A problem, perhaps non-impossible

Conjecture

Suppose f : R? — R is Lipschitz and subanalytic. Then there exists a
(uniformly Lipschitz) sequence fi, fo, ... of PL functions converging to f
locally uniformly such that

mass(Tqr N7~ (K)) < C(K) < o0

for every compact K C R2.

This is true if f € C?, but the local mass bounds depend on the local
C? norms of f.
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Two geometric applications

Main goals today:

@ The Gauss-Bonnet theorem for complete asymptotically conic
subsets of R” (Dillen-Kihnel, Dutertre)

@ Langevin’s formula for the total curvature of a complex analytic
hypersurface in the neighborhood of an isolated singularity

Ancillary goals:
@ Valuations and Integral geometry of S”
@ The normal cycle of a transverse intersection
@ Decomposition of the normal cycle of a complex analytic variety
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Two geometric applications

Theorem (Dutertre 2008)

Suppose X ¢ R™ s semialgebraic. Put Lk (X) for the constructible
function on S" given by specializing the family {S" N tX}o att = 0.
Then

1 00 o 1 00
/. 0= X00 — SHE00) 5 /G (XA H)EH ()

where dH is the probability measure on the Grassmannian Gr,.

Theorem (Langevin 1979)

If V. C" has an isolated singularity at 0 and V. is a smoothing of V
then

imiim [ K= (1" o+ 1) @)
r10 €l0 Jv.nB(0,r)
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Integral geometry of S”

Recall exp : SR” x R — R", exp(x, v,t) .= x + tv

n—1

exp*(dvol) = dt A ) (3)
i=0

In fact

Qn-1 (S]Rn)SO(n) Qn-1 (Ssn)SO(n—H)
= (K, ..., Kn)
(o, da) Y (o, da)

(4)

(The actions of the isotropy subgroup SO(n— 1) on T ,SR", T ,SS"
are isomorphic.) For A C R"” or S" define the invariant valuations

pn = cpvol,  ui(A) = C,-/ ki, i=0,...,n—1 (5)
N(A)

for appropriate constants c;.
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Two geometric applications

If Ais a smooth domain bounded by M"~ then

wi(A) = Ci/ Kn—i—1
M

where K; is the jth elementary symmetric function of the principal
curvatures of M.

In the case of the ambient space S”, approximating by small tubes
yields (after renormalizing)

Mi(sj):5;7 i’j:O7"'7n
and x=2 Z p2i

0<2i<n

by Chern-Gauss-Bonnet.
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Two geometric applications

Theorem (Blaschke’s kinematic formula)
For nice subsets A,Bc S" and/=0,...,n

| m(AngBldg= 3 wAwE) O ©
SO(n+1)

i+j=n+¢

Corollary
For nice Ac S"

1(A) = / 1o(An 98" ) dg @)
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The transverse intersection formula

Suppose X C R" is a nice set, U C R" is a smooth compact domain
and X meets 0U transversely. Then

N(XNU)=NX).U+ (N(X)noU) xny
If X meets dU orthogonally then this can also be expressed

N(X N U) = N(X)_U + (Nay(X N OU)) xny
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Two geometric applications

The Dillen-Kihnel-Dutertre formula

Theorem (Dutertre version)

Suppose X c R™ is semialgebraic. Put Lk (X) for the constructible

function on S" given by specializing the family {S" N tX} o att = 0.
Then

10X = [ o = x(X)-3x(L=(0)—5 |

X(Lk®(XNH)) dH (8)
N(X) Gra

where dH is the probability measure on the Grassmannian Gr,.
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Two geometric applications

Theorem (Dillen-Kihnel version)

Suppose M" c R s a smooth hypersurface with finitely many
asymptotically conic ends, and put M>~ c S" for the link at co. Then

o= [ wo=xM)+ 3 o ke ©)

N(M) 0<2i<n

The gradient of jy with respect to a vector field of R™ 1 that is
asymptotic to a vector field ¢ on S is

oM =< [ (kK (10)

Conjecture (D-K)
If M is stationary with respect to g then po(M) € Z.
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Proof:
As t | 0, the family X; := tX specializes to ¢ with
o(tx) = o(x) fort >0,  ¢|gn = Lk™(X)

By the transverse intersection formula, if B C R" is the open unit ball
then for small t > 0

N(¢ - 15) = N(¢).m~'B + Ngn(@| gn) %N
= X(X) = x(Xe N B) = N(¢ - 15)(ro)
= (N(6)or' B+ Nen(@l7) %15 ) (o)

= no(X) + > _ cipti( 6lsn)

i=0
for some constants ¢;. In fact the ¢; = 1: if X = R*t! then ¢ = 1gk.
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Two geometric applications

@ To get the Dillen-Kuhnel variation formula (10) observe that only
the last term in (8) can change in the course of a smooth variation.
Furthermore the variation in this integral occurs around the
hyperspheres H that are tangent to M... Hence this may be
identified with the (signed) (n — 1)-dimensional measure of the set
of such hyperplanes (spherical Gauss map), which corresponds to
MO(Moo) = CfMoo Kn.

@ Finally, we can prove the Dillen-Kihnel conjecture: if M is
stationary then the closed set of hyperspheres tangent to M, has
(n — 1)-dimensional measure zero. Such a set cannot separate
the space of all hyperspheres. So H — x(M,, N H) is constant
(and even) a.e.
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The (co)normal cycle of a complex variety

Proposition

Let M be a smooth C-analytic manifold, = : S*M — PT*M the Hopf
fibration from its cosphere bundle to its projectivized cotangent bundle,
V C M a C-analytic subvariety. Then m gives a fibration of Ny, (V) over
a cycle PN*M(V), supported on an analytic subvariety of PT*M. The
irreducible components of this subvariety have the form PNy (W),
where the W are open strata of a stratification S of V. Thus

PNp(V) =Y dw[PNj(W)] (11)
Wes

for some d}, € Z.
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Theorem

Suppose V = ﬂﬁ 1 f,f1 (0) ¢ C" is a cone with vertex 0. Put
g := N, |f2. Then the map

Vg | con-1 2n—1
—~ .S — 8
Vgl

a well-defined degree. This degree is d{‘{)}.

This is true in a limiting sense even if V is not a cone. Taking normal
sections of strata at generic points, it gives (in principle) a recipe for
computing all the coefficients dﬂ,{,.
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djo, as a Milnor number

Now suppose that V c C" has an isolated singularity at 0. If V;is a
smoothing of V then in the neighborhood of 0 the family { V;}
specializes to

T+ (=1)" " 140
where p = up, = the Milnor number of the singularity.
For generic C-subspaces PX the section V N P again has an isolated
singularity at 0. Put u, for their common Milnor number.

Proposition

dioy = (—1)"un—1
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Proof:

By the Morse-theory of height functions, for generic v € 271
digy = x((V N den B(0,5)) — 1 (12)

for 0 < e << 6 << 1, where J, := h, ' (e).
On the other hand, for generic linear functions \ : C" — C the family
H. N V is a smoothing of Hy N V, where H, := A~ '(¢), so

g1 = (=1)"" (x(V N H.n B(0,48)) — 1) (13)
Claim: if h, = Re \ then

x(VNH.NB(0,9)) =x(Vnd.n B(0,d)) (14)
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Two geometric applications

To prove the Claim it is enough to show that Im A\ has no critical points
in V N J. near 0— then we can flow without obstruction to V N H..
Otherwise for some p near 0

To(V N Je) C kerim A
= Tp(VNJ) Ckerh (since Tpd. =kerRe))
= TpV =spanc Tp(V N Je) C kerA

i.e. p € crit(A|,/). But there are no such points pnear 0. [
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Two geometric applications

Langevin’s formula

Theorem (Langevin 1979)

If V. C C" has an isolated singularity at 0 and V. is a smoothing of V
then

L:= IimIim/ K= (=1)""(un+ pn—1) (15)
rl0 €l0 Jv.nB(0,r)

v

Proof.

N(V. N B(0, r)).dB(0, r) — N(V N B(0, r)). 8B(0, r)

— 1= (14 (=1)"un = [N(V 0 B(0, r)) — N(V. 0 B(0, r))] (ri0)
~ [(N(V) = N(V))e =~ (B(0, r))](s0)
~digy —L=(=1)""pp1 - L
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