A problem, perhaps non-impossible

Conjecture

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is Lipschitz and subanalytic. Then there exists a (uniformly Lipschitz) sequence f_{1}, f_{2}, \ldots of $P L$ functions converging to f locally uniformly such that

$$
\operatorname{mass}\left(\Gamma_{d f_{i}} \cap \pi^{-1}(K)\right) \leq C(K)<\infty
$$

for every compact $K \subset \mathbb{R}^{2}$.
This is true if $f \in C^{2}$, but the local mass bounds depend on the local C^{2} norms of f.

Two geometric applications

Main goals today:

- The Gauss-Bonnet theorem for complete asymptotically conic subsets of \mathbb{R}^{n} (Dillen-Kühnel, Dutertre)
- Langevin's formula for the total curvature of a complex analytic hypersurface in the neighborhood of an isolated singularity
Ancillary goals:
- Valuations and Integral geometry of S^{n}
- The normal cycle of a transverse intersection
- Decomposition of the normal cycle of a complex analytic variety

Theorem (Dutertre 2008)

Suppose $X \subset \mathbb{R}^{n+1}$ is semialgebraic. Put $\operatorname{Lk}^{\infty}(X)$ for the constructible function on S^{n} given by specializing the family $\left\{S^{n} \cap t X\right\}_{t>0}$ at $t=0$. Then

$$
\begin{equation*}
\int_{N(X)} \kappa_{0}=\chi(X)-\frac{1}{2} \chi\left(\operatorname{Lk}^{\infty}(X)\right)-\frac{1}{2} \int_{\operatorname{Gr}_{n}} \chi\left(\operatorname{Lk}^{\infty}(X \cap H)\right) d H \tag{1}
\end{equation*}
$$

where $d H$ is the probability measure on the Grassmannian Gr_{n}.

Theorem (Langevin 1979)
If $V \subset \mathbb{C}^{n}$ has an isolated singularity at 0 and V_{ϵ} is a smoothing of V then

$$
\begin{equation*}
\lim _{r \downarrow 0} \lim _{\epsilon \downharpoonright 0} \int_{V_{\epsilon} \cap B(0, r)} K=(-1)^{n-1}\left(\mu_{n}+\mu_{n-1}\right) \tag{2}
\end{equation*}
$$

Integral geometry of S^{n}

Recall $\exp : S \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}, \exp (x, v, t):=x+t v$

$$
\begin{equation*}
\exp ^{*}(d \text { vol }) \equiv d t \wedge \sum_{i=0}^{n-1} \kappa_{i} \tag{3}
\end{equation*}
$$

In fact

$$
\begin{equation*}
\frac{\Omega^{n-1}\left(S \mathbb{R}^{n}\right)^{\overline{S O(n)}}}{(\alpha, d \alpha)}=\left\langle\kappa_{0}, \ldots, \kappa_{n}\right\rangle \simeq \frac{\Omega^{n-1}\left(S S^{n}\right)^{S O(n+1)}}{(\alpha, d \alpha)} \tag{4}
\end{equation*}
$$

(The actions of the isotropy subgroup $S O(n-1)$ on $T_{x, v} S \mathbb{R}^{n}, T_{x, v} S S^{n}$ are isomorphic.) For $A \subset \mathbb{R}^{n}$ or S^{n} define the invariant valuations

$$
\begin{equation*}
\mu_{n}:=c_{n} \text { vol }, \quad \mu_{i}(A):=c_{i} \int_{N(A)} \kappa_{i}, i=0, \ldots, n-1 \tag{5}
\end{equation*}
$$

for appropriate constants c_{i}.

If A is a smooth domain bounded by M^{n-1} then

$$
\mu_{i}(A)=c_{i} \int_{M} K_{n-i-1}
$$

where K_{j} is the j th elementary symmetric function of the principal curvatures of M. In the case of the ambient space S^{n}, approximating by small tubes yields (after renormalizing)

$$
\begin{aligned}
\mu_{i}\left(S^{j}\right) & =\delta_{j}^{i}, \quad i, j=0, \ldots, n \\
\text { and } \quad \chi & =2 \sum_{0 \leq 2 i \leq n} \mu_{2 i}
\end{aligned}
$$

by Chern-Gauss-Bonnet.

Theorem (Blaschke's kinematic formula)
For nice subsets $A, B \subset S^{n}$ and $\ell=0, \ldots, n$

$$
\begin{equation*}
\int_{S O(n+1)} \mu_{\ell}(A \cap g B) d g=\sum_{i+j=n+\ell} \mu_{i}(A) \mu_{j}(B) \quad \square \tag{6}
\end{equation*}
$$

Corollary
For nice $A \subset S^{n}$

$$
\begin{equation*}
\mu_{j}(A)=\int \mu_{0}\left(A \cap g S^{n-j}\right) d g \tag{7}
\end{equation*}
$$

The transverse intersection formula

Suppose $X \subset \mathbb{R}^{n}$ is a nice set, $U \subset \mathbb{R}^{n}$ is a smooth compact domain and X meets ∂U transversely. Then

$$
N(X \cap U)=N(X)\left\llcorner U+(N(X) \cap \partial U) \not x_{U}\right.
$$

If X meets ∂U orthogonally then this can also be expressed

$$
N(X \cap U)=N(X)\left\llcorner U+\left(N_{\partial U}(X \cap \partial U)\right) \nVdash n_{U}\right.
$$

The Dillen-Kühnel-Dutertre formula

Theorem (Dutertre version)

Suppose $X \subset \mathbb{R}^{n+1}$ is semialgebraic. Put $\operatorname{Lk}^{\infty}(X)$ for the constructible function on S^{n} given by specializing the family $\left\{S^{n} \cap t X\right\}_{t>0}$ at $t=0$. Then

$$
\begin{equation*}
\mu_{0}(X)=\int_{N(X)} \kappa_{0}=\chi(X)-\frac{1}{2} \chi\left(\operatorname{Lk}^{\infty}(X)\right)-\frac{1}{2} \int_{\operatorname{Gr}_{n}} \chi\left(\operatorname{Lk}^{\infty}(X \cap H)\right) d H \tag{8}
\end{equation*}
$$

where $d H$ is the probability measure on the Grassmannian Gr_{n}.

Theorem (Dillen-Kühnel version)

Suppose $M^{n} \subset \mathbb{R}^{n+1}$ is a smooth hypersurface with finitely many asymptotically conic ends, and put $M^{\infty} \subset S^{n}$ for the link at ∞. Then

$$
\begin{equation*}
\mu_{0}(M)=\int_{N(M)} \kappa_{0}=\chi(M)+\sum_{0 \leq 2 i \leq n} c_{i} \int_{M^{\infty}} K_{2 i} \tag{9}
\end{equation*}
$$

The gradient of μ_{0} with respect to a vector field of \mathbb{R}^{n+1} that is asymptotic to a vector field ξ on S_{∞}^{n} is

$$
\begin{equation*}
\delta_{\xi} \mu_{0}(M)=c \int_{M \infty}\langle\xi, n\rangle K_{n} \tag{10}
\end{equation*}
$$

Conjecture (D-K)
If M is stationary with respect to μ_{0} then $\mu_{0}(M) \in \mathbb{Z}$.

Proof:

As $t \downarrow 0$, the family $X_{t}:=t X$ specializes to ϕ with

$$
\phi(t x) \equiv \phi(x) \text { for } t>0,\left.\quad \phi\right|_{S^{n}}=\operatorname{Lk}^{\infty}(X)
$$

By the transverse intersection formula, if $B \subset \mathbb{R}^{n}$ is the open unit ball then for small $t>0$

$$
\begin{aligned}
N\left(\phi \cdot 1_{\bar{B}}\right) & =N(\phi)\left\llcorner\pi^{-1} B+N_{S^{n}}\left(\left.\phi\right|_{S^{n}}\right) \nVdash n_{B}\right. \\
\Longrightarrow \chi(X)=\chi\left(X_{t} \cap \bar{B}\right) & =N\left(\phi \cdot 1_{\bar{B}}\right)\left(\kappa_{0}\right) \\
& =\left(N(\phi)\left\llcorner\pi^{-1} B+N_{S^{n}}\left(\left.\phi\right|_{S^{n}}\right) \nVdash n_{B}\right)\left(\kappa_{0}\right)\right. \\
& =\mu_{0}(X)+\sum_{i=0}^{n} c_{i} \mu_{i}\left(\left.\phi\right|_{S^{n}}\right)
\end{aligned}
$$

for some constants c_{i}. In fact the $c_{i} \equiv 1$: if $X=\mathbb{R}^{k+1}$ then $\phi=1 S_{S^{k}}$.

- To get the Dillen-Kühnel variation formula (10) observe that only the last term in (8) can change in the course of a smooth variation. Furthermore the variation in this integral occurs around the hyperspheres H that are tangent to M_{∞}. Hence this may be identified with the (signed) $(n-1)$-dimensional measure of the set of such hyperplanes (spherical Gauss map), which corresponds to $\mu_{0}\left(M_{\infty}\right)=c \int_{M_{\infty}} K_{n}$.
- Finally, we can prove the Dillen-Kühnel conjecture: if M is stationary then the closed set of hyperspheres tangent to M_{∞} has ($n-1$)-dimensional measure zero. Such a set cannot separate the space of all hyperspheres. So $H \mapsto \chi\left(M_{\infty} \cap H\right)$ is constant (and even) a.e.

The (co)normal cycle of a complex variety

Proposition

Let M be a smooth \mathbb{C}-analytic manifold, $\pi: S^{*} M \rightarrow \mathbb{P} T^{*} M$ the Hopf fibration from its cosphere bundle to its projectivized cotangent bundle, $V \subset M$ a \mathbb{C}-analytic subvariety. Then π gives a fibration of $N_{M}^{*}(V)$ over a cycle $\mathbb{P} N^{*} M(V)$, supported on an analytic subvariety of $\mathbb{P} T^{*} M$. The irreducible components of this subvariety have the form $\mathbb{P} N_{M}^{*}(W)$, where the W are open strata of a stratification \mathcal{S} of V. Thus

$$
\begin{equation*}
\mathbb{P} N_{M}^{*}(V)=\sum_{W \in \mathcal{S}} d_{W}^{V} \llbracket \mathbb{P} N_{M}^{*}(W) \rrbracket \tag{11}
\end{equation*}
$$

for some $d_{W}^{V} \in \mathbb{Z}$.

Theorem

Suppose $V=\bigcap_{i=1}^{N} f_{i}^{-1}(0) \subset \mathbb{C}^{n}$ is a cone with vertex 0 . Put $g:=\sum_{i=1}^{N}\left|f_{i}\right|^{2}$. Then the map

$$
\frac{\nabla g}{|\nabla g|}: S^{2 n-1} \rightarrow S^{2 n-1}
$$

a well-defined degree. This degree is $d_{\{0\}}^{V}$.

This is true in a limiting sense even if V is not a cone. Taking normal sections of strata at generic points, it gives (in principle) a recipe for computing all the coefficients d_{W}^{V}.

$d_{\{0\}}^{V}$ as a Milnor number

Now suppose that $V \subset \mathbb{C}^{n}$ has an isolated singularity at 0 . If V_{t} is a smoothing of V then in the neighborhood of 0 the family $\left\{V_{t}\right\}$ specializes to

$$
1_{V}+(-1)^{n-1} \mu \cdot 1_{\{0\}}
$$

where $\mu=\mu_{n}=$ the Milnor number of the singularity. For generic \mathbb{C}-subspaces P^{k} the section $V \cap P$ again has an isolated singularity at 0 . Put μ_{k} for their common Milnor number.

Proposition

$$
d_{\{0\}}^{V}=(-1)^{n} \mu_{n-1}
$$

Proof:

By the Morse-theory of height functions, for generic $v \in S^{2 n-1}$

$$
\begin{equation*}
d_{\{0\}}^{V}=\chi\left(\left(V \cap J_{\epsilon} \cap B(0, \delta)\right)-1\right. \tag{12}
\end{equation*}
$$

for $0<\epsilon \ll \delta \ll 1$, where $J_{\epsilon}:=h_{v}^{-1}(\epsilon)$.
On the other hand, for generic linear functions $\lambda: \mathbb{C}^{n} \rightarrow \mathbb{C}$ the family $H_{\epsilon} \cap V$ is a smoothing of $H_{0} \cap V$, where $H_{\epsilon}:=\lambda^{-1}(\epsilon)$, so

$$
\begin{equation*}
\mu_{n-1}=(-1)^{n-1}\left(\chi\left(V \cap H_{\epsilon} \cap B(0, \delta)\right)-1\right) \tag{13}
\end{equation*}
$$

Claim: if $h_{v}=\operatorname{Re} \lambda$ then

$$
\begin{equation*}
\chi\left(V \cap H_{\epsilon} \cap B(0, \delta)\right)=\chi\left(V \cap J_{\epsilon} \cap B(0, \delta)\right) \tag{14}
\end{equation*}
$$

To prove the Claim it is enough to show that $\operatorname{Im} \lambda$ has no critical points in $V \cap J_{\epsilon}$ near 0 - then we can flow without obstruction to $V \cap H_{\epsilon}$. Otherwise for some p near 0

$$
\begin{aligned}
& T_{p}\left(V \cap J_{\epsilon}\right) \subset \operatorname{ker} \operatorname{lm} \lambda \\
\Longrightarrow & T_{p}\left(V \cap J_{\epsilon}\right) \subset \operatorname{ker} \lambda \quad\left(\text { since } T_{p} J_{\epsilon}=\operatorname{ker} \operatorname{Re} \lambda\right) \\
\Longrightarrow & T_{p} V=\operatorname{span}_{\mathbb{C}} T_{p}\left(V \cap J_{\epsilon}\right) \subset \operatorname{ker} \lambda
\end{aligned}
$$

i.e. $p \in \operatorname{crit}(\lambda \mid v)$. But there are no such points p near 0 .

Langevin's formula

Theorem (Langevin 1979)
If $V \subset \mathbb{C}^{n}$ has an isolated singularity at 0 and V_{ϵ} is a smoothing of V then

$$
\begin{equation*}
L:=\lim _{r \downarrow 0} \lim _{\epsilon \downarrow 0} \int_{V_{\epsilon} \cap B(0, r)} K=(-1)^{n-1}\left(\mu_{n}+\mu_{n-1}\right) \tag{15}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
N\left(V_{\epsilon} \cap \bar{B}(0, r)\right)\llcorner\partial B(0, r) & \rightharpoonup N(V \cap \bar{B}(0, r))\llcorner\partial B(0, r) \\
\Longrightarrow 1-\left(1+(-1)^{n-1}\right) \mu_{n} & =\left[N(V \cap \bar{B}(0, r))-N\left(V_{\epsilon} \cap \bar{B}(0, r)\right)\right]\left(\kappa_{0}\right) \\
& \sim\left[\left(N(V)-N\left(V_{\epsilon}\right)\right)\left\llcorner\pi^{-1}(B(0, r))\right]\left(\kappa_{0}\right)\right. \\
& \sim d_{\{0\}}^{V}-L=(-1)^{n-1} \mu_{n-1}-L
\end{aligned}
$$

