Schur Algebra S(
4
,8) in characteristic 2
Field k
Finite field of size 2
The Module M
The module M is the direct sum of permutation module with
point stabilizers being the Young subgroups corresponding to partitions
of lenght at most 4.
. The dimension of M is 8143
.
The dimensions of the irreducible submodules modules are
64,
40,
14,
8,
6,
1
.
The simple module number 1 has dimension 64 and corresponds to the partition
[ 5, 2, 1 ]
.
The simple module number 2 has dimension 40 and corresponds to the partition
[ 4, 3, 1 ]
.
The simple module number 3 has dimension 14 and corresponds to the partition
[ 6, 2 ]
.
The simple module number 4 has dimension 8 and corresponds to the partition
[ 5, 3 ]
.
The simple module number 5 has dimension 6 and corresponds to the partition
[ 7, 1 ]
.
The simple module number 6 has dimension 1 and corresponds to the partition
[ 8 ]
.
The module M has radical filtration (Loewy series)
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
5,
5,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
6,
6,
6,
6,
6,
6
3,
3,
3,
3,
6,
6,
6,
6,
6,
6
3,
3,
6,
6,
6
2,
2,
2
The module M has socle filtration (socle series)
2,
2,
2
3,
3,
6,
6,
6
3,
3,
3,
3,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
5,
5,
6,
6,
6,
6,
6,
6
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
4,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6
The module M has simple direct summands:
30 copies of simple module number 1
1 copy of simple module number 6
The remaining indecomposable components of M
have radical and socle filtrations as follows:
1). 6 direct summands of the form:
radical layers
6
5
6
socle layers
6
5
6
2). 2 direct summands of the form:
radical layers
5,
6
3,
6
5
socle layers
5
3,
6
5,
6
3). 8 direct summands of the form:
radical layers
3
5
4
5
3
socle layers
3
5
4
5
3
4). 5 direct summands of the form:
radical layers
5
3,
6
5,
6
3
5
socle layers
5
3
5,
6
3,
6
5
5). 1 direct summand of the form:
radical layers
5,
6
3,
4,
6
5,
5
3,
4
5
socle layers
5
3,
4
5,
5
3,
4,
6
5,
6
6). 2 direct summands of the form:
radical layers
6
2,
5
4,
6,
6
3,
6
5,
6
2
6
3
6
2
6
socle layers
6
2
6
3
6
2
5,
6
3,
6
4,
6,
6
2,
5
6
7). 1 direct summand of the form:
radical layers
3,
6
5,
5,
6
3,
4,
6
5,
5
3,
5
4,
6
5
3
socle layers
3
5
4,
6
3,
5
5,
5
3,
4,
6
5,
5,
6
3,
6
8). 7 direct summands of the form:
radical layers
5
3,
4,
6
5,
5,
6
2,
3,
3,
4
5,
5,
6
3,
4,
6
5
socle layers
5
3,
4,
6
5,
5,
6
2,
3,
3,
4
5,
5,
6
3,
4,
6
5
9). 3 direct summands of the form:
radical layers
3,
5
3,
4,
5,
6,
6
2,
3,
4,
5,
5
3,
4,
5,
5,
6
3,
3,
4,
5,
6
5,
6
2
6
3
socle layers
3
6
2
5,
6
3,
3,
4,
5,
6
3,
4,
5,
5,
6
2,
3,
4,
5,
5
3,
4,
5,
6,
6
3,
5
10). 3 direct summands of the form:
radical layers
2
4,
6
3,
6
3,
5,
6
2,
5,
6
2,
4,
6
3,
5,
6
3,
5,
6
2,
4,
6
2,
6
3,
6
3,
6
6
2
socle layers
2
6
3,
6
3,
6
2,
6
2,
4,
6
3,
5,
6
3,
5,
6
2,
4,
6
2,
5,
6
3,
5,
6
3,
6
4,
6
2
11). 2 direct summands of the form:
radical layers
3
5,
6
2,
3,
4
5,
5,
6
3,
3,
4,
5,
6
3,
4,
5,
6,
6
2,
5,
5
3,
4,
6
3,
5
6
2
6
3
socle layers
3
6
2
6
3,
5
3,
4,
6
2,
5,
5
3,
4,
5,
6,
6
3,
3,
4,
5,
6
5,
5,
6
2,
3,
4
5,
6
3
12). 1 direct summand of the form:
radical layers
3,
3,
6
2,
5,
5,
5,
6
2,
3,
4,
4,
4,
6,
6
3,
5,
5,
5,
6,
6
3,
3,
3,
3,
4,
5,
5,
6,
6
2,
4,
5,
5,
6,
6
2,
4,
5,
6
3,
3,
5,
6
3,
6
2,
6
2,
6
3,
6
socle layers
3,
6
2,
6
2,
6
3,
6
3,
3,
5,
6
2,
4,
5,
6
2,
4,
5,
5,
6,
6
3,
3,
3,
3,
4,
5,
5,
6,
6
3,
5,
5,
5,
6,
6
2,
3,
4,
4,
4,
6,
6
2,
5,
5,
5,
6
3,
3,
6
13). 1 direct summand of the form:
radical layers
2,
3,
4,
5,
6
2,
3,
4,
4,
5,
5,
6,
6,
6
2,
3,
3,
3,
4,
5,
5,
6,
6
3,
4,
4,
5,
5,
5,
5,
6,
6,
6,
6
2,
3,
3,
3,
4,
5,
5,
6,
6
2,
3,
4,
5,
5,
5,
6,
6
2,
3,
3,
4,
5,
6,
6
5,
6,
6
2,
3,
4
6,
6
2,
3
socle layers
2,
3
6,
6
2,
3,
4
5,
6,
6
2,
3,
3,
4,
5,
6,
6
2,
3,
4,
5,
5,
5,
6,
6
2,
3,
3,
3,
4,
5,
5,
6,
6
3,
4,
4,
5,
5,
5,
5,
6,
6,
6,
6
2,
3,
3,
3,
4,
5,
5,
6,
6
2,
3,
4,
4,
5,
5,
6,
6,
6
2,
3,
4,
5,
6
The Action Algebra
The action algebra A is the image of kG in the
k-endomorphism ring of M. It's simple modules are the irreducible
submodules of M.
The dimensions of the projective modules are
64,
384,
536,
321,
494,
832
.
The cartan matrix of A is
1,
0,
0,
0,
0,
0
0,
6,
6,
3,
4,
12
0,
6,
12,
6,
11,
14
0,
3,
6,
7,
9,
7
0,
4,
11,
9,
16,
12
0,
12,
14,
7,
12,
28
The determinant of the Cartan matrix is 610.
The blocks of A consist of the following irreducible
modules:
(1).
1
(2).
2,
3,
4,
5,
6
Projective module number 1 is simple.
The radical and socle filtrations of the remaining
projective modules for A are the following:
Projective module number 2
radical layers
2
4,
6
3,
6
3,
5,
6
2,
5,
6
2,
4,
6
3,
5,
6
3,
5,
6
2,
4,
6
2,
6
3,
6
3,
6
6
2
socle layers
2
6
3,
6
3,
6
2,
6
2,
4,
6
3,
5,
6
3,
5,
6
2,
4,
6
2,
5,
6
3,
5,
6
3,
6
4,
6
2
Projective module number 3
radical layers
3
3,
5,
6
2,
3,
4,
5,
6
2,
4,
5,
5,
6
3,
3,
4,
5,
5,
6,
6
3,
3,
3,
4,
5,
5,
6,
6
2,
4,
5,
5,
6,
6
2,
3,
4,
6
3,
5,
6
3,
6
2,
6
2,
6
3
socle layers
3
6
2,
3
6,
6
2,
3,
5
3,
4,
6,
6
2,
3,
5,
5,
5
3,
4,
4,
5,
6,
6,
6
2,
3,
3,
4,
5,
5,
6
3,
5,
5,
5,
6,
6
2,
3,
3,
4,
6
4,
5,
6,
6
2,
3
Projective module number 4
radical layers
4
2,
4,
5
3,
4,
5,
6
3,
4,
5,
6,
6
3,
5,
5,
6
2,
3,
4,
5,
5
3,
4,
5,
6,
6
3,
5,
6
2,
4
socle layers
4
5
3,
4,
5
2,
3,
4,
5
5,
5,
6,
6
3,
4,
5,
6,
6
2,
3,
3,
4,
5,
6
4,
5,
5,
6,
6
2,
3,
4
Projective module number 5
radical layers
5
3,
4,
5,
6
3,
4,
5,
5,
6,
6
2,
3,
3,
4,
5,
5,
5,
6
2,
3,
3,
4,
4,
5,
5,
5,
6,
6
3,
3,
4,
4,
5,
5,
5,
6,
6,
6,
6
2,
3,
3,
4,
5,
5,
6
2,
4,
5,
6
3
socle layers
5
3,
4
5,
5,
5
3,
3,
4,
4,
5,
6
3,
3,
4,
5,
5,
5,
6,
6,
6
2,
3,
4,
5,
5,
5,
6,
6
2,
2,
3,
3,
4,
5,
5,
6,
6
3,
4,
4,
5,
5,
6,
6,
6,
6
2,
3,
3,
4,
5
Projective module number 6
radical layers
6
2,
3,
5,
6
2,
3,
4,
5,
5,
6,
6,
6
2,
3,
4,
4,
5,
6,
6,
6,
6
2,
3,
3,
4,
5,
5,
6,
6,
6
2,
3,
3,
5,
5,
5,
5,
6,
6
2,
3,
3,
4,
4,
5,
6,
6,
6
2,
3,
4,
5,
6,
6,
6
2,
3,
6,
6
2,
3,
6,
6
2,
3,
6,
6
2,
3,
6,
6
2
socle layers
6
3,
6
2,
3,
6
2,
2,
6,
6
2,
3,
6,
6
3,
3,
5,
5,
6,
6
2,
3,
5,
5,
6,
6
2,
2,
4,
4,
4,
6,
6,
6
2,
3,
3,
5,
5,
5,
6,
6,
6
3,
3,
3,
5,
5,
5,
6,
6,
6
2,
3,
3,
4,
4,
6,
6,
6,
6
2,
4,
4,
5,
5,
6,
6,
6
2,
2,
3,
6
The degrees of the splitting fields are
1,
1,
1,
1,
1,
1
.
The Basic Algebra H of the Schur Algebra
The dimension of H is
726
.
The dimensions of the irreducible H-modules are
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
.
The Simple modules for H correspond to the
following direct summands of the module M.
Simple H-module 1 corresponds
to the direct summand of M isomorphic to simple A-module 1.
Simple H-module 2 corresponds
to the direct summand of M isomorphic to simple A-module 6.
Simple H-module 3 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 1.
Simple H-module 4 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 2.
Simple H-module 5 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 3.
Simple H-module 6 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 4.
Simple H-module 7 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 5.
Simple H-module 8 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 6.
Simple H-module 9 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 7.
Simple H-module 10 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 8.
Simple H-module 11 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 9.
Simple H-module 12 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 10.
Simple H-module 13 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 11.
Simple H-module 14 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 12.
Simple H-module 15 corresponds
to the direct summand of M isomorphic to the
nonsimple A-module 13.
The degrees of the splitting fields are
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
.
The dimensions of the projective modules of H are
1,
24,
55,
18,
30,
29,
86,
39,
31,
56,
8,
46,
136,
53,
114
.
The cartan matrix of H is
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
0,
2,
2,
0,
1,
0,
4,
0,
1,
2,
0,
2,
4,
2,
4
0,
2,
6,
1,
3,
1,
8,
2,
2,
4,
0,
4,
10,
4,
8
0,
0,
1,
2,
1,
0,
1,
2,
2,
0,
1,
2,
2,
2,
2
0,
1,
3,
1,
3,
0,
4,
1,
2,
2,
0,
2,
4,
3,
4
0,
0,
1,
0,
0,
6,
2,
3,
0,
3,
0,
0,
8,
0,
6
0,
4,
8,
1,
4,
2,
13,
3,
3,
7,
0,
6,
16,
6,
13
0,
0,
2,
2,
1,
3,
3,
5,
2,
2,
1,
2,
8,
2,
6
0,
1,
2,
2,
2,
0,
3,
2,
3,
1,
1,
3,
4,
3,
4
0,
2,
4,
0,
2,
3,
7,
2,
1,
7,
0,
2,
12,
4,
10
0,
0,
0,
1,
0,
0,
0,
1,
1,
0,
1,
1,
1,
1,
1
0,
2,
4,
2,
2,
0,
6,
2,
3,
2,
1,
5,
7,
4,
6
0,
4,
10,
2,
4,
8,
16,
8,
4,
12,
1,
7,
30,
8,
22
0,
2,
4,
2,
3,
0,
6,
2,
3,
4,
1,
4,
8,
6,
8
0,
4,
8,
2,
4,
6,
13,
6,
4,
10,
1,
6,
22,
8,
20
The determinant of the Cartan matrix is 1.
The blocks of H consist of the following irreducible
modules:
(1).
1
(2).
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
Projective module number 1 is simple.
The radical and socle filtrations of the remaining
projective modules for H are the following:
Projective module number 2
radical layers
2
7,
15
12,
13,
14
7,
9,
15
3,
10,
12,
13
5,
7,
13
2,
3
7,
15
13,
14
15
10
socle layers
2
7
12,
13
7,
9,
15
12,
13,
14
3,
7,
15
2,
5,
10
3,
13,
15
7,
14
13,
15
10
Projective module number 3
radical layers
3
5,
7,
13,
15
3,
12,
13,
14
7,
7,
8,
9,
10,
15
2,
3,
4,
12,
13,
13,
13,
15
5,
6,
7,
7,
8,
10,
13,
14,
15
2,
3,
12,
13,
14,
15
7,
7,
9,
15,
15
3,
10,
12,
13,
13,
14
5,
7,
13,
15
3,
10
socle layers
3
5,
7
3,
12,
13,
13
7,
7,
9,
15
2,
3,
12,
13,
14
5,
7,
7,
8,
10,
13,
15
2,
3,
4,
10,
12,
13,
13,
15
7,
7,
8,
9,
14,
15,
15
3,
12,
13,
13,
14,
14,
15
5,
6,
7,
10,
13,
15,
15
3,
10,
13
Projective module number 4
radical layers
4
8,
9,
14
5,
12,
13,
15
7,
11
3,
12
9
4,
13
8,
14
15
socle layers
4
9
12
8,
11
12,
13
7,
9,
14
4,
5,
13,
15
3,
8,
14
15
Projective module number 5
radical layers
5
3,
9,
14
4,
5,
7,
13,
15
9,
12,
13,
14
5,
7,
8,
10
2,
3,
15
7,
13,
15
12,
13,
14
7,
15
3,
10
socle layers
5
3
7,
9
12,
13,
14
5,
7,
13,
15
2,
3,
4,
10
7,
8,
9,
15
12,
13,
14,
14
5,
7,
13,
15,
15
3,
10
Projective module number 6
radical layers
6
13,
15
6,
8,
10
13,
13,
15,
15
6,
6,
7
3,
13
8,
10,
13
13,
15,
15
6,
7
13
8,
10
13,
15
6
socle layers
6
13,
15
8,
10
13
6,
7
13,
15,
15
8,
10,
13
3,
13
6,
6,
7
13,
13,
15,
15
6,
8,
10
13,
15
6
Projective module number 7
radical layers
7
2,
3,
12,
13
5,
7,
7,
8,
9,
10,
13,
15
2,
3,
3,
4,
12,
12,
13,
13,
13,
14,
15,
15
5,
6,
7,
7,
7,
7,
7,
8,
9,
13,
14,
14,
15,
15
2,
3,
3,
10,
12,
12,
13,
13,
13,
13,
14,
15,
15
5,
7,
7,
7,
8,
9,
10,
10,
13,
15,
15
2,
3,
3,
10,
12,
13,
13,
13,
14,
15
5,
6,
7,
7,
13,
15,
15
3,
10,
13,
14
15
10
socle layers
7
2,
3
5,
7,
13
3,
8,
10,
12,
12,
13
7,
7,
9,
9,
13,
13,
15,
15
2,
3,
7,
7,
12,
12,
13,
13,
14,
14
3,
5,
7,
7,
7,
13,
13,
15,
15
2,
2,
3,
4,
5,
8,
10,
10,
12,
13,
13,
15
3,
7,
7,
8,
9,
13,
14,
15,
15,
15
3,
6,
7,
10,
12,
13,
14,
14,
14,
15
5,
7,
10,
13,
13,
13,
15,
15,
15,
15
3,
6,
10,
10,
13
Projective module number 8
radical layers
8
4,
13,
15
6,
7,
8,
9,
14
3,
12,
13,
13,
15
5,
7,
8,
10,
11,
13
3,
12,
13,
15,
15
6,
7,
9
4,
13,
13
8,
8,
10,
14
13,
15,
15
6
socle layers
8
13
4,
7
9,
13,
15
8,
10,
12
3,
8,
11,
13
6,
7,
12,
13
7,
9,
13,
13,
14,
15,
15
4,
5,
6,
8,
10,
13,
15
3,
8,
13,
14,
15
6,
15
Projective module number 9
radical layers
9
4,
5,
12,
13
7,
8,
9,
11,
14
2,
3,
5,
12,
15
7,
9,
13,
15
4,
12,
13,
13,
14
7,
8,
14,
15
3,
10,
15
socle layers
9
12,
13
5,
7,
11
2,
3,
4,
12
7,
8,
9,
9,
15
4,
12,
13,
13,
14,
14
5,
7,
8,
13,
14,
15,
15
3,
10,
15
Projective module number 10
radical layers
10
13,
15
6,
7,
14
3,
13,
15
2,
5,
8,
10,
10,
13
3,
7,
13,
13,
15,
15,
15
6,
7,
7,
12,
13,
14,
14
7,
9,
13,
13,
15,
15
3,
8,
10,
10,
10,
12,
13
5,
7,
13,
13,
15
2,
3,
6
7,
15
13,
14
15
10
socle layers
10
15
13,
14
7,
15
2,
3
5,
7,
13
3,
8,
10,
10,
12,
13
7,
9,
13,
13,
15,
15
7,
7,
12,
13,
14,
14
3,
7,
13,
13,
15,
15
2,
5,
6,
8,
10,
10
3,
13,
13,
15,
15
6,
7,
10,
14
13,
13,
15,
15
6,
10
Projective module number 11
radical layers
11
12
9
4,
13
8,
14
15
socle layers
11
12
9
4,
13
8,
14
15
Projective module number 12
radical layers
12
7,
9,
11
2,
3,
4,
12,
12,
13
5,
7,
7,
8,
9,
13,
14,
15
2,
3,
4,
12,
13,
13,
14,
15
7,
7,
8,
9,
14,
15,
15
3,
10,
12,
13,
13,
14,
15
5,
7,
13,
15
3,
10
socle layers
12
7,
9
2,
3,
12,
13
5,
7,
7,
11
2,
3,
4,
12,
12,
13,
13,
15
7,
7,
8,
9,
9,
14,
15
3,
4,
12,
13,
13,
14,
14,
15
5,
7,
8,
10,
13,
14,
15,
15
3,
10,
13,
15
Projective module number 13
radical layers
13
3,
6,
7,
8,
9,
10
2,
3,
4,
5,
7,
12,
13,
13,
13,
13,
13,
13,
15,
15,
15
5,
6,
6,
7,
7,
7,
8,
8,
10,
11,
12,
13,
13,
14,
14,
15
2,
3,
3,
3,
7,
8,
9,
10,
12,
12,
13,
13,
13,
14,
15,
15,
15,
15
2,
3,
6,
7,
7,
7,
7,
8,
9,
9,
10,
10,
13,
13,
13,
14,
15,
15,
15
3,
4,
5,
6,
7,
10,
12,
12,
13,
13,
13,
13,
13,
13,
13,
13,
14,
15,
15,
15,
15
5,
6,
7,
7,
7,
8,
8,
10,
10,
12,
13,
13,
14,
14,
15
2,
3,
3,
7,
10,
13,
13,
15,
15,
15
3,
6,
7,
8,
10,
10,
15
13,
13,
13,
14,
15
6,
15
10
socle layers
13
7
2,
3,
8,
10
3,
5,
7,
13,
13
3,
7,
7,
8,
10,
12,
13,
15
7,
9,
9,
12,
13,
13,
13,
13,
14,
15,
15,
15
6,
7,
7,
7,
8,
10,
12,
12,
13,
13,
13,
13,
14,
14,
15
2,
3,
3,
3,
5,
7,
7,
10,
11,
13,
13,
13,
13,
15,
15,
15
2,
2,
3,
4,
5,
6,
6,
7,
7,
8,
8,
10,
10,
10,
12,
15
3,
7,
8,
9,
9,
12,
13,
13,
13,
13,
14,
15,
15,
15,
15,
15
4,
6,
6,
7,
7,
8,
10,
10,
12,
13,
13,
13,
13,
13,
14,
14,
14,
15,
15
3,
5,
6,
7,
8,
10,
13,
13,
13,
13,
14,
15,
15,
15,
15,
15
3,
6,
6,
10,
10,
13,
15
Projective module number 14
radical layers
14
4,
5,
15
2,
3,
8,
9,
10,
14,
14
5,
7,
12,
13,
13,
15,
15,
15
7,
7,
11,
12,
13,
14
3,
7,
9,
12,
13,
15
3,
9,
10,
10,
12,
13
4,
5,
7,
13,
13
2,
3,
8,
14
7,
15,
15
13,
14
15
10
socle layers
14
15
2
5,
7
3,
4,
10,
12,
13
7,
9,
9,
13,
15
7,
12,
12,
13,
14,
14
3,
7,
8,
11,
13,
15,
15
2,
5,
10,
10,
12,
13
3,
7,
9,
13,
14,
15
4,
5,
7,
13,
14,
15
3,
8,
13,
14,
15
10,
15
Projective module number 15
radical layers
15
2,
3,
6,
8,
10,
14
4,
5,
7,
13,
13,
13,
15,
15,
15,
15,
15
2,
3,
6,
6,
7,
7,
8,
9,
10,
12,
13,
14,
14,
14
3,
7,
7,
9,
12,
13,
13,
13,
13,
15,
15,
15,
15
3,
5,
7,
7,
8,
8,
10,
10,
10,
11,
12,
12,
13,
13,
13,
14
3,
5,
7,
7,
9,
12,
13,
13,
13,
13,
15,
15,
15,
15
2,
3,
3,
6,
6,
7,
9,
10,
10,
12,
13
4,
5,
7,
7,
13,
13,
13,
15
2,
3,
8,
8,
10,
13,
14,
14
7,
13,
15,
15,
15,
15
6,
10,
13,
14
15
10
socle layers
15
14
15
2,
2,
3,
8,
10
5,
7,
7,
13
3,
4,
6,
7,
10,
12,
12,
13,
13,
13
7,
7,
9,
9,
9,
13,
13,
15,
15,
15,
15,
15
7,
7,
8,
10,
12,
12,
12,
13,
13,
14,
14,
14
3,
3,
3,
7,
7,
8,
11,
13,
13,
13,
13,
15,
15,
15
2,
2,
5,
5,
6,
6,
7,
8,
10,
10,
10,
10,
12,
13
3,
3,
7,
9,
13,
13,
13,
13,
14,
15,
15,
15,
15
4,
5,
6,
7,
7,
8,
10,
13,
14,
14,
15,
15
3,
8,
13,
13,
13,
13,
14,
15,
15,
15
6,
6,
10,
10,
15
A presentation for H is the quotient of a polynomial
ring P in noncommuting variables
b_1
,
b_2
,
b_3
,
b_4
,
b_5
,
b_6
,
b_7
,
b_8
,
b_9
,
b_10
,
b_11
,
b_12
,
b_13
,
b_14
,
b_15
,
z_1
,
z_2
,
z_3
,
z_4
,
z_5
,
z_6
,
z_7
,
z_8
,
z_9
,
z_10
,
z_11
,
z_12
,
z_13
,
z_14
,
z_15
,
z_16
,
z_17
,
z_18
,
z_19
,
z_20
,
z_21
,
z_22
,
z_23
,
z_24
,
z_25
,
z_26
,
z_27
,
z_28
,
z_29
,
z_30
,
z_31
,
z_32
,
z_33
,
z_34
,
z_35
,
z_36
,
z_37
,
z_38
,
z_39
,
z_40
,
z_41
,
z_42
,
z_43
,
z_44
,
z_45
,
z_46
,
by an ideal of relations.
The generators designated by a subscripted 'b' are generators
for subspaces determined by primitive idempotents. The generators given
by subscripted 'z' are generators for the radical.
A Groebner basis for
the ideal of relation consists of
the elements:
z_12*z_40*z_46*z_40*z_45*z_26
,
z_25*z_34*z_18*z_35*z_21*z_45
,
z_27*z_46*z_40*z_42*z_6*z_41 + z_27*z_46*z_40*z_41 + z_26*z_34*z_15
,
z_27*z_46*z_40*z_45*z_26*z_34 + z_27*z_42*z_5*z_34
,
z_40*z_46*z_40*z_42*z_6*z_41
,
z_40*z_46*z_40*z_45*z_26*z_34 + z_39*z_10*z_5*z_34 + z_40*z_42*z_5*z_34
,
z_46*z_38*z_8*z_24*z_31*z_28 + z_44*z_20*z_34*z_17
,
z_1*z_18*z_32*z_6*z_41
,
z_1*z_18*z_32*z_6*z_45 + z_2*z_45
,
z_1*z_18*z_34*z_15*z_2 + z_2*z_42*z_6
,
z_1*z_18*z_36*z_25*z_34 + z_2*z_42*z_5*z_34 + z_1*z_18*z_34
,
z_1*z_18*z_36*z_25*z_35
,
z_1*z_18*z_37*z_26*z_34 + z_2*z_42*z_5*z_34
,
z_2*z_42*z_5*z_34*z_16
,
z_6*z_41*z_1*z_18*z_34 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_5*z_34
,
z_6*z_41*z_1*z_18*z_36 + z_5*z_36
,
z_6*z_41*z_1*z_18*z_37 + z_6*z_46*z_40*z_45 + z_5*z_37 + z_6*z_45
,
z_6*z_44*z_20*z_34*z_17
,
z_6*z_44*z_20*z_34*z_18 + z_5*z_32*z_5 + z_5*z_36*z_25
,
z_6*z_46*z_40*z_41*z_1 + z_5*z_32*z_4
,
z_6*z_46*z_40*z_41*z_2 + z_5*z_35*z_21 + z_5*z_37*z_27 + z_6*z_45*z_27
,
z_6*z_46*z_40*z_45*z_26 + z_6*z_42*z_5
,
z_6*z_46*z_40*z_45*z_27 + z_5*z_37*z_27 + z_6*z_45*z_27
,
z_6*z_46*z_40*z_46*z_39
,
z_6*z_46*z_40*z_46*z_40 + z_5*z_35*z_21 + z_6*z_41*z_2 + z_6*z_44*z_21 +
z_6*z_45*z_27
,
z_8*z_24*z_30*z_22*z_9 + z_9*z_39*z_12
,
z_11*z_25*z_34*z_18*z_35
,
z_11*z_25*z_34*z_18*z_37 + z_12*z_40*z_46*z_40*z_45
,
z_12*z_40*z_41*z_1*z_17 + z_10*z_4*z_17 + z_11*z_24
,
z_12*z_40*z_41*z_1*z_18 + z_11*z_25*z_34*z_18 + z_12*z_40*z_44*z_20
,
z_12*z_40*z_44*z_20*z_34 + z_12*z_40*z_41*z_1 + z_10*z_5*z_34 + z_11*z_25*z_34
,
z_12*z_40*z_44*z_20*z_35
,
z_12*z_40*z_45*z_27*z_45
,
z_12*z_40*z_46*z_40*z_42
,
z_14*z_44*z_21*z_44*z_20 + z_13*z_37*z_26 + z_14*z_45*z_26
,
z_14*z_44*z_21*z_44*z_21 + z_13*z_37*z_27 + z_14*z_45*z_27
,
z_14*z_44*z_21*z_45*z_26 + z_13*z_34*z_18 + z_13*z_35*z_20 + z_14*z_43*z_13 +
z_14*z_44*z_20
,
z_14*z_44*z_21*z_45*z_27 + z_13*z_35*z_21 + z_14*z_42*z_6 + z_14*z_44*z_21
,
z_14*z_45*z_27*z_43*z_13 + z_14*z_42*z_5
,
z_16*z_6*z_44*z_20*z_34 + z_18*z_34*z_16*z_4 + z_18*z_34*z_17*z_29 +
z_18*z_35*z_20*z_34 + z_18*z_37*z_26*z_34
,
z_16*z_6*z_46*z_40*z_41 + z_18*z_32*z_6*z_41
,
z_16*z_6*z_46*z_40*z_45 + z_16*z_5*z_37 + z_16*z_6*z_45
,
z_16*z_6*z_46*z_40*z_46 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_17*z_29*z_15*z_2*z_46 + z_18*z_36*z_22*z_9 + z_18*z_37*z_27*z_46 +
z_16*z_6*z_46
,
z_17*z_29*z_16*z_5*z_37 + z_18*z_34*z_18*z_37 + z_18*z_35*z_21*z_45 +
z_15*z_2*z_45
,
z_17*z_30*z_25*z_34*z_15 + z_18*z_32*z_6*z_41 + z_18*z_34*z_15
,
z_17*z_30*z_25*z_34*z_17 + z_17*z_29*z_17 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_17*z_30*z_25*z_34*z_18 + z_17*z_29*z_16*z_5 + z_17*z_29*z_18 + z_18*z_33*z_13
,
z_18*z_32*z_6*z_45*z_26 + z_18*z_33*z_13
,
z_18*z_32*z_6*z_45*z_27 + z_16*z_6*z_44*z_21 + z_16*z_6*z_46*z_40 +
z_17*z_29*z_16*z_6 + z_18*z_32*z_6 + z_18*z_33*z_14
,
z_18*z_34*z_15*z_2*z_45
,
z_18*z_34*z_15*z_2*z_46 + z_18*z_36*z_23*z_12
,
z_18*z_34*z_16*z_4*z_17 + z_17*z_29*z_17 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_18*z_34*z_16*z_4*z_18 + z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_18*z_34*z_18
,
z_18*z_34*z_16*z_5*z_32
,
z_18*z_34*z_16*z_5*z_34 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_37*z_26*z_34 + z_16*z_5*z_34 + z_18*z_32*z_4 +
z_18*z_34
,
z_18*z_34*z_16*z_5*z_37 + z_18*z_32*z_6*z_45 + z_18*z_34*z_18*z_37 +
z_18*z_35*z_21*z_45 + z_16*z_5*z_37 + z_16*z_6*z_45
,
z_18*z_34*z_16*z_6*z_44
,
z_18*z_34*z_16*z_6*z_45 + z_18*z_32*z_6*z_45 + z_18*z_34*z_18*z_37 +
z_18*z_35*z_21*z_45 + z_15*z_2*z_45 + z_16*z_5*z_37 + z_16*z_6*z_45
,
z_18*z_34*z_16*z_6*z_46 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_18*z_34*z_18*z_32*z_4
,
z_18*z_34*z_18*z_32*z_5 + z_18*z_33*z_13
,
z_18*z_34*z_18*z_32*z_6
,
z_18*z_34*z_18*z_33*z_14
,
z_18*z_34*z_18*z_37*z_26 + z_17*z_29*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_30*z_25 + z_18*z_33*z_13 + z_18*z_35*z_20 + z_18*z_36*z_25 +
z_18*z_37*z_26
,
z_18*z_34*z_18*z_37*z_27 + z_18*z_33*z_14
,
z_18*z_35*z_20*z_34*z_18 + z_17*z_29*z_16*z_5 + z_18*z_32*z_4*z_18 +
z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 + z_17*z_30*z_25 +
z_18*z_32*z_5 + z_18*z_33*z_13 + z_18*z_36*z_25
,
z_18*z_35*z_21*z_45*z_26 + z_17*z_29*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_30*z_25 + z_18*z_35*z_20 + z_18*z_36*z_25 + z_18*z_37*z_26
,
z_18*z_35*z_21*z_45*z_27 + z_18*z_33*z_14
,
z_18*z_36*z_25*z_34*z_15 + z_18*z_34*z_15
,
z_18*z_36*z_25*z_34*z_17 + z_17*z_29*z_17 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_18*z_36*z_25*z_34*z_18 + z_16*z_6*z_44*z_20 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_33*z_13 + z_18*z_35*z_20 +
z_18*z_36*z_25 + z_18*z_37*z_26
,
z_18*z_36*z_25*z_35*z_20 + z_16*z_6*z_44*z_20 + z_18*z_34*z_16*z_5 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_33*z_13 + z_18*z_34*z_18 +
z_18*z_35*z_20 + z_18*z_36*z_25 + z_18*z_37*z_26
,
z_18*z_36*z_25*z_35*z_21 + z_18*z_37*z_27*z_46*z_40 + z_16*z_6*z_44*z_21 +
z_16*z_6*z_46*z_40 + z_17*z_29*z_16*z_6 + z_18*z_34*z_15*z_2 +
z_18*z_34*z_16*z_6 + z_18*z_33*z_14
,
z_18*z_37*z_26*z_34*z_18 + z_17*z_29*z_16*z_5 + z_18*z_32*z_4*z_18 +
z_17*z_30*z_25 + z_18*z_32*z_5 + z_18*z_34*z_18 + z_18*z_36*z_25
,
z_20*z_36*z_25*z_34*z_15
,
z_20*z_36*z_25*z_34*z_17
,
z_20*z_36*z_25*z_34*z_18 + z_19*z_7*z_20 + z_20*z_36*z_25
,
z_21*z_45*z_27*z_43*z_13
,
z_25*z_34*z_15*z_2*z_45
,
z_25*z_34*z_15*z_2*z_46 + z_24*z_30*z_22*z_9 + z_23*z_12
,
z_25*z_34*z_18*z_35*z_20
,
z_25*z_34*z_18*z_37*z_26
,
z_25*z_34*z_18*z_37*z_27
,
z_25*z_35*z_20*z_34*z_18
,
z_26*z_34*z_15*z_2*z_45 + z_27*z_44*z_20*z_37 + z_27*z_44*z_21*z_45
,
z_26*z_34*z_15*z_2*z_46 + z_27*z_46*z_40*z_46
,
z_26*z_34*z_16*z_3*z_12 + z_27*z_45*z_27*z_46 + z_27*z_46*z_39*z_12
,
z_26*z_34*z_18*z_34*z_15 + z_27*z_46*z_40*z_41 + z_26*z_34*z_15
,
z_26*z_34*z_18*z_34*z_16 + z_26*z_34*z_16 + z_26*z_32 + z_27*z_42
,
z_26*z_34*z_18*z_34*z_17 + z_27*z_46*z_39*z_11*z_24
,
z_26*z_34*z_18*z_34*z_18 + z_27*z_44*z_20*z_34*z_18 + z_27*z_45*z_26
,
z_26*z_34*z_18*z_37*z_26 + z_27*z_44*z_20*z_34*z_18 + z_27*z_44*z_21*z_45*z_26 +
z_27*z_46*z_40*z_42*z_5 + z_27*z_46*z_40*z_45*z_26 + z_26*z_32*z_5 +
z_27*z_42*z_5 + z_27*z_43*z_13 + z_27*z_44*z_20
,
z_26*z_34*z_18*z_37*z_27 + z_26*z_32*z_6 + z_27*z_42*z_6 + z_27*z_43*z_14 +
z_27*z_45*z_27
,
z_27*z_42*z_4*z_18*z_37 + z_27*z_44*z_20*z_37 + z_26*z_37
,
z_27*z_42*z_5*z_34*z_16 + z_26*z_34*z_16 + z_27*z_42
,
z_27*z_44*z_20*z_34*z_17
,
z_27*z_44*z_21*z_43*z_13
,
z_27*z_45*z_27*z_46*z_39
,
z_27*z_45*z_27*z_46*z_40 + z_26*z_32*z_6
,
z_27*z_46*z_39*z_11*z_25 + z_27*z_46*z_40*z_42*z_5 + z_27*z_46*z_40*z_45*z_26 +
z_27*z_42*z_5 + z_27*z_43*z_13
,
z_27*z_46*z_40*z_41*z_1 + z_27*z_44*z_20*z_34 + z_27*z_42*z_4
,
z_27*z_46*z_40*z_41*z_2 + z_26*z_34*z_15*z_2 + z_27*z_45*z_27
,
z_27*z_46*z_40*z_42*z_4 + z_26*z_34*z_18*z_34 + z_27*z_42*z_5*z_34 +
z_27*z_44*z_20*z_34
,
z_27*z_46*z_40*z_45*z_27 + z_26*z_34*z_15*z_2
,
z_27*z_46*z_40*z_46*z_39 + z_26*z_34*z_16*z_3 + z_27*z_46*z_39
,
z_27*z_46*z_40*z_46*z_40 + z_27*z_43*z_14 + z_27*z_44*z_21
,
z_28*z_30*z_25*z_35*z_20
,
z_29*z_18*z_34*z_16*z_4
,
z_29*z_18*z_34*z_16*z_5 + z_30*z_25*z_34*z_18 + z_31*z_28*z_30*z_25 +
z_29*z_16*z_5 + z_29*z_18
,
z_29*z_18*z_34*z_16*z_6
,
z_29*z_18*z_35*z_21*z_42
,
z_29*z_18*z_35*z_21*z_45
,
z_30*z_25*z_34*z_18*z_35
,
z_30*z_25*z_34*z_18*z_37 + z_29*z_16*z_5*z_37 + z_29*z_18*z_37
,
z_30*z_25*z_35*z_20*z_34 + z_30*z_25*z_32*z_4 + z_29*z_17*z_29 + z_29*z_18*z_34
+ z_30*z_25*z_34
,
z_31*z_28*z_30*z_25*z_35 + z_29*z_18*z_35
,
z_33*z_14*z_45*z_27*z_43 + z_34*z_18*z_34*z_18*z_33 + z_33*z_13*z_33
,
z_34*z_16*z_6*z_44*z_20 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_15*z_1*z_18 + z_34*z_16*z_4*z_18 + z_34*z_18*z_34*z_18 +
z_37*z_27*z_42*z_5 + z_37*z_27*z_43*z_13
,
z_34*z_16*z_6*z_44*z_21 + z_34*z_18*z_34*z_15*z_2 + z_34*z_18*z_34*z_16*z_6 +
z_34*z_18*z_33*z_14
,
z_34*z_16*z_6*z_46*z_40 + z_34*z_18*z_34*z_16*z_6 + z_34*z_18*z_32*z_6 +
z_37*z_27*z_43*z_14 + z_37*z_27*z_44*z_21
,
z_34*z_18*z_32*z_4*z_18 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_15*z_1*z_18 + z_34*z_16*z_4*z_18 + z_34*z_18*z_32*z_5 +
z_34*z_18*z_35*z_20 + z_34*z_18*z_37*z_26 + z_35*z_20*z_34*z_18 +
z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 + z_36*z_25*z_32*z_5 +
z_36*z_25*z_35*z_20 + z_37*z_26*z_34*z_18 + z_37*z_27*z_43*z_13 +
z_37*z_27*z_44*z_20
,
z_34*z_18*z_32*z_6*z_41 + z_34*z_18*z_34*z_15
,
z_34*z_18*z_32*z_6*z_45 + z_34*z_15*z_2*z_45 + z_34*z_16*z_5*z_37 +
z_34*z_16*z_6*z_45 + z_37*z_27*z_45
,
z_34*z_18*z_34*z_16*z_4 + z_32*z_5*z_34 + z_33*z_13*z_34 + z_35*z_20*z_34 +
z_37*z_26*z_34
,
z_34*z_18*z_34*z_16*z_5 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_15*z_1*z_18 + z_34*z_16*z_4*z_18 + z_34*z_18*z_35*z_20 +
z_34*z_18*z_36*z_25 + z_34*z_18*z_37*z_26 + z_35*z_21*z_43*z_13 +
z_35*z_21*z_45*z_26 + z_36*z_25*z_32*z_5 + z_36*z_25*z_34*z_18 +
z_36*z_25*z_35*z_20 + z_37*z_27*z_43*z_13 + z_37*z_27*z_44*z_20
,
z_34*z_18*z_34*z_17*z_29 + z_34*z_18*z_37*z_26*z_34 + z_36*z_25*z_32*z_4 +
z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_17*z_29 + z_35*z_20*z_34 +
z_37*z_26*z_34
,
z_34*z_18*z_34*z_18*z_32 + z_33*z_14*z_42
,
z_34*z_18*z_34*z_18*z_37 + z_34*z_18*z_35*z_21*z_45 + z_34*z_15*z_2*z_45 +
z_37*z_27*z_45
,
z_34*z_18*z_35*z_20*z_34 + z_36*z_25*z_32*z_4 + z_34*z_15*z_1 + z_34*z_16*z_4 +
z_34*z_17*z_29 + z_35*z_20*z_34 + z_37*z_26*z_34
,
z_34*z_18*z_35*z_21*z_42 + z_34*z_16*z_5*z_32 + z_33*z_14*z_42
,
z_34*z_18*z_36*z_23*z_12 + z_34*z_16*z_3*z_12 + z_34*z_16*z_6*z_46
,
z_34*z_18*z_36*z_25*z_34 + z_34*z_18*z_37*z_26*z_34 + z_34*z_16*z_5*z_34 +
z_34*z_18*z_32*z_4 + z_33*z_13*z_34 + z_34*z_18*z_34
,
z_34*z_18*z_36*z_25*z_35 + z_35*z_19*z_7 + z_36*z_25*z_35
,
z_34*z_18*z_37*z_27*z_46 + z_34*z_16*z_6*z_46 + z_32*z_6*z_46 + z_35*z_21*z_46 +
z_36*z_22*z_9 + z_36*z_23*z_12
,
z_35*z_21*z_45*z_27*z_43 + z_37*z_27*z_44*z_21*z_43 + z_35*z_20*z_33 +
z_35*z_21*z_43
,
z_36*z_25*z_34*z_15*z_2 + z_32*z_6*z_45*z_27 + z_33*z_14*z_45*z_27 +
z_34*z_18*z_33*z_14 + z_34*z_18*z_37*z_27 + z_35*z_21*z_46*z_40 +
z_37*z_27*z_46*z_40 + z_34*z_16*z_6 + z_32*z_6 + z_33*z_14
,
z_36*z_25*z_34*z_18*z_35 + z_35*z_19*z_7 + z_36*z_25*z_35
,
z_36*z_25*z_34*z_18*z_37 + z_32*z_5*z_37 + z_32*z_6*z_45
,
z_36*z_25*z_35*z_20*z_34 + z_34*z_16*z_5*z_34 + z_34*z_18*z_32*z_4 +
z_36*z_25*z_32*z_4 + z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_17*z_29 +
z_34*z_18*z_34 + z_35*z_20*z_34 + z_37*z_26*z_34
,
z_37*z_26*z_34*z_18*z_34 + z_36*z_25*z_32*z_4 + z_37*z_27*z_42*z_4 +
z_32*z_5*z_34 + z_33*z_13*z_34 + z_34*z_17*z_29
,
z_37*z_26*z_34*z_18*z_37 + z_34*z_15*z_2*z_45 + z_32*z_5*z_37 + z_32*z_6*z_45 +
z_35*z_20*z_37
,
z_37*z_27*z_42*z_4*z_17 + z_34*z_18*z_34*z_17 + z_34*z_18*z_36*z_24 +
z_36*z_25*z_34*z_17
,
z_37*z_27*z_42*z_4*z_18 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_18*z_34*z_18 + z_34*z_18*z_35*z_20 + z_34*z_18*z_36*z_25 +
z_34*z_18*z_37*z_26 + z_35*z_20*z_34*z_18 + z_35*z_21*z_45*z_26 +
z_36*z_25*z_34*z_18 + z_37*z_26*z_34*z_18 + z_37*z_27*z_42*z_5 +
z_37*z_27*z_43*z_13 + z_37*z_27*z_44*z_20
,
z_37*z_27*z_42*z_5*z_34 + z_33*z_13*z_34
,
z_37*z_27*z_44*z_20*z_34 + z_36*z_25*z_32*z_4 + z_37*z_27*z_42*z_4 +
z_32*z_5*z_34 + z_34*z_17*z_29
,
z_37*z_27*z_44*z_20*z_35 + z_35*z_21*z_44
,
z_37*z_27*z_44*z_20*z_37 + z_35*z_20*z_37 + z_35*z_21*z_45
,
z_37*z_27*z_44*z_21*z_45 + z_35*z_20*z_37 + z_35*z_21*z_45
,
z_37*z_27*z_46*z_40*z_41 + z_32*z_6*z_41
,
z_37*z_27*z_46*z_40*z_42 + z_33*z_14*z_42
,
z_37*z_27*z_46*z_40*z_45 + z_34*z_15*z_2*z_45 + z_34*z_16*z_6*z_45 +
z_32*z_6*z_45 + z_33*z_14*z_45
,
z_37*z_27*z_46*z_40*z_46 + z_32*z_6*z_46 + z_36*z_23*z_12
,
z_38*z_8*z_24*z_30*z_22 + z_39*z_12*z_38
,
z_39*z_12*z_38*z_9*z_39
,
z_40*z_41*z_1*z_18*z_34 + z_39*z_10*z_5*z_34
,
z_40*z_41*z_1*z_18*z_36 + z_38*z_8*z_24*z_30 + z_39*z_11
,
z_40*z_41*z_1*z_18*z_37 + z_40*z_46*z_40*z_45
,
z_40*z_42*z_5*z_34*z_16 + z_40*z_46*z_40*z_42
,
z_40*z_42*z_6*z_41*z_1 + z_39*z_10*z_5*z_34 + z_40*z_42*z_5*z_34
,
z_40*z_44*z_20*z_34*z_17
,
z_40*z_44*z_20*z_34*z_18 + z_38*z_8*z_25 + z_40*z_44*z_20
,
z_40*z_44*z_21*z_42*z_4
,
z_40*z_44*z_21*z_42*z_5
,
z_40*z_44*z_21*z_42*z_6 + z_39*z_10*z_6 + z_40*z_41*z_2 + z_40*z_42*z_6 +
z_40*z_44*z_21 + z_40*z_45*z_27
,
z_40*z_45*z_26*z_34*z_18 + z_40*z_46*z_40*z_45*z_26 + z_38*z_8*z_25 +
z_39*z_10*z_5 + z_39*z_11*z_25 + z_40*z_44*z_20
,
z_40*z_46*z_40*z_42*z_4 + z_39*z_10*z_5*z_34 + z_40*z_42*z_5*z_34
,
z_40*z_46*z_40*z_42*z_5 + z_40*z_46*z_40*z_45*z_26 + z_39*z_10*z_5 +
z_40*z_42*z_5
,
z_40*z_46*z_40*z_45*z_27
,
z_41*z_1*z_18*z_34*z_15 + z_42*z_6*z_41
,
z_41*z_1*z_18*z_36*z_24 + z_46*z_40*z_41*z_1*z_17 + z_44*z_20*z_34*z_17 +
z_42*z_4*z_17
,
z_41*z_1*z_18*z_36*z_25 + z_46*z_40*z_41*z_1*z_18 + z_44*z_20*z_34*z_18 +
z_44*z_21*z_44*z_20 + z_45*z_27*z_43*z_13 + z_46*z_38*z_8*z_25 +
z_46*z_39*z_11*z_25 + z_46*z_40*z_42*z_5 + z_46*z_40*z_45*z_26 +
z_42*z_4*z_18 + z_42*z_5 + z_43*z_13
,
z_41*z_1*z_18*z_37*z_26 + z_46*z_40*z_41*z_1*z_18 + z_44*z_20*z_34*z_18 +
z_44*z_21*z_42*z_5 + z_45*z_26*z_34*z_18 + z_45*z_27*z_43*z_13 +
z_42*z_4*z_18
,
z_42*z_6*z_41*z_1*z_17
,
z_42*z_6*z_41*z_1*z_18 + z_46*z_40*z_41*z_1*z_18 + z_44*z_20*z_34*z_18 +
z_44*z_21*z_42*z_5 + z_45*z_26*z_34*z_18 + z_45*z_27*z_42*z_5 +
z_42*z_4*z_18
,
z_42*z_6*z_46*z_40*z_41 + z_46*z_40*z_42*z_6*z_41
,
z_42*z_6*z_46*z_40*z_45 + z_42*z_5*z_37 + z_42*z_6*z_45 + z_45*z_27*z_45
,
z_42*z_6*z_46*z_40*z_46 + z_46*z_40*z_46*z_39*z_12
,
z_44*z_21*z_45*z_27*z_43 + z_42*z_4*z_18*z_33 + z_43*z_13*z_33
,
z_45*z_26*z_34*z_18*z_34 + z_43*z_13*z_34
,
z_45*z_26*z_34*z_18*z_37 + z_42*z_6*z_45 + z_43*z_14*z_45 + z_44*z_20*z_37 +
z_44*z_21*z_45
,
z_45*z_27*z_42*z_5*z_34 + z_42*z_6*z_41*z_1
,
z_45*z_27*z_44*z_20*z_34 + z_43*z_13*z_34
,
z_45*z_27*z_44*z_20*z_35 + z_44*z_21*z_44
,
z_45*z_27*z_44*z_20*z_37 + z_42*z_4*z_18*z_37 + z_42*z_6*z_45 + z_44*z_20*z_37 +
z_44*z_21*z_45
,
z_45*z_27*z_44*z_21*z_43 + z_43*z_13*z_33 + z_44*z_20*z_33 + z_44*z_21*z_43
,
z_45*z_27*z_44*z_21*z_45 + z_42*z_4*z_18*z_37 + z_42*z_6*z_45 + z_44*z_20*z_37 +
z_44*z_21*z_45
,
z_45*z_27*z_46*z_39*z_11
,
z_45*z_27*z_46*z_39*z_12 + z_46*z_40*z_46*z_39*z_12 + z_42*z_6*z_46 +
z_44*z_21*z_46 + z_46*z_38*z_9 + z_46*z_39*z_12
,
z_45*z_27*z_46*z_40*z_41
,
z_45*z_27*z_46*z_40*z_42 + z_42*z_5*z_34*z_16 + z_46*z_39*z_10 + z_46*z_40*z_42
,
z_45*z_27*z_46*z_40*z_45 + z_41*z_1*z_18*z_37 + z_42*z_4*z_18*z_37 +
z_42*z_6*z_45
,
z_45*z_27*z_46*z_40*z_46
,
z_46*z_39*z_10*z_5*z_34 + z_42*z_4*z_18*z_34 + z_42*z_6*z_41*z_1 +
z_44*z_21*z_42*z_4 + z_43*z_13*z_34
,
z_46*z_40*z_42*z_5*z_34 + z_42*z_4*z_18*z_34 + z_42*z_6*z_41*z_1
,
z_46*z_40*z_42*z_6*z_45 + z_42*z_4*z_18*z_37 + z_42*z_5*z_37
,
z_46*z_40*z_44*z_20*z_34 + z_46*z_40*z_45*z_26*z_34 + z_41*z_1*z_18*z_34 +
z_42*z_5*z_34
,
z_46*z_40*z_44*z_20*z_35 + z_44*z_19*z_7 + z_46*z_40*z_44
,
z_46*z_40*z_44*z_21*z_42 + z_42*z_3*z_10 + z_46*z_39*z_10
,
z_46*z_40*z_45*z_27*z_45 + z_42*z_4*z_18*z_37 + z_42*z_6*z_45
,
z_46*z_40*z_46*z_40*z_42 + z_42*z_5*z_32
,
z_46*z_40*z_46*z_40*z_45 + z_43*z_14*z_45 + z_44*z_21*z_45
,
z_1*z_17*z_29*z_15
,
z_1*z_17*z_29*z_16 + z_1*z_18*z_32
,
z_1*z_17*z_29*z_17 + z_1*z_18*z_36*z_24
,
z_1*z_17*z_29*z_18 + z_2*z_42*z_5
,
z_1*z_18*z_32*z_3 + z_2*z_46*z_39
,
z_1*z_18*z_32*z_4 + z_2*z_42*z_5*z_34
,
z_1*z_18*z_32*z_5 + z_1*z_18*z_37*z_26
,
z_1*z_18*z_34*z_16 + z_1*z_18*z_32 + z_2*z_42
,
z_1*z_18*z_34*z_17
,
z_1*z_18*z_34*z_18
,
z_1*z_18*z_36*z_22
,
z_1*z_18*z_36*z_23 + z_2*z_46*z_39
,
z_1*z_18*z_37*z_27
,
z_2*z_42*z_5*z_32
,
z_2*z_42*z_5*z_37 + z_2*z_45
,
z_2*z_42*z_6*z_41
,
z_2*z_42*z_6*z_45
,
z_2*z_42*z_6*z_46 + z_2*z_46*z_39*z_12
,
z_2*z_46*z_39*z_10 + z_1*z_18*z_32 + z_2*z_42
,
z_2*z_46*z_39*z_11
,
z_2*z_46*z_40*z_41
,
z_2*z_46*z_40*z_42 + z_1*z_18*z_32 + z_2*z_42
,
z_2*z_46*z_40*z_44
,
z_2*z_46*z_40*z_45 + z_1*z_18*z_37 + z_2*z_45
,
z_2*z_46*z_40*z_46
,
z_3*z_10*z_4*z_17 + z_3*z_11*z_24 + z_5*z_36*z_24
,
z_3*z_11*z_25*z_32 + z_4*z_16 + z_6*z_42
,
z_3*z_11*z_25*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 + z_6*z_41*z_1 + z_5*z_34
,
z_3*z_12*z_40*z_41 + z_6*z_46*z_40*z_41
,
z_3*z_12*z_40*z_44 + z_5*z_35
,
z_3*z_12*z_40*z_45 + z_4*z_18*z_37 + z_5*z_37
,
z_3*z_12*z_40*z_46 + z_6*z_46*z_40*z_46
,
z_4*z_17*z_29*z_15 + z_6*z_41
,
z_4*z_17*z_29*z_16 + z_5*z_34*z_16 + z_4*z_16 + z_6*z_42
,
z_4*z_17*z_29*z_17 + z_6*z_41*z_1*z_17 + z_3*z_11*z_24 + z_5*z_36*z_24
,
z_4*z_17*z_29*z_18 + z_6*z_41*z_1*z_18 + z_5*z_36*z_25 + z_6*z_42*z_5 +
z_6*z_44*z_20 + z_6*z_45*z_26
,
z_4*z_18*z_33*z_13 + z_6*z_42*z_5
,
z_4*z_18*z_33*z_14
,
z_4*z_18*z_34*z_15 + z_6*z_46*z_40*z_41
,
z_4*z_18*z_34*z_16 + z_4*z_16
,
z_4*z_18*z_34*z_17 + z_6*z_41*z_1*z_17
,
z_4*z_18*z_34*z_18 + z_6*z_41*z_1*z_18 + z_5*z_32*z_5
,
z_4*z_18*z_37*z_26 + z_6*z_45*z_26
,
z_4*z_18*z_37*z_27 + z_6*z_45*z_27
,
z_5*z_32*z_4*z_17 + z_5*z_36*z_24
,
z_5*z_32*z_4*z_18 + z_5*z_32*z_5 + z_5*z_36*z_25 + z_6*z_42*z_5
,
z_5*z_32*z_5*z_32
,
z_5*z_32*z_5*z_34 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_5*z_34
,
z_5*z_32*z_5*z_37 + z_4*z_18*z_37 + z_6*z_45
,
z_5*z_34*z_16*z_3 + z_3*z_11*z_23
,
z_5*z_34*z_16*z_4 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_6*z_41*z_1 + z_5*z_34
,
z_5*z_34*z_16*z_5 + z_6*z_41*z_1*z_18 + z_5*z_36*z_25 + z_6*z_44*z_20 +
z_6*z_45*z_26
,
z_5*z_34*z_16*z_6 + z_3*z_12*z_40 + z_5*z_35*z_21 + z_5*z_37*z_27 + z_6*z_41*z_2
+ z_6*z_44*z_21 + z_6*z_46*z_40
,
z_5*z_34*z_18*z_32 + z_5*z_32
,
z_5*z_34*z_18*z_33
,
z_5*z_34*z_18*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 + z_4*z_18*z_34 + z_5*z_34
,
z_5*z_34*z_18*z_35 + z_5*z_35
,
z_5*z_34*z_18*z_36 + z_5*z_36
,
z_5*z_34*z_18*z_37 + z_4*z_18*z_37 + z_5*z_37
,
z_5*z_35*z_21*z_42 + z_4*z_16 + z_5*z_32
,
z_5*z_35*z_21*z_43
,
z_5*z_35*z_21*z_44
,
z_5*z_35*z_21*z_45
,
z_5*z_35*z_21*z_46
,
z_5*z_36*z_24*z_30
,
z_5*z_36*z_24*z_31
,
z_5*z_36*z_25*z_32 + z_4*z_16 + z_5*z_32
,
z_5*z_36*z_25*z_34 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_5*z_34
,
z_5*z_36*z_25*z_35
,
z_5*z_37*z_27*z_42
,
z_5*z_37*z_27*z_43 + z_4*z_18*z_33
,
z_5*z_37*z_27*z_44
,
z_5*z_37*z_27*z_45
,
z_5*z_37*z_27*z_46 + z_3*z_12 + z_6*z_46
,
z_6*z_42*z_3*z_10 + z_4*z_16 + z_5*z_32
,
z_6*z_42*z_5*z_32
,
z_6*z_42*z_5*z_34
,
z_6*z_42*z_5*z_37
,
z_6*z_44*z_20*z_33 + z_4*z_18*z_33
,
z_6*z_44*z_20*z_35
,
z_6*z_44*z_20*z_37 + z_4*z_18*z_37 + z_6*z_45
,
z_6*z_44*z_21*z_42 + z_4*z_16 + z_5*z_32 + z_6*z_42
,
z_6*z_44*z_21*z_43 + z_4*z_18*z_33
,
z_6*z_44*z_21*z_44
,
z_6*z_44*z_21*z_45 + z_4*z_18*z_37 + z_6*z_45
,
z_6*z_44*z_21*z_46 + z_6*z_46*z_38*z_9
,
z_6*z_45*z_26*z_34
,
z_6*z_45*z_27*z_42
,
z_6*z_45*z_27*z_43 + z_4*z_18*z_33
,
z_6*z_45*z_27*z_44
,
z_6*z_45*z_27*z_45
,
z_6*z_45*z_27*z_46 + z_6*z_46*z_40*z_46 + z_3*z_12 + z_6*z_46
,
z_6*z_46*z_38*z_8 + z_5*z_36
,
z_6*z_46*z_40*z_42
,
z_6*z_46*z_40*z_44 + z_5*z_35
,
z_7*z_20*z_35*z_19
,
z_8*z_25*z_34*z_15
,
z_8*z_25*z_34*z_16 + z_9*z_40*z_42
,
z_8*z_25*z_34*z_17
,
z_8*z_25*z_34*z_18 + z_7*z_20 + z_8*z_25
,
z_9*z_39*z_12*z_38
,
z_9*z_40*z_42*z_4
,
z_9*z_40*z_42*z_5
,
z_9*z_40*z_42*z_6 + z_7*z_21 + z_9*z_40
,
z_10*z_4*z_17*z_29 + z_12*z_40*z_41*z_1 + z_10*z_5*z_34
,
z_10*z_5*z_34*z_16 + z_11*z_25*z_32
,
z_10*z_5*z_34*z_18 + z_12*z_40*z_44*z_20
,
z_10*z_6*z_42*z_3
,
z_10*z_6*z_42*z_5
,
z_11*z_25*z_32*z_4 + z_12*z_40*z_41*z_1
,
z_11*z_25*z_32*z_5 + z_11*z_25*z_34*z_18
,
z_11*z_25*z_32*z_6 + z_12*z_40*z_46*z_40
,
z_11*z_25*z_34*z_15 + z_12*z_40*z_41
,
z_11*z_25*z_34*z_16 + z_10*z_6*z_42 + z_11*z_25*z_32
,
z_11*z_25*z_34*z_17 + z_10*z_4*z_17 + z_11*z_24
,
z_12*z_38*z_8*z_24 + z_10*z_4*z_17 + z_11*z_24
,
z_12*z_38*z_8*z_25 + z_12*z_40*z_44*z_20
,
z_12*z_40*z_41*z_2 + z_12*z_40*z_45*z_27 + z_10*z_6 + z_12*z_40
,
z_12*z_40*z_44*z_21 + z_10*z_6 + z_12*z_40
,
z_12*z_40*z_45*z_26
,
z_12*z_40*z_46*z_39
,
z_13*z_34*z_18*z_32
,
z_13*z_34*z_18*z_33 + z_14*z_43*z_13*z_33
,
z_13*z_34*z_18*z_34 + z_14*z_42*z_4
,
z_13*z_34*z_18*z_35 + z_14*z_44*z_21*z_44 + z_13*z_35 + z_14*z_44
,
z_13*z_34*z_18*z_36
,
z_13*z_34*z_18*z_37 + z_14*z_44*z_21*z_45 + z_13*z_37 + z_14*z_45
,
z_13*z_35*z_20*z_33 + z_14*z_43*z_13*z_33 + z_13*z_33
,
z_13*z_35*z_20*z_34 + z_14*z_42*z_4 + z_13*z_34
,
z_13*z_35*z_20*z_37 + z_14*z_44*z_21*z_45
,
z_13*z_35*z_21*z_42 + z_14*z_42
,
z_13*z_35*z_21*z_43 + z_14*z_43*z_13*z_33 + z_14*z_44*z_20*z_33
,
z_13*z_35*z_21*z_44 + z_14*z_44*z_21*z_44
,
z_13*z_35*z_21*z_45 + z_14*z_44*z_21*z_45 + z_13*z_37 + z_14*z_45
,
z_13*z_35*z_21*z_46
,
z_13*z_37*z_26*z_34 + z_14*z_42*z_4 + z_13*z_34
,
z_13*z_37*z_27*z_42 + z_14*z_42
,
z_13*z_37*z_27*z_43 + z_14*z_44*z_20*z_33 + z_14*z_45*z_27*z_43 + z_13*z_33
,
z_13*z_37*z_27*z_44 + z_13*z_35 + z_14*z_44
,
z_13*z_37*z_27*z_45
,
z_13*z_37*z_27*z_46
,
z_14*z_42*z_4*z_17
,
z_14*z_42*z_4*z_18 + z_13*z_34*z_18 + z_13*z_37*z_26 + z_14*z_43*z_13 +
z_14*z_45*z_26
,
z_14*z_42*z_5*z_32
,
z_14*z_42*z_5*z_34
,
z_14*z_42*z_5*z_37 + z_13*z_37 + z_14*z_45
,
z_14*z_42*z_6*z_41
,
z_14*z_42*z_6*z_45 + z_13*z_37 + z_14*z_45
,
z_14*z_42*z_6*z_46
,
z_14*z_43*z_13*z_34 + z_14*z_42*z_4
,
z_14*z_44*z_20*z_34 + z_13*z_34
,
z_14*z_44*z_20*z_35 + z_14*z_44*z_21*z_44 + z_13*z_35 + z_14*z_44
,
z_14*z_44*z_20*z_37 + z_14*z_44*z_21*z_45 + z_13*z_37 + z_14*z_45
,
z_14*z_44*z_21*z_42 + z_14*z_42
,
z_14*z_44*z_21*z_43 + z_13*z_33
,
z_14*z_44*z_21*z_46
,
z_14*z_45*z_26*z_34 + z_14*z_42*z_4 + z_13*z_34
,
z_14*z_45*z_27*z_42 + z_14*z_42
,
z_14*z_45*z_27*z_44 + z_13*z_35 + z_14*z_44
,
z_14*z_45*z_27*z_45
,
z_14*z_45*z_27*z_46
,
z_15*z_1*z_18*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_3*z_10 +
z_17*z_29*z_16 + z_18*z_32
,
z_15*z_1*z_18*z_34 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 +
z_18*z_37*z_26*z_34
,
z_15*z_1*z_18*z_36 + z_17*z_30 + z_18*z_36
,
z_15*z_1*z_18*z_37 + z_18*z_34*z_18*z_37 + z_16*z_6*z_45
,
z_15*z_2*z_46*z_39 + z_17*z_30*z_23 + z_18*z_36*z_23
,
z_15*z_2*z_46*z_40 + z_17*z_29*z_15*z_2 + z_17*z_29*z_16*z_6 +
z_18*z_34*z_15*z_2 + z_18*z_34*z_16*z_6 + z_18*z_35*z_21 + z_18*z_37*z_27 +
z_16*z_6
,
z_16*z_3*z_10*z_4 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 +
z_18*z_32*z_4 + z_15*z_1 + z_16*z_4
,
z_16*z_3*z_11*z_23 + z_17*z_30*z_23 + z_18*z_32*z_3
,
z_16*z_3*z_11*z_24 + z_17*z_29*z_17 + z_17*z_30*z_24 + z_18*z_34*z_17
,
z_16*z_3*z_11*z_25 + z_16*z_6*z_44*z_20 + z_18*z_34*z_16*z_5 + z_17*z_29*z_18 +
z_18*z_33*z_13 + z_18*z_34*z_18 + z_18*z_35*z_20 + z_18*z_37*z_26
,
z_16*z_3*z_12*z_40 + z_16*z_6*z_44*z_21 + z_16*z_6*z_46*z_40 + z_18*z_33*z_14
,
z_16*z_4*z_17*z_29 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_15*z_1 + z_16*z_4 + z_18*z_34
,
z_16*z_4*z_18*z_33 + z_18*z_34*z_18*z_33
,
z_16*z_4*z_18*z_34 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 + z_16*z_5*z_34 +
z_18*z_32*z_4 + z_18*z_34
,
z_16*z_4*z_18*z_37 + z_15*z_2*z_45 + z_16*z_6*z_45
,
z_16*z_5*z_32*z_4 + z_18*z_34*z_16*z_4 + z_18*z_34*z_17*z_29 +
z_18*z_35*z_20*z_34 + z_18*z_37*z_26*z_34
,
z_16*z_5*z_32*z_5 + z_16*z_6*z_44*z_20 + z_17*z_29*z_16*z_5 + z_15*z_1*z_18 +
z_16*z_4*z_18 + z_17*z_30*z_25 + z_18*z_35*z_20 + z_18*z_36*z_25 +
z_18*z_37*z_26
,
z_16*z_5*z_34*z_16 + z_18*z_34*z_18*z_32 + z_16*z_3*z_10 + z_17*z_29*z_16 +
z_18*z_32
,
z_16*z_5*z_34*z_18 + z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_32*z_5 + z_18*z_34*z_18 +
z_18*z_36*z_25
,
z_16*z_5*z_37*z_27 + z_16*z_6*z_44*z_21 + z_16*z_6*z_46*z_40 +
z_17*z_29*z_16*z_6 + z_18*z_32*z_6
,
z_16*z_6*z_45*z_26 + z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_35*z_20 + z_18*z_36*z_25 +
z_18*z_37*z_26
,
z_16*z_6*z_45*z_27 + z_18*z_33*z_14
,
z_16*z_6*z_46*z_38
,
z_17*z_29*z_16*z_3 + z_17*z_30*z_23 + z_18*z_32*z_3 + z_18*z_36*z_23
,
z_17*z_29*z_16*z_4 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 + z_15*z_1 +
z_16*z_4
,
z_17*z_29*z_17*z_29 + z_17*z_30*z_25*z_34 + z_18*z_34*z_17*z_29 +
z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 + z_16*z_5*z_34 + z_18*z_32*z_4 +
z_18*z_34
,
z_17*z_29*z_18*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_5*z_32
,
z_17*z_29*z_18*z_34 + z_17*z_30*z_25*z_34 + z_18*z_35*z_20*z_34 +
z_18*z_36*z_25*z_34 + z_18*z_37*z_26*z_34
,
z_17*z_29*z_18*z_35
,
z_17*z_29*z_18*z_37 + z_18*z_32*z_6*z_45 + z_15*z_2*z_45 + z_16*z_5*z_37 +
z_16*z_6*z_45
,
z_17*z_30*z_23*z_11 + z_16*z_3*z_11 + z_17*z_30 + z_18*z_36
,
z_17*z_30*z_23*z_12 + z_18*z_36*z_23*z_12 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_17*z_30*z_25*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_3*z_10
+ z_17*z_29*z_16 + z_18*z_34*z_16 + z_18*z_32
,
z_17*z_30*z_25*z_35 + z_18*z_36*z_25*z_35
,
z_18*z_32*z_4*z_17 + z_17*z_29*z_17 + z_18*z_36*z_24
,
z_18*z_32*z_5*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_5*z_32
,
z_18*z_32*z_5*z_34 + z_18*z_35*z_20*z_34 + z_18*z_37*z_26*z_34
,
z_18*z_32*z_5*z_37 + z_18*z_34*z_18*z_37 + z_18*z_35*z_21*z_45 + z_15*z_2*z_45 +
z_16*z_5*z_37 + z_16*z_6*z_45
,
z_18*z_32*z_6*z_46 + z_18*z_36*z_23*z_12 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_18*z_33*z_13*z_33
,
z_18*z_33*z_13*z_34
,
z_18*z_33*z_14*z_42
,
z_18*z_33*z_14*z_44
,
z_18*z_33*z_14*z_45
,
z_18*z_34*z_15*z_1 + z_18*z_34*z_16*z_4
,
z_18*z_34*z_16*z_3 + z_17*z_30*z_23 + z_18*z_36*z_23
,
z_18*z_34*z_18*z_34
,
z_18*z_34*z_18*z_35 + z_16*z_6*z_44
,
z_18*z_34*z_18*z_36 + z_16*z_3*z_11 + z_17*z_30 + z_18*z_36
,
z_18*z_35*z_20*z_33 + z_18*z_33
,
z_18*z_35*z_20*z_37 + z_18*z_35*z_21*z_45 + z_15*z_2*z_45
,
z_18*z_35*z_21*z_43 + z_18*z_33
,
z_18*z_35*z_21*z_44
,
z_18*z_35*z_21*z_46 + z_18*z_36*z_22*z_9
,
z_18*z_36*z_23*z_11 + z_16*z_3*z_11 + z_17*z_30 + z_18*z_36
,
z_18*z_36*z_24*z_30
,
z_18*z_36*z_24*z_31
,
z_18*z_36*z_25*z_32 + z_16*z_3*z_10 + z_17*z_29*z_16 + z_18*z_34*z_16 +
z_18*z_32
,
z_18*z_37*z_27*z_42
,
z_18*z_37*z_27*z_43 + z_18*z_33
,
z_18*z_37*z_27*z_44 + z_16*z_6*z_44
,
z_18*z_37*z_27*z_45 + z_15*z_2*z_45
,
z_19*z_7*z_20*z_35 + z_20*z_35*z_19*z_7
,
z_20*z_34*z_16*z_3 + z_21*z_46*z_39
,
z_20*z_34*z_16*z_4 + z_21*z_42*z_4
,
z_20*z_34*z_16*z_5 + z_21*z_42*z_5
,
z_20*z_34*z_16*z_6 + z_19*z_7*z_21 + z_21*z_42*z_6 + z_21*z_46*z_40
,
z_20*z_34*z_17*z_29
,
z_20*z_34*z_18*z_32 + z_20*z_34*z_16 + z_21*z_42
,
z_20*z_34*z_18*z_33 + z_21*z_45*z_27*z_43 + z_20*z_33 + z_21*z_43
,
z_20*z_34*z_18*z_34 + z_21*z_42*z_4
,
z_20*z_34*z_18*z_35 + z_20*z_35*z_19*z_7 + z_20*z_35
,
z_20*z_34*z_18*z_36 + z_20*z_36*z_24*z_30
,
z_20*z_34*z_18*z_37 + z_20*z_37
,
z_20*z_36*z_25*z_32 + z_20*z_34*z_16 + z_21*z_42
,
z_20*z_36*z_25*z_35
,
z_21*z_42*z_4*z_17
,
z_21*z_42*z_4*z_18 + z_21*z_42*z_5 + z_21*z_43*z_13
,
z_21*z_42*z_5*z_32
,
z_21*z_42*z_5*z_34
,
z_21*z_42*z_5*z_37 + z_20*z_37 + z_21*z_45
,
z_21*z_42*z_6*z_41
,
z_21*z_42*z_6*z_45 + z_20*z_37 + z_21*z_45
,
z_21*z_42*z_6*z_46 + z_21*z_46*z_39*z_12
,
z_21*z_43*z_13*z_33 + z_20*z_33 + z_21*z_43
,
z_21*z_43*z_13*z_34
,
z_21*z_44*z_20*z_33 + z_20*z_33 + z_21*z_43
,
z_21*z_44*z_20*z_34
,
z_21*z_44*z_20*z_35
,
z_21*z_44*z_20*z_37
,
z_21*z_44*z_21*z_42
,
z_21*z_44*z_21*z_43 + z_20*z_33 + z_21*z_43
,
z_21*z_44*z_21*z_44
,
z_21*z_44*z_21*z_45
,
z_21*z_44*z_21*z_46
,
z_21*z_45*z_26*z_34 + z_21*z_42*z_4
,
z_21*z_45*z_27*z_42
,
z_21*z_45*z_27*z_44 + z_21*z_44
,
z_21*z_45*z_27*z_45
,
z_21*z_45*z_27*z_46
,
z_21*z_46*z_39*z_10 + z_20*z_34*z_16 + z_21*z_42
,
z_21*z_46*z_39*z_11
,
z_21*z_46*z_40*z_41
,
z_21*z_46*z_40*z_42 + z_20*z_34*z_16 + z_21*z_42
,
z_21*z_46*z_40*z_44
,
z_21*z_46*z_40*z_45
,
z_21*z_46*z_40*z_46
,
z_24*z_31*z_28*z_30 + z_24*z_30
,
z_25*z_32*z_4*z_17 + z_25*z_34*z_17
,
z_25*z_32*z_4*z_18 + z_25*z_32*z_5 + z_25*z_35*z_20
,
z_25*z_32*z_5*z_32
,
z_25*z_32*z_5*z_34 + z_25*z_35*z_20*z_34
,
z_25*z_32*z_5*z_37 + z_25*z_34*z_18*z_37
,
z_25*z_32*z_6*z_41
,
z_25*z_32*z_6*z_45 + z_25*z_34*z_18*z_37
,
z_25*z_32*z_6*z_46
,
z_25*z_34*z_15*z_1 + z_25*z_32*z_4
,
z_25*z_34*z_16*z_3
,
z_25*z_34*z_16*z_4 + z_25*z_32*z_4
,
z_25*z_34*z_16*z_5 + z_25*z_32*z_5
,
z_25*z_34*z_16*z_6 + z_25*z_32*z_6
,
z_25*z_34*z_17*z_29 + z_25*z_35*z_20*z_34
,
z_25*z_34*z_18*z_32
,
z_25*z_34*z_18*z_33
,
z_25*z_34*z_18*z_34 + z_25*z_35*z_20*z_34
,
z_25*z_34*z_18*z_36
,
z_25*z_35*z_20*z_33
,
z_25*z_35*z_20*z_37
,
z_25*z_35*z_21*z_42 + z_25*z_34*z_16 + z_25*z_32
,
z_25*z_35*z_21*z_43
,
z_25*z_35*z_21*z_44
,
z_25*z_35*z_21*z_45
,
z_25*z_35*z_21*z_46
,
z_26*z_32*z_4*z_17
,
z_26*z_32*z_4*z_18 + z_26*z_32*z_5
,
z_26*z_32*z_5*z_32
,
z_26*z_32*z_5*z_34
,
z_26*z_32*z_5*z_37 + z_27*z_44*z_20*z_37 + z_27*z_44*z_21*z_45
,
z_26*z_32*z_6*z_41
,
z_26*z_32*z_6*z_45 + z_27*z_44*z_20*z_37 + z_27*z_44*z_21*z_45
,
z_26*z_32*z_6*z_46
,
z_26*z_34*z_15*z_1 + z_27*z_44*z_20*z_34 + z_26*z_32*z_4 + z_27*z_42*z_4
,
z_26*z_34*z_16*z_4 + z_27*z_42*z_4
,
z_26*z_34*z_16*z_5 + z_26*z_32*z_5 + z_27*z_42*z_5 + z_27*z_45*z_26
,
z_26*z_34*z_16*z_6 + z_27*z_42*z_6 + z_27*z_45*z_27
,
z_26*z_34*z_18*z_32 + z_27*z_46*z_40*z_42 + z_26*z_32
,
z_26*z_34*z_18*z_33 + z_27*z_44*z_21*z_43
,
z_26*z_34*z_18*z_35 + z_27*z_44
,
z_26*z_34*z_18*z_36 + z_27*z_46*z_39*z_11
,
z_27*z_42*z_5*z_32 + z_26*z_32
,
z_27*z_42*z_5*z_37 + z_27*z_44*z_21*z_45 + z_27*z_45
,
z_27*z_42*z_6*z_41
,
z_27*z_42*z_6*z_45 + z_27*z_44*z_21*z_45 + z_26*z_37
,
z_27*z_42*z_6*z_46 + z_27*z_45*z_27*z_46 + z_27*z_46*z_39*z_12
,
z_27*z_43*z_13*z_33
,
z_27*z_43*z_13*z_34
,
z_27*z_43*z_14*z_45 + z_27*z_44*z_21*z_45 + z_26*z_37
,
z_27*z_44*z_20*z_33 + z_27*z_44*z_21*z_43
,
z_27*z_44*z_21*z_42 + z_26*z_32
,
z_27*z_44*z_21*z_44
,
z_27*z_44*z_21*z_46
,
z_27*z_45*z_26*z_34 + z_26*z_32*z_4
,
z_27*z_45*z_27*z_42
,
z_27*z_45*z_27*z_43
,
z_27*z_45*z_27*z_44
,
z_27*z_45*z_27*z_45
,
z_27*z_46*z_39*z_10 + z_27*z_46*z_40*z_42 + z_26*z_34*z_16 + z_27*z_42
,
z_27*z_46*z_40*z_44
,
z_28*z_30*z_25*z_32
,
z_28*z_30*z_25*z_34
,
z_29*z_15*z_2*z_45
,
z_29*z_16*z_3*z_10 + z_29*z_18*z_32 + z_30*z_25*z_32
,
z_29*z_16*z_3*z_11 + z_30*z_23*z_11
,
z_29*z_16*z_3*z_12 + z_30*z_23*z_12
,
z_29*z_16*z_4*z_17 + z_30*z_25*z_34*z_17 + z_29*z_17 + z_30*z_24
,
z_29*z_16*z_5*z_32 + z_29*z_18*z_32
,
z_29*z_16*z_5*z_34 + z_30*z_25*z_32*z_4 + z_29*z_17*z_29 + z_30*z_25*z_34
,
z_29*z_16*z_6*z_44
,
z_29*z_16*z_6*z_45 + z_29*z_18*z_37
,
z_29*z_16*z_6*z_46 + z_30*z_23*z_12
,
z_29*z_17*z_29*z_15 + z_30*z_25*z_34*z_15
,
z_29*z_17*z_29*z_16 + z_29*z_18*z_34*z_16 + z_30*z_25*z_32
,
z_29*z_17*z_29*z_17
,
z_29*z_17*z_29*z_18 + z_31*z_28*z_30*z_25 + z_29*z_16*z_5 + z_29*z_18
,
z_29*z_18*z_32*z_3
,
z_29*z_18*z_32*z_4
,
z_29*z_18*z_32*z_5
,
z_29*z_18*z_32*z_6
,
z_29*z_18*z_34*z_15
,
z_29*z_18*z_34*z_17
,
z_29*z_18*z_34*z_18 + z_30*z_25*z_35*z_20 + z_31*z_28*z_30*z_25 + z_29*z_16*z_5
+ z_29*z_18
,
z_29*z_18*z_35*z_20
,
z_29*z_18*z_37*z_26 + z_30*z_25*z_34*z_18 + z_31*z_28*z_30*z_25 + z_29*z_16*z_5
+ z_29*z_18
,
z_29*z_18*z_37*z_27
,
z_30*z_23*z_11*z_23 + z_29*z_16*z_3 + z_30*z_23
,
z_30*z_25*z_32*z_5 + z_30*z_25*z_34*z_18
,
z_30*z_25*z_34*z_16 + z_29*z_18*z_32 + z_30*z_25*z_32
,
z_32*z_4*z_17*z_29 + z_34*z_16*z_5*z_34 + z_34*z_18*z_32*z_4 +
z_36*z_25*z_32*z_4 + z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_18*z_34 +
z_35*z_20*z_34 + z_37*z_26*z_34
,
z_32*z_4*z_18*z_33 + z_33*z_13*z_33
,
z_32*z_4*z_18*z_34 + z_34*z_16*z_5*z_34 + z_34*z_18*z_32*z_4 + z_32*z_5*z_34 +
z_33*z_13*z_34 + z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_18*z_34 +
z_35*z_20*z_34 + z_37*z_26*z_34
,
z_32*z_4*z_18*z_37 + z_32*z_6*z_45
,
z_32*z_5*z_32*z_4
,
z_32*z_5*z_32*z_5 + z_37*z_27*z_45*z_26
,
z_32*z_5*z_34*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_35*z_21*z_42 +
z_37*z_27*z_42
,
z_32*z_5*z_34*z_18 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_18*z_34*z_18 + z_34*z_18*z_35*z_20 + z_34*z_18*z_36*z_25 +
z_34*z_18*z_37*z_26 + z_35*z_20*z_34*z_18 + z_35*z_21*z_43*z_13 +
z_35*z_21*z_45*z_26 + z_36*z_25*z_32*z_5 + z_36*z_25*z_34*z_18 +
z_36*z_25*z_35*z_20 + z_37*z_26*z_34*z_18 + z_37*z_27*z_43*z_13 +
z_37*z_27*z_44*z_20 + z_37*z_27*z_45*z_26
,
z_32*z_5*z_37*z_27 + z_32*z_6*z_45*z_27
,
z_32*z_6*z_41*z_1 + z_36*z_25*z_32*z_4 + z_32*z_5*z_34 + z_34*z_17*z_29
,
z_32*z_6*z_41*z_2 + z_32*z_6*z_45*z_27 + z_33*z_14*z_45*z_27 +
z_34*z_18*z_33*z_14
,
z_32*z_6*z_46*z_38
,
z_32*z_6*z_46*z_40 + z_36*z_25*z_32*z_6 + z_37*z_27*z_43*z_14 +
z_37*z_27*z_44*z_21
,
z_33*z_13*z_34*z_18 + z_37*z_27*z_45*z_26
,
z_33*z_14*z_42*z_4
,
z_33*z_14*z_42*z_5 + z_37*z_27*z_45*z_26
,
z_33*z_14*z_42*z_6
,
z_33*z_14*z_44*z_20 + z_33*z_14*z_45*z_26 + z_34*z_18*z_34*z_18 +
z_34*z_18*z_35*z_20 + z_34*z_18*z_36*z_25 + z_34*z_18*z_37*z_26 +
z_35*z_20*z_34*z_18 + z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 +
z_36*z_25*z_34*z_18 + z_37*z_26*z_34*z_18 + z_37*z_27*z_43*z_13 +
z_37*z_27*z_44*z_20
,
z_33*z_14*z_44*z_21 + z_33*z_14*z_45*z_27 + z_34*z_18*z_33*z_14
,
z_34*z_16*z_3*z_10 + z_34*z_16*z_5*z_32 + z_34*z_18*z_34*z_16 + z_34*z_18*z_32 +
z_35*z_21*z_42 + z_37*z_27*z_42
,
z_34*z_16*z_3*z_11 + z_34*z_18*z_36 + z_36*z_23*z_11 + z_36*z_24*z_30
,
z_34*z_17*z_29*z_15 + z_32*z_6*z_41
,
z_34*z_17*z_29*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_35*z_21*z_42 +
z_37*z_27*z_42
,
z_34*z_17*z_29*z_17 + z_34*z_18*z_34*z_17 + z_34*z_18*z_36*z_24
,
z_34*z_17*z_29*z_18 + z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 +
z_37*z_27*z_42*z_5 + z_37*z_27*z_44*z_20 + z_37*z_27*z_45*z_26
,
z_34*z_18*z_32*z_3 + z_34*z_18*z_36*z_23
,
z_34*z_18*z_33*z_13 + z_37*z_27*z_45*z_26
,
z_34*z_18*z_36*z_22 + z_35*z_19 + z_36*z_22
,
z_35*z_19*z_7*z_20 + z_36*z_25*z_35*z_20
,
z_35*z_19*z_7*z_21 + z_35*z_21*z_46*z_40
,
z_35*z_20*z_34*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_35*z_21*z_42
,
z_35*z_20*z_34*z_17
,
z_35*z_21*z_42*z_4 + z_36*z_25*z_32*z_4 + z_37*z_27*z_42*z_4 + z_32*z_5*z_34 +
z_34*z_17*z_29
,
z_35*z_21*z_42*z_5 + z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 +
z_37*z_27*z_44*z_20
,
z_35*z_21*z_42*z_6 + z_37*z_27*z_42*z_6 + z_37*z_27*z_43*z_14 +
z_37*z_27*z_44*z_21
,
z_35*z_21*z_44*z_21 + z_35*z_21*z_45*z_27 + z_37*z_27*z_42*z_6 +
z_37*z_27*z_43*z_14
,
z_35*z_21*z_46*z_39 + z_32*z_3 + z_36*z_23
,
z_36*z_23*z_11*z_23 + z_32*z_3 + z_36*z_23
,
z_36*z_24*z_30*z_22 + z_35*z_19 + z_36*z_22
,
z_36*z_24*z_31*z_28 + z_36*z_25*z_34*z_17 + z_32*z_4*z_17 + z_34*z_17
,
z_36*z_25*z_34*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_36*z_25*z_32
,
z_37*z_26*z_34*z_15 + z_32*z_6*z_41
,
z_37*z_26*z_34*z_16 + z_33*z_14*z_42 + z_37*z_27*z_42
,
z_37*z_27*z_45*z_27
,
z_37*z_27*z_46*z_39
,
z_38*z_8*z_25*z_34 + z_40*z_44*z_20*z_34
,
z_38*z_9*z_39*z_12 + z_39*z_12*z_38*z_9
,
z_39*z_10*z_6*z_42
,
z_39*z_11*z_25*z_32 + z_40*z_46*z_40*z_42
,
z_39*z_11*z_25*z_34 + z_40*z_42*z_5*z_34
,
z_39*z_12*z_38*z_8
,
z_40*z_42*z_4*z_17 + z_39*z_11*z_24
,
z_40*z_42*z_4*z_18 + z_39*z_10*z_5 + z_39*z_11*z_25
,
z_40*z_42*z_5*z_32
,
z_40*z_42*z_5*z_37 + z_40*z_42*z_6*z_45 + z_40*z_45*z_27*z_45
,
z_40*z_42*z_6*z_46
,
z_40*z_44*z_20*z_33
,
z_40*z_44*z_20*z_37
,
z_40*z_44*z_21*z_43
,
z_40*z_44*z_21*z_44
,
z_40*z_44*z_21*z_45
,
z_40*z_44*z_21*z_46
,
z_40*z_45*z_27*z_42 + z_39*z_10 + z_40*z_42
,
z_40*z_45*z_27*z_43
,
z_40*z_45*z_27*z_44
,
z_40*z_45*z_27*z_46 + z_40*z_46
,
z_40*z_46*z_39*z_10 + z_40*z_46*z_40*z_42
,
z_40*z_46*z_39*z_11
,
z_40*z_46*z_40*z_41
,
z_40*z_46*z_40*z_44
,
z_40*z_46*z_40*z_46
,
z_41*z_1*z_17*z_29 + z_41*z_1*z_18*z_34 + z_42*z_6*z_41*z_1 + z_44*z_21*z_42*z_4
+ z_46*z_40*z_41*z_1 + z_43*z_13*z_34 + z_44*z_20*z_34 + z_45*z_26*z_34 +
z_42*z_4
,
z_41*z_1*z_18*z_32 + z_42*z_5*z_34*z_16 + z_42*z_5*z_32 + z_44*z_21*z_42 +
z_45*z_27*z_42 + z_46*z_39*z_10 + z_46*z_40*z_42
,
z_42*z_3*z_10*z_4 + z_46*z_40*z_42*z_4
,
z_42*z_4*z_17*z_29 + z_42*z_4*z_18*z_34 + z_46*z_40*z_42*z_4 + z_42*z_5*z_34
,
z_42*z_5*z_32*z_4 + z_44*z_21*z_42*z_4 + z_43*z_13*z_34
,
z_42*z_5*z_32*z_5 + z_44*z_21*z_42*z_5 + z_45*z_27*z_43*z_13
,
z_42*z_5*z_34*z_18 + z_44*z_21*z_42*z_5 + z_45*z_27*z_43*z_13 +
z_46*z_39*z_11*z_25 + z_46*z_40*z_42*z_5
,
z_42*z_5*z_37*z_27 + z_44*z_21*z_44*z_21 + z_44*z_21*z_45*z_27 +
z_45*z_27*z_42*z_6 + z_45*z_27*z_44*z_21 + z_46*z_39*z_10*z_6 +
z_46*z_40*z_42*z_6
,
z_42*z_6*z_41*z_2 + z_46*z_39*z_10*z_6 + z_46*z_40*z_42*z_6 +
z_46*z_40*z_44*z_21 + z_46*z_40*z_46*z_40 + z_41*z_2 + z_43*z_14 + z_44*z_21
+ z_45*z_27
,
z_42*z_6*z_45*z_26 + z_44*z_21*z_42*z_5 + z_44*z_21*z_43*z_13 +
z_44*z_21*z_45*z_26 + z_45*z_27*z_44*z_20 + z_46*z_39*z_10*z_5 +
z_46*z_40*z_42*z_5
,
z_42*z_6*z_45*z_27 + z_44*z_21*z_44*z_21 + z_44*z_21*z_45*z_27 +
z_45*z_27*z_42*z_6 + z_45*z_27*z_44*z_21
,
z_42*z_6*z_46*z_38 + z_44*z_19 + z_46*z_38
,
z_43*z_13*z_34*z_18 + z_44*z_21*z_43*z_13 + z_45*z_27*z_43*z_13
,
z_43*z_14*z_45*z_26 + z_44*z_21*z_42*z_5 + z_44*z_21*z_45*z_26 +
z_45*z_27*z_43*z_13 + z_46*z_39*z_10*z_5 + z_46*z_40*z_42*z_5
,
z_43*z_14*z_45*z_27 + z_44*z_21*z_45*z_27
,
z_44*z_19*z_7*z_20 + z_46*z_40*z_44*z_20
,
z_44*z_19*z_7*z_21 + z_46*z_39*z_10*z_6 + z_46*z_40*z_41*z_2 +
z_46*z_40*z_42*z_6 + z_46*z_40*z_45*z_27
,
z_44*z_20*z_34*z_16 + z_42*z_3*z_10 + z_44*z_21*z_42 + z_46*z_39*z_10
,
z_44*z_20*z_35*z_19 + z_44*z_19 + z_46*z_38
,
z_44*z_21*z_46*z_39 + z_42*z_3 + z_46*z_39
,
z_44*z_21*z_46*z_40 + z_46*z_40*z_44*z_21
,
z_45*z_26*z_34*z_15
,
z_45*z_26*z_34*z_16 + z_45*z_27*z_42
,
z_45*z_27*z_42*z_4 + z_43*z_13*z_34
,
z_45*z_27*z_43*z_14 + z_45*z_27*z_44*z_21
,
z_45*z_27*z_45*z_26
,
z_45*z_27*z_45*z_27
,
z_46*z_38*z_9*z_39 + z_42*z_3 + z_46*z_39
,
z_46*z_39*z_12*z_38 + z_44*z_19 + z_46*z_38
,
z_1*z_17*z_30 + z_1*z_18*z_36
,
z_1*z_18*z_33
,
z_1*z_18*z_35
,
z_2*z_42*z_3 + z_2*z_46*z_39
,
z_2*z_42*z_4
,
z_2*z_45*z_26
,
z_2*z_45*z_27
,
z_2*z_46*z_38
,
z_3*z_10*z_5 + z_3*z_11*z_25 + z_5*z_32*z_5 + z_5*z_34*z_18 + z_5*z_36*z_25 +
z_6*z_44*z_20 + z_6*z_45*z_26
,
z_3*z_10*z_6 + z_3*z_12*z_40 + z_5*z_35*z_21
,
z_3*z_12*z_38 + z_6*z_46*z_38
,
z_4*z_16*z_3 + z_6*z_42*z_3
,
z_4*z_16*z_4 + z_5*z_32*z_4
,
z_4*z_16*z_5 + z_5*z_32*z_5
,
z_4*z_16*z_6 + z_5*z_35*z_21 + z_6*z_41*z_2 + z_6*z_44*z_21 + z_6*z_45*z_27
,
z_4*z_17*z_30 + z_3*z_11 + z_5*z_36
,
z_4*z_18*z_32 + z_5*z_34*z_16 + z_5*z_32
,
z_4*z_18*z_35 + z_5*z_35 + z_6*z_44
,
z_4*z_18*z_36 + z_3*z_11
,
z_5*z_32*z_3 + z_6*z_42*z_3
,
z_5*z_32*z_6 + z_5*z_35*z_21 + z_6*z_41*z_2 + z_6*z_44*z_21 + z_6*z_45*z_27
,
z_5*z_34*z_15 + z_6*z_41
,
z_5*z_34*z_17 + z_5*z_36*z_24
,
z_5*z_35*z_19
,
z_5*z_35*z_20 + z_5*z_36*z_25
,
z_5*z_36*z_22
,
z_5*z_36*z_23 + z_6*z_42*z_3
,
z_5*z_37*z_26 + z_6*z_45*z_26
,
z_6*z_42*z_4
,
z_6*z_42*z_6
,
z_6*z_44*z_19 + z_6*z_46*z_38
,
z_6*z_46*z_39
,
z_7*z_20*z_33
,
z_7*z_20*z_34 + z_8*z_25*z_34
,
z_7*z_20*z_36
,
z_7*z_20*z_37
,
z_7*z_21*z_42 + z_9*z_40*z_42
,
z_7*z_21*z_43
,
z_7*z_21*z_44
,
z_7*z_21*z_45
,
z_7*z_21*z_46
,
z_8*z_25*z_32 + z_9*z_40*z_42
,
z_8*z_25*z_35
,
z_9*z_39*z_10 + z_9*z_40*z_42
,
z_9*z_39*z_11
,
z_9*z_40*z_41
,
z_9*z_40*z_44
,
z_9*z_40*z_45
,
z_9*z_40*z_46
,
z_10*z_4*z_16 + z_10*z_6*z_42
,
z_10*z_4*z_18 + z_10*z_5 + z_11*z_25
,
z_10*z_5*z_32 + z_10*z_6*z_42
,
z_10*z_5*z_35
,
z_10*z_5*z_36
,
z_10*z_5*z_37 + z_12*z_40*z_45
,
z_10*z_6*z_41 + z_12*z_40*z_41
,
z_10*z_6*z_44 + z_12*z_40*z_44
,
z_10*z_6*z_45 + z_12*z_40*z_45
,
z_10*z_6*z_46 + z_12*z_40*z_46
,
z_11*z_23*z_11 + z_12*z_38*z_8
,
z_11*z_23*z_12 + z_12*z_40*z_46
,
z_11*z_24*z_30
,
z_11*z_24*z_31
,
z_11*z_25*z_35 + z_12*z_40*z_44
,
z_12*z_40*z_42
,
z_13*z_33*z_13 + z_13*z_34*z_18 + z_13*z_37*z_26 + z_14*z_42*z_5 +
z_14*z_43*z_13 + z_14*z_45*z_26
,
z_13*z_33*z_14 + z_13*z_35*z_21 + z_13*z_37*z_27 + z_14*z_42*z_6 +
z_14*z_44*z_21 + z_14*z_45*z_27
,
z_13*z_34*z_15
,
z_13*z_34*z_16 + z_14*z_42
,
z_13*z_34*z_17
,
z_13*z_35*z_19
,
z_14*z_42*z_3
,
z_14*z_43*z_14 + z_14*z_44*z_21 + z_14*z_45*z_27
,
z_14*z_44*z_19
,
z_15*z_1*z_17 + z_16*z_4*z_17 + z_17*z_30*z_24 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_15*z_2*z_42 + z_16*z_3*z_10 + z_17*z_29*z_16 + z_18*z_32
,
z_16*z_4*z_16 + z_16*z_5*z_32
,
z_16*z_5*z_35
,
z_16*z_5*z_36
,
z_16*z_6*z_41
,
z_16*z_6*z_42
,
z_17*z_30*z_22 + z_18*z_36*z_22
,
z_18*z_35*z_19 + z_18*z_36*z_22
,
z_20*z_33*z_13 + z_21*z_43*z_13
,
z_20*z_33*z_14 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_20*z_34*z_15
,
z_20*z_35*z_20 + z_21*z_42*z_5 + z_21*z_43*z_13 + z_21*z_45*z_26
,
z_20*z_35*z_21 + z_21*z_42*z_6 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_20*z_36*z_22
,
z_20*z_36*z_23 + z_21*z_46*z_39
,
z_20*z_37*z_26 + z_21*z_44*z_20 + z_21*z_45*z_26
,
z_20*z_37*z_27 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_21*z_42*z_3 + z_21*z_46*z_39
,
z_21*z_43*z_14 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_21*z_44*z_19
,
z_21*z_46*z_38
,
z_22*z_9*z_39 + z_23*z_11*z_23
,
z_22*z_9*z_40 + z_25*z_35*z_21
,
z_23*z_11*z_24 + z_25*z_34*z_17
,
z_23*z_11*z_25 + z_25*z_35*z_20
,
z_23*z_12*z_38
,
z_23*z_12*z_40 + z_25*z_32*z_6
,
z_24*z_30*z_23
,
z_24*z_30*z_24
,
z_24*z_30*z_25 + z_25*z_32*z_5 + z_25*z_34*z_18
,
z_25*z_32*z_3
,
z_25*z_35*z_19
,
z_26*z_32*z_3
,
z_26*z_34*z_17
,
z_26*z_37*z_26 + z_27*z_45*z_26
,
z_26*z_37*z_27
,
z_27*z_42*z_3 + z_27*z_46*z_39
,
z_27*z_44*z_19
,
z_27*z_46*z_38
,
z_28*z_30*z_23
,
z_28*z_30*z_24
,
z_29*z_15*z_1 + z_29*z_16*z_4 + z_29*z_17*z_29 + z_29*z_18*z_34 + z_30*z_25*z_34
,
z_29*z_17*z_30 + z_30*z_23*z_11
,
z_29*z_18*z_33
,
z_29*z_18*z_36
,
z_30*z_24*z_30
,
z_30*z_24*z_31
,
z_32*z_3*z_10 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_36*z_25*z_32
,
z_32*z_3*z_11 + z_36*z_23*z_11
,
z_32*z_3*z_12 + z_36*z_23*z_12
,
z_32*z_4*z_16 + z_32*z_5*z_32
,
z_32*z_5*z_35
,
z_32*z_5*z_36
,
z_32*z_6*z_42 + z_33*z_14*z_42
,
z_32*z_6*z_44 + z_33*z_14*z_44
,
z_33*z_13*z_35 + z_33*z_14*z_44
,
z_33*z_13*z_37 + z_33*z_14*z_45
,
z_33*z_14*z_43 + z_34*z_18*z_33
,
z_34*z_17*z_30 + z_36*z_23*z_11 + z_36*z_24*z_30
,
z_35*z_20*z_35 + z_37*z_27*z_44
,
z_35*z_20*z_36 + z_36*z_23*z_11
,
z_37*z_26*z_32
,
z_37*z_26*z_37 + z_37*z_27*z_45
,
z_38*z_9*z_40 + z_39*z_10*z_6 + z_40*z_41*z_2 + z_40*z_42*z_6 + z_40*z_45*z_27
,
z_39*z_10*z_4 + z_40*z_42*z_4
,
z_39*z_11*z_23 + z_40*z_46*z_39
,
z_39*z_12*z_40 + z_40*z_41*z_2 + z_40*z_42*z_6 + z_40*z_44*z_21 + z_40*z_45*z_27
,
z_40*z_42*z_3 + z_40*z_46*z_39
,
z_40*z_44*z_19
,
z_40*z_46*z_38
,
z_41*z_2*z_42 + z_42*z_3*z_10 + z_42*z_5*z_32 + z_44*z_21*z_42 + z_45*z_27*z_42
+ z_46*z_39*z_10
,
z_41*z_2*z_45 + z_45*z_27*z_45
,
z_41*z_2*z_46 + z_42*z_6*z_46 + z_44*z_21*z_46 + z_45*z_27*z_46 + z_46*z_39*z_12
,
z_42*z_3*z_11 + z_46*z_39*z_11
,
z_42*z_3*z_12 + z_44*z_21*z_46 + z_46*z_38*z_9 + z_46*z_39*z_12
,
z_42*z_4*z_16 + z_42*z_5*z_32
,
z_42*z_5*z_35 + z_44*z_19*z_7 + z_46*z_40*z_44
,
z_42*z_5*z_36
,
z_42*z_6*z_42
,
z_42*z_6*z_44 + z_44*z_20*z_35 + z_45*z_27*z_44
,
z_43*z_13*z_35 + z_45*z_27*z_44
,
z_43*z_13*z_37 + z_43*z_14*z_45
,
z_43*z_14*z_42
,
z_43*z_14*z_43 + z_44*z_21*z_43 + z_45*z_27*z_43
,
z_43*z_14*z_44 + z_44*z_21*z_44 + z_45*z_27*z_44
,
z_44*z_20*z_36 + z_46*z_38*z_8
,
z_45*z_26*z_32
,
z_45*z_26*z_37
,
b_2^2 + b_2
,
b_2*b_3
,
b_2*b_4
,
b_2*b_5
,
b_2*b_6
,
b_2*b_7
,
b_2*b_8
,
b_2*b_9
,
b_2*b_10
,
b_2*b_11
,
b_2*b_12
,
b_2*b_13
,
b_2*b_14
,
b_2*b_15
,
b_2*z_1 + z_1
,
b_2*z_2 + z_2
,
b_2*z_3
,
b_2*z_4
,
b_2*z_5
,
b_2*z_6
,
b_2*z_7
,
b_2*z_8
,
b_2*z_9
,
b_2*z_10
,
b_2*z_11
,
b_2*z_12
,
b_2*z_13
,
b_2*z_14
,
b_2*z_15
,
b_2*z_16
,
b_2*z_17
,
b_2*z_18
,
b_2*z_19
,
b_2*z_20
,
b_2*z_21
,
b_2*z_22
,
b_2*z_23
,
b_2*z_24
,
b_2*z_25
,
b_2*z_26
,
b_2*z_27
,
b_2*z_28
,
b_2*z_29
,
b_2*z_30
,
b_2*z_31
,
b_2*z_32
,
b_2*z_33
,
b_2*z_34
,
b_2*z_35
,
b_2*z_36
,
b_2*z_37
,
b_2*z_38
,
b_2*z_39
,
b_2*z_40
,
b_2*z_41
,
b_2*z_42
,
b_2*z_43
,
b_2*z_44
,
b_2*z_45
,
b_2*z_46
,
b_3*b_2
,
b_3^2 + b_3
,
b_3*b_4
,
b_3*b_5
,
b_3*b_6
,
b_3*b_7
,
b_3*b_8
,
b_3*b_9
,
b_3*b_10
,
b_3*b_11
,
b_3*b_12
,
b_3*b_13
,
b_3*b_14
,
b_3*b_15
,
b_3*z_1
,
b_3*z_2
,
b_3*z_3 + z_3
,
b_3*z_4 + z_4
,
b_3*z_5 + z_5
,
b_3*z_6 + z_6
,
b_3*z_7
,
b_3*z_8
,
b_3*z_9
,
b_3*z_10
,
b_3*z_11
,
b_3*z_12
,
b_3*z_13
,
b_3*z_14
,
b_3*z_15
,
b_3*z_16
,
b_3*z_17
,
b_3*z_18
,
b_3*z_19
,
b_3*z_20
,
b_3*z_21
,
b_3*z_22
,
b_3*z_23
,
b_3*z_24
,
b_3*z_25
,
b_3*z_26
,
b_3*z_27
,
b_3*z_28
,
b_3*z_29
,
b_3*z_30
,
b_3*z_31
,
b_3*z_32
,
b_3*z_33
,
b_3*z_34
,
b_3*z_35
,
b_3*z_36
,
b_3*z_37
,
b_3*z_38
,
b_3*z_39
,
b_3*z_40
,
b_3*z_41
,
b_3*z_42
,
b_3*z_43
,
b_3*z_44
,
b_3*z_45
,
b_3*z_46
,
b_4*b_2
,
b_4*b_3
,
b_4^2 + b_4
,
b_4*b_5
,
b_4*b_6
,
b_4*b_7
,
b_4*b_8
,
b_4*b_9
,
b_4*b_10
,
b_4*b_11
,
b_4*b_12
,
b_4*b_13
,
b_4*b_14
,
b_4*b_15
,
b_4*z_1
,
b_4*z_2
,
b_4*z_3
,
b_4*z_4
,
b_4*z_5
,
b_4*z_6
,
b_4*z_7 + z_7
,
b_4*z_8 + z_8
,
b_4*z_9 + z_9
,
b_4*z_10
,
b_4*z_11
,
b_4*z_12
,
b_4*z_13
,
b_4*z_14
,
b_4*z_15
,
b_4*z_16
,
b_4*z_17
,
b_4*z_18
,
b_4*z_19
,
b_4*z_20
,
b_4*z_21
,
b_4*z_22
,
b_4*z_23
,
b_4*z_24
,
b_4*z_25
,
b_4*z_26
,
b_4*z_27
,
b_4*z_28
,
b_4*z_29
,
b_4*z_30
,
b_4*z_31
,
b_4*z_32
,
b_4*z_33
,
b_4*z_34
,
b_4*z_35
,
b_4*z_36
,
b_4*z_37
,
b_4*z_38
,
b_4*z_39
,
b_4*z_40
,
b_4*z_41
,
b_4*z_42
,
b_4*z_43
,
b_4*z_44
,
b_4*z_45
,
b_4*z_46
,
b_5*b_2
,
b_5*b_3
,
b_5*b_4
,
b_5^2 + b_5
,
b_5*b_6
,
b_5*b_7
,
b_5*b_8
,
b_5*b_9
,
b_5*b_10
,
b_5*b_11
,
b_5*b_12
,
b_5*b_13
,
b_5*b_14
,
b_5*b_15
,
b_5*z_1
,
b_5*z_2
,
b_5*z_3
,
b_5*z_4
,
b_5*z_5
,
b_5*z_6
,
b_5*z_7
,
b_5*z_8
,
b_5*z_9
,
b_5*z_10 + z_10
,
b_5*z_11 + z_11
,
b_5*z_12 + z_12
,
b_5*z_13
,
b_5*z_14
,
b_5*z_15
,
b_5*z_16
,
b_5*z_17
,
b_5*z_18
,
b_5*z_19
,
b_5*z_20
,
b_5*z_21
,
b_5*z_22
,
b_5*z_23
,
b_5*z_24
,
b_5*z_25
,
b_5*z_26
,
b_5*z_27
,
b_5*z_28
,
b_5*z_29
,
b_5*z_30
,
b_5*z_31
,
b_5*z_32
,
b_5*z_33
,
b_5*z_34
,
b_5*z_35
,
b_5*z_36
,
b_5*z_37
,
b_5*z_38
,
b_5*z_39
,
b_5*z_40
,
b_5*z_41
,
b_5*z_42
,
b_5*z_43
,
b_5*z_44
,
b_5*z_45
,
b_5*z_46
,
b_6*b_2
,
b_6*b_3
,
b_6*b_4
,
b_6*b_5
,
b_6^2 + b_6
,
b_6*b_7
,
b_6*b_8
,
b_6*b_9
,
b_6*b_10
,
b_6*b_11
,
b_6*b_12
,
b_6*b_13
,
b_6*b_14
,
b_6*b_15
,
b_6*z_1
,
b_6*z_2
,
b_6*z_3
,
b_6*z_4
,
b_6*z_5
,
b_6*z_6
,
b_6*z_7
,
b_6*z_8
,
b_6*z_9
,
b_6*z_10
,
b_6*z_11
,
b_6*z_12
,
b_6*z_13 + z_13
,
b_6*z_14 + z_14
,
b_6*z_15
,
b_6*z_16
,
b_6*z_17
,
b_6*z_18
,
b_6*z_19
,
b_6*z_20
,
b_6*z_21
,
b_6*z_22
,
b_6*z_23
,
b_6*z_24
,
b_6*z_25
,
b_6*z_26
,
b_6*z_27
,
b_6*z_28
,
b_6*z_29
,
b_6*z_30
,
b_6*z_31
,
b_6*z_32
,
b_6*z_33
,
b_6*z_34
,
b_6*z_35
,
b_6*z_36
,
b_6*z_37
,
b_6*z_38
,
b_6*z_39
,
b_6*z_40
,
b_6*z_41
,
b_6*z_42
,
b_6*z_43
,
b_6*z_44
,
b_6*z_45
,
b_6*z_46
,
b_7*b_2
,
b_7*b_3
,
b_7*b_4
,
b_7*b_5
,
b_7*b_6
,
b_7^2 + b_7
,
b_7*b_8
,
b_7*b_9
,
b_7*b_10
,
b_7*b_11
,
b_7*b_12
,
b_7*b_13
,
b_7*b_14
,
b_7*b_15
,
b_7*z_1
,
b_7*z_2
,
b_7*z_3
,
b_7*z_4
,
b_7*z_5
,
b_7*z_6
,
b_7*z_7
,
b_7*z_8
,
b_7*z_9
,
b_7*z_10
,
b_7*z_11
,
b_7*z_12
,
b_7*z_13
,
b_7*z_14
,
b_7*z_15 + z_15
,
b_7*z_16 + z_16
,
b_7*z_17 + z_17
,
b_7*z_18 + z_18
,
b_7*z_19
,
b_7*z_20
,
b_7*z_21
,
b_7*z_22
,
b_7*z_23
,
b_7*z_24
,
b_7*z_25
,
b_7*z_26
,
b_7*z_27
,
b_7*z_28
,
b_7*z_29
,
b_7*z_30
,
b_7*z_31
,
b_7*z_32
,
b_7*z_33
,
b_7*z_34
,
b_7*z_35
,
b_7*z_36
,
b_7*z_37
,
b_7*z_38
,
b_7*z_39
,
b_7*z_40
,
b_7*z_41
,
b_7*z_42
,
b_7*z_43
,
b_7*z_44
,
b_7*z_45
,
b_7*z_46
,
b_8*b_2
,
b_8*b_3
,
b_8*b_4
,
b_8*b_5
,
b_8*b_6
,
b_8*b_7
,
b_8^2 + b_8
,
b_8*b_9
,
b_8*b_10
,
b_8*b_11
,
b_8*b_12
,
b_8*b_13
,
b_8*b_14
,
b_8*b_15
,
b_8*z_1
,
b_8*z_2
,
b_8*z_3
,
b_8*z_4
,
b_8*z_5
,
b_8*z_6
,
b_8*z_7
,
b_8*z_8
,
b_8*z_9
,
b_8*z_10
,
b_8*z_11
,
b_8*z_12
,
b_8*z_13
,
b_8*z_14
,
b_8*z_15
,
b_8*z_16
,
b_8*z_17
,
b_8*z_18
,
b_8*z_19 + z_19
,
b_8*z_20 + z_20
,
b_8*z_21 + z_21
,
b_8*z_22
,
b_8*z_23
,
b_8*z_24
,
b_8*z_25
,
b_8*z_26
,
b_8*z_27
,
b_8*z_28
,
b_8*z_29
,
b_8*z_30
,
b_8*z_31
,
b_8*z_32
,
b_8*z_33
,
b_8*z_34
,
b_8*z_35
,
b_8*z_36
,
b_8*z_37
,
b_8*z_38
,
b_8*z_39
,
b_8*z_40
,
b_8*z_41
,
b_8*z_42
,
b_8*z_43
,
b_8*z_44
,
b_8*z_45
,
b_8*z_46
,
b_9*b_2
,
b_9*b_3
,
b_9*b_4
,
b_9*b_5
,
b_9*b_6
,
b_9*b_7
,
b_9*b_8
,
b_9^2 + b_9
,
b_9*b_10
,
b_9*b_11
,
b_9*b_12
,
b_9*b_13
,
b_9*b_14
,
b_9*b_15
,
b_9*z_1
,
b_9*z_2
,
b_9*z_3
,
b_9*z_4
,
b_9*z_5
,
b_9*z_6
,
b_9*z_7
,
b_9*z_8
,
b_9*z_9
,
b_9*z_10
,
b_9*z_11
,
b_9*z_12
,
b_9*z_13
,
b_9*z_14
,
b_9*z_15
,
b_9*z_16
,
b_9*z_17
,
b_9*z_18
,
b_9*z_19
,
b_9*z_20
,
b_9*z_21
,
b_9*z_22 + z_22
,
b_9*z_23 + z_23
,
b_9*z_24 + z_24
,
b_9*z_25 + z_25
,
b_9*z_26
,
b_9*z_27
,
b_9*z_28
,
b_9*z_29
,
b_9*z_30
,
b_9*z_31
,
b_9*z_32
,
b_9*z_33
,
b_9*z_34
,
b_9*z_35
,
b_9*z_36
,
b_9*z_37
,
b_9*z_38
,
b_9*z_39
,
b_9*z_40
,
b_9*z_41
,
b_9*z_42
,
b_9*z_43
,
b_9*z_44
,
b_9*z_45
,
b_9*z_46
,
b_10*b_2
,
b_10*b_3
,
b_10*b_4
,
b_10*b_5
,
b_10*b_6
,
b_10*b_7
,
b_10*b_8
,
b_10*b_9
,
b_10^2 + b_10
,
b_10*b_11
,
b_10*b_12
,
b_10*b_13
,
b_10*b_14
,
b_10*b_15
,
b_10*z_1
,
b_10*z_2
,
b_10*z_3
,
b_10*z_4
,
b_10*z_5
,
b_10*z_6
,
b_10*z_7
,
b_10*z_8
,
b_10*z_9
,
b_10*z_10
,
b_10*z_11
,
b_10*z_12
,
b_10*z_13
,
b_10*z_14
,
b_10*z_15
,
b_10*z_16
,
b_10*z_17
,
b_10*z_18
,
b_10*z_19
,
b_10*z_20
,
b_10*z_21
,
b_10*z_22
,
b_10*z_23
,
b_10*z_24
,
b_10*z_25
,
b_10*z_26 + z_26
,
b_10*z_27 + z_27
,
b_10*z_28
,
b_10*z_29
,
b_10*z_30
,
b_10*z_31
,
b_10*z_32
,
b_10*z_33
,
b_10*z_34
,
b_10*z_35
,
b_10*z_36
,
b_10*z_37
,
b_10*z_38
,
b_10*z_39
,
b_10*z_40
,
b_10*z_41
,
b_10*z_42
,
b_10*z_43
,
b_10*z_44
,
b_10*z_45
,
b_10*z_46
,
b_11*b_2
,
b_11*b_3
,
b_11*b_4
,
b_11*b_5
,
b_11*b_6
,
b_11*b_7
,
b_11*b_8
,
b_11*b_9
,
b_11*b_10
,
b_11^2 + b_11
,
b_11*b_12
,
b_11*b_13
,
b_11*b_14
,
b_11*b_15
,
b_11*z_1
,
b_11*z_2
,
b_11*z_3
,
b_11*z_4
,
b_11*z_5
,
b_11*z_6
,
b_11*z_7
,
b_11*z_8
,
b_11*z_9
,
b_11*z_10
,
b_11*z_11
,
b_11*z_12
,
b_11*z_13
,
b_11*z_14
,
b_11*z_15
,
b_11*z_16
,
b_11*z_17
,
b_11*z_18
,
b_11*z_19
,
b_11*z_20
,
b_11*z_21
,
b_11*z_22
,
b_11*z_23
,
b_11*z_24
,
b_11*z_25
,
b_11*z_26
,
b_11*z_27
,
b_11*z_28 + z_28
,
b_11*z_29
,
b_11*z_30
,
b_11*z_31
,
b_11*z_32
,
b_11*z_33
,
b_11*z_34
,
b_11*z_35
,
b_11*z_36
,
b_11*z_37
,
b_11*z_38
,
b_11*z_39
,
b_11*z_40
,
b_11*z_41
,
b_11*z_42
,
b_11*z_43
,
b_11*z_44
,
b_11*z_45
,
b_11*z_46
,
b_12*b_2
,
b_12*b_3
,
b_12*b_4
,
b_12*b_5
,
b_12*b_6
,
b_12*b_7
,
b_12*b_8
,
b_12*b_9
,
b_12*b_10
,
b_12*b_11
,
b_12^2 + b_12
,
b_12*b_13
,
b_12*b_14
,
b_12*b_15
,
b_12*z_1
,
b_12*z_2
,
b_12*z_3
,
b_12*z_4
,
b_12*z_5
,
b_12*z_6
,
b_12*z_7
,
b_12*z_8
,
b_12*z_9
,
b_12*z_10
,
b_12*z_11
,
b_12*z_12
,
b_12*z_13
,
b_12*z_14
,
b_12*z_15
,
b_12*z_16
,
b_12*z_17
,
b_12*z_18
,
b_12*z_19
,
b_12*z_20
,
b_12*z_21
,
b_12*z_22
,
b_12*z_23
,
b_12*z_24
,
b_12*z_25
,
b_12*z_26
,
b_12*z_27
,
b_12*z_28
,
b_12*z_29 + z_29
,
b_12*z_30 + z_30
,
b_12*z_31 + z_31
,
b_12*z_32
,
b_12*z_33
,
b_12*z_34
,
b_12*z_35
,
b_12*z_36
,
b_12*z_37
,
b_12*z_38
,
b_12*z_39
,
b_12*z_40
,
b_12*z_41
,
b_12*z_42
,
b_12*z_43
,
b_12*z_44
,
b_12*z_45
,
b_12*z_46
,
b_13*b_2
,
b_13*b_3
,
b_13*b_4
,
b_13*b_5
,
b_13*b_6
,
b_13*b_7
,
b_13*b_8
,
b_13*b_9
,
b_13*b_10
,
b_13*b_11
,
b_13*b_12
,
b_13^2 + b_13
,
b_13*b_14
,
b_13*b_15
,
b_13*z_1
,
b_13*z_2
,
b_13*z_3
,
b_13*z_4
,
b_13*z_5
,
b_13*z_6
,
b_13*z_7
,
b_13*z_8
,
b_13*z_9
,
b_13*z_10
,
b_13*z_11
,
b_13*z_12
,
b_13*z_13
,
b_13*z_14
,
b_13*z_15
,
b_13*z_16
,
b_13*z_17
,
b_13*z_18
,
b_13*z_19
,
b_13*z_20
,
b_13*z_21
,
b_13*z_22
,
b_13*z_23
,
b_13*z_24
,
b_13*z_25
,
b_13*z_26
,
b_13*z_27
,
b_13*z_28
,
b_13*z_29
,
b_13*z_30
,
b_13*z_31
,
b_13*z_32 + z_32
,
b_13*z_33 + z_33
,
b_13*z_34 + z_34
,
b_13*z_35 + z_35
,
b_13*z_36 + z_36
,
b_13*z_37 + z_37
,
b_13*z_38
,
b_13*z_39
,
b_13*z_40
,
b_13*z_41
,
b_13*z_42
,
b_13*z_43
,
b_13*z_44
,
b_13*z_45
,
b_13*z_46
,
b_14*b_2
,
b_14*b_3
,
b_14*b_4
,
b_14*b_5
,
b_14*b_6
,
b_14*b_7
,
b_14*b_8
,
b_14*b_9
,
b_14*b_10
,
b_14*b_11
,
b_14*b_12
,
b_14*b_13
,
b_14^2 + b_14
,
b_14*b_15
,
b_14*z_1
,
b_14*z_2
,
b_14*z_3
,
b_14*z_4
,
b_14*z_5
,
b_14*z_6
,
b_14*z_7
,
b_14*z_8
,
b_14*z_9
,
b_14*z_10
,
b_14*z_11
,
b_14*z_12
,
b_14*z_13
,
b_14*z_14
,
b_14*z_15
,
b_14*z_16
,
b_14*z_17
,
b_14*z_18
,
b_14*z_19
,
b_14*z_20
,
b_14*z_21
,
b_14*z_22
,
b_14*z_23
,
b_14*z_24
,
b_14*z_25
,
b_14*z_26
,
b_14*z_27
,
b_14*z_28
,
b_14*z_29
,
b_14*z_30
,
b_14*z_31
,
b_14*z_32
,
b_14*z_33
,
b_14*z_34
,
b_14*z_35
,
b_14*z_36
,
b_14*z_37
,
b_14*z_38 + z_38
,
b_14*z_39 + z_39
,
b_14*z_40 + z_40
,
b_14*z_41
,
b_14*z_42
,
b_14*z_43
,
b_14*z_44
,
b_14*z_45
,
b_14*z_46
,
b_15*b_2
,
b_15*b_3
,
b_15*b_4
,
b_15*b_5
,
b_15*b_6
,
b_15*b_7
,
b_15*b_8
,
b_15*b_9
,
b_15*b_10
,
b_15*b_11
,
b_15*b_12
,
b_15*b_13
,
b_15*b_14
,
b_15^2 + b_15
,
b_15*z_1
,
b_15*z_2
,
b_15*z_3
,
b_15*z_4
,
b_15*z_5
,
b_15*z_6
,
b_15*z_7
,
b_15*z_8
,
b_15*z_9
,
b_15*z_10
,
b_15*z_11
,
b_15*z_12
,
b_15*z_13
,
b_15*z_14
,
b_15*z_15
,
b_15*z_16
,
b_15*z_17
,
b_15*z_18
,
b_15*z_19
,
b_15*z_20
,
b_15*z_21
,
b_15*z_22
,
b_15*z_23
,
b_15*z_24
,
b_15*z_25
,
b_15*z_26
,
b_15*z_27
,
b_15*z_28
,
b_15*z_29
,
b_15*z_30
,
b_15*z_31
,
b_15*z_32
,
b_15*z_33
,
b_15*z_34
,
b_15*z_35
,
b_15*z_36
,
b_15*z_37
,
b_15*z_38
,
b_15*z_39
,
b_15*z_40
,
b_15*z_41 + z_41
,
b_15*z_42 + z_42
,
b_15*z_43 + z_43
,
b_15*z_44 + z_44
,
b_15*z_45 + z_45
,
b_15*z_46 + z_46
,
z_1*b_2
,
z_1*b_3
,
z_1*b_4
,
z_1*b_5
,
z_1*b_6
,
z_1*b_7 + z_1
,
z_1*b_8
,
z_1*b_9
,
z_1*b_10
,
z_1*b_11
,
z_1*b_12
,
z_1*b_13
,
z_1*b_14
,
z_1*b_15
,
z_1^2
,
z_1*z_2
,
z_1*z_3
,
z_1*z_4
,
z_1*z_5
,
z_1*z_6
,
z_1*z_7
,
z_1*z_8
,
z_1*z_9
,
z_1*z_10
,
z_1*z_11
,
z_1*z_12
,
z_1*z_13
,
z_1*z_14
,
z_1*z_15
,
z_1*z_16
,
z_1*z_19
,
z_1*z_20
,
z_1*z_21
,
z_1*z_22
,
z_1*z_23
,
z_1*z_24
,
z_1*z_25
,
z_1*z_26
,
z_1*z_27
,
z_1*z_28
,
z_1*z_29
,
z_1*z_30
,
z_1*z_31
,
z_1*z_32
,
z_1*z_33
,
z_1*z_34
,
z_1*z_35
,
z_1*z_36
,
z_1*z_37
,
z_1*z_38
,
z_1*z_39
,
z_1*z_40
,
z_1*z_41
,
z_1*z_42
,
z_1*z_43
,
z_1*z_44
,
z_1*z_45
,
z_1*z_46
,
z_2*b_2
,
z_2*b_3
,
z_2*b_4
,
z_2*b_5
,
z_2*b_6
,
z_2*b_7
,
z_2*b_8
,
z_2*b_9
,
z_2*b_10
,
z_2*b_11
,
z_2*b_12
,
z_2*b_13
,
z_2*b_14
,
z_2*b_15 + z_2
,
z_2*z_1
,
z_2^2
,
z_2*z_3
,
z_2*z_4
,
z_2*z_5
,
z_2*z_6
,
z_2*z_7
,
z_2*z_8
,
z_2*z_9
,
z_2*z_10
,
z_2*z_11
,
z_2*z_12
,
z_2*z_13
,
z_2*z_14
,
z_2*z_15
,
z_2*z_16
,
z_2*z_17
,
z_2*z_18
,
z_2*z_19
,
z_2*z_20
,
z_2*z_21
,
z_2*z_22
,
z_2*z_23
,
z_2*z_24
,
z_2*z_25
,
z_2*z_26
,
z_2*z_27
,
z_2*z_28
,
z_2*z_29
,
z_2*z_30
,
z_2*z_31
,
z_2*z_32
,
z_2*z_33
,
z_2*z_34
,
z_2*z_35
,
z_2*z_36
,
z_2*z_37
,
z_2*z_38
,
z_2*z_39
,
z_2*z_40
,
z_2*z_41
,
z_2*z_43
,
z_2*z_44
,
z_3*b_2
,
z_3*b_3
,
z_3*b_4
,
z_3*b_5 + z_3
,
z_3*b_6
,
z_3*b_7
,
z_3*b_8
,
z_3*b_9
,
z_3*b_10
,
z_3*b_11
,
z_3*b_12
,
z_3*b_13
,
z_3*b_14
,
z_3*b_15
,
z_3*z_1
,
z_3*z_2
,
z_3^2
,
z_3*z_4
,
z_3*z_5
,
z_3*z_6
,
z_3*z_7
,
z_3*z_8
,
z_3*z_9
,
z_3*z_13
,
z_3*z_14
,
z_3*z_15
,
z_3*z_16
,
z_3*z_17
,
z_3*z_18
,
z_3*z_19
,
z_3*z_20
,
z_3*z_21
,
z_3*z_22
,
z_3*z_23
,
z_3*z_24
,
z_3*z_25
,
z_3*z_26
,
z_3*z_27
,
z_3*z_28
,
z_3*z_29
,
z_3*z_30
,
z_3*z_31
,
z_3*z_32
,
z_3*z_33
,
z_3*z_34
,
z_3*z_35
,
z_3*z_36
,
z_3*z_37
,
z_3*z_38
,
z_3*z_39
,
z_3*z_40
,
z_3*z_41
,
z_3*z_42
,
z_3*z_43
,
z_3*z_44
,
z_3*z_45
,
z_3*z_46
,
z_4*b_2
,
z_4*b_3
,
z_4*b_4
,
z_4*b_5
,
z_4*b_6
,
z_4*b_7 + z_4
,
z_4*b_8
,
z_4*b_9
,
z_4*b_10
,
z_4*b_11
,
z_4*b_12
,
z_4*b_13
,
z_4*b_14
,
z_4*b_15
,
z_4*z_1
,
z_4*z_2
,
z_4*z_3
,
z_4^2
,
z_4*z_5
,
z_4*z_6
,
z_4*z_7
,
z_4*z_8
,
z_4*z_9
,
z_4*z_10
,
z_4*z_11
,
z_4*z_12
,
z_4*z_13
,
z_4*z_14
,
z_4*z_15 + z_6*z_41
,
z_4*z_19
,
z_4*z_20
,
z_4*z_21
,
z_4*z_22
,
z_4*z_23
,
z_4*z_24
,
z_4*z_25
,
z_4*z_26
,
z_4*z_27
,
z_4*z_28
,
z_4*z_29
,
z_4*z_30
,
z_4*z_31
,
z_4*z_32
,
z_4*z_33
,
z_4*z_34
,
z_4*z_35
,
z_4*z_36
,
z_4*z_37
,
z_4*z_38
,
z_4*z_39
,
z_4*z_40
,
z_4*z_41
,
z_4*z_42
,
z_4*z_43
,
z_4*z_44
,
z_4*z_45
,
z_4*z_46
,
z_5*b_2
,
z_5*b_3
,
z_5*b_4
,
z_5*b_5
,
z_5*b_6
,
z_5*b_7
,
z_5*b_8
,
z_5*b_9
,
z_5*b_10
,
z_5*b_11
,
z_5*b_12
,
z_5*b_13 + z_5
,
z_5*b_14
,
z_5*b_15
,
z_5*z_1
,
z_5*z_2
,
z_5*z_3
,
z_5*z_4
,
z_5^2
,
z_5*z_6
,
z_5*z_7
,
z_5*z_8
,
z_5*z_9
,
z_5*z_10
,
z_5*z_11
,
z_5*z_12
,
z_5*z_13
,
z_5*z_14
,
z_5*z_15
,
z_5*z_16
,
z_5*z_17
,
z_5*z_18
,
z_5*z_19
,
z_5*z_20
,
z_5*z_21
,
z_5*z_22
,
z_5*z_23
,
z_5*z_24
,
z_5*z_25
,
z_5*z_26
,
z_5*z_27
,
z_5*z_28
,
z_5*z_29
,
z_5*z_30
,
z_5*z_31
,
z_5*z_33
,
z_5*z_38
,
z_5*z_39
,
z_5*z_40
,
z_5*z_41
,
z_5*z_42
,
z_5*z_43
,
z_5*z_44
,
z_5*z_45
,
z_5*z_46
,
z_6*b_2
,
z_6*b_3
,
z_6*b_4
,
z_6*b_5
,
z_6*b_6
,
z_6*b_7
,
z_6*b_8
,
z_6*b_9
,
z_6*b_10
,
z_6*b_11
,
z_6*b_12
,
z_6*b_13
,
z_6*b_14
,
z_6*b_15 + z_6
,
z_6*z_1
,
z_6*z_2
,
z_6*z_3
,
z_6*z_4
,
z_6*z_5
,
z_6^2
,
z_6*z_7
,
z_6*z_8
,
z_6*z_9
,
z_6*z_10
,
z_6*z_11
,
z_6*z_12
,
z_6*z_13
,
z_6*z_14
,
z_6*z_15
,
z_6*z_16
,
z_6*z_17
,
z_6*z_18
,
z_6*z_19
,
z_6*z_20
,
z_6*z_21
,
z_6*z_22
,
z_6*z_23
,
z_6*z_24
,
z_6*z_25
,
z_6*z_26
,
z_6*z_27
,
z_6*z_28
,
z_6*z_29
,
z_6*z_30
,
z_6*z_31
,
z_6*z_32
,
z_6*z_33
,
z_6*z_34
,
z_6*z_35
,
z_6*z_36
,
z_6*z_37
,
z_6*z_38
,
z_6*z_39
,
z_6*z_40
,
z_6*z_43
,
z_7*b_2
,
z_7*b_3
,
z_7*b_4
,
z_7*b_5
,
z_7*b_6
,
z_7*b_7
,
z_7*b_8 + z_7
,
z_7*b_9
,
z_7*b_10
,
z_7*b_11
,
z_7*b_12
,
z_7*b_13
,
z_7*b_14
,
z_7*b_15
,
z_7*z_1
,
z_7*z_2
,
z_7*z_3
,
z_7*z_4
,
z_7*z_5
,
z_7*z_6
,
z_7^2
,
z_7*z_8
,
z_7*z_9
,
z_7*z_10
,
z_7*z_11
,
z_7*z_12
,
z_7*z_13
,
z_7*z_14
,
z_7*z_15
,
z_7*z_16
,
z_7*z_17
,
z_7*z_18
,
z_7*z_19
,
z_7*z_22
,
z_7*z_23
,
z_7*z_24
,
z_7*z_25
,
z_7*z_26
,
z_7*z_27
,
z_7*z_28
,
z_7*z_29
,
z_7*z_30
,
z_7*z_31
,
z_7*z_32
,
z_7*z_33
,
z_7*z_34
,
z_7*z_35
,
z_7*z_36
,
z_7*z_37
,
z_7*z_38
,
z_7*z_39
,
z_7*z_40
,
z_7*z_41
,
z_7*z_42
,
z_7*z_43
,
z_7*z_44
,
z_7*z_45
,
z_7*z_46
,
z_8*b_2
,
z_8*b_3
,
z_8*b_4
,
z_8*b_5
,
z_8*b_6
,
z_8*b_7
,
z_8*b_8
,
z_8*b_9 + z_8
,
z_8*b_10
,
z_8*b_11
,
z_8*b_12
,
z_8*b_13
,
z_8*b_14
,
z_8*b_15
,
z_8*z_1
,
z_8*z_2
,
z_8*z_3
,
z_8*z_4
,
z_8*z_5
,
z_8*z_6
,
z_8*z_7
,
z_8^2
,
z_8*z_9
,
z_8*z_10
,
z_8*z_11
,
z_8*z_12
,
z_8*z_13
,
z_8*z_14
,
z_8*z_15
,
z_8*z_16
,
z_8*z_17
,
z_8*z_18
,
z_8*z_19
,
z_8*z_20
,
z_8*z_21
,
z_8*z_22
,
z_8*z_23 + z_9*z_39
,
z_8*z_26
,
z_8*z_27
,
z_8*z_28
,
z_8*z_29
,
z_8*z_30
,
z_8*z_31
,
z_8*z_32
,
z_8*z_33
,
z_8*z_34
,
z_8*z_35
,
z_8*z_36
,
z_8*z_37
,
z_8*z_38
,
z_8*z_39
,
z_8*z_40
,
z_8*z_41
,
z_8*z_42
,
z_8*z_43
,
z_8*z_44
,
z_8*z_45
,
z_8*z_46
,
z_9*b_2
,
z_9*b_3
,
z_9*b_4
,
z_9*b_5
,
z_9*b_6
,
z_9*b_7
,
z_9*b_8
,
z_9*b_9
,
z_9*b_10
,
z_9*b_11
,
z_9*b_12
,
z_9*b_13
,
z_9*b_14 + z_9
,
z_9*b_15
,
z_9*z_1
,
z_9*z_2
,
z_9*z_3
,
z_9*z_4
,
z_9*z_5
,
z_9*z_6
,
z_9*z_7
,
z_9*z_8
,
z_9^2
,
z_9*z_10
,
z_9*z_11
,
z_9*z_12
,
z_9*z_13
,
z_9*z_14
,
z_9*z_15
,
z_9*z_16
,
z_9*z_17
,
z_9*z_18
,
z_9*z_19
,
z_9*z_20
,
z_9*z_21
,
z_9*z_22
,
z_9*z_23
,
z_9*z_24
,
z_9*z_25
,
z_9*z_26
,
z_9*z_27
,
z_9*z_28
,
z_9*z_29
,
z_9*z_30
,
z_9*z_31
,
z_9*z_32
,
z_9*z_33
,
z_9*z_34
,
z_9*z_35
,
z_9*z_36
,
z_9*z_37
,
z_9*z_38
,
z_9*z_41
,
z_9*z_42
,
z_9*z_43
,
z_9*z_44
,
z_9*z_45
,
z_9*z_46
,
z_10*b_2
,
z_10*b_3 + z_10
,
z_10*b_4
,
z_10*b_5
,
z_10*b_6
,
z_10*b_7
,
z_10*b_8
,
z_10*b_9
,
z_10*b_10
,
z_10*b_11
,
z_10*b_12
,
z_10*b_13
,
z_10*b_14
,
z_10*b_15
,
z_10*z_1
,
z_10*z_2
,
z_10*z_3
,
z_10*z_7
,
z_10*z_8
,
z_10*z_9
,
z_10^2
,
z_10*z_11
,
z_10*z_12
,
z_10*z_13
,
z_10*z_14
,
z_10*z_15
,
z_10*z_16
,
z_10*z_17
,
z_10*z_18
,
z_10*z_19
,
z_10*z_20
,
z_10*z_21
,
z_10*z_22
,
z_10*z_23
,
z_10*z_24
,
z_10*z_25
,
z_10*z_26
,
z_10*z_27
,
z_10*z_28
,
z_10*z_29
,
z_10*z_30
,
z_10*z_31
,
z_10*z_32
,
z_10*z_33
,
z_10*z_34
,
z_10*z_35
,
z_10*z_36
,
z_10*z_37
,
z_10*z_38
,
z_10*z_39
,
z_10*z_40
,
z_10*z_41
,
z_10*z_42
,
z_10*z_43
,
z_10*z_44
,
z_10*z_45
,
z_10*z_46
,
z_11*b_2
,
z_11*b_3
,
z_11*b_4
,
z_11*b_5
,
z_11*b_6
,
z_11*b_7
,
z_11*b_8
,
z_11*b_9 + z_11
,
z_11*b_10
,
z_11*b_11
,
z_11*b_12
,
z_11*b_13
,
z_11*b_14
,
z_11*b_15
,
z_11*z_1
,
z_11*z_2
,
z_11*z_3
,
z_11*z_4
,
z_11*z_5
,
z_11*z_6
,
z_11*z_7
,
z_11*z_8
,
z_11*z_9
,
z_11*z_10
,
z_11^2
,
z_11*z_12
,
z_11*z_13
,
z_11*z_14
,
z_11*z_15
,
z_11*z_16
,
z_11*z_17
,
z_11*z_18
,
z_11*z_19
,
z_11*z_20
,
z_11*z_21
,
z_11*z_22 + z_12*z_38
,
z_11*z_26
,
z_11*z_27
,
z_11*z_28
,
z_11*z_29
,
z_11*z_30
,
z_11*z_31
,
z_11*z_32
,
z_11*z_33
,
z_11*z_34
,
z_11*z_35
,
z_11*z_36
,
z_11*z_37
,
z_11*z_38
,
z_11*z_39
,
z_11*z_40
,
z_11*z_41
,
z_11*z_42
,
z_11*z_43
,
z_11*z_44
,
z_11*z_45
,
z_11*z_46
,
z_12*b_2
,
z_12*b_3
,
z_12*b_4
,
z_12*b_5
,
z_12*b_6
,
z_12*b_7
,
z_12*b_8
,
z_12*b_9
,
z_12*b_10
,
z_12*b_11
,
z_12*b_12
,
z_12*b_13
,
z_12*b_14 + z_12
,
z_12*b_15
,
z_12*z_1
,
z_12*z_2
,
z_12*z_3
,
z_12*z_4
,
z_12*z_5
,
z_12*z_6
,
z_12*z_7
,
z_12*z_8
,
z_12*z_9
,
z_12*z_10
,
z_12*z_11
,
z_12^2
,
z_12*z_13
,
z_12*z_14
,
z_12*z_15
,
z_12*z_16
,
z_12*z_17
,
z_12*z_18
,
z_12*z_19
,
z_12*z_20
,
z_12*z_21
,
z_12*z_22
,
z_12*z_23
,
z_12*z_24
,
z_12*z_25
,
z_12*z_26
,
z_12*z_27
,
z_12*z_28
,
z_12*z_29
,
z_12*z_30
,
z_12*z_31
,
z_12*z_32
,
z_12*z_33
,
z_12*z_34
,
z_12*z_35
,
z_12*z_36
,
z_12*z_37
,
z_12*z_39
,
z_12*z_41
,
z_12*z_42
,
z_12*z_43
,
z_12*z_44
,
z_12*z_45
,
z_12*z_46
,
z_13*b_2
,
z_13*b_3
,
z_13*b_4
,
z_13*b_5
,
z_13*b_6
,
z_13*b_7
,
z_13*b_8
,
z_13*b_9
,
z_13*b_10
,
z_13*b_11
,
z_13*b_12
,
z_13*b_13 + z_13
,
z_13*b_14
,
z_13*b_15
,
z_13*z_1
,
z_13*z_2
,
z_13*z_3
,
z_13*z_4
,
z_13*z_5
,
z_13*z_6
,
z_13*z_7
,
z_13*z_8
,
z_13*z_9
,
z_13*z_10
,
z_13*z_11
,
z_13*z_12
,
z_13^2
,
z_13*z_14
,
z_13*z_15
,
z_13*z_16
,
z_13*z_17
,
z_13*z_18
,
z_13*z_19
,
z_13*z_20
,
z_13*z_21
,
z_13*z_22
,
z_13*z_23
,
z_13*z_24
,
z_13*z_25
,
z_13*z_26
,
z_13*z_27
,
z_13*z_28
,
z_13*z_29
,
z_13*z_30
,
z_13*z_31
,
z_13*z_32 + z_14*z_42
,
z_13*z_36
,
z_13*z_38
,
z_13*z_39
,
z_13*z_40
,
z_13*z_41
,
z_13*z_42
,
z_13*z_43
,
z_13*z_44
,
z_13*z_45
,
z_13*z_46
,
z_14*b_2
,
z_14*b_3
,
z_14*b_4
,
z_14*b_5
,
z_14*b_6
,
z_14*b_7
,
z_14*b_8
,
z_14*b_9
,
z_14*b_10
,
z_14*b_11
,
z_14*b_12
,
z_14*b_13
,
z_14*b_14
,
z_14*b_15 + z_14
,
z_14*z_1
,
z_14*z_2
,
z_14*z_3
,
z_14*z_4
,
z_14*z_5
,
z_14*z_6
,
z_14*z_7
,
z_14*z_8
,
z_14*z_9
,
z_14*z_10
,
z_14*z_11
,
z_14*z_12
,
z_14*z_13
,
z_14^2
,
z_14*z_15
,
z_14*z_16
,
z_14*z_17
,
z_14*z_18
,
z_14*z_19
,
z_14*z_20
,
z_14*z_21
,
z_14*z_22
,
z_14*z_23
,
z_14*z_24
,
z_14*z_25
,
z_14*z_26
,
z_14*z_27
,
z_14*z_28
,
z_14*z_29
,
z_14*z_30
,
z_14*z_31
,
z_14*z_32
,
z_14*z_33
,
z_14*z_34
,
z_14*z_35
,
z_14*z_36
,
z_14*z_37
,
z_14*z_38
,
z_14*z_39
,
z_14*z_40
,
z_14*z_41
,
z_14*z_46
,
z_15*b_2 + z_15
,
z_15*b_3
,
z_15*b_4
,
z_15*b_5
,
z_15*b_6
,
z_15*b_7
,
z_15*b_8
,
z_15*b_9
,
z_15*b_10
,
z_15*b_11
,
z_15*b_12
,
z_15*b_13
,
z_15*b_14
,
z_15*b_15
,
z_15*z_3
,
z_15*z_4
,
z_15*z_5
,
z_15*z_6
,
z_15*z_7
,
z_15*z_8
,
z_15*z_9
,
z_15*z_10
,
z_15*z_11
,
z_15*z_12
,
z_15*z_13
,
z_15*z_14
,
z_15^2
,
z_15*z_16
,
z_15*z_17
,
z_15*z_18
,
z_15*z_19
,
z_15*z_20
,
z_15*z_21
,
z_15*z_22
,
z_15*z_23
,
z_15*z_24
,
z_15*z_25
,
z_15*z_26
,
z_15*z_27
,
z_15*z_28
,
z_15*z_29
,
z_15*z_30
,
z_15*z_31
,
z_15*z_32
,
z_15*z_33
,
z_15*z_34
,
z_15*z_35
,
z_15*z_36
,
z_15*z_37
,
z_15*z_38
,
z_15*z_39
,
z_15*z_40
,
z_15*z_41
,
z_15*z_42
,
z_15*z_43
,
z_15*z_44
,
z_15*z_45
,
z_15*z_46
,
z_16*b_2
,
z_16*b_3 + z_16
,
z_16*b_4
,
z_16*b_5
,
z_16*b_6
,
z_16*b_7
,
z_16*b_8
,
z_16*b_9
,
z_16*b_10
,
z_16*b_11
,
z_16*b_12
,
z_16*b_13
,
z_16*b_14
,
z_16*b_15
,
z_16*z_1
,
z_16*z_2
,
z_16*z_7
,
z_16*z_8
,
z_16*z_9
,
z_16*z_10
,
z_16*z_11
,
z_16*z_12
,
z_16*z_13
,
z_16*z_14
,
z_16*z_15
,
z_16^2
,
z_16*z_17
,
z_16*z_18
,
z_16*z_19
,
z_16*z_20
,
z_16*z_21
,
z_16*z_22
,
z_16*z_23
,
z_16*z_24
,
z_16*z_25
,
z_16*z_26
,
z_16*z_27
,
z_16*z_28
,
z_16*z_29
,
z_16*z_30
,
z_16*z_31
,
z_16*z_32
,
z_16*z_33
,
z_16*z_34
,
z_16*z_35
,
z_16*z_36
,
z_16*z_37
,
z_16*z_38
,
z_16*z_39
,
z_16*z_40
,
z_16*z_41
,
z_16*z_42
,
z_16*z_43
,
z_16*z_44
,
z_16*z_45
,
z_16*z_46
,
z_17*b_2
,
z_17*b_3
,
z_17*b_4
,
z_17*b_5
,
z_17*b_6
,
z_17*b_7
,
z_17*b_8
,
z_17*b_9
,
z_17*b_10
,
z_17*b_11
,
z_17*b_12 + z_17
,
z_17*b_13
,
z_17*b_14
,
z_17*b_15
,
z_17*z_1
,
z_17*z_2
,
z_17*z_3
,
z_17*z_4
,
z_17*z_5
,
z_17*z_6
,
z_17*z_7
,
z_17*z_8
,
z_17*z_9
,
z_17*z_10
,
z_17*z_11
,
z_17*z_12
,
z_17*z_13
,
z_17*z_14
,
z_17*z_15
,
z_17*z_16
,
z_17^2
,
z_17*z_18
,
z_17*z_19
,
z_17*z_20
,
z_17*z_21
,
z_17*z_22
,
z_17*z_23
,
z_17*z_24
,
z_17*z_25
,
z_17*z_26
,
z_17*z_27
,
z_17*z_28
,
z_17*z_31
,
z_17*z_32
,
z_17*z_33
,
z_17*z_34
,
z_17*z_35
,
z_17*z_36
,
z_17*z_37
,
z_17*z_38
,
z_17*z_39
,
z_17*z_40
,
z_17*z_41
,
z_17*z_42
,
z_17*z_43
,
z_17*z_44
,
z_17*z_45
,
z_17*z_46
,
z_18*b_2
,
z_18*b_3
,
z_18*b_4
,
z_18*b_5
,
z_18*b_6
,
z_18*b_7
,
z_18*b_8
,
z_18*b_9
,
z_18*b_10
,
z_18*b_11
,
z_18*b_12
,
z_18*b_13 + z_18
,
z_18*b_14
,
z_18*b_15
,
z_18*z_1
,
z_18*z_2
,
z_18*z_3
,
z_18*z_4
,
z_18*z_5
,
z_18*z_6
,
z_18*z_7
,
z_18*z_8
,
z_18*z_9
,
z_18*z_10
,
z_18*z_11
,
z_18*z_12
,
z_18*z_13
,
z_18*z_14
,
z_18*z_15
,
z_18*z_16
,
z_18*z_17
,
z_18^2
,
z_18*z_19
,
z_18*z_20
,
z_18*z_21
,
z_18*z_22
,
z_18*z_23
,
z_18*z_24
,
z_18*z_25
,
z_18*z_26
,
z_18*z_27
,
z_18*z_28
,
z_18*z_29
,
z_18*z_30
,
z_18*z_31
,
z_18*z_38
,
z_18*z_39
,
z_18*z_40
,
z_18*z_41
,
z_18*z_42
,
z_18*z_43
,
z_18*z_44
,
z_18*z_45
,
z_18*z_46
,
z_19*b_2
,
z_19*b_3
,
z_19*b_4 + z_19
,
z_19*b_5
,
z_19*b_6
,
z_19*b_7
,
z_19*b_8
,
z_19*b_9
,
z_19*b_10
,
z_19*b_11
,
z_19*b_12
,
z_19*b_13
,
z_19*b_14
,
z_19*b_15
,
z_19*z_1
,
z_19*z_2
,
z_19*z_3
,
z_19*z_4
,
z_19*z_5
,
z_19*z_6
,
z_19*z_8 + z_20*z_36
,
z_19*z_9 + z_21*z_46
,
z_19*z_10
,
z_19*z_11
,
z_19*z_12
,
z_19*z_13
,
z_19*z_14
,
z_19*z_15
,
z_19*z_16
,
z_19*z_17
,
z_19*z_18
,
z_19^2
,
z_19*z_20
,
z_19*z_21
,
z_19*z_22
,
z_19*z_23
,
z_19*z_24
,
z_19*z_25
,
z_19*z_26
,
z_19*z_27
,
z_19*z_28
,
z_19*z_29
,
z_19*z_30
,
z_19*z_31
,
z_19*z_32
,
z_19*z_33
,
z_19*z_34
,
z_19*z_35
,
z_19*z_36
,
z_19*z_37
,
z_19*z_38
,
z_19*z_39
,
z_19*z_40
,
z_19*z_41
,
z_19*z_42
,
z_19*z_43
,
z_19*z_44
,
z_19*z_45
,
z_19*z_46
,
z_20*b_2
,
z_20*b_3
,
z_20*b_4
,
z_20*b_5
,
z_20*b_6
,
z_20*b_7
,
z_20*b_8
,
z_20*b_9
,
z_20*b_10
,
z_20*b_11
,
z_20*b_12
,
z_20*b_13 + z_20
,
z_20*b_14
,
z_20*b_15
,
z_20*z_1
,
z_20*z_2
,
z_20*z_3
,
z_20*z_4
,
z_20*z_5
,
z_20*z_6
,
z_20*z_7
,
z_20*z_8
,
z_20*z_9
,
z_20*z_10
,
z_20*z_11
,
z_20*z_12
,
z_20*z_13
,
z_20*z_14
,
z_20*z_15
,
z_20*z_16
,
z_20*z_17
,
z_20*z_18
,
z_20*z_19
,
z_20^2
,
z_20*z_21
,
z_20*z_22
,
z_20*z_23
,
z_20*z_24
,
z_20*z_25
,
z_20*z_26
,
z_20*z_27
,
z_20*z_28
,
z_20*z_29
,
z_20*z_30
,
z_20*z_31
,
z_20*z_32 + z_21*z_42
,
z_20*z_38
,
z_20*z_39
,
z_20*z_40
,
z_20*z_41
,
z_20*z_42
,
z_20*z_43
,
z_20*z_44
,
z_20*z_45
,
z_20*z_46
,
z_21*b_2
,
z_21*b_3
,
z_21*b_4
,
z_21*b_5
,
z_21*b_6
,
z_21*b_7
,
z_21*b_8
,
z_21*b_9
,
z_21*b_10
,
z_21*b_11
,
z_21*b_12
,
z_21*b_13
,
z_21*b_14
,
z_21*b_15 + z_21
,
z_21*z_1
,
z_21*z_2
,
z_21*z_3
,
z_21*z_4
,
z_21*z_5
,
z_21*z_6
,
z_21*z_7
,
z_21*z_8
,
z_21*z_9
,
z_21*z_10
,
z_21*z_11
,
z_21*z_12
,
z_21*z_13
,
z_21*z_14
,
z_21*z_15
,
z_21*z_16
,
z_21*z_17
,
z_21*z_18
,
z_21*z_19
,
z_21*z_20
,
z_21^2
,
z_21*z_22
,
z_21*z_23
,
z_21*z_24
,
z_21*z_25
,
z_21*z_26
,
z_21*z_27
,
z_21*z_28
,
z_21*z_29
,
z_21*z_30
,
z_21*z_31
,
z_21*z_32
,
z_21*z_33
,
z_21*z_34
,
z_21*z_35
,
z_21*z_36
,
z_21*z_37
,
z_21*z_38
,
z_21*z_39
,
z_21*z_40
,
z_21*z_41
,
z_22*b_2
,
z_22*b_3
,
z_22*b_4 + z_22
,
z_22*b_5
,
z_22*b_6
,
z_22*b_7
,
z_22*b_8
,
z_22*b_9
,
z_22*b_10
,
z_22*b_11
,
z_22*b_12
,
z_22*b_13
,
z_22*b_14
,
z_22*b_15
,
z_22*z_1
,
z_22*z_2
,
z_22*z_3
,
z_22*z_4
,
z_22*z_5
,
z_22*z_6
,
z_22*z_7 + z_25*z_35
,
z_22*z_8 + z_23*z_11
,
z_22*z_10
,
z_22*z_11
,
z_22*z_12
,
z_22*z_13
,
z_22*z_14
,
z_22*z_15
,
z_22*z_16
,
z_22*z_17
,
z_22*z_18
,
z_22*z_19
,
z_22*z_20
,
z_22*z_21
,
z_22^2
,
z_22*z_23
,
z_22*z_24
,
z_22*z_25
,
z_22*z_26
,
z_22*z_27
,
z_22*z_28
,
z_22*z_29
,
z_22*z_30
,
z_22*z_31
,
z_22*z_32
,
z_22*z_33
,
z_22*z_34
,
z_22*z_35
,
z_22*z_36
,
z_22*z_37
,
z_22*z_38
,
z_22*z_39
,
z_22*z_40
,
z_22*z_41
,
z_22*z_42
,
z_22*z_43
,
z_22*z_44
,
z_22*z_45
,
z_22*z_46
,
z_23*b_2
,
z_23*b_3
,
z_23*b_4
,
z_23*b_5 + z_23
,
z_23*b_6
,
z_23*b_7
,
z_23*b_8
,
z_23*b_9
,
z_23*b_10
,
z_23*b_11
,
z_23*b_12
,
z_23*b_13
,
z_23*b_14
,
z_23*b_15
,
z_23*z_1
,
z_23*z_2
,
z_23*z_3
,
z_23*z_4
,
z_23*z_5
,
z_23*z_6
,
z_23*z_7
,
z_23*z_8
,
z_23*z_9
,
z_23*z_10 + z_25*z_32
,
z_23*z_13
,
z_23*z_14
,
z_23*z_15
,
z_23*z_16
,
z_23*z_17
,
z_23*z_18
,
z_23*z_19
,
z_23*z_20
,
z_23*z_21
,
z_23*z_22
,
z_23^2
,
z_23*z_24
,
z_23*z_25
,
z_23*z_26
,
z_23*z_27
,
z_23*z_28
,
z_23*z_29
,
z_23*z_30
,
z_23*z_31
,
z_23*z_32
,
z_23*z_33
,
z_23*z_34
,
z_23*z_35
,
z_23*z_36
,
z_23*z_37
,
z_23*z_38
,
z_23*z_39
,
z_23*z_40
,
z_23*z_41
,
z_23*z_42
,
z_23*z_43
,
z_23*z_44
,
z_23*z_45
,
z_23*z_46
,
z_24*b_2
,
z_24*b_3
,
z_24*b_4
,
z_24*b_5
,
z_24*b_6
,
z_24*b_7
,
z_24*b_8
,
z_24*b_9
,
z_24*b_10
,
z_24*b_11
,
z_24*b_12 + z_24
,
z_24*b_13
,
z_24*b_14
,
z_24*b_15
,
z_24*z_1
,
z_24*z_2
,
z_24*z_3
,
z_24*z_4
,
z_24*z_5
,
z_24*z_6
,
z_24*z_7
,
z_24*z_8
,
z_24*z_9
,
z_24*z_10
,
z_24*z_11
,
z_24*z_12
,
z_24*z_13
,
z_24*z_14
,
z_24*z_15
,
z_24*z_16
,
z_24*z_17
,
z_24*z_18
,
z_24*z_19
,
z_24*z_20
,
z_24*z_21
,
z_24*z_22
,
z_24*z_23
,
z_24^2
,
z_24*z_25
,
z_24*z_26
,
z_24*z_27
,
z_24*z_28
,
z_24*z_29 + z_25*z_34
,
z_24*z_32
,
z_24*z_33
,
z_24*z_34
,
z_24*z_35
,
z_24*z_36
,
z_24*z_37
,
z_24*z_38
,
z_24*z_39
,
z_24*z_40
,
z_24*z_41
,
z_24*z_42
,
z_24*z_43
,
z_24*z_44
,
z_24*z_45
,
z_24*z_46
,
z_25*b_2
,
z_25*b_3
,
z_25*b_4
,
z_25*b_5
,
z_25*b_6
,
z_25*b_7
,
z_25*b_8
,
z_25*b_9
,
z_25*b_10
,
z_25*b_11
,
z_25*b_12
,
z_25*b_13 + z_25
,
z_25*b_14
,
z_25*b_15
,
z_25*z_1
,
z_25*z_2
,
z_25*z_3
,
z_25*z_4
,
z_25*z_5
,
z_25*z_6
,
z_25*z_7
,
z_25*z_8
,
z_25*z_9
,
z_25*z_10
,
z_25*z_11
,
z_25*z_12
,
z_25*z_13
,
z_25*z_14
,
z_25*z_15
,
z_25*z_16
,
z_25*z_17
,
z_25*z_18
,
z_25*z_19
,
z_25*z_20
,
z_25*z_21
,
z_25*z_22
,
z_25*z_23
,
z_25*z_24
,
z_25^2
,
z_25*z_26
,
z_25*z_27
,
z_25*z_28
,
z_25*z_29
,
z_25*z_30
,
z_25*z_31
,
z_25*z_33
,
z_25*z_36
,
z_25*z_37
,
z_25*z_38
,
z_25*z_39
,
z_25*z_40
,
z_25*z_41
,
z_25*z_42
,
z_25*z_43
,
z_25*z_44
,
z_25*z_45
,
z_25*z_46
,
z_26*b_2
,
z_26*b_3
,
z_26*b_4
,
z_26*b_5
,
z_26*b_6
,
z_26*b_7
,
z_26*b_8
,
z_26*b_9
,
z_26*b_10
,
z_26*b_11
,
z_26*b_12
,
z_26*b_13 + z_26
,
z_26*b_14
,
z_26*b_15
,
z_26*z_1
,
z_26*z_2
,
z_26*z_3
,
z_26*z_4
,
z_26*z_5
,
z_26*z_6
,
z_26*z_7
,
z_26*z_8
,
z_26*z_9
,
z_26*z_10
,
z_26*z_11
,
z_26*z_12
,
z_26*z_13
,
z_26*z_14
,
z_26*z_15
,
z_26*z_16
,
z_26*z_17
,
z_26*z_18
,
z_26*z_19
,
z_26*z_20
,
z_26*z_21
,
z_26*z_22
,
z_26*z_23
,
z_26*z_24
,
z_26*z_25
,
z_26^2
,
z_26*z_27
,
z_26*z_28
,
z_26*z_29
,
z_26*z_30
,
z_26*z_31
,
z_26*z_33 + z_27*z_43
,
z_26*z_35
,
z_26*z_36
,
z_26*z_38
,
z_26*z_39
,
z_26*z_40
,
z_26*z_41
,
z_26*z_42
,
z_26*z_43
,
z_26*z_44
,
z_26*z_45
,
z_26*z_46
,
z_27*b_2
,
z_27*b_3
,
z_27*b_4
,
z_27*b_5
,
z_27*b_6
,
z_27*b_7
,
z_27*b_8
,
z_27*b_9
,
z_27*b_10
,
z_27*b_11
,
z_27*b_12
,
z_27*b_13
,
z_27*b_14
,
z_27*b_15 + z_27
,
z_27*z_1
,
z_27*z_2
,
z_27*z_3
,
z_27*z_4
,
z_27*z_5
,
z_27*z_6
,
z_27*z_7
,
z_27*z_8
,
z_27*z_9
,
z_27*z_10
,
z_27*z_11
,
z_27*z_12
,
z_27*z_13
,
z_27*z_14
,
z_27*z_15
,
z_27*z_16
,
z_27*z_17
,
z_27*z_18
,
z_27*z_19
,
z_27*z_20
,
z_27*z_21
,
z_27*z_22
,
z_27*z_23
,
z_27*z_24
,
z_27*z_25
,
z_27*z_26
,
z_27^2
,
z_27*z_28
,
z_27*z_29
,
z_27*z_30
,
z_27*z_31
,
z_27*z_32
,
z_27*z_33
,
z_27*z_34
,
z_27*z_35
,
z_27*z_36
,
z_27*z_37
,
z_27*z_38
,
z_27*z_39
,
z_27*z_40
,
z_27*z_41
,
z_28*b_2
,
z_28*b_3
,
z_28*b_4
,
z_28*b_5
,
z_28*b_6
,
z_28*b_7
,
z_28*b_8
,
z_28*b_9
,
z_28*b_10
,
z_28*b_11
,
z_28*b_12 + z_28
,
z_28*b_13
,
z_28*b_14
,
z_28*b_15
,
z_28*z_1
,
z_28*z_2
,
z_28*z_3
,
z_28*z_4
,
z_28*z_5
,
z_28*z_6
,
z_28*z_7
,
z_28*z_8
,
z_28*z_9
,
z_28*z_10
,
z_28*z_11
,
z_28*z_12
,
z_28*z_13
,
z_28*z_14
,
z_28*z_15
,
z_28*z_16
,
z_28*z_17
,
z_28*z_18
,
z_28*z_19
,
z_28*z_20
,
z_28*z_21
,
z_28*z_22
,
z_28*z_23
,
z_28*z_24
,
z_28*z_25
,
z_28*z_26
,
z_28*z_27
,
z_28^2
,
z_28*z_29
,
z_28*z_31
,
z_28*z_32
,
z_28*z_33
,
z_28*z_34
,
z_28*z_35
,
z_28*z_36
,
z_28*z_37
,
z_28*z_38
,
z_28*z_39
,
z_28*z_40
,
z_28*z_41
,
z_28*z_42
,
z_28*z_43
,
z_28*z_44
,
z_28*z_45
,
z_28*z_46
,
z_29*b_2
,
z_29*b_3
,
z_29*b_4
,
z_29*b_5
,
z_29*b_6
,
z_29*b_7 + z_29
,
z_29*b_8
,
z_29*b_9
,
z_29*b_10
,
z_29*b_11
,
z_29*b_12
,
z_29*b_13
,
z_29*b_14
,
z_29*b_15
,
z_29*z_1
,
z_29*z_2
,
z_29*z_3
,
z_29*z_4
,
z_29*z_5
,
z_29*z_6
,
z_29*z_7
,
z_29*z_8
,
z_29*z_9
,
z_29*z_10
,
z_29*z_11
,
z_29*z_12
,
z_29*z_13
,
z_29*z_14
,
z_29*z_19
,
z_29*z_20
,
z_29*z_21
,
z_29*z_22
,
z_29*z_23
,
z_29*z_24
,
z_29*z_25
,
z_29*z_26
,
z_29*z_27
,
z_29*z_28
,
z_29^2
,
z_29*z_30
,
z_29*z_31
,
z_29*z_32
,
z_29*z_33
,
z_29*z_34
,
z_29*z_35
,
z_29*z_36
,
z_29*z_37
,
z_29*z_38
,
z_29*z_39
,
z_29*z_40
,
z_29*z_41
,
z_29*z_42
,
z_29*z_43
,
z_29*z_44
,
z_29*z_45
,
z_29*z_46
,
z_30*b_2
,
z_30*b_3
,
z_30*b_4
,
z_30*b_5
,
z_30*b_6
,
z_30*b_7
,
z_30*b_8
,
z_30*b_9 + z_30
,
z_30*b_10
,
z_30*b_11
,
z_30*b_12
,
z_30*b_13
,
z_30*b_14
,
z_30*b_15
,
z_30*z_1
,
z_30*z_2
,
z_30*z_3
,
z_30*z_4
,
z_30*z_5
,
z_30*z_6
,
z_30*z_7
,
z_30*z_8
,
z_30*z_9
,
z_30*z_10
,
z_30*z_11
,
z_30*z_12
,
z_30*z_13
,
z_30*z_14
,
z_30*z_15
,
z_30*z_16
,
z_30*z_17
,
z_30*z_18
,
z_30*z_19
,
z_30*z_20
,
z_30*z_21
,
z_30*z_26
,
z_30*z_27
,
z_30*z_28
,
z_30*z_29
,
z_30^2
,
z_30*z_31
,
z_30*z_32
,
z_30*z_33
,
z_30*z_34
,
z_30*z_35
,
z_30*z_36
,
z_30*z_37
,
z_30*z_38
,
z_30*z_39
,
z_30*z_40
,
z_30*z_41
,
z_30*z_42
,
z_30*z_43
,
z_30*z_44
,
z_30*z_45
,
z_30*z_46
,
z_31*b_2
,
z_31*b_3
,
z_31*b_4
,
z_31*b_5
,
z_31*b_6
,
z_31*b_7
,
z_31*b_8
,
z_31*b_9
,
z_31*b_10
,
z_31*b_11 + z_31
,
z_31*b_12
,
z_31*b_13
,
z_31*b_14
,
z_31*b_15
,
z_31*z_1
,
z_31*z_2
,
z_31*z_3
,
z_31*z_4
,
z_31*z_5
,
z_31*z_6
,
z_31*z_7
,
z_31*z_8
,
z_31*z_9
,
z_31*z_10
,
z_31*z_11
,
z_31*z_12
,
z_31*z_13
,
z_31*z_14
,
z_31*z_15
,
z_31*z_16
,
z_31*z_17
,
z_31*z_18
,
z_31*z_19
,
z_31*z_20
,
z_31*z_21
,
z_31*z_22
,
z_31*z_23
,
z_31*z_24
,
z_31*z_25
,
z_31*z_26
,
z_31*z_27
,
z_31*z_29
,
z_31*z_30
,
z_31^2
,
z_31*z_32
,
z_31*z_33
,
z_31*z_34
,
z_31*z_35
,
z_31*z_36
,
z_31*z_37
,
z_31*z_38
,
z_31*z_39
,
z_31*z_40
,
z_31*z_41
,
z_31*z_42
,
z_31*z_43
,
z_31*z_44
,
z_31*z_45
,
z_31*z_46
,
z_32*b_2
,
z_32*b_3 + z_32
,
z_32*b_4
,
z_32*b_5
,
z_32*b_6
,
z_32*b_7
,
z_32*b_8
,
z_32*b_9
,
z_32*b_10
,
z_32*b_11
,
z_32*b_12
,
z_32*b_13
,
z_32*b_14
,
z_32*b_15
,
z_32*z_1
,
z_32*z_2
,
z_32*z_7
,
z_32*z_8
,
z_32*z_9
,
z_32*z_10
,
z_32*z_11
,
z_32*z_12
,
z_32*z_13
,
z_32*z_14
,
z_32*z_15
,
z_32*z_16
,
z_32*z_17
,
z_32*z_18
,
z_32*z_19
,
z_32*z_20
,
z_32*z_21
,
z_32*z_22
,
z_32*z_23
,
z_32*z_24
,
z_32*z_25
,
z_32*z_26
,
z_32*z_27
,
z_32*z_28
,
z_32*z_29
,
z_32*z_30
,
z_32*z_31
,
z_32^2
,
z_32*z_33
,
z_32*z_34
,
z_32*z_35
,
z_32*z_36
,
z_32*z_37
,
z_32*z_38
,
z_32*z_39
,
z_32*z_40
,
z_32*z_41
,
z_32*z_42
,
z_32*z_43
,
z_32*z_44
,
z_32*z_45
,
z_32*z_46
,
z_33*b_2
,
z_33*b_3
,
z_33*b_4
,
z_33*b_5
,
z_33*b_6 + z_33
,
z_33*b_7
,
z_33*b_8
,
z_33*b_9
,
z_33*b_10
,
z_33*b_11
,
z_33*b_12
,
z_33*b_13
,
z_33*b_14
,
z_33*b_15
,
z_33*z_1
,
z_33*z_2
,
z_33*z_3
,
z_33*z_4
,
z_33*z_5
,
z_33*z_6
,
z_33*z_7
,
z_33*z_8
,
z_33*z_9
,
z_33*z_10
,
z_33*z_11
,
z_33*z_12
,
z_33*z_15
,
z_33*z_16
,
z_33*z_17
,
z_33*z_18
,
z_33*z_19
,
z_33*z_20
,
z_33*z_21
,
z_33*z_22
,
z_33*z_23
,
z_33*z_24
,
z_33*z_25
,
z_33*z_26
,
z_33*z_27
,
z_33*z_28
,
z_33*z_29
,
z_33*z_30
,
z_33*z_31
,
z_33*z_32
,
z_33^2
,
z_33*z_34
,
z_33*z_35
,
z_33*z_36
,
z_33*z_37
,
z_33*z_38
,
z_33*z_39
,
z_33*z_40
,
z_33*z_41
,
z_33*z_42
,
z_33*z_43
,
z_33*z_44
,
z_33*z_45
,
z_33*z_46
,
z_34*b_2
,
z_34*b_3
,
z_34*b_4
,
z_34*b_5
,
z_34*b_6
,
z_34*b_7 + z_34
,
z_34*b_8
,
z_34*b_9
,
z_34*b_10
,
z_34*b_11
,
z_34*b_12
,
z_34*b_13
,
z_34*b_14
,
z_34*b_15
,
z_34*z_1
,
z_34*z_2
,
z_34*z_3
,
z_34*z_4
,
z_34*z_5
,
z_34*z_6
,
z_34*z_7
,
z_34*z_8
,
z_34*z_9
,
z_34*z_10
,
z_34*z_11
,
z_34*z_12
,
z_34*z_13
,
z_34*z_14
,
z_34*z_19
,
z_34*z_20
,
z_34*z_21
,
z_34*z_22
,
z_34*z_23
,
z_34*z_24
,
z_34*z_25
,
z_34*z_26
,
z_34*z_27
,
z_34*z_28
,
z_34*z_29
,
z_34*z_30
,
z_34*z_31
,
z_34*z_32
,
z_34*z_33
,
z_34^2
,
z_34*z_35
,
z_34*z_36
,
z_34*z_37
,
z_34*z_38
,
z_34*z_39
,
z_34*z_40
,
z_34*z_41
,
z_34*z_42
,
z_34*z_43
,
z_34*z_44
,
z_34*z_45
,
z_34*z_46
,
z_35*b_2
,
z_35*b_3
,
z_35*b_4
,
z_35*b_5
,
z_35*b_6
,
z_35*b_7
,
z_35*b_8 + z_35
,
z_35*b_9
,
z_35*b_10
,
z_35*b_11
,
z_35*b_12
,
z_35*b_13
,
z_35*b_14
,
z_35*b_15
,
z_35*z_1
,
z_35*z_2
,
z_35*z_3
,
z_35*z_4
,
z_35*z_5
,
z_35*z_6
,
z_35*z_7
,
z_35*z_8
,
z_35*z_9
,
z_35*z_10
,
z_35*z_11
,
z_35*z_12
,
z_35*z_13
,
z_35*z_14
,
z_35*z_15
,
z_35*z_16
,
z_35*z_17
,
z_35*z_18
,
z_35*z_22
,
z_35*z_23
,
z_35*z_24
,
z_35*z_25
,
z_35*z_26
,
z_35*z_27
,
z_35*z_28
,
z_35*z_29
,
z_35*z_30
,
z_35*z_31
,
z_35*z_32
,
z_35*z_33
,
z_35*z_34
,
z_35^2
,
z_35*z_36
,
z_35*z_37
,
z_35*z_38
,
z_35*z_39
,
z_35*z_40
,
z_35*z_41
,
z_35*z_42
,
z_35*z_43
,
z_35*z_44
,
z_35*z_45
,
z_35*z_46
,
z_36*b_2
,
z_36*b_3
,
z_36*b_4
,
z_36*b_5
,
z_36*b_6
,
z_36*b_7
,
z_36*b_8
,
z_36*b_9 + z_36
,
z_36*b_10
,
z_36*b_11
,
z_36*b_12
,
z_36*b_13
,
z_36*b_14
,
z_36*b_15
,
z_36*z_1
,
z_36*z_2
,
z_36*z_3
,
z_36*z_4
,
z_36*z_5
,
z_36*z_6
,
z_36*z_7
,
z_36*z_8
,
z_36*z_9
,
z_36*z_10
,
z_36*z_11
,
z_36*z_12
,
z_36*z_13
,
z_36*z_14
,
z_36*z_15
,
z_36*z_16
,
z_36*z_17
,
z_36*z_18
,
z_36*z_19
,
z_36*z_20
,
z_36*z_21
,
z_36*z_26
,
z_36*z_27
,
z_36*z_28
,
z_36*z_29
,
z_36*z_30
,
z_36*z_31
,
z_36*z_32
,
z_36*z_33
,
z_36*z_34
,
z_36*z_35
,
z_36^2
,
z_36*z_37
,
z_36*z_38
,
z_36*z_39
,
z_36*z_40
,
z_36*z_41
,
z_36*z_42
,
z_36*z_43
,
z_36*z_44
,
z_36*z_45
,
z_36*z_46
,
z_37*b_2
,
z_37*b_3
,
z_37*b_4
,
z_37*b_5
,
z_37*b_6
,
z_37*b_7
,
z_37*b_8
,
z_37*b_9
,
z_37*b_10 + z_37
,
z_37*b_11
,
z_37*b_12
,
z_37*b_13
,
z_37*b_14
,
z_37*b_15
,
z_37*z_1
,
z_37*z_2
,
z_37*z_3
,
z_37*z_4
,
z_37*z_5
,
z_37*z_6
,
z_37*z_7
,
z_37*z_8
,
z_37*z_9
,
z_37*z_10
,
z_37*z_11
,
z_37*z_12
,
z_37*z_13
,
z_37*z_14
,
z_37*z_15
,
z_37*z_16
,
z_37*z_17
,
z_37*z_18
,
z_37*z_19
,
z_37*z_20
,
z_37*z_21
,
z_37*z_22
,
z_37*z_23
,
z_37*z_24
,
z_37*z_25
,
z_37*z_28
,
z_37*z_29
,
z_37*z_30
,
z_37*z_31
,
z_37*z_32
,
z_37*z_33
,
z_37*z_34
,
z_37*z_35
,
z_37*z_36
,
z_37^2
,
z_37*z_38
,
z_37*z_39
,
z_37*z_40
,
z_37*z_41
,
z_37*z_42
,
z_37*z_43
,
z_37*z_44
,
z_37*z_45
,
z_37*z_46
,
z_38*b_2
,
z_38*b_3
,
z_38*b_4 + z_38
,
z_38*b_5
,
z_38*b_6
,
z_38*b_7
,
z_38*b_8
,
z_38*b_9
,
z_38*b_10
,
z_38*b_11
,
z_38*b_12
,
z_38*b_13
,
z_38*b_14
,
z_38*b_15
,
z_38*z_1
,
z_38*z_2
,
z_38*z_3
,
z_38*z_4
,
z_38*z_5
,
z_38*z_6
,
z_38*z_7 + z_40*z_44
,
z_38*z_10
,
z_38*z_11
,
z_38*z_12
,
z_38*z_13
,
z_38*z_14
,
z_38*z_15
,
z_38*z_16
,
z_38*z_17
,
z_38*z_18
,
z_38*z_19
,
z_38*z_20
,
z_38*z_21
,
z_38*z_22
,
z_38*z_23
,
z_38*z_24
,
z_38*z_25
,
z_38*z_26
,
z_38*z_27
,
z_38*z_28
,
z_38*z_29
,
z_38*z_30
,
z_38*z_31
,
z_38*z_32
,
z_38*z_33
,
z_38*z_34
,
z_38*z_35
,
z_38*z_36
,
z_38*z_37
,
z_38^2
,
z_38*z_39
,
z_38*z_40
,
z_38*z_41
,
z_38*z_42
,
z_38*z_43
,
z_38*z_44
,
z_38*z_45
,
z_38*z_46
,
z_39*b_2
,
z_39*b_3
,
z_39*b_4
,
z_39*b_5 + z_39
,
z_39*b_6
,
z_39*b_7
,
z_39*b_8
,
z_39*b_9
,
z_39*b_10
,
z_39*b_11
,
z_39*b_12
,
z_39*b_13
,
z_39*b_14
,
z_39*b_15
,
z_39*z_1
,
z_39*z_2
,
z_39*z_3
,
z_39*z_4
,
z_39*z_5
,
z_39*z_6
,
z_39*z_7
,
z_39*z_8
,
z_39*z_9
,
z_39*z_13
,
z_39*z_14
,
z_39*z_15
,
z_39*z_16
,
z_39*z_17
,
z_39*z_18
,
z_39*z_19
,
z_39*z_20
,
z_39*z_21
,
z_39*z_22
,
z_39*z_23
,
z_39*z_24
,
z_39*z_25
,
z_39*z_26
,
z_39*z_27
,
z_39*z_28
,
z_39*z_29
,
z_39*z_30
,
z_39*z_31
,
z_39*z_32
,
z_39*z_33
,
z_39*z_34
,
z_39*z_35
,
z_39*z_36
,
z_39*z_37
,
z_39*z_38
,
z_39^2
,
z_39*z_40
,
z_39*z_41
,
z_39*z_42
,
z_39*z_43
,
z_39*z_44
,
z_39*z_45
,
z_39*z_46
,
z_40*b_2
,
z_40*b_3
,
z_40*b_4
,
z_40*b_5
,
z_40*b_6
,
z_40*b_7
,
z_40*b_8
,
z_40*b_9
,
z_40*b_10
,
z_40*b_11
,
z_40*b_12
,
z_40*b_13
,
z_40*b_14
,
z_40*b_15 + z_40
,
z_40*z_1
,
z_40*z_2
,
z_40*z_3
,
z_40*z_4
,
z_40*z_5
,
z_40*z_6
,
z_40*z_7
,
z_40*z_8
,
z_40*z_9
,
z_40*z_10
,
z_40*z_11
,
z_40*z_12
,
z_40*z_13
,
z_40*z_14
,
z_40*z_15
,
z_40*z_16
,
z_40*z_17
,
z_40*z_18
,
z_40*z_19
,
z_40*z_20
,
z_40*z_21
,
z_40*z_22
,
z_40*z_23
,
z_40*z_24
,
z_40*z_25
,
z_40*z_26
,
z_40*z_27
,
z_40*z_28
,
z_40*z_29
,
z_40*z_30
,
z_40*z_31
,
z_40*z_32
,
z_40*z_33
,
z_40*z_34
,
z_40*z_35
,
z_40*z_36
,
z_40*z_37
,
z_40*z_38
,
z_40*z_39
,
z_40^2
,
z_40*z_43
,
z_41*b_2 + z_41
,
z_41*b_3
,
z_41*b_4
,
z_41*b_5
,
z_41*b_6
,
z_41*b_7
,
z_41*b_8
,
z_41*b_9
,
z_41*b_10
,
z_41*b_11
,
z_41*b_12
,
z_41*b_13
,
z_41*b_14
,
z_41*b_15
,
z_41*z_3
,
z_41*z_4
,
z_41*z_5
,
z_41*z_6
,
z_41*z_7
,
z_41*z_8
,
z_41*z_9
,
z_41*z_10
,
z_41*z_11
,
z_41*z_12
,
z_41*z_13
,
z_41*z_14
,
z_41*z_15
,
z_41*z_16
,
z_41*z_17
,
z_41*z_18
,
z_41*z_19
,
z_41*z_20
,
z_41*z_21
,
z_41*z_22
,
z_41*z_23
,
z_41*z_24
,
z_41*z_25
,
z_41*z_26
,
z_41*z_27
,
z_41*z_28
,
z_41*z_29
,
z_41*z_30
,
z_41*z_31
,
z_41*z_32
,
z_41*z_33
,
z_41*z_34
,
z_41*z_35
,
z_41*z_36
,
z_41*z_37
,
z_41*z_38
,
z_41*z_39
,
z_41*z_40
,
z_41^2
,
z_41*z_42
,
z_41*z_43
,
z_41*z_44
,
z_41*z_45
,
z_41*z_46
,
z_42*b_2
,
z_42*b_3 + z_42
,
z_42*b_4
,
z_42*b_5
,
z_42*b_6
,
z_42*b_7
,
z_42*b_8
,
z_42*b_9
,
z_42*b_10
,
z_42*b_11
,
z_42*b_12
,
z_42*b_13
,
z_42*b_14
,
z_42*b_15
,
z_42*z_1
,
z_42*z_2
,
z_42*z_7
,
z_42*z_8
,
z_42*z_9
,
z_42*z_10
,
z_42*z_11
,
z_42*z_12
,
z_42*z_13
,
z_42*z_14
,
z_42*z_15
,
z_42*z_16
,
z_42*z_17
,
z_42*z_18
,
z_42*z_19
,
z_42*z_20
,
z_42*z_21
,
z_42*z_22
,
z_42*z_23
,
z_42*z_24
,
z_42*z_25
,
z_42*z_26
,
z_42*z_27
,
z_42*z_28
,
z_42*z_29
,
z_42*z_30
,
z_42*z_31
,
z_42*z_32
,
z_42*z_33
,
z_42*z_34
,
z_42*z_35
,
z_42*z_36
,
z_42*z_37
,
z_42*z_38
,
z_42*z_39
,
z_42*z_40
,
z_42*z_41
,
z_42^2
,
z_42*z_43
,
z_42*z_44
,
z_42*z_45
,
z_42*z_46
,
z_43*b_2
,
z_43*b_3
,
z_43*b_4
,
z_43*b_5
,
z_43*b_6 + z_43
,
z_43*b_7
,
z_43*b_8
,
z_43*b_9
,
z_43*b_10
,
z_43*b_11
,
z_43*b_12
,
z_43*b_13
,
z_43*b_14
,
z_43*b_15
,
z_43*z_1
,
z_43*z_2
,
z_43*z_3
,
z_43*z_4
,
z_43*z_5
,
z_43*z_6
,
z_43*z_7
,
z_43*z_8
,
z_43*z_9
,
z_43*z_10
,
z_43*z_11
,
z_43*z_12
,
z_43*z_15
,
z_43*z_16
,
z_43*z_17
,
z_43*z_18
,
z_43*z_19
,
z_43*z_20
,
z_43*z_21
,
z_43*z_22
,
z_43*z_23
,
z_43*z_24
,
z_43*z_25
,
z_43*z_26
,
z_43*z_27
,
z_43*z_28
,
z_43*z_29
,
z_43*z_30
,
z_43*z_31
,
z_43*z_32
,
z_43*z_33
,
z_43*z_34
,
z_43*z_35
,
z_43*z_36
,
z_43*z_37
,
z_43*z_38
,
z_43*z_39
,
z_43*z_40
,
z_43*z_41
,
z_43*z_42
,
z_43^2
,
z_43*z_44
,
z_43*z_45
,
z_43*z_46
,
z_44*b_2
,
z_44*b_3
,
z_44*b_4
,
z_44*b_5
,
z_44*b_6
,
z_44*b_7
,
z_44*b_8 + z_44
,
z_44*b_9
,
z_44*b_10
,
z_44*b_11
,
z_44*b_12
,
z_44*b_13
,
z_44*b_14
,
z_44*b_15
,
z_44*z_1
,
z_44*z_2
,
z_44*z_3
,
z_44*z_4
,
z_44*z_5
,
z_44*z_6
,
z_44*z_7
,
z_44*z_8
,
z_44*z_9
,
z_44*z_10
,
z_44*z_11
,
z_44*z_12
,
z_44*z_13
,
z_44*z_14
,
z_44*z_15
,
z_44*z_16
,
z_44*z_17
,
z_44*z_18
,
z_44*z_22
,
z_44*z_23
,
z_44*z_24
,
z_44*z_25
,
z_44*z_26
,
z_44*z_27
,
z_44*z_28
,
z_44*z_29
,
z_44*z_30
,
z_44*z_31
,
z_44*z_32
,
z_44*z_33
,
z_44*z_34
,
z_44*z_35
,
z_44*z_36
,
z_44*z_37
,
z_44*z_38
,
z_44*z_39
,
z_44*z_40
,
z_44*z_41
,
z_44*z_42
,
z_44*z_43
,
z_44^2
,
z_44*z_45
,
z_44*z_46
,
z_45*b_2
,
z_45*b_3
,
z_45*b_4
,
z_45*b_5
,
z_45*b_6
,
z_45*b_7
,
z_45*b_8
,
z_45*b_9
,
z_45*b_10 + z_45
,
z_45*b_11
,
z_45*b_12
,
z_45*b_13
,
z_45*b_14
,
z_45*b_15
,
z_45*z_1
,
z_45*z_2
,
z_45*z_3
,
z_45*z_4
,
z_45*z_5
,
z_45*z_6
,
z_45*z_7
,
z_45*z_8
,
z_45*z_9
,
z_45*z_10
,
z_45*z_11
,
z_45*z_12
,
z_45*z_13
,
z_45*z_14
,
z_45*z_15
,
z_45*z_16
,
z_45*z_17
,
z_45*z_18
,
z_45*z_19
,
z_45*z_20
,
z_45*z_21
,
z_45*z_22
,
z_45*z_23
,
z_45*z_24
,
z_45*z_25
,
z_45*z_28
,
z_45*z_29
,
z_45*z_30
,
z_45*z_31
,
z_45*z_32
,
z_45*z_33
,
z_45*z_34
,
z_45*z_35
,
z_45*z_36
,
z_45*z_37
,
z_45*z_38
,
z_45*z_39
,
z_45*z_40
,
z_45*z_41
,
z_45*z_42
,
z_45*z_43
,
z_45*z_44
,
z_45^2
,
z_45*z_46
,
z_46*b_2
,
z_46*b_3
,
z_46*b_4
,
z_46*b_5
,
z_46*b_6
,
z_46*b_7
,
z_46*b_8
,
z_46*b_9
,
z_46*b_10
,
z_46*b_11
,
z_46*b_12
,
z_46*b_13
,
z_46*b_14 + z_46
,
z_46*b_15
,
z_46*z_1
,
z_46*z_2
,
z_46*z_3
,
z_46*z_4
,
z_46*z_5
,
z_46*z_6
,
z_46*z_7
,
z_46*z_8
,
z_46*z_9
,
z_46*z_10
,
z_46*z_11
,
z_46*z_12
,
z_46*z_13
,
z_46*z_14
,
z_46*z_15
,
z_46*z_16
,
z_46*z_17
,
z_46*z_18
,
z_46*z_19
,
z_46*z_20
,
z_46*z_21
,
z_46*z_22
,
z_46*z_23
,
z_46*z_24
,
z_46*z_25
,
z_46*z_26
,
z_46*z_27
,
z_46*z_28
,
z_46*z_29
,
z_46*z_30
,
z_46*z_31
,
z_46*z_32
,
z_46*z_33
,
z_46*z_34
,
z_46*z_35
,
z_46*z_36
,
z_46*z_37
,
z_46*z_41
,
z_46*z_42
,
z_46*z_43
,
z_46*z_44
,
z_46*z_45
,
z_46^2
,
b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 + b_9 + b_10 + b_11 + b_12 + b_13
+ b_14 + b_15 + 1
.
The ideal of relations is not generated by the elements
of degree at most 2. The following relation were not contained in the ideal
generated by the relations of degree 2:
z_12*z_40*z_46*z_40*z_45*z_26
,
z_25*z_34*z_18*z_35*z_21*z_45
,
z_27*z_46*z_40*z_42*z_6*z_41 + z_27*z_46*z_40*z_41 + z_26*z_34*z_15
,
z_27*z_46*z_40*z_45*z_26*z_34 + z_27*z_42*z_5*z_34
,
z_40*z_46*z_40*z_42*z_6*z_41
,
z_40*z_46*z_40*z_45*z_26*z_34 + z_39*z_10*z_5*z_34 + z_40*z_42*z_5*z_34
,
z_46*z_38*z_8*z_24*z_31*z_28 + z_44*z_20*z_34*z_17
,
z_1*z_18*z_32*z_6*z_41
,
z_1*z_18*z_32*z_6*z_45 + z_2*z_45
,
z_1*z_18*z_34*z_15*z_2 + z_2*z_42*z_6
,
z_1*z_18*z_36*z_25*z_34 + z_2*z_42*z_5*z_34 + z_1*z_18*z_34
,
z_1*z_18*z_36*z_25*z_35
,
z_1*z_18*z_37*z_26*z_34 + z_2*z_42*z_5*z_34
,
z_2*z_42*z_5*z_34*z_16
,
z_6*z_41*z_1*z_18*z_34 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_5*z_34
,
z_6*z_41*z_1*z_18*z_36 + z_5*z_36
,
z_6*z_41*z_1*z_18*z_37 + z_6*z_46*z_40*z_45 + z_5*z_37 + z_6*z_45
,
z_6*z_44*z_20*z_34*z_17
,
z_6*z_44*z_20*z_34*z_18 + z_5*z_32*z_5 + z_5*z_36*z_25
,
z_6*z_46*z_40*z_41*z_1 + z_5*z_32*z_4
,
z_6*z_46*z_40*z_41*z_2 + z_5*z_35*z_21 + z_5*z_37*z_27 + z_6*z_45*z_27
,
z_6*z_46*z_40*z_45*z_26 + z_6*z_42*z_5
,
z_6*z_46*z_40*z_45*z_27 + z_5*z_37*z_27 + z_6*z_45*z_27
,
z_6*z_46*z_40*z_46*z_39
,
z_6*z_46*z_40*z_46*z_40 + z_5*z_35*z_21 + z_6*z_41*z_2 + z_6*z_44*z_21 +
z_6*z_45*z_27
,
z_8*z_24*z_30*z_22*z_9 + z_9*z_39*z_12
,
z_11*z_25*z_34*z_18*z_35
,
z_11*z_25*z_34*z_18*z_37 + z_12*z_40*z_46*z_40*z_45
,
z_12*z_40*z_41*z_1*z_17 + z_10*z_4*z_17 + z_11*z_24
,
z_12*z_40*z_41*z_1*z_18 + z_11*z_25*z_34*z_18 + z_12*z_40*z_44*z_20
,
z_12*z_40*z_44*z_20*z_34 + z_12*z_40*z_41*z_1 + z_10*z_5*z_34 + z_11*z_25*z_34
,
z_12*z_40*z_44*z_20*z_35
,
z_12*z_40*z_45*z_27*z_45
,
z_12*z_40*z_46*z_40*z_42
,
z_14*z_44*z_21*z_44*z_20 + z_13*z_37*z_26 + z_14*z_45*z_26
,
z_14*z_44*z_21*z_44*z_21 + z_13*z_37*z_27 + z_14*z_45*z_27
,
z_14*z_44*z_21*z_45*z_26 + z_13*z_34*z_18 + z_13*z_35*z_20 + z_14*z_43*z_13 +
z_14*z_44*z_20
,
z_14*z_44*z_21*z_45*z_27 + z_13*z_35*z_21 + z_14*z_42*z_6 + z_14*z_44*z_21
,
z_14*z_45*z_27*z_43*z_13 + z_14*z_42*z_5
,
z_16*z_6*z_44*z_20*z_34 + z_18*z_34*z_16*z_4 + z_18*z_34*z_17*z_29 +
z_18*z_35*z_20*z_34 + z_18*z_37*z_26*z_34
,
z_16*z_6*z_46*z_40*z_41 + z_18*z_32*z_6*z_41
,
z_16*z_6*z_46*z_40*z_45 + z_16*z_5*z_37 + z_16*z_6*z_45
,
z_16*z_6*z_46*z_40*z_46 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_17*z_29*z_15*z_2*z_46 + z_18*z_36*z_22*z_9 + z_18*z_37*z_27*z_46 +
z_16*z_6*z_46
,
z_17*z_29*z_16*z_5*z_37 + z_18*z_34*z_18*z_37 + z_18*z_35*z_21*z_45 +
z_15*z_2*z_45
,
z_17*z_30*z_25*z_34*z_15 + z_18*z_32*z_6*z_41 + z_18*z_34*z_15
,
z_17*z_30*z_25*z_34*z_17 + z_17*z_29*z_17 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_17*z_30*z_25*z_34*z_18 + z_17*z_29*z_16*z_5 + z_17*z_29*z_18 + z_18*z_33*z_13
,
z_18*z_32*z_6*z_45*z_26 + z_18*z_33*z_13
,
z_18*z_32*z_6*z_45*z_27 + z_16*z_6*z_44*z_21 + z_16*z_6*z_46*z_40 +
z_17*z_29*z_16*z_6 + z_18*z_32*z_6 + z_18*z_33*z_14
,
z_18*z_34*z_15*z_2*z_45
,
z_18*z_34*z_15*z_2*z_46 + z_18*z_36*z_23*z_12
,
z_18*z_34*z_16*z_4*z_17 + z_17*z_29*z_17 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_18*z_34*z_16*z_4*z_18 + z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_18*z_34*z_18
,
z_18*z_34*z_16*z_5*z_32
,
z_18*z_34*z_16*z_5*z_34 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_37*z_26*z_34 + z_16*z_5*z_34 + z_18*z_32*z_4 +
z_18*z_34
,
z_18*z_34*z_16*z_5*z_37 + z_18*z_32*z_6*z_45 + z_18*z_34*z_18*z_37 +
z_18*z_35*z_21*z_45 + z_16*z_5*z_37 + z_16*z_6*z_45
,
z_18*z_34*z_16*z_6*z_44
,
z_18*z_34*z_16*z_6*z_45 + z_18*z_32*z_6*z_45 + z_18*z_34*z_18*z_37 +
z_18*z_35*z_21*z_45 + z_15*z_2*z_45 + z_16*z_5*z_37 + z_16*z_6*z_45
,
z_18*z_34*z_16*z_6*z_46 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_18*z_34*z_18*z_32*z_4
,
z_18*z_34*z_18*z_32*z_5 + z_18*z_33*z_13
,
z_18*z_34*z_18*z_32*z_6
,
z_18*z_34*z_18*z_33*z_14
,
z_18*z_34*z_18*z_37*z_26 + z_17*z_29*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_30*z_25 + z_18*z_33*z_13 + z_18*z_35*z_20 + z_18*z_36*z_25 +
z_18*z_37*z_26
,
z_18*z_34*z_18*z_37*z_27 + z_18*z_33*z_14
,
z_18*z_35*z_20*z_34*z_18 + z_17*z_29*z_16*z_5 + z_18*z_32*z_4*z_18 +
z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 + z_17*z_30*z_25 +
z_18*z_32*z_5 + z_18*z_33*z_13 + z_18*z_36*z_25
,
z_18*z_35*z_21*z_45*z_26 + z_17*z_29*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_30*z_25 + z_18*z_35*z_20 + z_18*z_36*z_25 + z_18*z_37*z_26
,
z_18*z_35*z_21*z_45*z_27 + z_18*z_33*z_14
,
z_18*z_36*z_25*z_34*z_15 + z_18*z_34*z_15
,
z_18*z_36*z_25*z_34*z_17 + z_17*z_29*z_17 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_18*z_36*z_25*z_34*z_18 + z_16*z_6*z_44*z_20 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_33*z_13 + z_18*z_35*z_20 +
z_18*z_36*z_25 + z_18*z_37*z_26
,
z_18*z_36*z_25*z_35*z_20 + z_16*z_6*z_44*z_20 + z_18*z_34*z_16*z_5 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_33*z_13 + z_18*z_34*z_18 +
z_18*z_35*z_20 + z_18*z_36*z_25 + z_18*z_37*z_26
,
z_18*z_36*z_25*z_35*z_21 + z_18*z_37*z_27*z_46*z_40 + z_16*z_6*z_44*z_21 +
z_16*z_6*z_46*z_40 + z_17*z_29*z_16*z_6 + z_18*z_34*z_15*z_2 +
z_18*z_34*z_16*z_6 + z_18*z_33*z_14
,
z_18*z_37*z_26*z_34*z_18 + z_17*z_29*z_16*z_5 + z_18*z_32*z_4*z_18 +
z_17*z_30*z_25 + z_18*z_32*z_5 + z_18*z_34*z_18 + z_18*z_36*z_25
,
z_20*z_36*z_25*z_34*z_15
,
z_20*z_36*z_25*z_34*z_17
,
z_20*z_36*z_25*z_34*z_18 + z_19*z_7*z_20 + z_20*z_36*z_25
,
z_21*z_45*z_27*z_43*z_13
,
z_25*z_34*z_15*z_2*z_45
,
z_25*z_34*z_15*z_2*z_46 + z_24*z_30*z_22*z_9 + z_23*z_12
,
z_25*z_34*z_18*z_35*z_20
,
z_25*z_34*z_18*z_37*z_26
,
z_25*z_34*z_18*z_37*z_27
,
z_25*z_35*z_20*z_34*z_18
,
z_26*z_34*z_15*z_2*z_45 + z_27*z_44*z_20*z_37 + z_27*z_44*z_21*z_45
,
z_26*z_34*z_15*z_2*z_46 + z_27*z_46*z_40*z_46
,
z_26*z_34*z_16*z_3*z_12 + z_27*z_45*z_27*z_46 + z_27*z_46*z_39*z_12
,
z_26*z_34*z_18*z_34*z_15 + z_27*z_46*z_40*z_41 + z_26*z_34*z_15
,
z_26*z_34*z_18*z_34*z_16 + z_26*z_34*z_16 + z_26*z_32 + z_27*z_42
,
z_26*z_34*z_18*z_34*z_17 + z_27*z_46*z_39*z_11*z_24
,
z_26*z_34*z_18*z_34*z_18 + z_27*z_44*z_20*z_34*z_18 + z_27*z_45*z_26
,
z_26*z_34*z_18*z_37*z_26 + z_27*z_44*z_20*z_34*z_18 + z_27*z_44*z_21*z_45*z_26 +
z_27*z_46*z_40*z_42*z_5 + z_27*z_46*z_40*z_45*z_26 + z_26*z_32*z_5 +
z_27*z_42*z_5 + z_27*z_43*z_13 + z_27*z_44*z_20
,
z_26*z_34*z_18*z_37*z_27 + z_26*z_32*z_6 + z_27*z_42*z_6 + z_27*z_43*z_14 +
z_27*z_45*z_27
,
z_27*z_42*z_4*z_18*z_37 + z_27*z_44*z_20*z_37 + z_26*z_37
,
z_27*z_42*z_5*z_34*z_16 + z_26*z_34*z_16 + z_27*z_42
,
z_27*z_44*z_20*z_34*z_17
,
z_27*z_44*z_21*z_43*z_13
,
z_27*z_45*z_27*z_46*z_39
,
z_27*z_45*z_27*z_46*z_40 + z_26*z_32*z_6
,
z_27*z_46*z_39*z_11*z_25 + z_27*z_46*z_40*z_42*z_5 + z_27*z_46*z_40*z_45*z_26 +
z_27*z_42*z_5 + z_27*z_43*z_13
,
z_27*z_46*z_40*z_41*z_1 + z_27*z_44*z_20*z_34 + z_27*z_42*z_4
,
z_27*z_46*z_40*z_41*z_2 + z_26*z_34*z_15*z_2 + z_27*z_45*z_27
,
z_27*z_46*z_40*z_42*z_4 + z_26*z_34*z_18*z_34 + z_27*z_42*z_5*z_34 +
z_27*z_44*z_20*z_34
,
z_27*z_46*z_40*z_45*z_27 + z_26*z_34*z_15*z_2
,
z_27*z_46*z_40*z_46*z_39 + z_26*z_34*z_16*z_3 + z_27*z_46*z_39
,
z_27*z_46*z_40*z_46*z_40 + z_27*z_43*z_14 + z_27*z_44*z_21
,
z_28*z_30*z_25*z_35*z_20
,
z_29*z_18*z_34*z_16*z_4
,
z_29*z_18*z_34*z_16*z_5 + z_30*z_25*z_34*z_18 + z_31*z_28*z_30*z_25 +
z_29*z_16*z_5 + z_29*z_18
,
z_29*z_18*z_34*z_16*z_6
,
z_29*z_18*z_35*z_21*z_42
,
z_29*z_18*z_35*z_21*z_45
,
z_30*z_25*z_34*z_18*z_35
,
z_30*z_25*z_34*z_18*z_37 + z_29*z_16*z_5*z_37 + z_29*z_18*z_37
,
z_30*z_25*z_35*z_20*z_34 + z_30*z_25*z_32*z_4 + z_29*z_17*z_29 + z_29*z_18*z_34
+ z_30*z_25*z_34
,
z_31*z_28*z_30*z_25*z_35 + z_29*z_18*z_35
,
z_33*z_14*z_45*z_27*z_43 + z_34*z_18*z_34*z_18*z_33 + z_33*z_13*z_33
,
z_34*z_16*z_6*z_44*z_20 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_15*z_1*z_18 + z_34*z_16*z_4*z_18 + z_34*z_18*z_34*z_18 +
z_37*z_27*z_42*z_5 + z_37*z_27*z_43*z_13
,
z_34*z_16*z_6*z_44*z_21 + z_34*z_18*z_34*z_15*z_2 + z_34*z_18*z_34*z_16*z_6 +
z_34*z_18*z_33*z_14
,
z_34*z_16*z_6*z_46*z_40 + z_34*z_18*z_34*z_16*z_6 + z_34*z_18*z_32*z_6 +
z_37*z_27*z_43*z_14 + z_37*z_27*z_44*z_21
,
z_34*z_18*z_32*z_4*z_18 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_15*z_1*z_18 + z_34*z_16*z_4*z_18 + z_34*z_18*z_32*z_5 +
z_34*z_18*z_35*z_20 + z_34*z_18*z_37*z_26 + z_35*z_20*z_34*z_18 +
z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 + z_36*z_25*z_32*z_5 +
z_36*z_25*z_35*z_20 + z_37*z_26*z_34*z_18 + z_37*z_27*z_43*z_13 +
z_37*z_27*z_44*z_20
,
z_34*z_18*z_32*z_6*z_41 + z_34*z_18*z_34*z_15
,
z_34*z_18*z_32*z_6*z_45 + z_34*z_15*z_2*z_45 + z_34*z_16*z_5*z_37 +
z_34*z_16*z_6*z_45 + z_37*z_27*z_45
,
z_34*z_18*z_34*z_16*z_4 + z_32*z_5*z_34 + z_33*z_13*z_34 + z_35*z_20*z_34 +
z_37*z_26*z_34
,
z_34*z_18*z_34*z_16*z_5 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_15*z_1*z_18 + z_34*z_16*z_4*z_18 + z_34*z_18*z_35*z_20 +
z_34*z_18*z_36*z_25 + z_34*z_18*z_37*z_26 + z_35*z_21*z_43*z_13 +
z_35*z_21*z_45*z_26 + z_36*z_25*z_32*z_5 + z_36*z_25*z_34*z_18 +
z_36*z_25*z_35*z_20 + z_37*z_27*z_43*z_13 + z_37*z_27*z_44*z_20
,
z_34*z_18*z_34*z_17*z_29 + z_34*z_18*z_37*z_26*z_34 + z_36*z_25*z_32*z_4 +
z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_17*z_29 + z_35*z_20*z_34 +
z_37*z_26*z_34
,
z_34*z_18*z_34*z_18*z_32 + z_33*z_14*z_42
,
z_34*z_18*z_34*z_18*z_37 + z_34*z_18*z_35*z_21*z_45 + z_34*z_15*z_2*z_45 +
z_37*z_27*z_45
,
z_34*z_18*z_35*z_20*z_34 + z_36*z_25*z_32*z_4 + z_34*z_15*z_1 + z_34*z_16*z_4 +
z_34*z_17*z_29 + z_35*z_20*z_34 + z_37*z_26*z_34
,
z_34*z_18*z_35*z_21*z_42 + z_34*z_16*z_5*z_32 + z_33*z_14*z_42
,
z_34*z_18*z_36*z_23*z_12 + z_34*z_16*z_3*z_12 + z_34*z_16*z_6*z_46
,
z_34*z_18*z_36*z_25*z_34 + z_34*z_18*z_37*z_26*z_34 + z_34*z_16*z_5*z_34 +
z_34*z_18*z_32*z_4 + z_33*z_13*z_34 + z_34*z_18*z_34
,
z_34*z_18*z_36*z_25*z_35 + z_35*z_19*z_7 + z_36*z_25*z_35
,
z_34*z_18*z_37*z_27*z_46 + z_34*z_16*z_6*z_46 + z_32*z_6*z_46 + z_35*z_21*z_46 +
z_36*z_22*z_9 + z_36*z_23*z_12
,
z_35*z_21*z_45*z_27*z_43 + z_37*z_27*z_44*z_21*z_43 + z_35*z_20*z_33 +
z_35*z_21*z_43
,
z_36*z_25*z_34*z_15*z_2 + z_32*z_6*z_45*z_27 + z_33*z_14*z_45*z_27 +
z_34*z_18*z_33*z_14 + z_34*z_18*z_37*z_27 + z_35*z_21*z_46*z_40 +
z_37*z_27*z_46*z_40 + z_34*z_16*z_6 + z_32*z_6 + z_33*z_14
,
z_36*z_25*z_34*z_18*z_35 + z_35*z_19*z_7 + z_36*z_25*z_35
,
z_36*z_25*z_34*z_18*z_37 + z_32*z_5*z_37 + z_32*z_6*z_45
,
z_36*z_25*z_35*z_20*z_34 + z_34*z_16*z_5*z_34 + z_34*z_18*z_32*z_4 +
z_36*z_25*z_32*z_4 + z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_17*z_29 +
z_34*z_18*z_34 + z_35*z_20*z_34 + z_37*z_26*z_34
,
z_37*z_26*z_34*z_18*z_34 + z_36*z_25*z_32*z_4 + z_37*z_27*z_42*z_4 +
z_32*z_5*z_34 + z_33*z_13*z_34 + z_34*z_17*z_29
,
z_37*z_26*z_34*z_18*z_37 + z_34*z_15*z_2*z_45 + z_32*z_5*z_37 + z_32*z_6*z_45 +
z_35*z_20*z_37
,
z_37*z_27*z_42*z_4*z_17 + z_34*z_18*z_34*z_17 + z_34*z_18*z_36*z_24 +
z_36*z_25*z_34*z_17
,
z_37*z_27*z_42*z_4*z_18 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_18*z_34*z_18 + z_34*z_18*z_35*z_20 + z_34*z_18*z_36*z_25 +
z_34*z_18*z_37*z_26 + z_35*z_20*z_34*z_18 + z_35*z_21*z_45*z_26 +
z_36*z_25*z_34*z_18 + z_37*z_26*z_34*z_18 + z_37*z_27*z_42*z_5 +
z_37*z_27*z_43*z_13 + z_37*z_27*z_44*z_20
,
z_37*z_27*z_42*z_5*z_34 + z_33*z_13*z_34
,
z_37*z_27*z_44*z_20*z_34 + z_36*z_25*z_32*z_4 + z_37*z_27*z_42*z_4 +
z_32*z_5*z_34 + z_34*z_17*z_29
,
z_37*z_27*z_44*z_20*z_35 + z_35*z_21*z_44
,
z_37*z_27*z_44*z_20*z_37 + z_35*z_20*z_37 + z_35*z_21*z_45
,
z_37*z_27*z_44*z_21*z_45 + z_35*z_20*z_37 + z_35*z_21*z_45
,
z_37*z_27*z_46*z_40*z_41 + z_32*z_6*z_41
,
z_37*z_27*z_46*z_40*z_42 + z_33*z_14*z_42
,
z_37*z_27*z_46*z_40*z_45 + z_34*z_15*z_2*z_45 + z_34*z_16*z_6*z_45 +
z_32*z_6*z_45 + z_33*z_14*z_45
,
z_37*z_27*z_46*z_40*z_46 + z_32*z_6*z_46 + z_36*z_23*z_12
,
z_38*z_8*z_24*z_30*z_22 + z_39*z_12*z_38
,
z_39*z_12*z_38*z_9*z_39
,
z_40*z_41*z_1*z_18*z_34 + z_39*z_10*z_5*z_34
,
z_40*z_41*z_1*z_18*z_36 + z_38*z_8*z_24*z_30 + z_39*z_11
,
z_40*z_41*z_1*z_18*z_37 + z_40*z_46*z_40*z_45
,
z_40*z_42*z_5*z_34*z_16 + z_40*z_46*z_40*z_42
,
z_40*z_42*z_6*z_41*z_1 + z_39*z_10*z_5*z_34 + z_40*z_42*z_5*z_34
,
z_40*z_44*z_20*z_34*z_17
,
z_40*z_44*z_20*z_34*z_18 + z_38*z_8*z_25 + z_40*z_44*z_20
,
z_40*z_44*z_21*z_42*z_4
,
z_40*z_44*z_21*z_42*z_5
,
z_40*z_44*z_21*z_42*z_6 + z_39*z_10*z_6 + z_40*z_41*z_2 + z_40*z_42*z_6 +
z_40*z_44*z_21 + z_40*z_45*z_27
,
z_40*z_45*z_26*z_34*z_18 + z_40*z_46*z_40*z_45*z_26 + z_38*z_8*z_25 +
z_39*z_10*z_5 + z_39*z_11*z_25 + z_40*z_44*z_20
,
z_40*z_46*z_40*z_42*z_4 + z_39*z_10*z_5*z_34 + z_40*z_42*z_5*z_34
,
z_40*z_46*z_40*z_42*z_5 + z_40*z_46*z_40*z_45*z_26 + z_39*z_10*z_5 +
z_40*z_42*z_5
,
z_40*z_46*z_40*z_45*z_27
,
z_41*z_1*z_18*z_34*z_15 + z_42*z_6*z_41
,
z_41*z_1*z_18*z_36*z_24 + z_46*z_40*z_41*z_1*z_17 + z_44*z_20*z_34*z_17 +
z_42*z_4*z_17
,
z_41*z_1*z_18*z_36*z_25 + z_46*z_40*z_41*z_1*z_18 + z_44*z_20*z_34*z_18 +
z_44*z_21*z_44*z_20 + z_45*z_27*z_43*z_13 + z_46*z_38*z_8*z_25 +
z_46*z_39*z_11*z_25 + z_46*z_40*z_42*z_5 + z_46*z_40*z_45*z_26 +
z_42*z_4*z_18 + z_42*z_5 + z_43*z_13
,
z_41*z_1*z_18*z_37*z_26 + z_46*z_40*z_41*z_1*z_18 + z_44*z_20*z_34*z_18 +
z_44*z_21*z_42*z_5 + z_45*z_26*z_34*z_18 + z_45*z_27*z_43*z_13 +
z_42*z_4*z_18
,
z_42*z_6*z_41*z_1*z_17
,
z_42*z_6*z_41*z_1*z_18 + z_46*z_40*z_41*z_1*z_18 + z_44*z_20*z_34*z_18 +
z_44*z_21*z_42*z_5 + z_45*z_26*z_34*z_18 + z_45*z_27*z_42*z_5 +
z_42*z_4*z_18
,
z_42*z_6*z_46*z_40*z_41 + z_46*z_40*z_42*z_6*z_41
,
z_42*z_6*z_46*z_40*z_45 + z_42*z_5*z_37 + z_42*z_6*z_45 + z_45*z_27*z_45
,
z_42*z_6*z_46*z_40*z_46 + z_46*z_40*z_46*z_39*z_12
,
z_44*z_21*z_45*z_27*z_43 + z_42*z_4*z_18*z_33 + z_43*z_13*z_33
,
z_45*z_26*z_34*z_18*z_34 + z_43*z_13*z_34
,
z_45*z_26*z_34*z_18*z_37 + z_42*z_6*z_45 + z_43*z_14*z_45 + z_44*z_20*z_37 +
z_44*z_21*z_45
,
z_45*z_27*z_42*z_5*z_34 + z_42*z_6*z_41*z_1
,
z_45*z_27*z_44*z_20*z_34 + z_43*z_13*z_34
,
z_45*z_27*z_44*z_20*z_35 + z_44*z_21*z_44
,
z_45*z_27*z_44*z_20*z_37 + z_42*z_4*z_18*z_37 + z_42*z_6*z_45 + z_44*z_20*z_37 +
z_44*z_21*z_45
,
z_45*z_27*z_44*z_21*z_43 + z_43*z_13*z_33 + z_44*z_20*z_33 + z_44*z_21*z_43
,
z_45*z_27*z_44*z_21*z_45 + z_42*z_4*z_18*z_37 + z_42*z_6*z_45 + z_44*z_20*z_37 +
z_44*z_21*z_45
,
z_45*z_27*z_46*z_39*z_11
,
z_45*z_27*z_46*z_39*z_12 + z_46*z_40*z_46*z_39*z_12 + z_42*z_6*z_46 +
z_44*z_21*z_46 + z_46*z_38*z_9 + z_46*z_39*z_12
,
z_45*z_27*z_46*z_40*z_41
,
z_45*z_27*z_46*z_40*z_42 + z_42*z_5*z_34*z_16 + z_46*z_39*z_10 + z_46*z_40*z_42
,
z_45*z_27*z_46*z_40*z_45 + z_41*z_1*z_18*z_37 + z_42*z_4*z_18*z_37 +
z_42*z_6*z_45
,
z_45*z_27*z_46*z_40*z_46
,
z_46*z_39*z_10*z_5*z_34 + z_42*z_4*z_18*z_34 + z_42*z_6*z_41*z_1 +
z_44*z_21*z_42*z_4 + z_43*z_13*z_34
,
z_46*z_40*z_42*z_5*z_34 + z_42*z_4*z_18*z_34 + z_42*z_6*z_41*z_1
,
z_46*z_40*z_42*z_6*z_45 + z_42*z_4*z_18*z_37 + z_42*z_5*z_37
,
z_46*z_40*z_44*z_20*z_34 + z_46*z_40*z_45*z_26*z_34 + z_41*z_1*z_18*z_34 +
z_42*z_5*z_34
,
z_46*z_40*z_44*z_20*z_35 + z_44*z_19*z_7 + z_46*z_40*z_44
,
z_46*z_40*z_44*z_21*z_42 + z_42*z_3*z_10 + z_46*z_39*z_10
,
z_46*z_40*z_45*z_27*z_45 + z_42*z_4*z_18*z_37 + z_42*z_6*z_45
,
z_46*z_40*z_46*z_40*z_42 + z_42*z_5*z_32
,
z_46*z_40*z_46*z_40*z_45 + z_43*z_14*z_45 + z_44*z_21*z_45
,
z_1*z_17*z_29*z_15
,
z_1*z_17*z_29*z_16 + z_1*z_18*z_32
,
z_1*z_17*z_29*z_17 + z_1*z_18*z_36*z_24
,
z_1*z_17*z_29*z_18 + z_2*z_42*z_5
,
z_1*z_18*z_32*z_3 + z_2*z_46*z_39
,
z_1*z_18*z_32*z_4 + z_2*z_42*z_5*z_34
,
z_1*z_18*z_32*z_5 + z_1*z_18*z_37*z_26
,
z_1*z_18*z_34*z_16 + z_1*z_18*z_32 + z_2*z_42
,
z_1*z_18*z_34*z_17
,
z_1*z_18*z_34*z_18
,
z_1*z_18*z_36*z_22
,
z_1*z_18*z_36*z_23 + z_2*z_46*z_39
,
z_1*z_18*z_37*z_27
,
z_2*z_42*z_5*z_32
,
z_2*z_42*z_5*z_37 + z_2*z_45
,
z_2*z_42*z_6*z_41
,
z_2*z_42*z_6*z_45
,
z_2*z_42*z_6*z_46 + z_2*z_46*z_39*z_12
,
z_2*z_46*z_39*z_10 + z_1*z_18*z_32 + z_2*z_42
,
z_2*z_46*z_39*z_11
,
z_2*z_46*z_40*z_41
,
z_2*z_46*z_40*z_42 + z_1*z_18*z_32 + z_2*z_42
,
z_2*z_46*z_40*z_44
,
z_2*z_46*z_40*z_45 + z_1*z_18*z_37 + z_2*z_45
,
z_2*z_46*z_40*z_46
,
z_3*z_10*z_4*z_17 + z_3*z_11*z_24 + z_5*z_36*z_24
,
z_3*z_11*z_25*z_32 + z_4*z_16 + z_6*z_42
,
z_3*z_11*z_25*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 + z_6*z_41*z_1 + z_5*z_34
,
z_3*z_12*z_40*z_41 + z_6*z_46*z_40*z_41
,
z_3*z_12*z_40*z_44 + z_5*z_35
,
z_3*z_12*z_40*z_45 + z_4*z_18*z_37 + z_5*z_37
,
z_3*z_12*z_40*z_46 + z_6*z_46*z_40*z_46
,
z_4*z_17*z_29*z_15 + z_6*z_41
,
z_4*z_17*z_29*z_16 + z_5*z_34*z_16 + z_4*z_16 + z_6*z_42
,
z_4*z_17*z_29*z_17 + z_6*z_41*z_1*z_17 + z_3*z_11*z_24 + z_5*z_36*z_24
,
z_4*z_17*z_29*z_18 + z_6*z_41*z_1*z_18 + z_5*z_36*z_25 + z_6*z_42*z_5 +
z_6*z_44*z_20 + z_6*z_45*z_26
,
z_4*z_18*z_33*z_13 + z_6*z_42*z_5
,
z_4*z_18*z_33*z_14
,
z_4*z_18*z_34*z_15 + z_6*z_46*z_40*z_41
,
z_4*z_18*z_34*z_16 + z_4*z_16
,
z_4*z_18*z_34*z_17 + z_6*z_41*z_1*z_17
,
z_4*z_18*z_34*z_18 + z_6*z_41*z_1*z_18 + z_5*z_32*z_5
,
z_4*z_18*z_37*z_26 + z_6*z_45*z_26
,
z_4*z_18*z_37*z_27 + z_6*z_45*z_27
,
z_5*z_32*z_4*z_17 + z_5*z_36*z_24
,
z_5*z_32*z_4*z_18 + z_5*z_32*z_5 + z_5*z_36*z_25 + z_6*z_42*z_5
,
z_5*z_32*z_5*z_32
,
z_5*z_32*z_5*z_34 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_5*z_34
,
z_5*z_32*z_5*z_37 + z_4*z_18*z_37 + z_6*z_45
,
z_5*z_34*z_16*z_3 + z_3*z_11*z_23
,
z_5*z_34*z_16*z_4 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_6*z_41*z_1 + z_5*z_34
,
z_5*z_34*z_16*z_5 + z_6*z_41*z_1*z_18 + z_5*z_36*z_25 + z_6*z_44*z_20 +
z_6*z_45*z_26
,
z_5*z_34*z_16*z_6 + z_3*z_12*z_40 + z_5*z_35*z_21 + z_5*z_37*z_27 + z_6*z_41*z_2
+ z_6*z_44*z_21 + z_6*z_46*z_40
,
z_5*z_34*z_18*z_32 + z_5*z_32
,
z_5*z_34*z_18*z_33
,
z_5*z_34*z_18*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 + z_4*z_18*z_34 + z_5*z_34
,
z_5*z_34*z_18*z_35 + z_5*z_35
,
z_5*z_34*z_18*z_36 + z_5*z_36
,
z_5*z_34*z_18*z_37 + z_4*z_18*z_37 + z_5*z_37
,
z_5*z_35*z_21*z_42 + z_4*z_16 + z_5*z_32
,
z_5*z_35*z_21*z_43
,
z_5*z_35*z_21*z_44
,
z_5*z_35*z_21*z_45
,
z_5*z_35*z_21*z_46
,
z_5*z_36*z_24*z_30
,
z_5*z_36*z_24*z_31
,
z_5*z_36*z_25*z_32 + z_4*z_16 + z_5*z_32
,
z_5*z_36*z_25*z_34 + z_6*z_44*z_20*z_34 + z_3*z_10*z_4 + z_4*z_17*z_29 +
z_4*z_18*z_34 + z_5*z_32*z_4 + z_5*z_34
,
z_5*z_36*z_25*z_35
,
z_5*z_37*z_27*z_42
,
z_5*z_37*z_27*z_43 + z_4*z_18*z_33
,
z_5*z_37*z_27*z_44
,
z_5*z_37*z_27*z_45
,
z_5*z_37*z_27*z_46 + z_3*z_12 + z_6*z_46
,
z_6*z_42*z_3*z_10 + z_4*z_16 + z_5*z_32
,
z_6*z_42*z_5*z_32
,
z_6*z_42*z_5*z_34
,
z_6*z_42*z_5*z_37
,
z_6*z_44*z_20*z_33 + z_4*z_18*z_33
,
z_6*z_44*z_20*z_35
,
z_6*z_44*z_20*z_37 + z_4*z_18*z_37 + z_6*z_45
,
z_6*z_44*z_21*z_42 + z_4*z_16 + z_5*z_32 + z_6*z_42
,
z_6*z_44*z_21*z_43 + z_4*z_18*z_33
,
z_6*z_44*z_21*z_44
,
z_6*z_44*z_21*z_45 + z_4*z_18*z_37 + z_6*z_45
,
z_6*z_44*z_21*z_46 + z_6*z_46*z_38*z_9
,
z_6*z_45*z_26*z_34
,
z_6*z_45*z_27*z_42
,
z_6*z_45*z_27*z_43 + z_4*z_18*z_33
,
z_6*z_45*z_27*z_44
,
z_6*z_45*z_27*z_45
,
z_6*z_45*z_27*z_46 + z_6*z_46*z_40*z_46 + z_3*z_12 + z_6*z_46
,
z_6*z_46*z_38*z_8 + z_5*z_36
,
z_6*z_46*z_40*z_42
,
z_6*z_46*z_40*z_44 + z_5*z_35
,
z_7*z_20*z_35*z_19
,
z_8*z_25*z_34*z_15
,
z_8*z_25*z_34*z_16 + z_9*z_40*z_42
,
z_8*z_25*z_34*z_17
,
z_8*z_25*z_34*z_18 + z_7*z_20 + z_8*z_25
,
z_9*z_40*z_42*z_4
,
z_9*z_40*z_42*z_5
,
z_9*z_40*z_42*z_6 + z_7*z_21 + z_9*z_40
,
z_10*z_4*z_17*z_29 + z_12*z_40*z_41*z_1 + z_10*z_5*z_34
,
z_10*z_5*z_34*z_16 + z_11*z_25*z_32
,
z_10*z_5*z_34*z_18 + z_12*z_40*z_44*z_20
,
z_10*z_6*z_42*z_3
,
z_10*z_6*z_42*z_5
,
z_11*z_25*z_32*z_4 + z_12*z_40*z_41*z_1
,
z_11*z_25*z_32*z_5 + z_11*z_25*z_34*z_18
,
z_11*z_25*z_32*z_6 + z_12*z_40*z_46*z_40
,
z_11*z_25*z_34*z_15 + z_12*z_40*z_41
,
z_11*z_25*z_34*z_16 + z_10*z_6*z_42 + z_11*z_25*z_32
,
z_11*z_25*z_34*z_17 + z_10*z_4*z_17 + z_11*z_24
,
z_12*z_38*z_8*z_24 + z_10*z_4*z_17 + z_11*z_24
,
z_12*z_38*z_8*z_25 + z_12*z_40*z_44*z_20
,
z_12*z_40*z_41*z_2 + z_12*z_40*z_45*z_27 + z_10*z_6 + z_12*z_40
,
z_12*z_40*z_44*z_21 + z_10*z_6 + z_12*z_40
,
z_12*z_40*z_45*z_26
,
z_12*z_40*z_46*z_39
,
z_13*z_34*z_18*z_32
,
z_13*z_34*z_18*z_33 + z_14*z_43*z_13*z_33
,
z_13*z_34*z_18*z_34 + z_14*z_42*z_4
,
z_13*z_34*z_18*z_35 + z_14*z_44*z_21*z_44 + z_13*z_35 + z_14*z_44
,
z_13*z_34*z_18*z_36
,
z_13*z_34*z_18*z_37 + z_14*z_44*z_21*z_45 + z_13*z_37 + z_14*z_45
,
z_13*z_35*z_20*z_33 + z_14*z_43*z_13*z_33 + z_13*z_33
,
z_13*z_35*z_20*z_34 + z_14*z_42*z_4 + z_13*z_34
,
z_13*z_35*z_20*z_37 + z_14*z_44*z_21*z_45
,
z_13*z_35*z_21*z_42 + z_14*z_42
,
z_13*z_35*z_21*z_43 + z_14*z_43*z_13*z_33 + z_14*z_44*z_20*z_33
,
z_13*z_35*z_21*z_44 + z_14*z_44*z_21*z_44
,
z_13*z_35*z_21*z_45 + z_14*z_44*z_21*z_45 + z_13*z_37 + z_14*z_45
,
z_13*z_35*z_21*z_46
,
z_13*z_37*z_26*z_34 + z_14*z_42*z_4 + z_13*z_34
,
z_13*z_37*z_27*z_42 + z_14*z_42
,
z_13*z_37*z_27*z_43 + z_14*z_44*z_20*z_33 + z_14*z_45*z_27*z_43 + z_13*z_33
,
z_13*z_37*z_27*z_44 + z_13*z_35 + z_14*z_44
,
z_13*z_37*z_27*z_45
,
z_13*z_37*z_27*z_46
,
z_14*z_42*z_4*z_17
,
z_14*z_42*z_4*z_18 + z_13*z_34*z_18 + z_13*z_37*z_26 + z_14*z_43*z_13 +
z_14*z_45*z_26
,
z_14*z_42*z_5*z_32
,
z_14*z_42*z_5*z_34
,
z_14*z_42*z_5*z_37 + z_13*z_37 + z_14*z_45
,
z_14*z_42*z_6*z_41
,
z_14*z_42*z_6*z_45 + z_13*z_37 + z_14*z_45
,
z_14*z_42*z_6*z_46
,
z_14*z_43*z_13*z_34 + z_14*z_42*z_4
,
z_14*z_44*z_20*z_34 + z_13*z_34
,
z_14*z_44*z_20*z_35 + z_14*z_44*z_21*z_44 + z_13*z_35 + z_14*z_44
,
z_14*z_44*z_20*z_37 + z_14*z_44*z_21*z_45 + z_13*z_37 + z_14*z_45
,
z_14*z_44*z_21*z_42 + z_14*z_42
,
z_14*z_44*z_21*z_43 + z_13*z_33
,
z_14*z_44*z_21*z_46
,
z_14*z_45*z_26*z_34 + z_14*z_42*z_4 + z_13*z_34
,
z_14*z_45*z_27*z_42 + z_14*z_42
,
z_14*z_45*z_27*z_44 + z_13*z_35 + z_14*z_44
,
z_14*z_45*z_27*z_45
,
z_14*z_45*z_27*z_46
,
z_15*z_1*z_18*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_3*z_10 +
z_17*z_29*z_16 + z_18*z_32
,
z_15*z_1*z_18*z_34 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 +
z_18*z_37*z_26*z_34
,
z_15*z_1*z_18*z_36 + z_17*z_30 + z_18*z_36
,
z_15*z_1*z_18*z_37 + z_18*z_34*z_18*z_37 + z_16*z_6*z_45
,
z_15*z_2*z_46*z_39 + z_17*z_30*z_23 + z_18*z_36*z_23
,
z_15*z_2*z_46*z_40 + z_17*z_29*z_15*z_2 + z_17*z_29*z_16*z_6 +
z_18*z_34*z_15*z_2 + z_18*z_34*z_16*z_6 + z_18*z_35*z_21 + z_18*z_37*z_27 +
z_16*z_6
,
z_16*z_3*z_10*z_4 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 +
z_18*z_32*z_4 + z_15*z_1 + z_16*z_4
,
z_16*z_3*z_11*z_23 + z_17*z_30*z_23 + z_18*z_32*z_3
,
z_16*z_3*z_11*z_24 + z_17*z_29*z_17 + z_17*z_30*z_24 + z_18*z_34*z_17
,
z_16*z_3*z_11*z_25 + z_16*z_6*z_44*z_20 + z_18*z_34*z_16*z_5 + z_17*z_29*z_18 +
z_18*z_33*z_13 + z_18*z_34*z_18 + z_18*z_35*z_20 + z_18*z_37*z_26
,
z_16*z_3*z_12*z_40 + z_16*z_6*z_44*z_21 + z_16*z_6*z_46*z_40 + z_18*z_33*z_14
,
z_16*z_4*z_17*z_29 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_15*z_1 + z_16*z_4 + z_18*z_34
,
z_16*z_4*z_18*z_33 + z_18*z_34*z_18*z_33
,
z_16*z_4*z_18*z_34 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 + z_16*z_5*z_34 +
z_18*z_32*z_4 + z_18*z_34
,
z_16*z_4*z_18*z_37 + z_15*z_2*z_45 + z_16*z_6*z_45
,
z_16*z_5*z_32*z_4 + z_18*z_34*z_16*z_4 + z_18*z_34*z_17*z_29 +
z_18*z_35*z_20*z_34 + z_18*z_37*z_26*z_34
,
z_16*z_5*z_32*z_5 + z_16*z_6*z_44*z_20 + z_17*z_29*z_16*z_5 + z_15*z_1*z_18 +
z_16*z_4*z_18 + z_17*z_30*z_25 + z_18*z_35*z_20 + z_18*z_36*z_25 +
z_18*z_37*z_26
,
z_16*z_5*z_34*z_16 + z_18*z_34*z_18*z_32 + z_16*z_3*z_10 + z_17*z_29*z_16 +
z_18*z_32
,
z_16*z_5*z_34*z_18 + z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_32*z_5 + z_18*z_34*z_18 +
z_18*z_36*z_25
,
z_16*z_5*z_37*z_27 + z_16*z_6*z_44*z_21 + z_16*z_6*z_46*z_40 +
z_17*z_29*z_16*z_6 + z_18*z_32*z_6
,
z_16*z_6*z_45*z_26 + z_18*z_34*z_16*z_5 + z_15*z_1*z_18 + z_16*z_4*z_18 +
z_17*z_29*z_18 + z_17*z_30*z_25 + z_18*z_35*z_20 + z_18*z_36*z_25 +
z_18*z_37*z_26
,
z_16*z_6*z_45*z_27 + z_18*z_33*z_14
,
z_16*z_6*z_46*z_38
,
z_17*z_29*z_16*z_3 + z_17*z_30*z_23 + z_18*z_32*z_3 + z_18*z_36*z_23
,
z_17*z_29*z_16*z_4 + z_17*z_30*z_25*z_34 + z_18*z_34*z_16*z_4 +
z_18*z_34*z_17*z_29 + z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 + z_15*z_1 +
z_16*z_4
,
z_17*z_29*z_17*z_29 + z_17*z_30*z_25*z_34 + z_18*z_34*z_17*z_29 +
z_18*z_35*z_20*z_34 + z_18*z_36*z_25*z_34 + z_16*z_5*z_34 + z_18*z_32*z_4 +
z_18*z_34
,
z_17*z_29*z_18*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_5*z_32
,
z_17*z_29*z_18*z_34 + z_17*z_30*z_25*z_34 + z_18*z_35*z_20*z_34 +
z_18*z_36*z_25*z_34 + z_18*z_37*z_26*z_34
,
z_17*z_29*z_18*z_35
,
z_17*z_29*z_18*z_37 + z_18*z_32*z_6*z_45 + z_15*z_2*z_45 + z_16*z_5*z_37 +
z_16*z_6*z_45
,
z_17*z_30*z_23*z_11 + z_16*z_3*z_11 + z_17*z_30 + z_18*z_36
,
z_17*z_30*z_23*z_12 + z_18*z_36*z_23*z_12 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_17*z_30*z_25*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_3*z_10
+ z_17*z_29*z_16 + z_18*z_34*z_16 + z_18*z_32
,
z_17*z_30*z_25*z_35 + z_18*z_36*z_25*z_35
,
z_18*z_32*z_4*z_17 + z_17*z_29*z_17 + z_18*z_36*z_24
,
z_18*z_32*z_5*z_32 + z_18*z_34*z_18*z_32 + z_18*z_35*z_21*z_42 + z_16*z_5*z_32
,
z_18*z_32*z_5*z_34 + z_18*z_35*z_20*z_34 + z_18*z_37*z_26*z_34
,
z_18*z_32*z_5*z_37 + z_18*z_34*z_18*z_37 + z_18*z_35*z_21*z_45 + z_15*z_2*z_45 +
z_16*z_5*z_37 + z_16*z_6*z_45
,
z_18*z_32*z_6*z_46 + z_18*z_36*z_23*z_12 + z_16*z_3*z_12 + z_16*z_6*z_46
,
z_18*z_33*z_13*z_33
,
z_18*z_33*z_13*z_34
,
z_18*z_33*z_14*z_42
,
z_18*z_33*z_14*z_44
,
z_18*z_33*z_14*z_45
,
z_18*z_34*z_15*z_1 + z_18*z_34*z_16*z_4
,
z_18*z_34*z_16*z_3 + z_17*z_30*z_23 + z_18*z_36*z_23
,
z_18*z_34*z_18*z_34
,
z_18*z_34*z_18*z_35 + z_16*z_6*z_44
,
z_18*z_34*z_18*z_36 + z_16*z_3*z_11 + z_17*z_30 + z_18*z_36
,
z_18*z_35*z_20*z_33 + z_18*z_33
,
z_18*z_35*z_20*z_37 + z_18*z_35*z_21*z_45 + z_15*z_2*z_45
,
z_18*z_35*z_21*z_43 + z_18*z_33
,
z_18*z_35*z_21*z_44
,
z_18*z_35*z_21*z_46 + z_18*z_36*z_22*z_9
,
z_18*z_36*z_23*z_11 + z_16*z_3*z_11 + z_17*z_30 + z_18*z_36
,
z_18*z_36*z_24*z_30
,
z_18*z_36*z_24*z_31
,
z_18*z_36*z_25*z_32 + z_16*z_3*z_10 + z_17*z_29*z_16 + z_18*z_34*z_16 +
z_18*z_32
,
z_18*z_37*z_27*z_42
,
z_18*z_37*z_27*z_43 + z_18*z_33
,
z_18*z_37*z_27*z_44 + z_16*z_6*z_44
,
z_18*z_37*z_27*z_45 + z_15*z_2*z_45
,
z_19*z_7*z_20*z_35 + z_20*z_35*z_19*z_7
,
z_20*z_34*z_16*z_3 + z_21*z_46*z_39
,
z_20*z_34*z_16*z_4 + z_21*z_42*z_4
,
z_20*z_34*z_16*z_5 + z_21*z_42*z_5
,
z_20*z_34*z_16*z_6 + z_19*z_7*z_21 + z_21*z_42*z_6 + z_21*z_46*z_40
,
z_20*z_34*z_17*z_29
,
z_20*z_34*z_18*z_32 + z_20*z_34*z_16 + z_21*z_42
,
z_20*z_34*z_18*z_33 + z_21*z_45*z_27*z_43 + z_20*z_33 + z_21*z_43
,
z_20*z_34*z_18*z_34 + z_21*z_42*z_4
,
z_20*z_34*z_18*z_35 + z_20*z_35*z_19*z_7 + z_20*z_35
,
z_20*z_34*z_18*z_36 + z_20*z_36*z_24*z_30
,
z_20*z_34*z_18*z_37 + z_20*z_37
,
z_20*z_36*z_25*z_32 + z_20*z_34*z_16 + z_21*z_42
,
z_21*z_42*z_4*z_17
,
z_21*z_42*z_4*z_18 + z_21*z_42*z_5 + z_21*z_43*z_13
,
z_21*z_42*z_5*z_32
,
z_21*z_42*z_5*z_34
,
z_21*z_42*z_5*z_37 + z_20*z_37 + z_21*z_45
,
z_21*z_42*z_6*z_41
,
z_21*z_42*z_6*z_45 + z_20*z_37 + z_21*z_45
,
z_21*z_42*z_6*z_46 + z_21*z_46*z_39*z_12
,
z_21*z_43*z_13*z_33 + z_20*z_33 + z_21*z_43
,
z_21*z_43*z_13*z_34
,
z_21*z_44*z_20*z_33 + z_20*z_33 + z_21*z_43
,
z_21*z_44*z_20*z_34
,
z_21*z_44*z_20*z_35
,
z_21*z_44*z_20*z_37
,
z_21*z_44*z_21*z_42
,
z_21*z_44*z_21*z_43 + z_20*z_33 + z_21*z_43
,
z_21*z_44*z_21*z_44
,
z_21*z_44*z_21*z_45
,
z_21*z_44*z_21*z_46
,
z_21*z_45*z_26*z_34 + z_21*z_42*z_4
,
z_21*z_45*z_27*z_42
,
z_21*z_45*z_27*z_44 + z_21*z_44
,
z_21*z_45*z_27*z_45
,
z_21*z_45*z_27*z_46
,
z_21*z_46*z_39*z_10 + z_20*z_34*z_16 + z_21*z_42
,
z_21*z_46*z_40*z_41
,
z_21*z_46*z_40*z_42 + z_20*z_34*z_16 + z_21*z_42
,
z_21*z_46*z_40*z_45
,
z_21*z_46*z_40*z_46
,
z_24*z_31*z_28*z_30 + z_24*z_30
,
z_25*z_32*z_4*z_17 + z_25*z_34*z_17
,
z_25*z_32*z_4*z_18 + z_25*z_32*z_5 + z_25*z_35*z_20
,
z_25*z_32*z_5*z_32
,
z_25*z_32*z_5*z_34 + z_25*z_35*z_20*z_34
,
z_25*z_32*z_5*z_37 + z_25*z_34*z_18*z_37
,
z_25*z_32*z_6*z_41
,
z_25*z_32*z_6*z_45 + z_25*z_34*z_18*z_37
,
z_25*z_32*z_6*z_46
,
z_25*z_34*z_15*z_1 + z_25*z_32*z_4
,
z_25*z_34*z_16*z_3
,
z_25*z_34*z_16*z_4 + z_25*z_32*z_4
,
z_25*z_34*z_16*z_5 + z_25*z_32*z_5
,
z_25*z_34*z_16*z_6 + z_25*z_32*z_6
,
z_25*z_34*z_17*z_29 + z_25*z_35*z_20*z_34
,
z_25*z_34*z_18*z_32
,
z_25*z_34*z_18*z_33
,
z_25*z_34*z_18*z_34 + z_25*z_35*z_20*z_34
,
z_25*z_34*z_18*z_36
,
z_25*z_35*z_20*z_33
,
z_25*z_35*z_20*z_37
,
z_25*z_35*z_21*z_42 + z_25*z_34*z_16 + z_25*z_32
,
z_25*z_35*z_21*z_43
,
z_25*z_35*z_21*z_44
,
z_25*z_35*z_21*z_45
,
z_26*z_32*z_4*z_17
,
z_26*z_32*z_4*z_18 + z_26*z_32*z_5
,
z_26*z_32*z_5*z_32
,
z_26*z_32*z_5*z_34
,
z_26*z_32*z_5*z_37 + z_27*z_44*z_20*z_37 + z_27*z_44*z_21*z_45
,
z_26*z_32*z_6*z_41
,
z_26*z_32*z_6*z_45 + z_27*z_44*z_20*z_37 + z_27*z_44*z_21*z_45
,
z_26*z_32*z_6*z_46
,
z_26*z_34*z_15*z_1 + z_27*z_44*z_20*z_34 + z_26*z_32*z_4 + z_27*z_42*z_4
,
z_26*z_34*z_16*z_4 + z_27*z_42*z_4
,
z_26*z_34*z_16*z_5 + z_26*z_32*z_5 + z_27*z_42*z_5 + z_27*z_45*z_26
,
z_26*z_34*z_16*z_6 + z_27*z_42*z_6 + z_27*z_45*z_27
,
z_26*z_34*z_18*z_32 + z_27*z_46*z_40*z_42 + z_26*z_32
,
z_26*z_34*z_18*z_33 + z_27*z_44*z_21*z_43
,
z_26*z_34*z_18*z_35 + z_27*z_44
,
z_26*z_34*z_18*z_36 + z_27*z_46*z_39*z_11
,
z_27*z_42*z_5*z_32 + z_26*z_32
,
z_27*z_42*z_5*z_37 + z_27*z_44*z_21*z_45 + z_27*z_45
,
z_27*z_42*z_6*z_41
,
z_27*z_42*z_6*z_45 + z_27*z_44*z_21*z_45 + z_26*z_37
,
z_27*z_42*z_6*z_46 + z_27*z_45*z_27*z_46 + z_27*z_46*z_39*z_12
,
z_27*z_43*z_13*z_33
,
z_27*z_43*z_13*z_34
,
z_27*z_43*z_14*z_45 + z_27*z_44*z_21*z_45 + z_26*z_37
,
z_27*z_44*z_20*z_33 + z_27*z_44*z_21*z_43
,
z_27*z_44*z_21*z_42 + z_26*z_32
,
z_27*z_44*z_21*z_44
,
z_27*z_44*z_21*z_46
,
z_27*z_45*z_26*z_34 + z_26*z_32*z_4
,
z_27*z_45*z_27*z_42
,
z_27*z_45*z_27*z_43
,
z_27*z_45*z_27*z_44
,
z_27*z_45*z_27*z_45
,
z_27*z_46*z_39*z_10 + z_27*z_46*z_40*z_42 + z_26*z_34*z_16 + z_27*z_42
,
z_27*z_46*z_40*z_44
,
z_28*z_30*z_25*z_32
,
z_28*z_30*z_25*z_34
,
z_29*z_15*z_2*z_45
,
z_29*z_16*z_3*z_10 + z_29*z_18*z_32 + z_30*z_25*z_32
,
z_29*z_16*z_3*z_11 + z_30*z_23*z_11
,
z_29*z_16*z_3*z_12 + z_30*z_23*z_12
,
z_29*z_16*z_4*z_17 + z_30*z_25*z_34*z_17 + z_29*z_17 + z_30*z_24
,
z_29*z_16*z_5*z_32 + z_29*z_18*z_32
,
z_29*z_16*z_5*z_34 + z_30*z_25*z_32*z_4 + z_29*z_17*z_29 + z_30*z_25*z_34
,
z_29*z_16*z_6*z_44
,
z_29*z_16*z_6*z_45 + z_29*z_18*z_37
,
z_29*z_16*z_6*z_46 + z_30*z_23*z_12
,
z_29*z_17*z_29*z_15 + z_30*z_25*z_34*z_15
,
z_29*z_17*z_29*z_16 + z_29*z_18*z_34*z_16 + z_30*z_25*z_32
,
z_29*z_17*z_29*z_17
,
z_29*z_17*z_29*z_18 + z_31*z_28*z_30*z_25 + z_29*z_16*z_5 + z_29*z_18
,
z_29*z_18*z_32*z_3
,
z_29*z_18*z_32*z_4
,
z_29*z_18*z_32*z_5
,
z_29*z_18*z_32*z_6
,
z_29*z_18*z_34*z_15
,
z_29*z_18*z_34*z_17
,
z_29*z_18*z_34*z_18 + z_30*z_25*z_35*z_20 + z_31*z_28*z_30*z_25 + z_29*z_16*z_5
+ z_29*z_18
,
z_29*z_18*z_35*z_20
,
z_29*z_18*z_37*z_26 + z_30*z_25*z_34*z_18 + z_31*z_28*z_30*z_25 + z_29*z_16*z_5
+ z_29*z_18
,
z_29*z_18*z_37*z_27
,
z_30*z_23*z_11*z_23 + z_29*z_16*z_3 + z_30*z_23
,
z_30*z_25*z_32*z_5 + z_30*z_25*z_34*z_18
,
z_30*z_25*z_34*z_16 + z_29*z_18*z_32 + z_30*z_25*z_32
,
z_32*z_4*z_17*z_29 + z_34*z_16*z_5*z_34 + z_34*z_18*z_32*z_4 +
z_36*z_25*z_32*z_4 + z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_18*z_34 +
z_35*z_20*z_34 + z_37*z_26*z_34
,
z_32*z_4*z_18*z_33 + z_33*z_13*z_33
,
z_32*z_4*z_18*z_34 + z_34*z_16*z_5*z_34 + z_34*z_18*z_32*z_4 + z_32*z_5*z_34 +
z_33*z_13*z_34 + z_34*z_15*z_1 + z_34*z_16*z_4 + z_34*z_18*z_34 +
z_35*z_20*z_34 + z_37*z_26*z_34
,
z_32*z_4*z_18*z_37 + z_32*z_6*z_45
,
z_32*z_5*z_32*z_4
,
z_32*z_5*z_32*z_5 + z_37*z_27*z_45*z_26
,
z_32*z_5*z_34*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_35*z_21*z_42 +
z_37*z_27*z_42
,
z_32*z_5*z_34*z_18 + z_32*z_6*z_45*z_26 + z_33*z_14*z_45*z_26 +
z_34*z_18*z_34*z_18 + z_34*z_18*z_35*z_20 + z_34*z_18*z_36*z_25 +
z_34*z_18*z_37*z_26 + z_35*z_20*z_34*z_18 + z_35*z_21*z_43*z_13 +
z_35*z_21*z_45*z_26 + z_36*z_25*z_32*z_5 + z_36*z_25*z_34*z_18 +
z_36*z_25*z_35*z_20 + z_37*z_26*z_34*z_18 + z_37*z_27*z_43*z_13 +
z_37*z_27*z_44*z_20 + z_37*z_27*z_45*z_26
,
z_32*z_5*z_37*z_27 + z_32*z_6*z_45*z_27
,
z_32*z_6*z_41*z_1 + z_36*z_25*z_32*z_4 + z_32*z_5*z_34 + z_34*z_17*z_29
,
z_32*z_6*z_41*z_2 + z_32*z_6*z_45*z_27 + z_33*z_14*z_45*z_27 +
z_34*z_18*z_33*z_14
,
z_32*z_6*z_46*z_38
,
z_32*z_6*z_46*z_40 + z_36*z_25*z_32*z_6 + z_37*z_27*z_43*z_14 +
z_37*z_27*z_44*z_21
,
z_33*z_13*z_34*z_18 + z_37*z_27*z_45*z_26
,
z_33*z_14*z_42*z_4
,
z_33*z_14*z_42*z_5 + z_37*z_27*z_45*z_26
,
z_33*z_14*z_42*z_6
,
z_33*z_14*z_44*z_20 + z_33*z_14*z_45*z_26 + z_34*z_18*z_34*z_18 +
z_34*z_18*z_35*z_20 + z_34*z_18*z_36*z_25 + z_34*z_18*z_37*z_26 +
z_35*z_20*z_34*z_18 + z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 +
z_36*z_25*z_34*z_18 + z_37*z_26*z_34*z_18 + z_37*z_27*z_43*z_13 +
z_37*z_27*z_44*z_20
,
z_33*z_14*z_44*z_21 + z_33*z_14*z_45*z_27 + z_34*z_18*z_33*z_14
,
z_34*z_16*z_3*z_10 + z_34*z_16*z_5*z_32 + z_34*z_18*z_34*z_16 + z_34*z_18*z_32 +
z_35*z_21*z_42 + z_37*z_27*z_42
,
z_34*z_16*z_3*z_11 + z_34*z_18*z_36 + z_36*z_23*z_11 + z_36*z_24*z_30
,
z_34*z_17*z_29*z_15 + z_32*z_6*z_41
,
z_34*z_17*z_29*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_35*z_21*z_42 +
z_37*z_27*z_42
,
z_34*z_17*z_29*z_17 + z_34*z_18*z_34*z_17 + z_34*z_18*z_36*z_24
,
z_34*z_17*z_29*z_18 + z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 +
z_37*z_27*z_42*z_5 + z_37*z_27*z_44*z_20 + z_37*z_27*z_45*z_26
,
z_34*z_18*z_32*z_3 + z_34*z_18*z_36*z_23
,
z_34*z_18*z_33*z_13 + z_37*z_27*z_45*z_26
,
z_34*z_18*z_36*z_22 + z_35*z_19 + z_36*z_22
,
z_35*z_19*z_7*z_20 + z_36*z_25*z_35*z_20
,
z_35*z_19*z_7*z_21 + z_35*z_21*z_46*z_40
,
z_35*z_20*z_34*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_35*z_21*z_42
,
z_35*z_20*z_34*z_17
,
z_35*z_21*z_42*z_4 + z_36*z_25*z_32*z_4 + z_37*z_27*z_42*z_4 + z_32*z_5*z_34 +
z_34*z_17*z_29
,
z_35*z_21*z_42*z_5 + z_35*z_21*z_43*z_13 + z_35*z_21*z_45*z_26 +
z_37*z_27*z_44*z_20
,
z_35*z_21*z_42*z_6 + z_37*z_27*z_42*z_6 + z_37*z_27*z_43*z_14 +
z_37*z_27*z_44*z_21
,
z_35*z_21*z_44*z_21 + z_35*z_21*z_45*z_27 + z_37*z_27*z_42*z_6 +
z_37*z_27*z_43*z_14
,
z_35*z_21*z_46*z_39 + z_32*z_3 + z_36*z_23
,
z_36*z_23*z_11*z_23 + z_32*z_3 + z_36*z_23
,
z_36*z_24*z_30*z_22 + z_35*z_19 + z_36*z_22
,
z_36*z_24*z_31*z_28 + z_36*z_25*z_34*z_17 + z_32*z_4*z_17 + z_34*z_17
,
z_36*z_25*z_34*z_16 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_36*z_25*z_32
,
z_37*z_26*z_34*z_15 + z_32*z_6*z_41
,
z_37*z_26*z_34*z_16 + z_33*z_14*z_42 + z_37*z_27*z_42
,
z_37*z_27*z_45*z_27
,
z_37*z_27*z_46*z_39
,
z_38*z_8*z_25*z_34 + z_40*z_44*z_20*z_34
,
z_38*z_9*z_39*z_12 + z_39*z_12*z_38*z_9
,
z_39*z_10*z_6*z_42
,
z_39*z_11*z_25*z_32 + z_40*z_46*z_40*z_42
,
z_39*z_11*z_25*z_34 + z_40*z_42*z_5*z_34
,
z_39*z_12*z_38*z_8
,
z_40*z_42*z_4*z_17 + z_39*z_11*z_24
,
z_40*z_42*z_4*z_18 + z_39*z_10*z_5 + z_39*z_11*z_25
,
z_40*z_42*z_5*z_32
,
z_40*z_42*z_5*z_37 + z_40*z_42*z_6*z_45 + z_40*z_45*z_27*z_45
,
z_40*z_42*z_6*z_46
,
z_40*z_44*z_20*z_33
,
z_40*z_44*z_20*z_37
,
z_40*z_44*z_21*z_43
,
z_40*z_44*z_21*z_44
,
z_40*z_44*z_21*z_45
,
z_40*z_45*z_27*z_42 + z_39*z_10 + z_40*z_42
,
z_40*z_45*z_27*z_43
,
z_40*z_45*z_27*z_44
,
z_40*z_45*z_27*z_46 + z_40*z_46
,
z_40*z_46*z_39*z_10 + z_40*z_46*z_40*z_42
,
z_40*z_46*z_39*z_11
,
z_40*z_46*z_40*z_41
,
z_40*z_46*z_40*z_44
,
z_40*z_46*z_40*z_46
,
z_41*z_1*z_17*z_29 + z_41*z_1*z_18*z_34 + z_42*z_6*z_41*z_1 + z_44*z_21*z_42*z_4
+ z_46*z_40*z_41*z_1 + z_43*z_13*z_34 + z_44*z_20*z_34 + z_45*z_26*z_34 +
z_42*z_4
,
z_41*z_1*z_18*z_32 + z_42*z_5*z_34*z_16 + z_42*z_5*z_32 + z_44*z_21*z_42 +
z_45*z_27*z_42 + z_46*z_39*z_10 + z_46*z_40*z_42
,
z_42*z_3*z_10*z_4 + z_46*z_40*z_42*z_4
,
z_42*z_4*z_17*z_29 + z_42*z_4*z_18*z_34 + z_46*z_40*z_42*z_4 + z_42*z_5*z_34
,
z_42*z_5*z_32*z_4 + z_44*z_21*z_42*z_4 + z_43*z_13*z_34
,
z_42*z_5*z_32*z_5 + z_44*z_21*z_42*z_5 + z_45*z_27*z_43*z_13
,
z_42*z_5*z_34*z_18 + z_44*z_21*z_42*z_5 + z_45*z_27*z_43*z_13 +
z_46*z_39*z_11*z_25 + z_46*z_40*z_42*z_5
,
z_42*z_5*z_37*z_27 + z_44*z_21*z_44*z_21 + z_44*z_21*z_45*z_27 +
z_45*z_27*z_42*z_6 + z_45*z_27*z_44*z_21 + z_46*z_39*z_10*z_6 +
z_46*z_40*z_42*z_6
,
z_42*z_6*z_41*z_2 + z_46*z_39*z_10*z_6 + z_46*z_40*z_42*z_6 +
z_46*z_40*z_44*z_21 + z_46*z_40*z_46*z_40 + z_41*z_2 + z_43*z_14 + z_44*z_21
+ z_45*z_27
,
z_42*z_6*z_45*z_26 + z_44*z_21*z_42*z_5 + z_44*z_21*z_43*z_13 +
z_44*z_21*z_45*z_26 + z_45*z_27*z_44*z_20 + z_46*z_39*z_10*z_5 +
z_46*z_40*z_42*z_5
,
z_42*z_6*z_45*z_27 + z_44*z_21*z_44*z_21 + z_44*z_21*z_45*z_27 +
z_45*z_27*z_42*z_6 + z_45*z_27*z_44*z_21
,
z_42*z_6*z_46*z_38 + z_44*z_19 + z_46*z_38
,
z_43*z_13*z_34*z_18 + z_44*z_21*z_43*z_13 + z_45*z_27*z_43*z_13
,
z_43*z_14*z_45*z_26 + z_44*z_21*z_42*z_5 + z_44*z_21*z_45*z_26 +
z_45*z_27*z_43*z_13 + z_46*z_39*z_10*z_5 + z_46*z_40*z_42*z_5
,
z_43*z_14*z_45*z_27 + z_44*z_21*z_45*z_27
,
z_44*z_19*z_7*z_20 + z_46*z_40*z_44*z_20
,
z_44*z_19*z_7*z_21 + z_46*z_39*z_10*z_6 + z_46*z_40*z_41*z_2 +
z_46*z_40*z_42*z_6 + z_46*z_40*z_45*z_27
,
z_44*z_20*z_34*z_16 + z_42*z_3*z_10 + z_44*z_21*z_42 + z_46*z_39*z_10
,
z_44*z_20*z_35*z_19 + z_44*z_19 + z_46*z_38
,
z_44*z_21*z_46*z_39 + z_42*z_3 + z_46*z_39
,
z_44*z_21*z_46*z_40 + z_46*z_40*z_44*z_21
,
z_45*z_26*z_34*z_15
,
z_45*z_26*z_34*z_16 + z_45*z_27*z_42
,
z_45*z_27*z_42*z_4 + z_43*z_13*z_34
,
z_45*z_27*z_43*z_14 + z_45*z_27*z_44*z_21
,
z_45*z_27*z_45*z_26
,
z_45*z_27*z_45*z_27
,
z_46*z_38*z_9*z_39 + z_42*z_3 + z_46*z_39
,
z_46*z_39*z_12*z_38 + z_44*z_19 + z_46*z_38
,
z_1*z_17*z_30 + z_1*z_18*z_36
,
z_1*z_18*z_33
,
z_1*z_18*z_35
,
z_2*z_42*z_3 + z_2*z_46*z_39
,
z_2*z_42*z_4
,
z_2*z_45*z_26
,
z_2*z_45*z_27
,
z_2*z_46*z_38
,
z_3*z_10*z_5 + z_3*z_11*z_25 + z_5*z_32*z_5 + z_5*z_34*z_18 + z_5*z_36*z_25 +
z_6*z_44*z_20 + z_6*z_45*z_26
,
z_3*z_10*z_6 + z_3*z_12*z_40 + z_5*z_35*z_21
,
z_3*z_12*z_38 + z_6*z_46*z_38
,
z_4*z_16*z_3 + z_6*z_42*z_3
,
z_4*z_16*z_4 + z_5*z_32*z_4
,
z_4*z_16*z_5 + z_5*z_32*z_5
,
z_4*z_16*z_6 + z_5*z_35*z_21 + z_6*z_41*z_2 + z_6*z_44*z_21 + z_6*z_45*z_27
,
z_4*z_17*z_30 + z_3*z_11 + z_5*z_36
,
z_4*z_18*z_32 + z_5*z_34*z_16 + z_5*z_32
,
z_4*z_18*z_35 + z_5*z_35 + z_6*z_44
,
z_4*z_18*z_36 + z_3*z_11
,
z_5*z_32*z_3 + z_6*z_42*z_3
,
z_5*z_32*z_6 + z_5*z_35*z_21 + z_6*z_41*z_2 + z_6*z_44*z_21 + z_6*z_45*z_27
,
z_5*z_34*z_15 + z_6*z_41
,
z_5*z_34*z_17 + z_5*z_36*z_24
,
z_5*z_35*z_19
,
z_5*z_35*z_20 + z_5*z_36*z_25
,
z_5*z_36*z_22
,
z_5*z_36*z_23 + z_6*z_42*z_3
,
z_5*z_37*z_26 + z_6*z_45*z_26
,
z_6*z_42*z_4
,
z_6*z_42*z_6
,
z_6*z_44*z_19 + z_6*z_46*z_38
,
z_6*z_46*z_39
,
z_7*z_20*z_33
,
z_7*z_20*z_34 + z_8*z_25*z_34
,
z_7*z_20*z_37
,
z_7*z_21*z_42 + z_9*z_40*z_42
,
z_7*z_21*z_43
,
z_7*z_21*z_44
,
z_7*z_21*z_45
,
z_8*z_25*z_32 + z_9*z_40*z_42
,
z_9*z_39*z_10 + z_9*z_40*z_42
,
z_9*z_40*z_41
,
z_9*z_40*z_45
,
z_9*z_40*z_46
,
z_10*z_4*z_16 + z_10*z_6*z_42
,
z_10*z_4*z_18 + z_10*z_5 + z_11*z_25
,
z_10*z_5*z_32 + z_10*z_6*z_42
,
z_10*z_5*z_35
,
z_10*z_5*z_36
,
z_10*z_5*z_37 + z_12*z_40*z_45
,
z_10*z_6*z_41 + z_12*z_40*z_41
,
z_10*z_6*z_44 + z_12*z_40*z_44
,
z_10*z_6*z_45 + z_12*z_40*z_45
,
z_10*z_6*z_46 + z_12*z_40*z_46
,
z_11*z_23*z_12 + z_12*z_40*z_46
,
z_11*z_24*z_30
,
z_11*z_24*z_31
,
z_12*z_40*z_42
,
z_13*z_33*z_13 + z_13*z_34*z_18 + z_13*z_37*z_26 + z_14*z_42*z_5 +
z_14*z_43*z_13 + z_14*z_45*z_26
,
z_13*z_33*z_14 + z_13*z_35*z_21 + z_13*z_37*z_27 + z_14*z_42*z_6 +
z_14*z_44*z_21 + z_14*z_45*z_27
,
z_13*z_34*z_15
,
z_13*z_34*z_16 + z_14*z_42
,
z_13*z_34*z_17
,
z_13*z_35*z_19
,
z_14*z_42*z_3
,
z_14*z_43*z_14 + z_14*z_44*z_21 + z_14*z_45*z_27
,
z_14*z_44*z_19
,
z_15*z_1*z_17 + z_16*z_4*z_17 + z_17*z_30*z_24 + z_18*z_34*z_17 + z_18*z_36*z_24
,
z_15*z_2*z_42 + z_16*z_3*z_10 + z_17*z_29*z_16 + z_18*z_32
,
z_16*z_4*z_16 + z_16*z_5*z_32
,
z_16*z_5*z_35
,
z_16*z_5*z_36
,
z_16*z_6*z_41
,
z_16*z_6*z_42
,
z_17*z_30*z_22 + z_18*z_36*z_22
,
z_18*z_35*z_19 + z_18*z_36*z_22
,
z_20*z_33*z_13 + z_21*z_43*z_13
,
z_20*z_33*z_14 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_20*z_34*z_15
,
z_20*z_35*z_20 + z_21*z_42*z_5 + z_21*z_43*z_13 + z_21*z_45*z_26
,
z_20*z_35*z_21 + z_21*z_42*z_6 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_20*z_37*z_26 + z_21*z_44*z_20 + z_21*z_45*z_26
,
z_20*z_37*z_27 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_21*z_42*z_3 + z_21*z_46*z_39
,
z_21*z_43*z_14 + z_21*z_44*z_21 + z_21*z_45*z_27
,
z_21*z_44*z_19
,
z_22*z_9*z_40 + z_25*z_35*z_21
,
z_23*z_11*z_24 + z_25*z_34*z_17
,
z_23*z_11*z_25 + z_25*z_35*z_20
,
z_23*z_12*z_40 + z_25*z_32*z_6
,
z_24*z_30*z_23
,
z_24*z_30*z_24
,
z_24*z_30*z_25 + z_25*z_32*z_5 + z_25*z_34*z_18
,
z_26*z_32*z_3
,
z_26*z_34*z_17
,
z_26*z_37*z_26 + z_27*z_45*z_26
,
z_26*z_37*z_27
,
z_27*z_42*z_3 + z_27*z_46*z_39
,
z_27*z_44*z_19
,
z_27*z_46*z_38
,
z_28*z_30*z_23
,
z_28*z_30*z_24
,
z_29*z_15*z_1 + z_29*z_16*z_4 + z_29*z_17*z_29 + z_29*z_18*z_34 + z_30*z_25*z_34
,
z_29*z_17*z_30 + z_30*z_23*z_11
,
z_29*z_18*z_33
,
z_29*z_18*z_36
,
z_30*z_24*z_30
,
z_30*z_24*z_31
,
z_32*z_3*z_10 + z_32*z_5*z_32 + z_33*z_14*z_42 + z_36*z_25*z_32
,
z_32*z_3*z_11 + z_36*z_23*z_11
,
z_32*z_3*z_12 + z_36*z_23*z_12
,
z_32*z_4*z_16 + z_32*z_5*z_32
,
z_32*z_5*z_35
,
z_32*z_5*z_36
,
z_32*z_6*z_42 + z_33*z_14*z_42
,
z_32*z_6*z_44 + z_33*z_14*z_44
,
z_33*z_13*z_35 + z_33*z_14*z_44
,
z_33*z_13*z_37 + z_33*z_14*z_45
,
z_33*z_14*z_43 + z_34*z_18*z_33
,
z_34*z_17*z_30 + z_36*z_23*z_11 + z_36*z_24*z_30
,
z_35*z_20*z_35 + z_37*z_27*z_44
,
z_35*z_20*z_36 + z_36*z_23*z_11
,
z_37*z_26*z_32
,
z_37*z_26*z_37 + z_37*z_27*z_45
,
z_38*z_9*z_40 + z_39*z_10*z_6 + z_40*z_41*z_2 + z_40*z_42*z_6 + z_40*z_45*z_27
,
z_39*z_10*z_4 + z_40*z_42*z_4
,
z_39*z_11*z_23 + z_40*z_46*z_39
,
z_39*z_12*z_40 + z_40*z_41*z_2 + z_40*z_42*z_6 + z_40*z_44*z_21 + z_40*z_45*z_27
,
z_40*z_42*z_3 + z_40*z_46*z_39
,
z_40*z_46*z_38
,
z_41*z_2*z_42 + z_42*z_3*z_10 + z_42*z_5*z_32 + z_44*z_21*z_42 + z_45*z_27*z_42
+ z_46*z_39*z_10
,
z_41*z_2*z_45 + z_45*z_27*z_45
,
z_41*z_2*z_46 + z_42*z_6*z_46 + z_44*z_21*z_46 + z_45*z_27*z_46 + z_46*z_39*z_12
,
z_42*z_3*z_11 + z_46*z_39*z_11
,
z_42*z_3*z_12 + z_44*z_21*z_46 + z_46*z_38*z_9 + z_46*z_39*z_12
,
z_42*z_4*z_16 + z_42*z_5*z_32
,
z_42*z_5*z_35 + z_44*z_19*z_7 + z_46*z_40*z_44
,
z_42*z_5*z_36
,
z_42*z_6*z_42
,
z_42*z_6*z_44 + z_44*z_20*z_35 + z_45*z_27*z_44
,
z_43*z_13*z_35 + z_45*z_27*z_44
,
z_43*z_13*z_37 + z_43*z_14*z_45
,
z_43*z_14*z_42
,
z_43*z_14*z_43 + z_44*z_21*z_43 + z_45*z_27*z_43
,
z_43*z_14*z_44 + z_44*z_21*z_44 + z_45*z_27*z_44
,
z_44*z_20*z_36 + z_46*z_38*z_8
,
z_45*z_26*z_32
,
z_45*z_26*z_37
,
The projective resolutions of the simple modules.
Simple Module Number 1 is Projective.
Simple Module Number 2
Degree 0:
2
Degree 1:
7
15
Degree 2:
2
2
2
2
3
3
6
8
8
10
10
Degree 3:
7
7
13
15
15
Degree 4:
2
2
2
2
2
3
3
3
4
6
8
8
10
10
Degree 5:
7
7
9
15
Degree 6:
2
2
3
4
Degree 7:
12
Degree 8:
11
The projective resolution
of simple module no. 2 is not graded.
Simple Module Number 3
Degree 0:
3
Degree 1:
5
7
13
15
Degree 2:
2
2
3
3
3
6
6
7
8
8
9
9
10
10
14
Degree 3:
4
4
5
5
7
7
12
13
15
15
Degree 4:
2
2
2
3
3
3
6
7
8
9
9
10
14
Degree 5:
5
5
7
12
12
15
Degree 6:
2
3
9
11
14
Degree 7:
5
11
12
Degree 8:
9
11
Degree 9:
11
The projective resolution
of simple module no. 3 is not graded.
Simple Module Number 4
Degree 0:
4
Degree 1:
8
9
14
Degree 2:
4
4
4
5
13
15
Degree 3:
3
3
6
8
8
9
9
10
14
Degree 4:
2
4
4
4
5
7
8
10
Degree 5:
4
7
9
12
14
Degree 6:
2
4
4
5
11
12
Degree 7:
9
11
The projective resolution
of simple module no. 4 is not graded.
Simple Module Number 5
Degree 0:
5
Degree 1:
3
9
14
Degree 2:
4
5
5
12
13
15
Degree 3:
3
3
6
6
7
8
9
9
9
10
14
Degree 4:
4
5
5
5
12
12
13
15
Degree 5:
3
3
6
7
9
9
9
14
14
Degree 6:
4
5
5
5
12
12
15
Degree 7:
3
9
9
14
Degree 8:
5
11
12
Degree 9:
9
Degree 10:
11
The projective resolution
of simple module no. 5 is not graded.
Simple Module Number 6
Degree 0:
6
Degree 1:
13
15
Degree 2:
2
3
3
6
7
8
9
10
14
Degree 3:
4
5
5
7
12
15
Degree 4:
2
3
9
11
14
Degree 5:
5
11
12
Degree 6:
9
11
Degree 7:
11
The projective resolution
of simple module no. 6 is not graded.
Simple Module Number 7
Degree 0:
7
Degree 1:
2
3
12
13
Degree 2:
3
6
7
7
9
11
13
15
Degree 3:
2
2
3
3
5
6
7
8
8
9
10
10
12
15
Degree 4:
3
4
7
7
9
11
12
14
15
Degree 5:
2
2
3
4
5
11
12
12
Degree 6:
9
11
12
Degree 7:
11
11
The projective resolution
of simple module no. 7 is not graded.
Simple Module Number 8
Degree 0:
8
Degree 1:
4
13
15
Degree 2:
2
2
3
3
6
8
8
9
10
10
14
Degree 3:
4
4
5
7
7
15
Degree 4:
2
2
3
4
12
Degree 5:
11
12
Degree 6:
11
The projective resolution
of simple module no. 8 is not graded.
Simple Module Number 9
Degree 0:
9
Degree 1:
4
5
12
13
Degree 2:
3
3
6
7
8
9
9
9
10
14
Degree 3:
4
4
5
5
5
7
12
15
15
Degree 4:
3
3
6
7
9
9
12
14
14
Degree 5:
2
4
5
5
5
11
12
12
12
13
Degree 6:
3
6
7
9
9
9
9
11
14
Degree 7:
4
5
5
11
12
15
Degree 8:
3
9
14
Degree 9:
5
12
Degree 10:
9
Degree 11:
11
The projective resolution
of simple module no. 9 is not graded.
Simple Module Number 10
Degree 0:
10
Degree 1:
13
15
Degree 2:
2
2
3
3
6
8
8
9
10
10
Degree 3:
4
5
7
7
15
Degree 4:
2
2
3
4
12
Degree 5:
11
12
Degree 6:
11
The projective resolution
of simple module no. 10 is not graded.
Simple Module Number 11
Degree 0:
11
Degree 1:
12
Degree 2:
7
11
Degree 3:
13
Degree 4:
6
7
11
13
Degree 5:
6
7
8
9
10
12
13
Degree 6:
3
4
6
7
8
9
10
11
12
13
Degree 7:
3
4
6
7
7
9
11
12
15
Degree 8:
2
3
5
11
11
12
12
15
Degree 9:
3
11
11
12
14
Degree 10:
5
11
12
Degree 11:
9
11
Degree 12:
11
The projective resolution
of simple module no. 11 is not graded.
Simple Module Number 12
Degree 0:
12
Degree 1:
7
9
11
Degree 2:
5
12
13
Degree 3:
3
6
7
9
13
14
Degree 4:
5
5
7
8
9
10
12
12
13
15
Degree 5:
3
3
4
6
7
7
8
9
9
9
10
11
12
14
Degree 6:
4
5
5
7
11
12
12
12
15
Degree 7:
2
3
9
11
12
14
Degree 8:
5
11
11
12
Degree 9:
9
11
Degree 10:
11
The projective resolution
of simple module no. 12 is not graded.
Simple Module Number 13
Degree 0:
13
Degree 1:
3
6
7
8
9
10
Degree 2:
4
5
7
12
15
Degree 3:
2
3
11
12
14
Degree 4:
5
11
12
Degree 5:
9
11
Degree 6:
11
The projective resolution
of simple module no. 13 is not graded.
Simple Module Number 14
Degree 0:
14
Degree 1:
4
5
15
Degree 2:
3
6
8
9
14
Degree 3:
4
5
12
13
Degree 4:
3
6
7
9
9
14
Degree 5:
4
5
5
12
15
Degree 6:
3
9
14
Degree 7:
5
12
Degree 8:
9
Degree 9:
11
The projective resolution
of simple module no. 14 is not graded.
Simple Module Number 15
Degree 0:
15
Degree 1:
2
3
6
8
10
14
Degree 2:
4
5
7
13
15
Degree 3:
2
2
3
3
6
7
8
9
9
10
Degree 4:
5
7
12
15
Degree 5:
2
3
14
Degree 6:
5
12
Degree 7:
9
11
Degree 8:
11
The projective resolution
of simple module no. 15 is not graded.