
A problem

A problem, perhaps non-impossible

Conjecture

Suppose f : R2 → R is Lipschitz and subanalytic. Then there exists a
(uniformly Lipschitz) sequence f1, f2, . . . of PL functions converging to f
locally uniformly such that

mass(Γdfi ∩ π−1(K )) ≤ C(K ) < ∞

for every compact K ⊂ R2.

This is true if f ∈ C2, but the local mass bounds depend on the local
C2 norms of f .
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Two geometric applications

Two geometric applications

Main goals today:
The Gauss-Bonnet theorem for complete asymptotically conic
subsets of Rn (Dillen-Kühnel, Dutertre)
Langevin’s formula for the total curvature of a complex analytic
hypersurface in the neighborhood of an isolated singularity

Ancillary goals:
Valuations and Integral geometry of Sn

The normal cycle of a transverse intersection
Decomposition of the normal cycle of a complex analytic variety
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Two geometric applications

Theorem (Dutertre 2008)

Suppose X ⊂ Rn+1 is semialgebraic. Put Lk∞(X ) for the constructible
function on Sn given by specializing the family {Sn ∩ tX}t>0 at t = 0.
Then∫

N(X)
κ0 = χ(X )− 1

2
χ(Lk∞(X ))− 1

2

∫
Grn

χ(Lk∞(X ∩ H)) dH (1)

where dH is the probability measure on the Grassmannian Grn.

Theorem (Langevin 1979)

If V ⊂ Cn has an isolated singularity at 0 and Vε is a smoothing of V
then

lim
r↓0

lim
ε↓0

∫
Vε∩B(0,r)

K = (−1)n−1(µn + µn−1) (2)
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Two geometric applications

Integral geometry of Sn

Recall exp : SRn × R → Rn, exp(x , v , t) := x + tv

exp∗(d vol) ≡ dt ∧
n−1∑
i=0

κi (3)

In fact

Ωn−1(SRn)SO(n)

(α, dα)
= 〈κ0, . . . , κn〉 '

Ωn−1(SSn)SO(n+1)

(α, dα)
(4)

(The actions of the isotropy subgroup SO(n − 1) on Tx ,v SRn, Tx ,v SSn

are isomorphic.) For A ⊂ Rn or Sn define the invariant valuations

µn := cn vol, µi(A) := ci

∫
N(A)

κi , i = 0, . . . , n − 1 (5)

for appropriate constants ci .
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Two geometric applications

If A is a smooth domain bounded by Mn−1 then

µi(A) = ci

∫
M

Kn−i−1

where Kj is the j th elementary symmetric function of the principal
curvatures of M.
In the case of the ambient space Sn, approximating by small tubes
yields (after renormalizing)

µi(Sj) = δi
j , i , j = 0, . . . , n

and χ = 2
∑

0≤2i≤n

µ2i

by Chern-Gauss-Bonnet.
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Two geometric applications

Theorem (Blaschke’s kinematic formula)

For nice subsets A, B ⊂ Sn and ` = 0, . . . , n∫
SO(n+1)

µ`(A ∩ gB) dg =
∑

i+j=n+`

µi(A)µj(B) � (6)

Corollary

For nice A ⊂ Sn

µj(A) =

∫
µ0(A ∩ gSn−j) dg (7)
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Two geometric applications

The transverse intersection formula

Suppose X ⊂ Rn is a nice set, U ⊂ Rn is a smooth compact domain
and X meets ∂U transversely. Then

N(X ∩ U) = N(X )xU + (N(X ) ∩ ∂U)××nU

If X meets ∂U orthogonally then this can also be expressed

N(X ∩ U) = N(X )xU + (N∂U(X ∩ ∂U))××nU

n U

X

n 

U 

U 

NU

X

NU
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Two geometric applications

The Dillen-Kühnel-Dutertre formula

Theorem (Dutertre version)

Suppose X ⊂ Rn+1 is semialgebraic. Put Lk∞(X ) for the constructible
function on Sn given by specializing the family {Sn ∩ tX}t>0 at t = 0.
Then

µ0(X ) =

∫
N(X)

κ0 = χ(X )−1
2
χ(Lk∞(X ))−1

2

∫
Grn

χ(Lk∞(X∩H)) dH (8)

where dH is the probability measure on the Grassmannian Grn.

(J.H.G. Fu) Theory and applications of the normal cycle 8 / 17



Two geometric applications

Theorem (Dillen-Kühnel version)

Suppose Mn ⊂ Rn+1 is a smooth hypersurface with finitely many
asymptotically conic ends, and put M∞ ⊂ Sn for the link at ∞. Then

µ0(M) =

∫
N(M)

κ0 = χ(M) +
∑

0≤2i≤n

ci

∫
M∞

K2i (9)

The gradient of µ0 with respect to a vector field of Rn+1 that is
asymptotic to a vector field ξ on Sn

∞ is

δξµ0(M) = c
∫

M∞
〈ξ, n〉Kn (10)

Conjecture (D-K)

If M is stationary with respect to µ0 then µ0(M) ∈ Z.
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Two geometric applications

Proof:

As t ↓ 0, the family Xt := tX specializes to φ with

φ(tx) ≡ φ(x) for t > 0, φ|Sn = Lk∞(X )

By the transverse intersection formula, if B ⊂ Rn is the open unit ball
then for small t > 0

N(φ · 1B) = N(φ)xπ−1B + NSn(φ|Sn)××nB

=⇒ χ(X ) = χ(Xt ∩ B) = N(φ · 1B)(κ0)

=
(

N(φ)xπ−1B + NSn(φ|Sn)××nB

)
(κ0)

= µ0(X ) +
n∑

i=0

ciµi(φ|Sn)

for some constants ci . In fact the ci ≡ 1: if X = Rk+1 then φ = 1Sk .
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Two geometric applications

To get the Dillen-Kühnel variation formula (10) observe that only
the last term in (8) can change in the course of a smooth variation.
Furthermore the variation in this integral occurs around the
hyperspheres H that are tangent to M∞. Hence this may be
identified with the (signed) (n − 1)-dimensional measure of the set
of such hyperplanes (spherical Gauss map), which corresponds to
µ0(M∞) = c

∫
M∞ Kn.

Finally, we can prove the Dillen-Kühnel conjecture: if M is
stationary then the closed set of hyperspheres tangent to M∞ has
(n − 1)-dimensional measure zero. Such a set cannot separate
the space of all hyperspheres. So H 7→ χ(M∞ ∩ H) is constant
(and even) a.e.
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Two geometric applications

The (co)normal cycle of a complex variety

Proposition
Let M be a smooth C-analytic manifold, π : S∗M → PT ∗M the Hopf
fibration from its cosphere bundle to its projectivized cotangent bundle,
V ⊂ M a C-analytic subvariety. Then π gives a fibration of N∗

M(V ) over
a cycle PN∗M(V ), supported on an analytic subvariety of PT ∗M. The
irreducible components of this subvariety have the form PN∗

M(W ),
where the W are open strata of a stratification S of V . Thus

PN∗
M(V ) =

∑
W∈S

dV
W [[PN∗

M(W )]] (11)

for some dV
W ∈ Z.
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Two geometric applications

Theorem

Suppose V =
⋂N

i=1 f−1
i (0) ⊂ Cn is a cone with vertex 0. Put

g :=
∑N

i=1 |fi |2. Then the map

∇g
|∇g|

: S2n−1 → S2n−1

a well-defined degree. This degree is dV
{0}.

This is true in a limiting sense even if V is not a cone. Taking normal
sections of strata at generic points, it gives (in principle) a recipe for
computing all the coefficients dV

W .
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Two geometric applications

dV
{0} as a Milnor number

Now suppose that V ⊂ Cn has an isolated singularity at 0. If Vt is a
smoothing of V then in the neighborhood of 0 the family {Vt}
specializes to

1V + (−1)n−1µ · 1{0}

where µ = µn = the Milnor number of the singularity.
For generic C-subspaces Pk the section V ∩ P again has an isolated
singularity at 0. Put µk for their common Milnor number.

Proposition

dV
{0} = (−1)nµn−1
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Two geometric applications

Proof:

By the Morse-theory of height functions, for generic v ∈ S2n−1

dV
{0} = χ((V ∩ Jε ∩ B(0, δ))− 1 (12)

for 0 < ε << δ << 1, where Jε := h−1
v (ε).

On the other hand, for generic linear functions λ : Cn → C the family
Hε ∩ V is a smoothing of H0 ∩ V , where Hε := λ−1(ε), so

µn−1 = (−1)n−1 (χ(V ∩ Hε ∩ B(0, δ))− 1) (13)

Claim: if hv = Re λ then

χ(V ∩ Hε ∩ B(0, δ)) = χ(V ∩ Jε ∩ B(0, δ)) (14)
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Two geometric applications

To prove the Claim it is enough to show that Im λ has no critical points
in V ∩ Jε near 0— then we can flow without obstruction to V ∩ Hε.
Otherwise for some p near 0

Tp(V ∩ Jε) ⊂ ker Im λ

=⇒ Tp(V ∩ Jε) ⊂ ker λ (since TpJε = ker Re λ)

=⇒ TpV = spanC Tp(V ∩ Jε) ⊂ ker λ

i.e. p ∈ crit(λ|V ). But there are no such points p near 0. �
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Two geometric applications

Langevin’s formula

Theorem (Langevin 1979)

If V ⊂ Cn has an isolated singularity at 0 and Vε is a smoothing of V
then

L := lim
r↓0

lim
ε↓0

∫
Vε∩B(0,r)

K = (−1)n−1(µn + µn−1) (15)

Proof.

N(Vε ∩ B(0, r))x ∂B(0, r) ⇀ N(V ∩ B(0, r))x ∂B(0, r)

=⇒ 1− (1 + (−1)n−1)µn =
[
N(V ∩ B(0, r))− N(Vε ∩ B(0, r))

]
(κ0)

∼ [(N(V )− N(Vε))x π−1(B(0, r))](κ0)

∼ dV
{0} − L = (−1)n−1µn−1 − L
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