_35*z_4 + z_40*z_28*z_15*z_30 + z_40*z_30*z_35*z_4 ,
z_35*z_4*z_38*z_11 + z_38*z_13*z_48*z_4 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 + z_39*z_23*z_48*z_4 + z_40*z_28*z_15*z_30 + z_40*z_30*z_35*z_4 ,
z_35*z_5*z_42*z_11 + z_38*z_13*z_48*z_4 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 ,
z_35*z_5*z_42*z_12 + z_36*z_8*z_54*z_55 + z_38*z_13*z_48*z_5 + z_38*z_13*z_54*z_55 ,
z_35*z_6*z_49*z_8 ,
z_35*z_6*z_51*z_22 + z_38*z_13*z_49*z_7 + z_39*z_22*z_35*z_4 + z_39*z_22*z_38*z_11 ,
z_35*z_6*z_51*z_23 + z_38*z_11*z_39*z_23 + z_39*z_22*z_38*z_13 ,
z_35*z_6*z_52*z_26 ,
z_35*z_6*z_54*z_56 + z_36*z_8*z_54*z_56 ,
z_36*z_7*z_36*z_7 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 ,
z_36*z_7*z_36*z_8 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 ,
z_36*z_8*z_50*z_11 + z_39*z_22*z_38*z_11 ,
z_36*z_8*z_50*z_13 + z_36*z_8*z_54*z_56 + z_38*z_11*z_39*z_23 ,
z_36*z_8*z_51*z_22 + z_38*z_13*z_49*z_7 + z_39*z_22*z_38*z_11 + z_39*z_23*z_49*z_7 ,
z_36*z_8*z_51*z_23 + z_38*z_11*z_39*z_23 + z_39*z_22*z_35*z_6 + z_39*z_23*z_49*z_8 ,
z_37*z_9*z_26*z_45 + z_38*z_13*z_48*z_3 + z_39*z_22*z_35*z_3 + z_40*z_30*z_35*z_3 + z_40*z_30*z_37*z_9 + z_38*z_13*z_52 + z_39*z_23*z_52 + z_35*z_3 ,
z_37*z_9*z_27*z_48 + z_37*z_10*z_35 + z_38*z_11*z_35 + z_38*z_13*z_48 + z_39*z_23*z_48 ,
z_37*z_9*z_27*z_50 + z_38*z_12*z_42 ,
z_37*z_10*z_35*z_4 + z_38*z_11*z_40*z_30 + z_38*z_13*z_49*z_7 + z_39*z_22*z_35*z_4 + z_39*z_22*z_38*z_11 + z_39*z_23*z_48*z_4 + z_39*z_23*z_49*z_7 + z_40*z_28*z_15*z_30 + z_40*z_30*z_35*z_4 + z_40*z_30*z_37*z_10 + z_40*z_30*z_38*z_11 + z_36*z_7 + z_37*z_10 + z_38*z_11 + z_39*z_22 ,
z_37*z_10*z_35*z_5 + z_38*z_12*z_42*z_12 + z_38*z_13*z_48*z_5 + z_38*z_13*z_54*z_55 + z_39*z_23*z_48*z_5 ,
z_37*z_10*z_40*z_28 + z_38*z_13*z_48*z_2 + z_40*z_29*z_19*z_31 ,
z_37*z_10*z_40*z_30 + z_38*z_11*z_35*z_4 + z_38*z_11*z_40*z_30 + z_38*z_13*z_48*z_4 + z_40*z_30*z_39*z_22 ,
z_38*z_11*z_35*z_6 + z_38*z_13*z_48*z_6 ,
z_38*z_11*z_38*z_11 ,
z_38*z_11*z_39*z_22 + z_38*z_13*z_49*z_7 ,
z_38*z_12*z_42*z_11 ,
z_38*z_12*z_42*z_13 + z_38*z_13*z_48*z_6 + z_39*z_22*z_35*z_6 ,
z_38*z_13*z_49*z_8 + z_38*z_13*z_54*z_56 + z_39*z_22*z_35*z_6 + z_39*z_23*z_49*z_8 ,
z_38*z_13*z_52*z_25 ,
z_38*z_13*z_52*z_26 ,
z_39*z_23*z_53*z_31 + z_40*z_29*z_19*z_31 ,
z_39*z_23*z_53*z_32 + z_39*z_21 + z_40*z_29 ,
z_39*z_23*z_53*z_33 + z_40*z_29*z_19*z_33 ,
z_39*z_23*z_53*z_34 + z_40*z_30*z_39*z_23 ,
z_40*z_28*z_16*z_32 + z_39*z_21 + z_40*z_29 ,
z_41*z_2*z_14*z_4 + z_41*z_4*z_40*z_30 + z_42*z_11*z_35*z_4 ,
z_41*z_2*z_14*z_5 + z_42*z_12*z_41*z_5 + z_42*z_13*z_48*z_5 + z_43*z_56*z_54*z_55 + z_41*z_5 + z_43*z_55 ,
z_41*z_2*z_16*z_33 + z_41*z_6*z_53*z_33 + z_42*z_13*z_52*z_26 ,
z_41*z_3*z_27*z_50 + z_42*z_13*z_50 + z_43*z_56*z_50 ,
z_41*z_3*z_27*z_51 + z_41*z_6*z_51 + z_42*z_11*z_39 ,
z_41*z_3*z_27*z_54 + z_42*z_12*z_43 + z_43*z_55*z_43 + z_43*z_56*z_54 ,
z_41*z_4*z_37*z_9 + z_41*z_6*z_52 + z_42*z_13*z_52 ,
z_41*z_4*z_37*z_10 + z_42*z_11*z_39*z_22 + z_42*z_12*z_42*z_11 + z_43*z_56*z_49*z_7 ,
z_41*z_5*z_42*z_11 + z_42*z_13*z_48*z_4 + z_43*z_56*z_49*z_7 + z_43*z_56*z_50*z_11 ,
z_41*z_5*z_42*z_12 + z_42*z_12*z_41*z_5 ,
z_41*z_6*z_48*z_2 + z_41*z_6*z_53*z_31 + z_42*z_13*z_48*z_2 ,
z_41*z_6*z_48*z_3 + z_42*z_11*z_35*z_3 + z_42*z_13*z_48*z_3 ,
z_41*z_6*z_48*z_4 + z_42*z_11*z_35*z_4 + z_42*z_13*z_48*z_4 ,
z_41*z_6*z_48*z_5 + z_42*z_12*z_41*z_5 + z_43*z_56*z_54*z_55 ,
z_41*z_6*z_48*z_6 + z_42*z_11*z_39*z_23 + z_43*z_56*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 ,
z_41*z_6*z_51*z_22 + z_42*z_11*z_35*z_4 + z_42*z_12*z_42*z_11 + z_42*z_13*z_48*z_4 + z_43*z_56*z_50*z_11 ,
z_41*z_6*z_51*z_23 + z_42*z_13*z_48*z_6 + z_43*z_56*z_50*z_13 ,
z_41*z_6*z_52*z_24 + z_42*z_11*z_35 ,
z_41*z_6*z_52*z_27 + z_42*z_11*z_39*z_23 + z_42*z_12*z_42*z_13 + z_42*z_13*z_48*z_6 + z_42*z_13*z_52*z_27 + z_43*z_56*z_49*z_8 ,
z_41*z_6*z_53*z_34 + z_42*z_11*z_39*z_23 + z_43*z_56*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 + z_41*z_3*z_27 + z_41*z_6 + z_42*z_13 + z_43*z_56 ,
z_42*z_11*z_35*z_6 + z_42*z_11*z_39*z_23 + z_42*z_13*z_48*z_6 ,
z_42*z_11*z_38*z_11 ,
z_42*z_12*z_41*z_3 + z_42*z_13*z_48*z_3 ,
z_42*z_12*z_41*z_4 + z_42*z_13*z_48*z_4 ,
z_42*z_13*z_49*z_7 + z_43*z_56*z_49*z_7 ,
z_42*z_13*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 ,
z_42*z_13*z_50*z_13 + z_43*z_56*z_49*z_8 + z_43*z_56*z_50*z_13 + z_43*z_56*z_54*z_56 ,
z_42*z_13*z_52*z_25 + z_41*z_4*z_37 ,
z_42*z_13*z_54*z_55 + z_43*z_56*z_54*z_55 ,
z_42*z_13*z_54*z_56 + z_43*z_56*z_49*z_8 ,
z_43*z_55*z_43*z_56 + z_43*z_56*z_50*z_13 ,
z_43*z_56*z_50*z_12 + z_43*z_56*z_54*z_55 ,
z_44*z_46*z_32*z_19 ,
z_44*z_46*z_34*z_48 ,
z_44*z_46*z_34*z_52 ,
z_45*z_24*z_2*z_14 + z_46*z_31*z_14 + z_46*z_34*z_48 ,
z_45*z_24*z_3*z_26 + z_45*z_26 + z_46*z_33 ,
z_45*z_24*z_3*z_27 + z_45*z_27*z_50*z_13 + z_46*z_34*z_52*z_27 + z_47*z_44*z_46*z_34 + z_45*z_27 ,
z_45*z_24*z_4*z_37 ,
z_45*z_24*z_4*z_40 + z_46*z_31*z_15 ,
z_45*z_24*z_5*z_42 + z_45*z_27*z_50 ,
z_45*z_24*z_6*z_48 + z_46*z_34*z_48 ,
z_45*z_24*z_6*z_51 ,
z_45*z_24*z_6*z_52 + z_45*z_24*z_3 + z_45*z_25*z_9 + z_45*z_26*z_45 + z_45*z_27*z_52 + z_46*z_34*z_52 ,
z_45*z_24*z_6*z_53 + z_46*z_32*z_19 ,
z_45*z_25*z_9*z_26 + z_46*z_34*z_52*z_26 + z_45*z_26 + z_46*z_33 ,
z_45*z_25*z_9*z_27 + z_45*z_27*z_50*z_13 + z_47*z_44*z_46*z_34 + z_45*z_27 ,
z_45*z_25*z_10*z_35 + z_45*z_27*z_48 + z_46*z_34*z_48 ,
z_45*z_25*z_10*z_38 + z_45*z_27*z_50 ,
z_45*z_26*z_45*z_24 + z_45*z_27*z_48 + z_46*z_31*z_14 ,
z_45*z_26*z_45*z_25 + z_46*z_34*z_52*z_25 ,
z_45*z_26*z_45*z_26 ,
z_45*z_26*z_45*z_27 + z_46*z_34*z_52*z_27 ,
z_45*z_27*z_48*z_3 ,
z_45*z_27*z_48*z_4 ,
z_45*z_27*z_48*z_5 + z_45*z_27*z_50*z_12 ,
z_45*z_27*z_48*z_6 + z_45*z_27*z_50*z_13 ,
z_45*z_27*z_50*z_11 ,
z_45*z_27*z_51*z_23 ,
z_45*z_27*z_52*z_24 + z_46*z_34*z_48 ,
z_45*z_27*z_52*z_25 ,
z_45*z_27*z_52*z_26 ,
z_45*z_27*z_52*z_27 ,
z_46*z_31*z_14*z_3 + z_45*z_24*z_3 + z_45*z_25*z_9 + z_45*z_27*z_52 ,
z_46*z_32*z_18*z_30 + z_46*z_34*z_51*z_22 ,
z_46*z_32*z_19*z_31 + z_45*z_24*z_2 + z_46*z_31 ,
z_48*z_3*z_26*z_45 + z_48*z_6*z_48*z_3 + z_51*z_22*z_35*z_3 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_48*z_6*z_52 ,
z_48*z_3*z_27*z_50 + z_48*z_4*z_38 + z_50*z_13*z_50 ,
z_48*z_3*z_27*z_51 + z_48*z_6*z_51 ,
z_48*z_3*z_27*z_52 + z_48*z_6*z_48*z_3 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_54*z_56*z_48*z_3 + z_50*z_13*z_52 + z_51*z_23*z_52 + z_52*z_26*z_45 + z_52*z_27*z_52 + z_54*z_56*z_52 ,
z_48*z_3*z_27*z_54 + z_52*z_27*z_54 ,
z_48*z_4*z_35*z_5 + z_54*z_56*z_48*z_5 + z_54*z_56*z_50*z_12 + z_54*z_56*z_54*z_55 ,
z_48*z_4*z_37*z_9 + z_51*z_22*z_35*z_3 + z_54*z_56*z_48*z_3 ,
z_48*z_4*z_37*z_10 + z_50*z_12*z_42*z_11 + z_51*z_22*z_35*z_4 + z_54*z_56*z_49*z_7 ,
z_48*z_4*z_38*z_11 + z_50*z_12*z_42*z_11 + z_54*z_55*z_42*z_11 ,
z_48*z_4*z_40*z_30 + z_48*z_5*z_42*z_11 + z_50*z_12*z_42*z_11 + z_52*z_27*z_48*z_4 + z_53*z_31*z_15*z_30 + z_54*z_55*z_42*z_11 ,
z_48*z_5*z_42*z_12 + z_50*z_12*z_42*z_12 + z_52*z_27*z_50*z_12 + z_53*z_34*z_48*z_5 + z_54*z_56*z_48*z_5 + z_54*z_56*z_54*z_55 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_48*z_6*z_48*z_2 ,
z_48*z_6*z_48*z_4 + z_48*z_6*z_51*z_22 + z_54*z_55*z_42*z_11 ,
z_48*z_6*z_48*z_5 + z_52*z_27*z_50*z_12 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_48*z_6*z_48*z_6 + z_52*z_27*z_54*z_56 ,
z_48*z_6*z_49*z_8 + z_52*z_27*z_54*z_56 ,
z_48*z_6*z_51*z_23 + z_49*z_8*z_54*z_56 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_48*z_6 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_52*z_27*z_53*z_34 + z_53*z_34*z_51*z_23 + z_53*z_34*z_52*z_27 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_48*z_6*z_52*z_24 + z_52*z_25*z_10*z_35 + z_48*z_6*z_48 + z_51*z_22*z_35 + z_54*z_56*z_48 ,
z_48*z_6*z_52*z_26 + z_54*z_56*z_52*z_26 ,
z_48*z_6*z_52*z_27 + z_50*z_13*z_52*z_27 + z_51*z_23*z_52*z_27 + z_52*z_27*z_52*z_27 ,
z_48*z_6*z_53*z_32 ,
z_48*z_6*z_53*z_33 + z_52*z_27*z_52*z_26 + z_53*z_34*z_52*z_26 + z_54*z_56*z_52*z_26 ,
z_48*z_6*z_53*z_34 + z_51*z_23*z_49*z_8 + z_52*z_27*z_48*z_6 + z_52*z_27*z_54*z_56 + z_53*z_34*z_51*z_23 + z_54*z_55*z_43*z_56 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 ,
z_48*z_6*z_54*z_56 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_49*z_7*z_36*z_7 + z_49*z_8*z_51*z_22 + z_54*z_55*z_42*z_11 ,
z_49*z_7*z_36*z_8 ,
z_49*z_8*z_51*z_23 + z_49*z_8*z_54*z_56 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_49*z_8*z_54*z_55 + z_54*z_56*z_48*z_5 + z_54*z_56*z_54*z_55 ,
z_50*z_11*z_39*z_22 + z_51*z_22*z_35*z_4 + z_51*z_23*z_49*z_7 + z_54*z_55*z_42*z_11 + z_54*z_56*z_50*z_11 ,
z_50*z_11*z_39*z_23 + z_52*z_26*z_45*z_27 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_53*z_34*z_51*z_23 + z_54*z_56*z_50*z_13 + z_54*z_56*z_54*z_56 + z_52*z_24*z_6 + z_48*z_6 + z_49*z_8 + z_50*z_13 + z_51*z_23 + z_54*z_56 ,
z_50*z_12*z_42*z_13 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 ,
z_50*z_13*z_49*z_7 + z_51*z_23*z_49*z_7 + z_54*z_55*z_42*z_11 + z_54*z_56*z_49*z_7 + z_54*z_56*z_50*z_11 ,
z_50*z_13*z_49*z_8 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_56*z_49*z_8 ,
z_50*z_13*z_50*z_12 + z_54*z_56*z_48*z_5 + z_54*z_56*z_50*z_12 + z_54*z_56*z_54*z_55 ,
z_50*z_13*z_50*z_13 + z_52*z_27*z_54*z_56 ,
z_50*z_13*z_52*z_25 + z_48*z_4*z_37 ,
z_50*z_13*z_52*z_26 ,
z_50*z_13*z_54*z_55 + z_54*z_56*z_50*z_12 + z_54*z_56*z_54*z_55 ,
z_50*z_13*z_54*z_56 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_51*z_22*z_35*z_6 + z_51*z_23*z_49*z_8 + z_52*z_27*z_54*z_56 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_51*z_22*z_38*z_11 + z_51*z_23*z_49*z_7 + z_54*z_55*z_42*z_11 + z_54*z_56*z_50*z_11 ,
z_51*z_22*z_38*z_13 + z_52*z_26*z_45*z_27 + z_52*z_27*z_50*z_13 + z_52*z_27*z_51*z_23 + z_53*z_34*z_51*z_23 + z_54*z_56*z_50*z_13 + z_54*z_56*z_54*z_56 + z_52*z_24*z_6 + z_48*z_6 + z_49*z_8 + z_50*z_13 + z_51*z_23 + z_54*z_56 ,
z_51*z_22*z_40*z_30 + z_53*z_34*z_51*z_22 ,
z_51*z_23*z_52*z_26 ,
z_52*z_24*z_3*z_26 + z_53*z_33*z_47*z_44 + z_53*z_34*z_52*z_26 + z_48*z_3*z_26 + z_52*z_26 ,
z_52*z_24*z_4*z_37 + z_52*z_26*z_45*z_25 + z_48*z_4*z_37 ,
z_52*z_24*z_4*z_38 + z_52*z_24*z_5*z_42 + z_48*z_5*z_42 + z_50*z_12*z_42 + z_50*z_13*z_50 + z_54*z_55*z_42 ,
z_52*z_24*z_4*z_40 + z_48*z_2*z_15 + z_53*z_31*z_15 ,
z_52*z_24*z_5*z_43 + z_52*z_24*z_6*z_54 + z_48*z_6*z_54 + z_50*z_12*z_43 + z_54*z_55*z_43 ,
z_52*z_24*z_6*z_48 + z_48*z_4*z_35 + z_48*z_6*z_48 + z_53*z_34*z_48 ,
z_52*z_24*z_6*z_51 + z_48*z_6*z_51 + z_49*z_8*z_51 ,
z_52*z_24*z_6*z_52 + z_52*z_27*z_48*z_3 + z_53*z_31*z_14*z_3 + z_48*z_6*z_52 + z_52*z_26*z_45 + z_52*z_27*z_52 ,
z_52*z_24*z_6*z_53 + z_48*z_6*z_53 + z_53*z_32*z_19 ,
z_52*z_25*z_9*z_26 + z_52*z_27*z_52*z_26 + z_53*z_33*z_47*z_44 + z_53*z_34*z_52*z_26 + z_54*z_56*z_52*z_26 + z_48*z_3*z_26 + z_52*z_26 ,
z_52*z_26*z_45*z_24 + z_48*z_6*z_48 + z_51*z_22*z_35 + z_53*z_34*z_48 + z_54*z_56*z_48 ,
z_52*z_26*z_45*z_26 + z_53*z_34*z_52*z_26 + z_54*z_56*z_52*z_26 ,
z_52*z_27*z_48*z_5 + z_53*z_34*z_48*z_5 + z_48*z_5 + z_50*z_12 + z_54*z_55 ,
z_52*z_27*z_52*z_24 + z_53*z_34*z_48 ,
z_52*z_27*z_52*z_25 ,
z_52*z_27*z_53*z_31 + z_53*z_32*z_19*z_31 ,
z_52*z_27*z_53*z_32 + z_51*z_21 + z_53*z_32 ,
z_52*z_27*z_53*z_33 + z_53*z_34*z_52*z_26 ,
z_54*z_55*z_42*z_13 + z_54*z_55*z_43*z_56 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_52*z_27 + z_54*z_56*z_54*z_56 ,
z_54*z_56*z_48*z_4 + z_54*z_56*z_49*z_7 ,
z_54*z_56*z_48*z_6 + z_54*z_56*z_49*z_8 + z_54*z_56*z_50*z_13 + z_54*z_56*z_54*z_56 ,
z_54*z_56*z_52*z_24 + z_48*z_4*z_35 ,
z_54*z_56*z_52*z_25 ,
z_55*z_41*z_5*z_42 + z_55*z_42 + z_56*z_50 ,
z_55*z_41*z_6*z_48 + z_55*z_41 + z_56*z_48 ,
z_55*z_41*z_6*z_51 + z_56*z_52*z_27*z_51 ,
z_55*z_41*z_6*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_55*z_41*z_6*z_53 ,
z_55*z_42*z_11*z_35 + z_56*z_52*z_24 ,
z_55*z_42*z_11*z_38 ,
z_55*z_42*z_11*z_39 ,
z_55*z_42*z_11*z_40 + z_56*z_48*z_4*z_40 + z_56*z_50*z_11*z_40 ,
z_55*z_42*z_13*z_48 + z_56*z_52*z_24 ,
z_55*z_42*z_13*z_49 + z_56*z_54*z_56*z_49 ,
z_55*z_42*z_13*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 ,
z_55*z_42*z_13*z_52 + z_56*z_52*z_27*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_55*z_42*z_13*z_54 + z_56*z_50*z_13*z_54 + z_56*z_52*z_27*z_54 ,
z_55*z_43*z_56*z_49 + z_56*z_50*z_13*z_49 ,
z_55*z_43*z_56*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_55*z_43*z_56*z_54 + z_56*z_54*z_55*z_43 ,
z_56*z_48*z_3*z_27 + z_55*z_42*z_13 + z_55*z_43*z_56 + z_56*z_48*z_6 ,
z_56*z_48*z_4*z_35 + z_55*z_41 + z_56*z_48 ,
z_56*z_48*z_4*z_37 + z_56*z_52*z_25 ,
z_56*z_48*z_4*z_38 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_56*z_48*z_5*z_42 + z_55*z_42 + z_56*z_50 ,
z_56*z_48*z_6*z_48 + z_55*z_41 + z_56*z_48 ,
z_56*z_48*z_6*z_49 + z_56*z_50*z_13*z_49 + z_56*z_54*z_56*z_49 ,
z_56*z_48*z_6*z_51 + z_56*z_52*z_27*z_51 ,
z_56*z_48*z_6*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_56*z_48*z_6*z_53 ,
z_56*z_48*z_6*z_54 + z_56*z_50*z_13*z_54 + z_56*z_54*z_55*z_43 ,
z_56*z_49*z_7*z_36 ,
z_56*z_49*z_8*z_51 + z_56*z_52*z_27*z_51 ,
z_56*z_50*z_11*z_39 ,
z_56*z_50*z_12*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_56*z_50*z_13*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 ,
z_56*z_50*z_13*z_52 + z_56*z_52*z_27*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_56*z_52*z_24*z_3 + z_56*z_52*z_27*z_52 ,
z_56*z_52*z_24*z_5 + z_56*z_48*z_5 + z_56*z_50*z_12 + z_56*z_54*z_55 ,
z_56*z_52*z_25*z_9 + z_56*z_52*z_27*z_52 ,
z_56*z_52*z_26*z_45 + z_56*z_52*z_27*z_52 + z_56*z_54*z_56*z_52 + z_56*z_48*z_3 + z_56*z_52 ,
z_56*z_52*z_27*z_48 + z_56*z_52*z_24 ,
z_56*z_52*z_27*z_49 ,
z_56*z_52*z_27*z_50 + z_56*z_54*z_55*z_42 + z_56*z_54*z_56*z_50 + z_55*z_42 + z_56*z_50 ,
z_56*z_52*z_27*z_53 ,
z_56*z_54*z_56*z_48 + z_56*z_52*z_24 ,
z_2*z_14*z_3 + z_3*z_26*z_45 + z_6*z_52 ,
z_2*z_14*z_6 + z_6*z_53*z_34 ,
z_2*z_15*z_30 + z_4*z_37*z_10 + z_4*z_38*z_11 + z_4*z_40*z_30 + z_6*z_51*z_22 ,
z_2*z_16*z_31 + z_6*z_48*z_2 + z_6*z_53*z_31 ,
z_2*z_16*z_32 + z_6*z_53*z_32 ,
z_2*z_16*z_34 + z_6*z_48*z_6 + z_6*z_49*z_8 + z_6*z_53*z_34 ,
z_3*z_27*z_48 + z_6*z_52*z_24 + z_4*z_35 ,
z_3*z_27*z_49 ,
z_3*z_27*z_53 + z_6*z_53 ,
z_4*z_35*z_3 ,
z_4*z_35*z_4 ,
z_4*z_35*z_6 + z_6*z_49*z_8 ,
z_4*z_38*z_12 + z_5*z_42*z_12 + z_6*z_48*z_5 ,
z_4*z_38*z_13 + z_6*z_54*z_56 ,
z_4*z_40*z_28 + z_6*z_48*z_2 ,
z_4*z_40*z_29 + z_6*z_53*z_32 ,
z_5*z_42*z_13 + z_6*z_49*z_8 + z_6*z_54*z_56 ,
z_5*z_43*z_55 ,
z_5*z_43*z_56 + z_6*z_49*z_8 + z_6*z_54*z_56 ,
z_6*z_49*z_7 ,
z_6*z_51*z_21 + z_6*z_53*z_32 ,
z_6*z_52*z_25 + z_4*z_37 ,
z_6*z_54*z_55 ,
z_7*z_38*z_12 + z_8*z_54*z_55 ,
z_8*z_49*z_7 ,
z_8*z_49*z_8 ,
z_8*z_50*z_12 + z_8*z_54*z_55 ,
z_8*z_51*z_21 ,
z_9*z_27*z_49 ,
z_9*z_27*z_51 ,
z_10*z_35*z_3 ,
z_10*z_35*z_6 + z_10*z_38*z_13 ,
z_10*z_38*z_11 ,
z_10*z_40*z_29 ,
z_11*z_35*z_5 + z_12*z_41*z_5 + z_13*z_48*z_5 + z_13*z_50*z_12 + z_13*z_54*z_55 ,
z_11*z_37*z_9 + z_12*z_41*z_3 + z_13*z_48*z_3 ,
z_11*z_37*z_10 + z_11*z_38*z_11 + z_12*z_41*z_4 + z_13*z_48*z_4 ,
z_11*z_38*z_12 + z_12*z_41*z_5 + z_13*z_48*z_5 ,
z_11*z_38*z_13 ,
z_11*z_39*z_21 ,
z_11*z_40*z_28 + z_13*z_48*z_2 ,
z_11*z_40*z_29 ,
z_12*z_41*z_2 + z_13*z_48*z_2 ,
z_12*z_41*z_6 + z_13*z_48*z_6 ,
z_12*z_43*z_55 + z_13*z_54*z_55 ,
z_12*z_43*z_56 + z_13*z_54*z_56 ,
z_13*z_50*z_11 ,
z_13*z_52*z_24 + z_11*z_35 ,
z_14*z_4*z_35 + z_16*z_34*z_48 ,
z_14*z_4*z_37 + z_15*z_30*z_37 ,
z_14*z_4*z_38 + z_15*z_30*z_38 ,
z_14*z_4*z_40 + z_16*z_31*z_15 ,
z_14*z_5*z_43 ,
z_14*z_6*z_48 + z_16*z_34*z_48 ,
z_14*z_6*z_49 ,
z_14*z_6*z_51 + z_16*z_34*z_51 ,
z_14*z_6*z_53 ,
z_14*z_6*z_54 ,
z_15*z_30*z_39 + z_16*z_34*z_51 ,
z_16*z_32*z_17 + z_16*z_34*z_51 ,
z_16*z_33*z_47 ,
z_17*z_23*z_48 ,
z_17*z_23*z_52 + z_19*z_34*z_52 ,
z_17*z_23*z_53 ,
z_18*z_30*z_38 ,
z_19*z_34*z_48 ,
z_21*z_17*z_23 + z_23*z_53*z_34 ,
z_21*z_18*z_30 + z_22*z_40*z_30 + z_23*z_48*z_4 ,
z_21*z_19*z_31 + z_23*z_53*z_31 ,
z_21*z_19*z_33 + z_23*z_53*z_33 ,
z_22*z_38*z_12 + z_23*z_48*z_5 ,
z_22*z_40*z_28 + z_23*z_53*z_31 ,
z_22*z_40*z_29 ,
z_23*z_48*z_2 ,
z_23*z_48*z_3 ,
z_23*z_48*z_6 ,
z_23*z_52*z_24 + z_22*z_35 ,
z_23*z_52*z_25 ,
z_24*z_2*z_15 + z_24*z_4*z_40 ,
z_24*z_2*z_16 + z_24*z_6*z_53 ,
z_24*z_4*z_35 ,
z_24*z_6*z_49 + z_27*z_49 ,
z_27*z_48*z_2 + z_27*z_53*z_31 ,
z_27*z_49*z_7 ,
z_27*z_49*z_8 ,
z_27*z_51*z_21 + z_27*z_53*z_32 ,
z_27*z_54*z_55 ,
z_28*z_16*z_34 + z_30*z_35*z_6 ,
z_31*z_14*z_4 + z_31*z_15*z_30 ,
z_31*z_14*z_6 + z_34*z_51*z_23 ,
z_32*z_17*z_23 + z_34*z_51*z_23 ,
z_32*z_19*z_33 + z_34*z_52*z_26 ,
z_32*z_19*z_34 + z_34*z_51*z_23 ,
z_34*z_48*z_2 ,
z_34*z_48*z_3 ,
z_34*z_48*z_4 ,
z_34*z_48*z_6 ,
z_34*z_51*z_21 ,
z_34*z_52*z_24 + z_31*z_14 + z_34*z_48 ,
z_35*z_4*z_35 ,
z_35*z_4*z_40 + z_37*z_10*z_40 + z_38*z_11*z_40 + z_39*z_21*z_18 + z_40*z_28*z_15 ,
z_35*z_6*z_48 + z_37*z_10*z_35 + z_38*z_13*z_48 + z_39*z_22*z_35 + z_39*z_23*z_48 ,
z_35*z_6*z_53 + z_40*z_28*z_16 ,
z_36*z_7*z_38 + z_36*z_8*z_50 ,
z_36*z_8*z_49 ,
z_37*z_10*z_38 + z_38*z_11*z_38 + z_38*z_12*z_42 ,
z_38*z_11*z_37 ,
z_38*z_12*z_41 + z_38*z_13*z_48 ,
z_38*z_12*z_43 + z_38*z_13*z_54 ,
z_38*z_13*z_50 ,
z_39*z_21*z_19 + z_40*z_29*z_19 ,
z_39*z_22*z_40 + z_40*z_29*z_18 ,
z_41*z_4*z_35 + z_41*z_6*z_48 + z_42*z_11*z_35 + z_42*z_12*z_41 ,
z_41*z_4*z_38 + z_43*z_56*z_50 ,
z_41*z_5*z_43 + z_42*z_13*z_54 + z_43*z_56*z_54 ,
z_41*z_6*z_49 + z_42*z_13*z_49 + z_43*z_56*z_49 ,
z_41*z_6*z_54 + z_43*z_55*z_43 ,
z_42*z_11*z_37 ,
z_43*z_55*z_41 ,
z_43*z_55*z_42 + z_43*z_56*z_50 ,
z_43*z_56*z_48 ,
z_43*z_56*z_52 ,
z_44*z_46*z_31 ,
z_44*z_46*z_33 ,
z_45*z_27*z_49 ,
z_45*z_27*z_53 + z_46*z_32*z_19 ,
z_45*z_27*z_54 ,
z_46*z_32*z_17 + z_46*z_34*z_51 ,
z_46*z_33*z_47 ,
z_48*z_2*z_14 + z_48*z_4*z_35 + z_48*z_6*z_48 + z_51*z_22*z_35 + z_52*z_27*z_48 + z_53*z_31*z_14 + z_53*z_34*z_48 + z_54*z_56*z_48 ,
z_48*z_2*z_16 + z_48*z_6*z_53 ,
z_48*z_5*z_43 + z_48*z_6*z_54 + z_50*z_12*z_43 + z_50*z_13*z_54 + z_52*z_27*z_54 ,
z_49*z_7*z_38 + z_54*z_55*z_42 ,
z_49*z_8*z_49 ,
z_49*z_8*z_50 + z_54*z_55*z_42 ,
z_50*z_11*z_35 + z_54*z_56*z_48 ,
z_50*z_11*z_37 ,
z_50*z_11*z_38 ,
z_50*z_12*z_41 + z_54*z_56*z_48 ,
z_50*z_13*z_48 + z_54*z_56*z_48 ,
z_51*z_21*z_17 + z_53*z_34*z_51 ,
z_51*z_21*z_18 + z_51*z_22*z_40 ,
z_51*z_21*z_19 + z_53*z_32*z_19 ,
z_51*z_23*z_48 + z_53*z_34*z_48 ,
z_51*z_23*z_53 + z_53*z_32*z_19 ,
z_52*z_24*z_2 + z_48*z_2 + z_53*z_31 ,
z_54*z_55*z_41 + z_54*z_56*z_48 ,
z_55*z_41*z_2 ,
z_55*z_41*z_3 + z_56*z_48*z_3 ,
z_55*z_41*z_4 + z_56*z_48*z_4 ,
z_55*z_42*z_12 + z_56*z_48*z_5 + z_56*z_54*z_55 ,
z_55*z_43*z_55 + z_56*z_50*z_12 + z_56*z_54*z_55 ,
z_56*z_48*z_2 ,

## The projective resolutions of the simple modules.

Degree 0:
1

Degree 1:
8

Degree 2:
1

### The projective resolution of simple module no. 1 is graded.

#### Simple Module Number 2

Degree 0:
2

Degree 1:
6 10 13 14 17

Degree 2:
2 2 2 2 3 3 4 4 5 5 5 9 9 10 11 12 12 18

Degree 3:
6 6 7 7 10 10 13 13 14 16 17 17

Degree 4:
2 2 2 2 3 4 4 4 5 5 9 9 10 11 12 12 12

Degree 5:
6 6 7 10 10 13 16

Degree 6:
2 4 11 12

Degree 7:
6 15 16

Degree 8:
12 15

Degree 9:
15

### The projective resolution of simple module no. 2 is not graded.

#### Simple Module Number 3

Degree 0:
3

Degree 1:
13 17

Degree 2:
2 2 3 4 5 9 10 11 12

Degree 3:
6 6 7 10 13 16

Degree 4:
2 4 11 12 15

Degree 5:
6 15 16

Degree 6:
12 15

Degree 7:
15

### The projective resolution of simple module no. 3 is not graded.

#### Simple Module Number 4

Degree 0:
4

Degree 1:
10 13

Degree 2:
2 2 3 4 4 4 4 5 5 9 9

Degree 3:
10 10 13 13 17

Degree 4:
2 2 2 3 4 4 4 4 4 5 5 7 9 9

Degree 5:
10 10 12 13

Degree 6:
2 4 4 7

Degree 7:
16

Degree 8:
15

### The projective resolution of simple module no. 4 is not graded.

#### Simple Module Number 5

Degree 0:
5

Degree 1:
13 14 17

Degree 2:
2 2 2 3 4 4 5 5 5 9 9 12 18

Degree 3:
6 7 10 10 13 14 17

Degree 4:
2 2 4 4 5 9 12 16

Degree 5:
10 15

### The projective resolution of simple module no. 5 is not graded.

#### Simple Module Number 6

Degree 0:
6

Degree 1:
2 11 12

Degree 2:
6 6 7 13 16 17

Degree 3:
2 2 3 3 5 9 10 11 12 12 12

Degree 4:
6 6 6 7 13 16 16 17

Degree 5:
2 2 3 10 11 11 12 12 12

Degree 6:
6 6 6 7 13 16 16

Degree 7:
2 11 12 12

Degree 8:
6 15 16

Degree 9:
12

Degree 10:
15

### The projective resolution of simple module no. 6 is not graded.

#### Simple Module Number 7

Degree 0:
7

Degree 1:
9 11 12

Degree 2:
6 7 7 7 13 17

Degree 3:
2 2 3 5 9 9 11 12 12 18

Degree 4:
4 6 7 7 7 14 17

Degree 5:
2 11 12 12

Degree 6:
4 6 7 7

Degree 7:
12

Degree 0:
8

Degree 1:
1

### The projective resolution of simple module no. 8 is graded.

#### Simple Module Number 9

Degree 0:
9

Degree 1:
7 13 17

Degree 2:
2 2 3 4 4 5 5 9 9 11 12 18

Degree 3:
6 7 7 10 13 14 17

Degree 4:
2 2 4 4 5 9 12

Degree 5:
10

### The projective resolution of simple module no. 9 is not graded.

#### Simple Module Number 10

Degree 0:
10

Degree 1:
2 4 16 17

Degree 2:
2 3 10 10 12 13 15 18

Degree 3:
2 2 3 4 4 5 5 6 9 13 16 18

Degree 4:
2 10 10 11 13 14 15 17

Degree 5:
2 2 4 4 5 6 9 10 16

Degree 6:
10 12

Degree 7:
15

### The projective resolution of simple module no. 10 is not graded.

#### Simple Module Number 11

Degree 0:
11

Degree 1:
6 7 13

Degree 2:
2 3 9 11 12

Degree 3:
6 7 16 17

Degree 4:
2 3 10 11 12 12

Degree 5:
6 6 7 13 16

Degree 6:
2 11 12

Degree 7:
6 16

Degree 8:
12

Degree 9:
15

### The projective resolution of simple module no. 11 is not graded.

#### Simple Module Number 12

Degree 0:
12

Degree 1:
6 7 16 17

Degree 2:
2 2 3 5 9 10 11 12 12 12 18

Degree 3:
6 6 6 7 7 13 13 14 16 17

Degree 4:
2 2 2 3 5 9 11 11 12 12 12

Degree 5:
4 6 6 6 7 7 16 16 17

Degree 6:
2 3 10 11 12 12 12 12

Degree 7:
6 6 7 13 15 16

Degree 8:
2 11 12

Degree 9:
6 16

Degree 10:
12

Degree 11:
15

### The projective resolution of simple module no. 12 is not graded.

#### Simple Module Number 13

Degree 0:
13

Degree 1:
2 3 4 5 9 11

Degree 2:
6 7 10 13 17

Degree 3:
2 2 3 4 4 5 9 10 12 12

Degree 4:
6 10 13 16

Degree 5:
2 4 11

Degree 6:
6 16

Degree 7:
12 15

Degree 8:
15

Degree 0:
14

Degree 1:
2 5 18

Degree 2:
14 17

Degree 3:
2 5 9 12

Degree 4:
7 10

Degree 5:
16

Degree 6:
15

### The projective resolution of simple module no. 14 is not graded.

#### Simple Module Number 15

Degree 0:
15

Degree 1:
16

Degree 2:
10 15

Degree 3:
17

Degree 4:
3 10 15 18

Degree 5:
3 5 16 18

Degree 6:
3 14 15 17

Degree 7:
2 3 10 12 13

Degree 8:
2 4 6 13 15 16

Degree 9:
2 11 15 16

Degree 10:
6 15 16

Degree 11:
12 15

Degree 12:
15

### The projective resolution of simple module no. 15 is not graded.

#### Simple Module Number 16

Degree 0:
16

Degree 1:
10 12 15

Degree 2:
6 16 17

Degree 3:
2 3 10 11 12 18

Degree 4:
5 6 6 13 16 16 18

Degree 5:
2 3 10 11 12 12 14 15

Degree 6:
6 6 13 16 16

Degree 7:
2 4 11 12

Degree 8:
6 15 16

Degree 9:
12 15

Degree 10:
15

### The projective resolution of simple module no. 16 is not graded.

#### Simple Module Number 17

Degree 0:
17

Degree 1:
2 3 5 9 10 12 18

Degree 2:
6 7 13 14 16 17

Degree 3:
2 2 4 5 9 11 12 15

Degree 4:
6 7 10

Degree 5:
12

Degree 6:
15

Degree 0:
18

Degree 1:
14 17

Degree 2:
2 5 9 10 12

Degree 3:
7 10 16

Degree 4:
15 16

Degree 5:
15