Today:

- Calculation of normal cycles of Schubert varieties in Grassmannians (joint work with Brian Boe), and an advertisement for a problem
- When o-minimal structures collide: an advertisement for Alesker's approach to valuations

Proposition

If $V \subset M$ is a \mathbb{C}-analytic subvariety then

$$
\begin{equation*}
\mathbb{P} N_{M}^{*}(V)=\sum_{W \in \mathcal{S}} d_{W}^{V} \llbracket \mathbb{P} N_{M}^{*}(W) \rrbracket \tag{1}
\end{equation*}
$$

The Schwartz-MacPherson Chern classes of V may be recovered by contracting $\mathbb{P} N^{*}(V)$ with canonical elements of $H^{*}\left(\mathbb{P} T^{*} M\right)$.

Theorem
If $V=\bigcap_{i=1}^{N} f_{i}^{-1}(0) \subset \mathbb{C}^{n}$ is a cone with vertex 0 . Put $g:=\sum_{i=1}^{N}\left|f_{i}\right|^{2}$.
Then

$$
\operatorname{deg}\left(\left.\frac{\nabla g}{|\nabla g|}\right|_{S^{2 n-1}}\right)=d_{\{0\}}^{V}
$$

A Schubert variety in the Grassmannian $\mathrm{Gr}_{n, m}$ of complex subspaces $P^{n} \subset \mathbb{C}^{n+m}$ is the subvariety determined by conditions

$$
\operatorname{dim}\left(P \cap \mathbb{C}^{a_{i}+i}\right) \geq i, \quad i=1, \ldots, n
$$

where $a_{1} \leq a_{2} \leq \cdots \leq a_{m}$. The corresponding Schubert cell are defined by putting $=$ in these relations. Such a variety is stratified by the Schubert cells it contains.
Fixing a nondegenerate antisymmetric bilinear form ω on $\mathbb{C}^{2 n}$, these things also exist in the Lagrangian Grassmannian $L_{n} \subset \mathrm{Gr}_{n, n}$ of Lagrangian subspaces $P^{n},\left.\omega\right|_{P} \equiv 0$, and similarly if the form is symmetric.
These are types A, C, D respectively. They also exist in more general flag manifolds.

- Representation theorists are interested in these things: for a Schubert pair $X \supset Y$ there is a Kazhdan-Lusztig polynomial P_{Y}^{X} describing a certain canonical sheaf on X, with $P_{X}^{X}=1$. Put $p_{Y}^{X}:=P_{Y}^{X}(1)$ and

$$
\pi_{X}:=\sum_{Y^{\circ} \subset X} p_{Y}^{X} 1_{Y^{\circ}}
$$

Thus the π^{X} are a basis for the \mathbb{Z}-module generated by the characteristic functions of Schubert varieties.

- Lusztig conjectured that in type A flag manifolds

> ("the characteristic cycle of the intersection homology sheaf is irreducible")
> - It turns out that this is wrong (more on this later), but Bressler, Finkelberg and Lunts (1990) showed that it is true for the type A (i.e. standard) Grassmannian by working with the actual sheaves.
- Representation theorists are interested in these things: for a Schubert pair $X \supset Y$ there is a Kazhdan-Lusztig polynomial P_{Y}^{X} describing a certain canonical sheaf on X, with $P_{X}^{X}=1$. Put $p_{Y}^{X}:=P_{Y}^{X}(1)$ and

$$
\pi_{X}:=\sum_{Y^{\circ} \subset X} p_{Y}^{X} 1_{Y \circ}
$$

Thus the π^{X} are a basis for the \mathbb{Z}-module generated by the characteristic functions of Schubert varieties.

- Lusztig conjectured that in type A flag manifolds

$$
\mathbb{P} N^{*}\left(\pi_{X}\right)=\mathbb{P} N^{*}\left(X^{\circ}\right)
$$

("the characteristic cycle of the intersection homology sheaf is irreducible")

- It turns out that this is wrong (more on this later), but Bressler, Finkelberg and Lunts (1990) showed that it is true for the type A (i.e. standard) Grassmannian by working with the actual sheaves.
- Representation theorists are interested in these things: for a Schubert pair $X \supset Y$ there is a Kazhdan-Lusztig polynomial P_{Y}^{X} describing a certain canonical sheaf on X, with $P_{X}^{X}=1$. Put $p_{Y}^{X}:=P_{Y}^{X}(1)$ and

$$
\pi_{X}:=\sum_{Y^{\circ} \subset X} p_{Y}^{X} 1_{Y \circ}
$$

Thus the π^{X} are a basis for the \mathbb{Z}-module generated by the characteristic functions of Schubert varieties.

- Lusztig conjectured that in type A flag manifolds

$$
\mathbb{P} N^{*}\left(\pi_{X}\right)=\mathbb{P} N^{*}\left(X^{\circ}\right)
$$

("the characteristic cycle of the intersection homology sheaf is irreducible")

- It turns out that this is wrong (more on this later), but Bressler, Finkelberg and Lunts (1990) showed that it is true for the type A (i.e. standard) Grassmannian by working with the actual sheaves.

Boe and Fu (1997) computed $\mathbb{P} N^{*}(X)=\mathbb{P} N^{*}\left(1_{X}\right)$ for Schubert varieties in types A, C, D using the degree formula. Changing basis from 1_{X} to π_{X} in type A gives an alternative to the proof of Bressler et al.
We illustrate in the case of Schubert data with $m=n$ and

$$
a_{1}=a_{2}=\cdots=a_{n-k}=k, \quad a_{n-k+1}=\cdots=a_{n}=n
$$

In local coordinates this is the determinantal variety (cone)

$$
D_{k}^{n}:=\left\{\mu \in \mathbb{C}^{n \times n}: \operatorname{rank} \mu \leq k\right\}
$$

For $\ell \leq k$ the normal slice of D_{k}^{n} to D_{ℓ}^{n} is clearly $D_{k-\ell}^{n-\ell}$. So it is enough to compute the coefficient

$$
d_{\{0\}}^{D_{k}^{n}}
$$

in $\mathbb{P} N^{*}\left(D_{k}^{n}\right)$.

Then $D_{k}^{n}=g^{-1}(0)$ where

$$
g(\mu):=\left|\bigwedge^{k+1} \mu\right|^{2}
$$

Lemma (KAK decomposition)
Put $\wedge:=\left\{\vec{\ell}=\left(\ell_{1}, \ldots, \ell_{n}\right)\right.$: lines $\left.\ell_{i} \perp \ell_{j}, i \neq j\right\}$ and for $\vec{\ell}, \vec{\lambda} \in \Lambda$ put

$$
M_{\vec{\ell}, \vec{\lambda}}:=\left\{\sum_{i} \alpha_{i} \otimes \beta_{i}: \alpha_{i} \in \ell_{i}, \beta_{i} \in \lambda_{i}\right\}
$$

Then

$$
\mathbb{C}^{n \times n}=\bigcup_{\vec{\ell}, \vec{\lambda} \in \Lambda} M_{\vec{\ell}, \vec{\lambda}}
$$

where a generic $\mu \in \mathbb{C}^{n \times n}$ belongs to exactly one of the $M_{\vec{\ell}, \vec{\lambda}}$. Furthermore

$$
\nabla g\left(M_{\vec{l}, \vec{\lambda}}\right) \subset M_{\vec{\ell}, \vec{\lambda}}
$$

Put $\nabla_{1} g:=\frac{\nabla g}{|\nabla g|}$. It follows that

$$
\operatorname{deg}\left(\nabla_{1} g\right)=\operatorname{deg}\left(\left.\nabla_{1} g\right|_{S^{2 n^{2}-1} \cap M_{\vec{\ell}, \vec{\lambda}}}\right)
$$

and we may as well take the ℓ_{i}, λ_{i} to be the coordinate axes, i.e. $M_{\vec{\ell}, \vec{\lambda}}=$ diagonal matrices $\left(z_{1}, \ldots, z_{n}\right)$, with

$$
\begin{aligned}
g(\vec{z}) & =\sum\left|z_{i_{1}} \ldots z_{i_{k+1}}\right|^{2} \\
\nabla g(\vec{z}) & =2\left(z_{1} \sum_{1 \neq j_{1}, \ldots j_{k}}\left|z_{j_{1}} \ldots z_{j_{k}}\right|^{2}, \ldots\right)
\end{aligned}
$$

so we can even restrict to the simplex $\Delta=\Delta_{+}^{n-1} \subset S^{2 n-1}$ of points with nonnegative real coordinates.

It's easy to check that $\nabla_{1} g$ maps the interior of Δ to itself, and $\partial \Delta$ to itself in the following sense:

Lemma

- If $\vec{x} \in \partial \Delta-D_{k}^{n}$ then $\nabla_{1} g(\vec{x}) \in \partial \Delta$.
- $\nabla_{1} g$ maps each codimension 1 face of Δ to itself.
- If $\Sigma \subset \partial \Delta \cap D_{k}^{n}$ is a face and $\Delta^{\circ} \ni \vec{x}_{i} \rightarrow \vec{x}_{0} \in \Sigma$ then $\nabla_{1} g\left(\vec{x}_{i}\right) \rightarrow$ the face opposite to Σ.

Proof.

The first and second statements are easy. The second statement just means that the limiting values of $\nabla_{1} g$ at a stratum of D_{k}^{n} are normal to the stratum, which can be proved using the Lojasiewicz inequality.

Put $d_{k}^{n}:=d_{\{0\}}^{D_{k}^{n}}$. We may now use the relation

$$
d_{k}^{n} \partial \llbracket \Delta \rrbracket=\partial \nabla_{1} g_{*} \llbracket \Delta \rrbracket=\nabla_{1} g_{*} \llbracket \partial \Delta \rrbracket
$$

provided we are careful with the singularities of $\nabla_{1} g$: in view of the last lemma, any generic point of a codimension 1 face $F \subset \Delta$ has preimages only on F itself or on a virtual copy of F lying at the vertex opposite.

Examples:

- D_{0}^{2} :

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right) \\
d_{0}^{2}=1
\end{gathered}
$$

- D_{1}^{2} :

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)
$$

$g\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left(x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}\right)}{\left|\left(x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}\right)\right|}$
The face $x_{3}=0$ lies in the variety and mans to the onnosite vertex. On the other hand the virtual copy of this face at the opposite vertex $x_{3}=1$ maps to the actual face just as in the D_{1}^{2} case. But this virtual face is oriented negatively, so $d_{2}^{3}=-d_{1}^{2}=+1$.

Examples:

- D_{0}^{2} :

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right) \\
d_{0}^{2}=1
\end{gathered}
$$

- D_{1}^{2} :

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right) \\
d_{1}^{2}=-1
\end{gathered}
$$

$g\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left(x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}\right)}{\left|\left(x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}\right)\right|}$
The face $x_{3}=0$ lies in the variety and maps to the onposite vertex. On the other hand the virtual copy of this face at the opposite vertex $x_{3}=1$ maps to the actual face just as in the D_{1}^{2} case. But this virtual face is oriented negatively, so $d_{2}^{3}=-d_{1}^{2}=+1$.

Examples:

- D_{0}^{2} :

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right) \\
d_{0}^{2}=1
\end{gathered}
$$

- D_{1}^{2} :

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right) \\
d_{1}^{2}=-1
\end{gathered}
$$

- D_{2}^{3} :

$$
g\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}, \quad \nabla_{1} g\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left(x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}\right)}{\left|\left(x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}\right)\right|}
$$

The face $x_{3}=0$ lies in the variety and maps to the opposite vertex. On the other hand the virtual copy of this face at the opposite vertex $x_{3}=1$ maps to the actual face just as in the D_{1}^{2} case. But this virtual face is oriented negatively, so $d_{2}^{3}=-d_{1}^{2}=+1$.

- D_{1}^{3} :

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{3}^{2} x_{1}^{2} \\
\nabla_{1} g\left(x_{1}, x_{2}, x_{3}\right) & =\frac{\left(x_{1}\left(x_{2}^{2}+x_{3}^{2}\right), x_{2}\left(x_{3}^{2}+x_{1}^{2}\right), x_{3}\left(x_{1}^{2}+x_{2}^{2}\right)\right)}{\left|\left(x_{1}\left(x_{2}^{2}+x_{3}^{2}\right), x_{2}\left(x_{3}^{2}+x_{1}^{2}\right), x_{3}\left(x_{1}^{2}+x_{2}^{2}\right)\right)\right|}
\end{aligned}
$$

$\nabla_{1} g$ maps $x_{3}=0$ to itself exactly like the D_{1}^{2} case, and maps the virtual face $x_{3}=1$ to the true face just like the D_{0}^{2} case. So

$$
d_{1}^{3}=d_{1}^{2}-d_{0}^{2}=-1-1=-2
$$

- Generally
- D_{1}^{3} :

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{3}^{2} x_{1}^{2} \\
\nabla_{1} g\left(x_{1}, x_{2}, x_{3}\right) & =\frac{\left(x_{1}\left(x_{2}^{2}+x_{3}^{2}\right), x_{2}\left(x_{3}^{2}+x_{1}^{2}\right), x_{3}\left(x_{1}^{2}+x_{2}^{2}\right)\right)}{\left|\left(x_{1}\left(x_{2}^{2}+x_{3}^{2}\right), x_{2}\left(x_{3}^{2}+x_{1}^{2}\right), x_{3}\left(x_{1}^{2}+x_{2}^{2}\right)\right)\right|}
\end{aligned}
$$

$\nabla_{1} g$ maps $x_{3}=0$ to itself exactly like the D_{1}^{2} case, and maps the virtual face $x_{3}=1$ to the true face just like the D_{0}^{2} case. So

$$
d_{1}^{3}=d_{1}^{2}-d_{0}^{2}=-1-1=-2
$$

- Generally

$$
d_{k}^{n}=d_{k}^{n-1}-d_{k-1}^{n-1}, d_{k}^{k}:=0, \quad d_{0}^{k}=1 \Longrightarrow d_{k}^{n}=(-1)^{k}\binom{n-1}{k}
$$

The general rule for type A Grassmannians is:

										-
${ }^{\prime} 1$, /3							
		*'		X						
	${ }^{\prime}$									
			,'1			-				
		Y		, '2	\bullet					
			${ }^{\prime}$, '2					
				$\bullet \cdot$ '		,'1			, 3	
								$*$		
							${ }^{\prime}$			
									${ }^{\circ} 1$	

Type I

Figure 4.2. The trees T_{Y}^{X}.

Theorem (Kashiwara-Saito)

Consider the conic variety X of all 4×4 matrices where all four dominoes have rank ≤ 1 :

$$
\left[\begin{array}{cc|cc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\hline \times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]
$$

Then $d_{0}^{X} \neq 2$.
The point is that this is Schubert singularity in a type A flag manifold, and the conclusion is equivalent to the statement that the multiplicity of 0 in $\mathbb{P} N^{*}\left(\pi_{X}\right)$ is nonzero.

Problem: What is the actual value of d_{0}^{X} ?

This is the bottleneck (at least psychologically) in the way of extending our method beyond the Grassmannian.
Tom Braden has a complicated algorithm for computing the multiplicities of $\mathbb{P} N^{*}\left(\pi_{X}\right)$, and after several tries computed- without confidence - that the multiplicity of 0 is 1 . This would imply that $d_{0}^{x}=3$.

Definition

A smooth valuation on an oriented manifold M is an operation of the form

$$
\nu_{\beta, \gamma}=\int_{N(\cdot)} \beta+\int \gamma
$$

The space of all such things is denoted $\mathcal{V}=\mathcal{V}(M)$, and \mathcal{V}_{c} is the subspace of those with compact support.

Theorem (Alesker)

- The valuations $\left[Y,\left\{F_{t}\right\}, m\right] \in \mathcal{V}$ and their span is dense in \mathcal{V}.
- There is a natural continuous and commutative multiplication $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, extending the multiplication of the $\left[Y,\left\{F_{t}\right\}, m\right]$.
- Let M be a vector space W^{n} and put V^{W} for the subalgebra of translation-invariant valuations on W. This algebra is naturally \mathbb{Z}-graded by degree of homogeneity

$$
\mu \in \mathcal{V}_{k}^{W}(W) \Longleftrightarrow \mu(t A)=t^{k} \mu(A) \text { for } t>0, \quad k=0, \ldots n
$$

and \mathbb{Z}_{2}-graded by parity

$$
\mu \in \mathcal{V}^{M^{\prime}}(W) \Longleftrightarrow \mu(-A) \equiv \pm \mu(A) .
$$

$\mathcal{V}_{0}^{W}=\langle\chi\rangle$ and $\mathcal{V}_{n}^{W}=\langle$ vol \rangle.

- In general the algebra $\mathcal{V}(M)$ is filtered.

Theorem (Alesker)

- The valuations $\left[Y,\left\{F_{t}\right\}, m\right] \in \mathcal{V}$ and their span is dense in \mathcal{V}.
- There is a natural continuous and commutative multiplication $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, extending the multiplication of the $\left[Y,\left\{F_{t}\right\}, m\right]$.
- Let M be a vector space W^{n} and put \mathcal{V}^{W} for the subalaebra of translation-invariant valuations on W. This algebra is naturally Z-graded by degree of homogeneity

and \mathbb{Z}_{2}-graded by parity

$$
\mu \in \mathcal{V}^{\prime \prime \prime}(W) \Longleftrightarrow \mu(-A) \equiv \pm \mu(A) .
$$

\square and $\nu_{n}^{W}=\langle\mathrm{vol}\rangle$

- In general the algebra $\mathcal{V}(M)$ is filtered.

Theorem (Alesker)

- The valuations $\left[Y,\left\{F_{t}\right\}, m\right] \in \mathcal{V}$ and their span is dense in \mathcal{V}.
- There is a natural continuous and commutative multiplication $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, extending the multiplication of the $\left[Y,\left\{F_{t}\right\}, m\right]$.
Let M be a vector space W^{n} and put ν^{W} for the subalgebra of
translation-invariant valuations on W. This algebra is naturally
\mathbb{Z}-graded by degree of homogeneity

$$
\mu \in \mathcal{V}_{k}^{W}(W) \Longleftrightarrow \mu(t A)=t^{k} \mu(A) \text { for } t>0, \quad k=0, \ldots n
$$ and \mathbb{Z}_{2}-graded by parity

$$
\mu \in \mathcal{V}_{ \pm}^{W}(W) \Longleftrightarrow \mu(-A) \equiv \pm \mu(A)
$$

$\mathcal{V}_{0}^{W}=\langle\chi\rangle$ and $\mathcal{V}_{n}^{W}=\langle$ vol \rangle

- In general the algebra $\mathcal{V}(M)$ is filtered.

Theorem (Alesker)

- The valuations $\left[Y,\left\{F_{t}\right\}, m\right] \in \mathcal{V}$ and their span is dense in \mathcal{V}.
- There is a natural continuous and commutative multiplication $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, extending the multiplication of the $\left[Y,\left\{F_{t}\right\}, m\right]$.
- Let M be a vector space W^{n} and put \mathcal{V}^{W} for the subalgebra of translation-invariant valuations on W. This algebra is naturally \mathbb{Z}-graded by degree of homogeneity

$$
\mu \in \mathcal{V}_{k}^{W}(W) \Longleftrightarrow \mu(t A)=t^{k} \mu(A) \text { for } t>0, \quad k=0, \ldots n
$$

and \mathbb{Z}_{2}-graded by parity

$$
\mu \in \mathcal{V}_{ \pm}^{W}(W) \Longleftrightarrow \mu(-A) \equiv \pm \mu(A)
$$

$\mathcal{V}_{0}^{W}=\langle\chi\rangle$ and $\mathcal{V}_{n}^{W}=\langle$ vol \rangle.

Theorem (Alesker)

- The valuations $\left[Y,\left\{F_{t}\right\}, m\right] \in \mathcal{V}$ and their span is dense in \mathcal{V}.
- There is a natural continuous and commutative multiplication $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, extending the multiplication of the $\left[Y,\left\{F_{t}\right\}, m\right]$.
- Let M be a vector space W^{n} and put \mathcal{V}^{W} for the subalgebra of translation-invariant valuations on W. This algebra is naturally \mathbb{Z}-graded by degree of homogeneity

$$
\mu \in \mathcal{V}_{k}^{W}(W) \Longleftrightarrow \mu(t A)=t^{k} \mu(A) \text { for } t>0, \quad k=0, \ldots n
$$

and \mathbb{Z}_{2}-graded by parity

$$
\mu \in \mathcal{V}_{ \pm}^{W}(W) \Longleftrightarrow \mu(-A) \equiv \pm \mu(A)
$$

$$
\mathcal{V}_{0}^{W}=\langle\chi\rangle \text { and } \mathcal{V}_{n}^{W}=\langle\text { vol }\rangle
$$

- In general the algebra $\mathcal{V}(M)$ is filtered.
- The pairing $\mathcal{V} \times \mathcal{V}_{c} \rightarrow \mathbb{R}$

$$
(\mu, \nu):=(\mu \cdot \nu)(M)
$$

is perfect. If M is a vector space as above then the pairing

$$
(\mu, \nu):=\text { degree } n \text { component of } \mu \cdot \nu
$$

is perfect.

