
Today:
Calculation of normal cycles of Schubert varieties in
Grassmannians (joint work with Brian Boe), and an advertisement
for a problem
When o-minimal structures collide: an advertisement for Alesker’s
approach to valuations
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Schubert variety calculations

Proposition
If V ⊂ M is a C-analytic subvariety then

PN∗
M(V ) =

∑
W∈S

dV
W [[PN∗

M(W )]] (1)

The Schwartz-MacPherson Chern classes of V may be recovered by
contracting PN∗(V ) with canonical elements of H∗(PT ∗M).

Theorem

If V =
⋂N

i=1 f−1
i (0) ⊂ Cn is a cone with vertex 0. Put g :=

∑N
i=1 |fi |2.

Then

deg
(
∇g
|∇g|

∣∣∣∣
S2n−1

)
= dV

{0}

This is true in a limiting sense even if V is not a cone. Taking normal
sections of strata at generic points, it gives (in principle) a recipe for
computing all the coefficients dV

W .
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Schubert variety calculations

A Schubert variety in the Grassmannian Grn,m of complex subspaces
Pn ⊂ Cn+m is the subvariety determined by conditions

dim(P ∩ Cai+i) ≥ i , i = 1, . . . , n

where a1 ≤ a2 ≤ · · · ≤ am. The corresponding Schubert cell are
defined by putting = in these relations. Such a variety is stratified by
the Schubert cells it contains.
Fixing a nondegenerate antisymmetric bilinear form ω on C2n, these
things also exist in the Lagrangian Grassmannian Ln ⊂ Grn,n of
Lagrangian subspaces Pn, ω|P ≡ 0, and similarly if the form is
symmetric.
These are types A, C, D respectively.
They also exist in more general flag manifolds.
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Schubert variety calculations

Representation theorists are interested in these things: for a
Schubert pair X ⊃ Y there is a Kazhdan-Lusztig polynomial PX

Y
describing a certain canonical sheaf on X , with PX

X = 1. Put
pX

Y := PX
Y (1) and

πX :=
∑

Y◦⊂X

pX
Y 1Y◦

Thus the πX are a basis for the Z-module generated by the
characteristic functions of Schubert varieties.
Lusztig conjectured that in type A flag manifolds

PN∗ (πX ) = PN∗(X ◦)

(“the characteristic cycle of the intersection homology sheaf is
irreducible")
It turns out that this is wrong (more on this later), but Bressler,
Finkelberg and Lunts (1990) showed that it is true for the type A
(i.e. standard) Grassmannian by working with the actual sheaves.
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Schubert variety calculations

Boe and Fu (1997) computed PN∗(X ) = PN∗(1X ) for Schubert
varieties in types A, C, D using the degree formula. Changing basis
from 1X to πX in type A gives an alternative to the proof of Bressler et
al.
We illustrate in the case of Schubert data with m = n and

a1 = a2 = · · · = an−k = k , an−k+1 = · · · = an = n

In local coordinates this is the determinantal variety (cone)

Dn
k := {µ ∈ Cn×n : rank µ ≤ k}

For ` ≤ k the normal slice of Dn
k to Dn

` is clearly Dn−`
k−`. So it is enough

to compute the coefficient
dDn

k
{0}

in PN∗(Dn
k ).
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Schubert variety calculations

Then Dn
k = g−1(0) where

g(µ) :=
∣∣∣∧k+1µ

∣∣∣2
Lemma (KAK decomposition)

Put Λ := {~̀ = (`1, . . . , `n) : lines `i ⊥ `j , i 6= j} and for ~̀, ~λ ∈ Λ put

M~̀,~λ
:=

{∑
i

αi ⊗ βi : αi ∈ `i , βi ∈ λi

}

Then
Cn×n =

⋃
~̀,~λ∈Λ

M~̀,~λ

where a generic µ ∈ Cn×n belongs to exactly one of the M~̀,~λ
.

Furthermore
∇g

(
M~̀,~λ

)
⊂ M~̀,~λ
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Schubert variety calculations

Put ∇1g := ∇g
|∇g| . It follows that

deg (∇1g) = deg
(
∇1g|S2n2−1∩M~̀,~λ

)
and we may as well take the `i , λi to be the coordinate axes, i.e. M~̀,~λ

=

diagonal matrices (z1, . . . , zn), with

g(~z) =
∑ ∣∣zi1 . . . zik+1

∣∣2
∇g(~z) = 2

z1
∑

16=j1,...jk

∣∣zj1 . . . zjk

∣∣2 , . . .


so we can even restrict to the simplex ∆ = ∆n−1

+ ⊂ S2n−1 of points
with nonnegative real coordinates.
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Schubert variety calculations

It’s easy to check that ∇1g maps the interior of ∆ to itself, and ∂∆ to
itself in the following sense:

Lemma

If ~x ∈ ∂∆− Dn
k then ∇1g(~x) ∈ ∂∆.

∇1g maps each codimension 1 face of ∆ to itself.
If Σ ⊂ ∂∆ ∩ Dn

k is a face and ∆◦ 3 ~xi → ~x0 ∈ Σ then ∇1g(~xi) →
the face opposite to Σ.

Proof.
The first and second statements are easy. The second statement just
means that the limiting values of ∇1g at a stratum of Dn

k are normal to
the stratum, which can be proved using the Lojasiewicz inequality.
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Schubert variety calculations

Put dn
k := dDn

k
{0}. We may now use the relation

dn
k ∂[[∆]] = ∂∇1g∗[[∆]] = ∇1g∗[[∂∆]]

provided we are careful with the singularities of ∇1g: in view of the last
lemma, any generic point of a codimension 1 face F ⊂ ∆ has
preimages only on F itself or on a virtual copy of F lying at the vertex
opposite.
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Schubert variety calculations

Examples:
D2

0 :

g(x1, x2) = x2
1 + x2

2 , ∇1g(x1, x2) = (x1, x2)

d2
0 = 1

D2
1 :

g(x1, x2) = x2
1 x2

2 , ∇1g(x1, x2) = (x2, x1)

d2
1 = −1

D3
2 :

g(x1, x2, x3) = x2
1 x2

2 x2
3 , ∇1g(x1, x2, x3) =

(x2x3, x3x1, x1x2)

|(x2x3, x3x1, x1x2)|
The face x3 = 0 lies in the variety and maps to the opposite vertex.
On the other hand the virtual copy of this face at the opposite
vertex x3 = 1 maps to the actual face just as in the D2

1 case. But
this virtual face is oriented negatively, so d3

2 = −d2
1 = +1.
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Schubert variety calculations

D3
1 :

g(x1, x2, x3) = x2
1 x2

2 + x2
2 x2

3 + x2
3 x2

1 ,

∇1g(x1, x2, x3) =
(x1(x2

2 + x2
3 ), x2(x2

3 + x2
1 ), x3(x2

1 + x2
2 ))

|(x1(x2
2 + x2

3 ), x2(x2
3 + x2

1 ), x3(x2
1 + x2

2 ))|

∇1g maps x3 = 0 to itself exactly like the D2
1 case, and maps the

virtual face x3 = 1 to the true face just like the D2
0 case. So

d3
1 = d2

1 − d2
0 = −1− 1 = −2

Generally

dn
k = dn−1

k − dn−1
k−1 , dk

k := 0, dk
0 = 1 =⇒ dn

k = (−1)k
(

n − 1
k

)
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Schubert variety calculations

The general rule for type A Grassmannians is:

CHARACTERISTIC CYCLES IN HERMITIAN SYMMETRIC SPACES 437

of the dot configurations either there exists B1 for which

0 b1xb2 b1xb2, y0 b1(b
1

1 b1x x)b2, y0

b 1
1 b1x x, y ,

or else there exists B2 for which the corresponding inequality with right multiplica-

tion holds. But by 3.2A(2), b 1
1 b1x x TxZ̃Ỹ . This proves the assertion in type I, and

also in types II and III if we recall that Z̃Ỹ is invariant under the appropriate involution

i .

REMARK 4.1B. The following observation is easy to check, and will be useful: if !0

has a unique maximal element then either every row or every column of "̄ contains an

element of !0. Therefore the same is true of ! if the number of diagonal elements of !0

is even.

4.2. Statement of the theorem. Given a pair X Y of Schubert varieties, recall the

description ofXY given in 3.2A(1).We produce the polynomialD
X
Y from the rank function

defining the normal slice XY , together with the dot configuration !0.

Our construction is carried out in terms of certain connected rooted trees associated

to !0 and . In type I we use the so-called Hasse diagram of the poset of dots !0; i.e.,

the connected rooted tree isomorphic to it as a poset, edges corresponding to dots. (See

Figure 4.2.)

In types II and III we use theHasse diagramof the sub-poset consisting of all dots of!0

lying on or above the diagonal. Furthermore we distinguish the edges which correspond

to the diagonal dots from the off-diagonal dots by drawing the former vertically, and

the latter obliquely. The vertical ones will be called central edges, the oblique ones side

edges. A central edge is odd if the number of central edges below it is even.

1 3

1

2

2

1 3

1

Y

X

1 1 1

3 3

2 2

1 1

3

2

Type I Type II and III

FIGURE 4.2. The trees T X
Y .

(J.H.G. Fu) Theory and applications of the normal cycle 12 / 17



Schubert variety calculations

Theorem (Kashiwara-Saito)
Consider the conic variety X of all 4× 4 matrices where all four
dominoes have rank ≤ 1: 

× ×
× ×

× ×
× ×

× ×
× ×

× ×
× ×


Then dX

0 6= 2.

The point is that this is Schubert singularity in a type A flag manifold,
and the conclusion is equivalent to the statement that the multiplicity of
0 in PN∗(πX ) is nonzero.
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Schubert variety calculations

Problem: What is the actual value of dX
0 ?

This is the bottleneck (at least psychologically) in the way of extending
our method beyond the Grassmannian.
Tom Braden has a complicated algorithm for computing the
multiplicities of PN∗(πX ), and after several tries computed— without
confidence— that the multiplicity of 0 is 1. This would imply that
dx

0 = 3.

(J.H.G. Fu) Theory and applications of the normal cycle 14 / 17



Valuations

Definition
A smooth valuation on an oriented manifold M is an operation of the
form

νβ,γ =

∫
N(·)

β +

∫
·
γ

The space of all such things is denoted V = V(M), and Vc is the
subspace of those with compact support.
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Valuations

Theorem (Alesker)

The valuations [Y , {Ft}, m] ∈ V and their span is dense in V.
There is a natural continuous and commutative multiplication
V ⊗ V → V, extending the multiplication of the [Y , {Ft}, m].
Let M be a vector space W n and put VW for the subalgebra of
translation-invariant valuations on W. This algebra is naturally
Z-graded by degree of homogeneity

µ ∈ VW
k (W ) ⇐⇒ µ(tA) = tkµ(A) for t > 0, k = 0, . . . n

and Z2-graded by parity

µ ∈ VW
± (W ) ⇐⇒ µ(−A) ≡ ±µ(A).

VW
0 = 〈χ〉 and VW

n = 〈vol〉.
In general the algebra V(M) is filtered.
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Valuations

The pairing V × Vc → R

(µ, ν) := (µ · ν)(M)

is perfect. If M is a vector space as above then the pairing

(µ, ν) := degree n component of µ · ν

is perfect.
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