
The normal cycle

Technical interlude: geometric integration theory

An oriented Lipschitz submanifold is a simple kind of integral current
(Federer and Fleming,1960).

A current of dimension k in a smooth Riemannian manifold S is
a functional T ∈ (Ωk

c (S))∗ that is continuous with respect to C∞

convergence of forms.
The boundary of T is the (k − 1)-dimensional current
∂T (φ) := T (dφ).
The mass of T is mass T := sup‖φ‖∞≤1 Tφ, where
‖ φ ‖∞:= sup{φx(v1, . . . , vk ) : x ∈ S, vi ∈ TxS, |vi | ≤ 1} is the
comass.
The current T is rectifiable if

T =
∞∑

i=1

fi∗[[Ei ]] (1)

where the Ei ⊂ Rk are measurable and the fi : Rk → S are
Lipschitz.
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The normal cycle

Definition
The abelian group Ik (S) of integral currents of dimension k consists
of all k -dimensional locally rectifiable currents with boundary of locally
finite mass.

It turns out that the boundary of an integral current is again integral. A
smooth oriented submanifold V of dimension k , with smooth boundary,
defines an element [[V ]] ∈ Ik (S) by integration. Stokes’s theorem may
then be stated: ∂[[V ]] = [[∂V ]].

Theorem (Federer-Fleming (1960))

Ik (S) =
⋃

C<∞

clos
(
{T =

∑
[[Vi ]] : V1,V2, . . . smooth ,

massU T + massU ∂T ≤ C(U) for all U ⊂⊂ S}) .
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The normal cycle

Now suppose S is the sphere bundle SM of a smooth Riemannian
manifold M (e.g. Rn) of dimension n. Let α ∈ Ω1(SM) be the
canonical 1-form

αξ · τ := 〈ξ, π∗τ〉

ξ ∈ SM, τ ∈ TξSM, π : SM → M the projection.
An integral current T ∈ In(SM) is Legendrian if

Txα = 0

i.e. ∫
T
α ∧ ψ = 0 for all ψ ∈ Ωn−2

c (SM)

This implies also that Txdα = 0.
The Legendrian condition is weakly closed.
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The normal cycle

Maximal generality of N
(more than we can handle actually)

Theorem

Let φ : Sn−1 × R → Z with∑
t∈R

φ(v , t) ≡ M <∞ for a.e. v ∈ Sn−1.

Then there is at most one compactly supported Legendrian cycle
T ∈ In−1(SRn) such that for a.e. v ∈ Sn−1∑

hv (x)=t

mult(x ,v) (T · (Rn × {v})) = φ(v , t) (2)

If X ⊂ Rn and such T exists for φ = ∆χ(X , ·, ·) then N(X ) := T is the
normal cycle of X .
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The normal cycle

Lots of embarrassing questions:

Must such X be topologically reasonable, e.g. a neighborhood
retract?
Does the diffeomorphic image of X admit a normal cycle? i.e. do
the intersections of N(X ) with the graphs of the gradients of
smooth functions f other than height functions yield the Euler
Morse indices of f |X ? Are these indices even well-defined (cf. the
last question)?
Suppose X1,X2, . . . ↓ X are compact smooth domains with
mass N(Xi) ≤ C. Must N(X ) exist? Simple examples show that
lim N(Xi) 6= N(X ) in general.
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The intelligence of the normal cycle

The intelligence of the normal cycle: a sample result

In many ways it is easier to work in a parallel setting:

Theorem (Fu 1990, R. Jerrard 2008)

Suppose f ∈ W 1,1
loc (Rn). Then there is at most one closed Lagrangian

current Γ ∈ In(T ∗Rn) such that
mass(Γ ∩ π−1K ) <∞ for all K ⊂⊂ Rn∫
Γ ψ(x , y) dx1 ∧ · · · ∧ dxn =

∫
Rn ψ(x ,dx f )d volx for compactly

supported ψ ∈ C∞(T ∗Rn).

In other words Γ is a completed version of the graph of df . Just as
curvature integrals can be gotten from the normal cycle, so can
integrals of the minors of the Hessian can be gotten from Γ, e.g.∫

Rn
det D2f '

∫
Γ

dy1 ∧ · · · ∧ dyn

where x1, . . . , xn, y1, . . . yn are the standard coordinates of T ∗Rn.
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The intelligence of the normal cycle

n = 1: such f are precisely the differences of convex functions.
n = 2: any difference of convex functions admits such a Γ, but the
converse is false.
n ≥ 3: ?
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The intelligence of the normal cycle

More embarrassing questions:
Is such f continuous?
— yes if n = 2: this is true in this dimension whenever the
distributional Hessian of f is a measure (Ponce and van
Schaftingen 2007).
If Γ exists for f , does N(graph f ) exist?
In other words, do intersections with Γ give Euler Morse data of f?

(J.H.G. Fu) Theory and applications of the normal cycle 8 / 18



The intelligence of the normal cycle

Corollary

Suppose f : Rn → R may be expressed as the locally uniform limit of a
sequence f1, f2, . . . of smooth functions such that the absolute integrals
of all minors of the Hessians of the fk are locally bounded, i.e.∫

K

∣∣∣∣∣det
(

∂2fk
∂xi∂xj

)
i∈I,j∈J

∣∣∣∣∣ ≤ C(K ), k = 1,2, . . . (3)

whenever K is compact and I, J ⊂ {1, . . . ,n} have the same
cardinality. Then graph(dfk ) ⇀ a current Γ as above.

Maybe all such f can be produced in this way?
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The intelligence of the normal cycle

Definition
f : Rn → R is twice differentiable at x0 if there exists a quadratic
polynomial Qx0 : Rn → R such that

lim
x→x0

f (x)−Qx0(x)

|x − x0|2
= 0. (4)

Theorem (A.D. Alexandrov 1939)
If f is convex then f is twice differentiable a.e.

Theorem

Suppose f is approximable as in the Corollary. Then f is twice
differentiable a.e.
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The intelligence of the normal cycle

Lemma

If V ⊂⊂ U is open and f ∈ C2 then∫
V

∣∣∣det D2f
∣∣∣ ≥ C

(supV |f | − supbdry V |f |
diam V

)n

(5)

Proof.

If λ is a linear function with |λ| < supV f−supbdry V f
diam V then f − λ has an

interior local maximum x ∈ V , with dx f = λ. So the image of V under
df includes a ball of this radius in Rn∗.
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The intelligence of the normal cycle

Proof of the theorem

By induction on n. The case n = 1 follows from Alexandrov’s
theorem.
If the theorem holds in dimension n − 1, then for a.e. hyperplane
P ⊂ Rn the restriction f |P is twice differentiable at a.e. x ∈ P. By
Fubini’s theorem it follows that for a.e. x ∈ Rn the restriction f |P is
twice differentiable at x for a.e. P through x . The corresponding
quadratic Taylor expansions QP are compatible, i.e. QP = Q|P for
some quadratic Q.
Let ν be the limit of the sum of the measures on Rn gotten by
integrating the absolute minors of D2f . We show that if the
conclusion fails then ν has infinite density at x . We can replace f
by f −Q since the corresponding ν̃ ≤ C(1 + ‖Q‖)nν.
The regions V close to x where f is too big must all have small
diameter. The Lemma applies to these V , with ν(V ) on the LHS,
to show that ν(V ) is too big. �
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The intelligence of the normal cycle

We’ve used the fact the Lemma holds with the LHS replaced by ν(V ).
But does it still hold if it is replaced by

mass((π−1(V ) ∩ Γ)x dy1 ∧ · · · ∧ dyn) ?

This is related to the question of the existence of the normal cycle for
the graph: a positive answer would mean that intersections with Γ
detect critical points of f of index zero.
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The tame setting

The tame setting

But everything works (i.e. the embarrassing questions have generally
positive answers) in any reasonable category, e.g. polyconvex or
subanalytic (or constructible with respect to some o-minimal structure)
sets. Using local coordinates we can also make sense of (co)normal
cycles of subsets of smooth manifolds.

Theorem
Let X ,A1,A2, . . . ⊂⊂ Rn, such that all N(Aj) exist, with
mass N(Ai) ≤ C <∞. Put Hv ,t := h−1

v (−∞, c]. Suppose that for a.e.
v ∈ Sn−1

lim
j→∞

χ(Hv ,c ∩ Aj) = χ(Hv ,c ∩ X )

Then N(X ) exists, with limj→∞ N(Aj) = N(X ). �
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The tame setting

Corollary

If X ⊂ Rn is subanalytic and compact then N(X ) exists. If Xt ↓ X is a
proper nested subanalytic family as t ↓ 0 then

N(X ) = lim
t↓0

N(Xt) (6)
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The tame setting

Proof.
Let g := dist(.X ). Then g is semiconcave on Rn − X , i.e. is
locally expressible as f − k where f is smooth and k is convex.
Furthermore g has no small critical values. Therefore
Rn − g−1[0, r) is semiconvex for small r > 0, i.e. each point
admits a neighborood that is the diffeomorphic image of an open
subset of a convex set ⊂ Rn. So N(Rn − g−1[0, r)) exists.
Therefore the N(g−1[0, r ]) are the images of N(Rn − g−1[0, r))
under the map (x , v) 7→ (x ,−v), and constitute a proper
subanalytic family of sets. Thus their masses are uniformly
bounded. Furthermore

lim
r↓0

χ(Hv ,c ∩ g−1[0, r ]) = χ(Hv ,c ∩ X )

for generic v , t . So the last Theorem applies, and N(X ) exists.
To prove (6) we apply the last paragraph again, since the N(Xt)
exist and themselves constitute a proper subanalytic family.
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The tame setting

Again Groemer’s Integral Theorem =⇒ any compactly supported
subanalytically constructible function α =

∑
ci1Xi admits a normal

cycle, with
N(α) =

∑
ciN(Xi)

if the Xi are compact.

Theorem (Specialization formula)

Let {Xt ⊂ Rn}t>0 be a proper subanalytic family. Then

lim
t↓0

N(Xt) = N(α) (7)

where α is the constructible function

α(p) = lim
ε↓0

lim
t↓0

χ(Xt ∩ B(p, ε)) (8)
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The tame setting

Proof.
This follows from

If α =
∑

ci1Xi , Xi compact, then for small t > 0

χ(Xt) =
∑

ciχ(Xi)

Put αv ,c for the limiting constructible function for the family
{Xt ∩ Hv ,c}. Then for generic v , c

αv ,c = α|Hv,c

(J.H.G. Fu) Theory and applications of the normal cycle 18 / 18


	The normal cycle
	The intelligence of the normal cycle
	The tame setting

