A problem, perhaps non-impossible

Conjecture

Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is Lipschitz and subanalytic. Then there exists a (uniformly Lipschitz) sequence f_1, f_2, \ldots of PL functions converging to f locally uniformly such that

$$\mathsf{mass}(\Gamma_{df_i} \cap \pi^{-1}(K)) \leq \mathcal{C}(K) < \infty$$

for every compact $K \subset \mathbb{R}^2$.

This is true if $f \in C^2$, but the local mass bounds depend on the local C^2 norms of f.

Two geometric applications

Main goals today:

- The Gauss-Bonnet theorem for complete asymptotically conic subsets of Rⁿ (Dillen-Kühnel, Dutertre)
- Langevin's formula for the total curvature of a complex analytic hypersurface in the neighborhood of an isolated singularity

Ancillary goals:

- Valuations and Integral geometry of Sⁿ
- The normal cycle of a transverse intersection
- Decomposition of the normal cycle of a complex analytic variety

Theorem (Dutertre 2008)

Suppose $X \subset \mathbb{R}^{n+1}$ is semialgebraic. Put $Lk^{\infty}(X)$ for the constructible function on S^n given by specializing the family $\{S^n \cap tX\}_{t>0}$ at t = 0. Then

$$\int_{\mathcal{N}(X)} \kappa_0 = \chi(X) - \frac{1}{2}\chi(\mathsf{Lk}^\infty(X)) - \frac{1}{2}\int_{\mathsf{Gr}_n} \chi(\mathsf{Lk}^\infty(X \cap H)) \, dH \qquad (1)$$

where dH is the probability measure on the Grassmannian Gr_n.

Theorem (Langevin 1979)

If $V \subset \mathbb{C}^n$ has an isolated singularity at 0 and V_{ϵ} is a smoothing of V then

$$\lim_{r \downarrow 0} \lim_{\epsilon \downarrow 0} \int_{V_{\epsilon} \cap B(0,r)} K = (-1)^{n-1} (\mu_n + \mu_{n-1})$$
(2)

Integral geometry of S^n

 $\text{Recall exp}: S\mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, \text{ exp}(x, v, t) := x + tv$

$$\exp^*(d \operatorname{vol}) \equiv dt \wedge \sum_{i=0}^{n-1} \kappa_i$$
(3)

In fact

$$\frac{\Omega^{n-1}(S\mathbb{R}^n)^{\overline{SO(n)}}}{(\alpha, d\alpha)} = \langle \kappa_0, \dots, \kappa_n \rangle \simeq \frac{\Omega^{n-1}(SS^n)^{SO(n+1)}}{(\alpha, d\alpha)}$$
(4)

(The actions of the isotropy subgroup SO(n-1) on $T_{x,v}S\mathbb{R}^n$, $T_{x,v}SS^n$ are isomorphic.) For $A \subset \mathbb{R}^n$ or S^n define the invariant valuations

$$\mu_n := c_n \operatorname{vol}, \quad \mu_i(A) := c_i \int_{\mathcal{N}(A)} \kappa_i, \ i = 0, \dots, n-1$$
(5)

for appropriate constants c_i .

(J.H.G. Fu)

If A is a smooth domain bounded by M^{n-1} then

$$\mu_i(\mathbf{A}) = \mathbf{c}_i \int_{\mathbf{M}} \mathbf{K}_{n-i-1}$$

where K_j is the *j*th elementary symmetric function of the principal curvatures of *M*.

In the case of the ambient space S^n , approximating by small tubes yields (after renormalizing)

$$\mu_i(\mathcal{S}^j) = \delta^i_j, \quad i, j = 0, \dots, n$$

and $\chi = 2 \sum_{0 \le 2i \le n} \mu_{2i}$

by Chern-Gauss-Bonnet.

Theorem (Blaschke's kinematic formula) For nice subsets $A, B \subset S^n$ and $\ell = 0, ..., n$

$$\int_{SO(n+1)} \mu_{\ell}(A \cap gB) \, dg = \sum_{i+j=n+\ell} \mu_i(A) \mu_j(B) \quad \Box \tag{6}$$

Corollary

For nice $A \subset S^n$

$$\mu_j(A) = \int \mu_0(A \cap gS^{n-j}) \, dg$$

(7)

The transverse intersection formula

Suppose $X \subset \mathbb{R}^n$ is a nice set, $U \subset \mathbb{R}^n$ is a smooth compact domain and *X* meets ∂U transversely. Then

$$N(X \cap U) = N(X) \sqcup U + (N(X) \cap \partial U) \ll n_U$$

If X meets ∂U orthogonally then this can also be expressed

 $N(X \cap U) = N(X) \sqcup U + (N_{\partial U}(X \cap \partial U)) \ll n_U$

The Dillen-Kühnel-Dutertre formula

Theorem (Dutertre version)

Suppose $X \subset \mathbb{R}^{n+1}$ is semialgebraic. Put $Lk^{\infty}(X)$ for the constructible function on S^n given by specializing the family $\{S^n \cap tX\}_{t>0}$ at t = 0. Then

$$\mu_0(X) = \int_{N(X)} \kappa_0 = \chi(X) - \frac{1}{2} \chi(\mathsf{Lk}^\infty(X)) - \frac{1}{2} \int_{\mathsf{Gr}_n} \chi(\mathsf{Lk}^\infty(X \cap H)) \, dH$$
(8)

where dH is the probability measure on the Grassmannian Gr_n .

Theorem (Dillen-Kühnel version)

Suppose $M^n \subset \mathbb{R}^{n+1}$ is a smooth hypersurface with finitely many asymptotically conic ends, and put $M^{\infty} \subset S^n$ for the link at ∞ . Then

$$\mu_0(\boldsymbol{M}) = \int_{\boldsymbol{N}(\boldsymbol{M})} \kappa_0 = \chi(\boldsymbol{M}) + \sum_{0 \le 2i \le n} c_i \int_{\boldsymbol{M}^\infty} K_{2i}$$
(9)

The gradient of μ_0 with respect to a vector field of \mathbb{R}^{n+1} that is asymptotic to a vector field ξ on S^n_{∞} is

$$\delta_{\xi}\mu_{0}(M) = c \int_{M^{\infty}} \langle \xi, n \rangle K_{n}$$
(10)

Conjecture (D-K)

If *M* is stationary with respect to μ_0 then $\mu_0(M) \in \mathbb{Z}$.

Proof:

As $t \downarrow 0$, the family $X_t := tX$ specializes to ϕ with

$$\phi(tx) \equiv \phi(x)$$
 for $t > 0$, $\phi|_{S^n} = \mathsf{Lk}^{\infty}(X)$

By the transverse intersection formula, if $B \subset \mathbb{R}^n$ is the open unit ball then for small t > 0

$$N(\phi \cdot \mathbf{1}_{\overline{B}}) = N(\phi) \llcorner \pi^{-1}B + N_{S^n}(\phi|_{S^n}) \ll n_B$$

$$\implies \chi(X) = \chi(X_t \cap \overline{B}) = N(\phi \cdot \mathbf{1}_{\overline{B}})(\kappa_0)$$

$$= \left(N(\phi) \llcorner \pi^{-1}B + N_{S^n}(\phi|_{S^n}) \ll n_B\right)(\kappa_0)$$

$$= \mu_0(X) + \sum_{i=0}^n c_i \mu_i(\phi|_{S^n})$$

for some constants c_i . In fact the $c_i \equiv 1$: if $X = \mathbb{R}^{k+1}$ then $\phi = \mathbf{1}_{S^k}$.

- To get the Dillen-Kühnel variation formula (10) observe that only the last term in (8) can change in the course of a smooth variation. Furthermore the variation in this integral occurs around the hyperspheres *H* that are tangent to M_{∞} . Hence this may be identified with the (signed) (n - 1)-dimensional measure of the set of such hyperplanes (spherical Gauss map), which corresponds to $\mu_0(M_{\infty}) = c \int_{M_{\infty}} K_n$.
- Finally, we can prove the Dillen-Kühnel conjecture: if *M* is stationary then the closed set of hyperspheres tangent to M_{∞} has (n-1)-dimensional measure zero. Such a set cannot separate the space of all hyperspheres. So $H \mapsto \chi(M_{\infty} \cap H)$ is constant (and even) a.e.

The (co)normal cycle of a complex variety

Proposition

Let M be a smooth \mathbb{C} -analytic manifold, $\pi : S^*M \to \mathbb{P}T^*M$ the Hopf fibration from its cosphere bundle to its projectivized cotangent bundle, $V \subset M$ a \mathbb{C} -analytic subvariety. Then π gives a fibration of $N^*_M(V)$ over a cycle $\mathbb{P}N^*M(V)$, supported on an analytic subvariety of $\mathbb{P}T^*M$. The irreducible components of this subvariety have the form $\mathbb{P}N^*_M(W)$, where the W are open strata of a stratification S of V. Thus

$$\mathbb{P}N_{M}^{*}(V) = \sum_{W \in \mathcal{S}} d_{W}^{V} \llbracket \mathbb{P}N_{M}^{*}(W) \rrbracket$$
(11)

for some $d_W^V \in \mathbb{Z}$.

Theorem

Suppose $V = \bigcap_{i=1}^{N} f_i^{-1}(0) \subset \mathbb{C}^n$ is a cone with vertex 0. Put $g := \sum_{i=1}^{N} |f_i|^2$. Then the map

$$rac{
abla g}{
abla g|}:S^{2n-1} o S^{2n-1}$$

a well-defined degree. This degree is $d_{\{0\}}^V$.

This is true in a limiting sense even if V is not a cone. Taking normal sections of strata at generic points, it gives (in principle) a recipe for computing all the coefficients d_W^V .

$d_{\{0\}}^{V}$ as a Milnor number

Now suppose that $V \subset \mathbb{C}^n$ has an isolated singularity at 0. If V_t is a smoothing of V then in the neighborhood of 0 the family $\{V_t\}$ specializes to

$$1_V + (-1)^{n-1} \mu \cdot 1_{\{0\}}$$

where $\mu = \mu_n$ = the **Milnor number** of the singularity. For generic \mathbb{C} -subspaces P^k the section $V \cap P$ again has an isolated singularity at 0. Put μ_k for their common Milnor number.

Proposition

$$d^V_{\{0\}} = (-1)^n \mu_{n-1}$$

Proof:

By the Morse-theory of height functions, for generic $v \in S^{2n-1}$

$$d_{\{0\}}^{V} = \chi((V \cap J_{\epsilon} \cap B(0, \delta)) - 1$$
(12)

for $0 < \epsilon \ll \delta \ll 1$, where $J_{\epsilon} := h_{\nu}^{-1}(\epsilon)$. On the other hand, for generic linear functions $\lambda : \mathbb{C}^n \to \mathbb{C}$ the family $H_{\epsilon} \cap V$ is a smoothing of $H_0 \cap V$, where $H_{\epsilon} := \lambda^{-1}(\epsilon)$, so

$$\mu_{n-1} = (-1)^{n-1} \left(\chi(V \cap H_{\epsilon} \cap B(0, \delta)) - 1 \right)$$
(13)

Claim: if $h_{\nu} = \operatorname{Re} \lambda$ then

$$\chi(V \cap H_{\epsilon} \cap B(0,\delta)) = \chi(V \cap J_{\epsilon} \cap B(0,\delta))$$
(14)

To prove the Claim it is enough to show that Im λ has no critical points in $V \cap J_{\epsilon}$ near 0— then we can flow without obstruction to $V \cap H_{\epsilon}$. Otherwise for some *p* near 0

$$T_{\rho}(V \cap J_{\epsilon}) \subset \ker \operatorname{Im} \lambda$$

$$\implies T_{\rho}(V \cap J_{\epsilon}) \subset \ker \lambda \quad (\text{since } T_{\rho}J_{\epsilon} = \ker \operatorname{Re} \lambda)$$

$$\implies T_{\rho}V = \operatorname{span}_{\mathbb{C}} T_{\rho}(V \cap J_{\epsilon}) \subset \ker \lambda$$

i.e. $p \in \operatorname{crit}(\lambda|_V)$. But there are no such points p near 0. \Box

Langevin's formula

Theorem (Langevin 1979)

If $V \subset \mathbb{C}^n$ has an isolated singularity at 0 and V_{ε} is a smoothing of V then

$$L := \lim_{r \downarrow 0} \lim_{\epsilon \downarrow 0} \int_{V_{\epsilon} \cap B(0,r)} K = (-1)^{n-1} (\mu_n + \mu_{n-1})$$
(15)

Proof.

$$N(V_{\epsilon} \cap \overline{B}(0,r))_{\perp} \partial B(0,r) \rightarrow N(V \cap \overline{B}(0,r))_{\perp} \partial B(0,r)$$

$$\implies 1 - (1 + (-1)^{n-1})\mu_n = \left[N(V \cap \overline{B}(0,r)) - N(V_{\epsilon} \cap \overline{B}(0,r))\right](\kappa_0)$$

$$\sim \left[(N(V) - N(V_{\epsilon}))_{\perp} \pi^{-1}(B(0,r))\right](\kappa_0)$$

$$\sim d_{\{0\}}^V - L = (-1)^{n-1}\mu_{n-1} - L$$