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Introductory remarks

The normal cycle is a simple-minded device that permits us to extend
arguments and statements about curvature integrals to singular
spaces. It is very robust: it exists even in cases we know very little
about. It is very smart: its existence and properties tell us a lot about
the underlying spaces.
Pioneers of this approach:

M.Kashiwara (subanalytic category)
P. Wintgen (PL)
M. Zähle (generic unions of semiconvex sets)

In these lectures I will mostly talk about how the normal cycle can be
used to think simply and clearly about certain problems involving
analytic singularities. Many details will be omitted, but I hope to include
most of the conceptual steps.
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The normal bundle of a surface

The normal bundle of a surface Σ ⊂ R3

Σ ⊂ R3 a smooth oriented embedded surface

n : Σ → S2 its Gauss map

N(Σ) := {(x , n(x) : x ∈ Σ} ⊂ SR3

or invariantly N∗(Σ) := {(x , TxΣ : x ∈ Σ} ⊂ S∗R3

Ω1(SR3) 3 α(x ,v) :=
∑

vidxi the contact form

Then N(Σ) is Legendrian:

α|N(Σ) = dα|N(Σ) = 0
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The normal bundle of a surface

The tube formula

exp : SR3 × R → R3, exp(x , v ; t) := x + tv
exp(N(Σ)× [0, r ]) = Σr = one-sided tube of radius r

r small =⇒ |Σr | =
∫

Σr

d vol =

∫
N(Σ)×[0,r ]

exp∗(dx1 ∧ dx2 ∧ dx3)

exp∗(dx1 ∧ dx2 ∧ dx3) = d(x1 + tv1) ∧ d(x2 + tv2) ∧ d(x3 + tv3)

≡ dt ∧
[
t2 κ0 + t κ1 + κ2

]
where

κ0 := v1dv2 ∧ dv3 − v2dv1 ∧ dv3 + v3dv1 ∧ dv2

κ1 := v1(dx2 ∧ dv3 + dx2 ∧ dx3)− v2(dx1 ∧ dv3 + dv1 ∧ dx3)

+ v3(dx1 ∧ dv2 + dv1 ∧ dx2)

κ2 := v1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2
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The normal bundle of a surface

... so

|Σr | =
r3

3

∫
N(Σ)

κ0 +
r2

2

∫
N(Σ)

κ1 + r
∫

N(Σ)
κ2

=
r3

3

∫
Σ

n∗κ0 +
r2

2

∫
Σ

n∗κ1 + r
∫

Σ
n∗κ2

where n(x) := (x , n(x)). Choose a point p0 ∈ Σ, and coordinates so
that

n(p0) = e3 =⇒ dn3 = 0

Then

0 = n∗dα = dn1 ∧ dx1 + dn2 ∧ dx2

= (γ11dx1 + γ12dx2) ∧ dx1 + (γ21dx1 + γ22dx2) ∧ dx2

= (γ21 − γ12) dx1 ∧ dx2

i.e. the second fundamental form of Σ is symmetric.
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The normal bundle of a surface

The coefficients of the tube formula may be expressed as the integrals
over Σ of

n∗κ2 = dx1 ∧ dx2 = dAΣ

n∗κ1 = dx1 ∧ dn2 + dn1 ∧ dx2 = (γ11 + γ22) dAΣ = H dAΣ

n∗κ0 = dn1 ∧ dn2 = (γ11γ22 − γ2
12) dAΣ = K dAΣ
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The normal bundle of a surface

Morse theory of Σ

The normal vector bundle of Σ is

~N(Σ) := {(x , tv) : t ∈ R, (x , v) ∈ N(Σ)}

If f : R3 → R is smooth then

x ∈ crit( f |Σ) ⇐⇒ ∇x f ∈ ~NxΣ

i.e. graph(∇f ), ~N(Σ) intersect above x .
What is the Morse index of f |Σ at x? Suppose x = 0,

TxΣ = R2 = R2 × {0} ⊂ R3, ∇0f = ce3

ϕ : R2 → Σ local coordinates at 0, ϕ(0) = 0, D0ϕ = id

Put II0 = D2
0ϕ3 for the second fundamental form at 0. By the chain rule

D2
0(f ◦ ϕ) = D2

0 f
∣∣∣
R2

+ c II0

Put σ for the index of this bilinear form.
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The normal bundle of a surface

On the other hand compute the intersection multiplicity

m := mult(0,ce3)(graph(∇f ) · ~N(Σ))

These are both 3-folds in TR3 ' R3 × R3, with

T(0,ce3) graph(∇f ) =
〈
(e1, D2

0 f · e1) , (e2, D2
0 f · e2), (e3, D2

0 f · e3)
〉

T(0,ce3)
~N(Σ) = 〈(e1, c II0 ·e1) , (e2, c II0 ·e2), (0, e3)〉

=⇒ m = sgn det



1 0 0
0 1 0
0 0 1

D2
0 f

1 0 0
0 1 0

cII0
0
0

0 0 0 0 0 1

 = sgn det


1 0
0 1

D2
0 f

∣∣
R2

1 0
0 1

cII0


= sgn det(D2

0 f
∣∣∣
R2

+ c II0)

= (−1)σ

= the “Euler-Morse index"
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A compact surface is determined by its Euler Morse data

Σ is determined by the Euler-Morse data of height
functions

Morse theory says: Σ compact, f ∈ C2(Σ), p ∈ crit(f ), index(f , p) = σ,
c := f (p) 6= f (q) for p 6= q ∈ crit(f ) =⇒

∆χ(f , c) := χ(f−1(−∞, c+])− χ(f−1(−∞, c−]) = (−1)σ

For v ∈ S2 put hv (x) := 〈v , x〉,

∆χ(Σ, v , c) := ∆χ(hv |Σ , c) (1)

Theorem

Σ1,Σ2 ⊂ R3 compact C2 surfaces,
∆χ(Σ1, v , ·) ≡ ∆χ(Σ2, v , ·) for a.e. v ∈ S2 =⇒ Σ1 = Σ2.

We’ll actually need only that the supports of these functions are equal.
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A compact surface is determined by its Euler Morse data

Proof: part 1

By Sard’s theorem, a.e. v0 ∈ S2 is a regular value of both Gauss maps
ni . The preimages n−1

i (v) vary continuously in a neighborhood of any
such v0. Assuming (1), we show first that for a.e. v ∈ S2

n−1
1 (v) = n−1

2 (v) (2)

Put P ⊂ S2 for the set of all regular values v for which (2) fails. Thus

v0 ∈ P =⇒ there are p ∈ Σ1, q ∈ Σ2 with
hv0(p) = hv0(q), n1(p) = n2(q) = v0, p 6= q.

We show that the density of P at v0 is zero, which is enough to
establish (2) a.e.:
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A compact surface is determined by its Euler Morse data

Let P 3 v1, v2, · · · → v0, with

Σ1 3 p1,p2, · · · → p, Σ2 3 q1, q2, · · · → q

pi , qi ∈ n−1
1 (vi) ∩ n−1

2 (vi)

0 = hvi (pi)− hvi (qi) = 〈pi − qi , vi〉

v0 is a regular value =⇒ pi − p, qi − q = O(|vi − v0|) =⇒

〈pi − p, vi − v0〉 = o(|vi − v0|) = 〈qi − q, vi − v0〉

and by definition of n (or the Legendrian condition on N(Σi))

〈pi − p, v0〉 = o(|pi − p|) = o(|vi − v0|) = 〈qi − q, v0〉

=⇒ 〈pi − p, vi〉 = o(|vi − v0|) = 〈qi − q, vi〉

=⇒ o(|vi − v0|) = 〈p − q, vi〉 = 〈p − q, vi − v0〉

— i.e. the sequence vi is asymptotic to the great circle ⊥ p − q.
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A compact surface is determined by its Euler Morse data

Remark

This argument also shows: for a.e. v ∈ S2, the height function hv |Σ
has distinct critical values.
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A compact surface is determined by its Euler Morse data

Proof: part 2

Define the 2-dimensional cycle

C := N(Σ1)− N(Σ2)

given by integration over the open C1 manifold N(Σ1)4N(Σ2). Put
π : C → S2 for the projection. By part 1, rank Dxπ ≤ 1 for all x ∈ C. We
want to show that C = 0. Put

C∗ := {x ∈ C : rank Dxπ = 1}

If C∗ = ∅ then π(C) is countable, and since C is a 2-dimensional cycle
so is each π−1(v), v ∈ π(C). Say v = e3. Then

0 = α|π−1(e3)
= dx3

so any component of π−1(e3) is a subset of some

{x3 = const} × {e3} ⊂ R3 × S2

Since these components are themselves 2-cycles, in fact they are
zero. So C = 0.
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A compact surface is determined by its Euler Morse data

Proof: part 3

So we may assume that C∗ 6= ∅. It’s clear that π(C∗) ⊂ S2 is a
countable union of C1 arcs γ ⊂ S2.

Lemma (Slicing/coarea lemma)
For a.e. v ∈ γ the preimage

π−1(v) ⊃ Γ ⊃ (π−1(v) ∩ C∗)

where Γ is a countable union of rectifiable loops, and π−1(v)− C∗ has
1-dimensional measure zero. �

Underlying point: Even though the set of critical values t of a C1 map
f : Σ2 → R may have nonzero length (Whitney 1935), for a.e. such t
the set crit(f ) ∩ f−1(t) has 1-dimensional measure zero (coarea
formula, Federer 1959).

(J.H.G. Fu) Theory and applications of the normal cycle 14 / 24



A compact surface is determined by its Euler Morse data

For a.e. v ∈ γ the tangent line `v to γ may be thought of as the tangent
line to all of π(C∗): the set of transverse double points is countable.
Let v ∈ S2 as in the slicing/coarea lemma. We may suppose that
v = e3 and `v = 〈e2〉. For (x , e3) ∈ π−1(e3) ∩ C∗

0 = α|Tx,e3 C∗ = dx3, 0 = dα|Tx,e3 C∗ = dv1∧dx1+dv2∧dx2 = dv2∧dx2.

It follows that dx2 = dx3 = 0 along π−1(v), which is therefore a 1-cycle
contained in (a countable union of lines parallel to the x1-axis)×{e3}.
This can only be zero. �
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A compact surface is determined by its Euler Morse data

The moral of the story

I. For surfaces Σ ⊂ R3, if we know N(Σ)

as a cycle
as a current, i.e. a functional on differential forms on R3 × S2

then we know a lot about Σ itself.

II. N(Σ) is characterized by
its Euler Morse data
its Legendrian nature

III. It is natural, and possible, to take the fundamental characteristics of
the cycle/current N(Σ) as axioms for the normal cycle N(X ) of more
general “singular subspaces" X ⊂ Rn.
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Normal cycles of polyconvex sets and constructible functions

Case study: convex and polyconvex sets

Give Rn the usual orientation. Put K = K(Rn) for the family of compact
convex subsets of Rn and L = L(Rn) for the ring of polyconvex
subsets. For A ∈ K and r > 0 put

Ar =: {x ∈ Rn : dist(x , A) ≤ r} (always a C1 submanifold of Rn)
~N(A) := {(x , v) ∈ A× Rn : 〈v , x − y〉 ≥ 0 for all y ∈ A}

N(A) := ~N(A) ∩ (Rn × Sn−1)

Fact

N(A), ~N(A) are oriented Lipschitz submanifolds. In fact N(A) is
biLipschitz equivalent to ∂Ar via

ΠA : p 7→
(

πA(p),
p − πA(p)

|p − πA(p)|

)
, (x , v) 7→ x + rv
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Normal cycles of polyconvex sets and constructible functions

Radememacher’s theorem

A Lipschitz function Rk → Rl is differentiable a.e.

Thus N(A) defines a current of dimension n − 1 in SRn := Rn × Sn−1:∫
N(A)

ϕ :=

∫
∂Ar

Π∗Aϕ ⇐⇒ ΠA∗[[∂Ar ]] = N(A) (3)

for ϕ ∈ Ωn−1(SRn), r > 0.

Theorem
As an operator K → currents, N satisfies the inclusion-exclusion
identities and is continuous:

A1, . . . , Am, B := A1 ∪ · · · ∪ Am ∈ K =⇒ (4)

N(B) = N(A1) + · · ·+ N(Am)−
∑
i<j

N(Ai ∩ Aj) + . . .

Ai → A in the Hausdorff metric =⇒ N(Ai) ⇀ N(A) (5)
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Normal cycles of polyconvex sets and constructible functions

Corollary

Taking N(1A) := N(A) for A ∈ K, N extends by linearity to the
Z-module of polyconvex-constructible functions generated by such
1A, and in particular to L by identifying C ↔ 1C .

Proof.
Groemer’s Integral Theorem (cf. Klain & Rota): if L is a lattice of
subsets of a set S, K is a generating set for L, G is an abelian group
and ϕ : K → G satisfies (4), then ϕ extends uniquely to all of L, and
also to a homomorphism from the abelian group of “L-constructible
functions" on S to G.
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Normal cycles of polyconvex sets and constructible functions

Proof of (5).

Generalizing (3), N(A) = ΠA∗[[M]] for any convex C1 hypersurface
enclosing A, and ΠAi → ΠA if Ai → A. Taking M to be a large sphere,

N(Ai) = ΠAi∗[[M]] ⇀ ΠA∗[[M]] = N(A)
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Normal cycles of polyconvex sets and constructible functions

First proof of (4) (m = 2).
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Normal cycles of polyconvex sets and constructible functions
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Normal cycles of polyconvex sets and constructible functions
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Normal cycles of polyconvex sets and constructible functions

Second proof of (4).

Evidently for A ∈ K

∆χ(A, v , c) = multhv (x)=c(N(A) · graph(∇hv ))

Since χ obeys the inclusion-exclusion identities, so does ∆χ( · , v , c)
for each v , c. Now repeat (or extend) the proof that the Euler Morse
data of a compact surface Σ determines Σ.
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Normal cycles of polyconvex sets and constructible functions

Corollary

Given ϕ ∈ Ωn−1(SRn) the functional νϕ : K → R,

νϕ(A) :=

∫
N(A)

ϕ

is Euler additive and continuous , i.e. it is a continuous valuation.
Again, νϕ extends by linearity to all polyconvex-constructible functions.

(J.H.G. Fu) Theory and applications of the normal cycle 23 / 24



Normal cycles of polyconvex sets and constructible functions

What is the full generality of this approach? Is it just stratified Morse
theory? No:

It’s weaker because it only gives Euler Morse data
It’s stronger because it can handle the singularities of a convex
set, which generally aren’t stratified:
Let f : [0, 1] → R be the Cantor function and c(x) :=

∫ x
0 f (t) dt .

Since f ↑, c is convex. There is C ∈ K(Rn+1) where
∂C ⊃ graph((x1, . . . , xn) 7→ c(x1) + · · ·+ c(xn)).
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