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Introduction

1. Overview

Intuitively, a sequence is an unending list of numbers. The primary
problem in the subject is to decide whether a given sequence converges in
the sense that the entries on the list approach a fixed number. A little
experimentation should convince you that the sequences

1, 1, 1, 1, . . .(0.1)

1, 0.1, 0.01, 0.001, . . .(0.2)

1, 1.1, 1.11, 1.111, . . .(0.3)

converge to 1, 0, and 10
9 respectively.

On the other hand, the sequences

1, −1, 1, −1, . . .(0.4)

1, 2, 3, 4, . . .(0.5)

diverge in the sense that neither converges to any number.
Informally, a series is an expression consisting of numbers separated by

plus signs, like

1 + 0.1 + 0.01 + 0.001 + . . . .(0.6)

The numbers appearing in a series are called terms and can be arranged
in a sequence. Thus (2) is the sequence of terms associated with the series
(6). A more important sequence associated with a series is the sequence of
partial sums formed by keeping a record of successive cumulations of the
terms. A series is said to converge if its sequence of partial sums converges.
The sequence of partial sums of (6) is given by (3), so we see that the series
(6) converges to 10

9 and it is customary to write

1 + 0.1 + 0.01 + 0.001 + . . . =
10

9
(0.7)

A more interesting series is

(0.1)1 + (0.1)1+2 + (0.1)1+2+3 + (0.1)1+2+3+4 + . . .(0.8)

It is tempting to guess that this series converges to 0.1010010001 . . . , but
this is just begging the question because we don’t really know what such
an infinite decimal expansion means. This dictates the starting point of

5



6 INTRODUCTION

our course as a careful discussion of the real number system, to be given
in Chapter 1. In Chapter 2, we will give precise definitions of sequences
and their limits, and learn some shortcuts for dealing with the limit con-
cept. This will be applied in Chapter 3, where we will develop an arsenal of
techniques for deciding which series converge.

Chapter 4 represents a slight detour from the study of series; it will
apply sequences to the study of continuous functions.

Chapters 5 and 6 are devoted to the study of series of functions. To
make the transition, we generalize Equation 0.7, noting that

1 + x+ x2 + x3 + · · · = 1

1− x
, whenever − 1 < x < 1.(0.9)

This is called a power series representation of the function f(x) = 1
1−x . In

Chapter 5, we will learn Taylor’s Theorem — a tool which makes it painless
to find power series representations for functions like ex and sinx. This
in turn makes it easy to approximate numbers like

√
e — by hand and to

any desired degree of accuracy! In Chapter 6, we study functions defined
by power series, thereby greatly expanding the utility and applicability of
Taylor series.

In Chapter 7, we will adapt much of our earlier work to sequences and
series of complex numbers. This will serve as a brief introduction to the
complex variables course (MATH 4150) which many of you will soon take.
In particular, consideration of complex power series will take the mystery
out of de Moivre’s formula

eix = cosx+ i sinx

which you have probably already used in differential equations.
The book closes with outlines of several ways to construct the real num-

ber system from the more familiar rational numbers.

2. Prerequisites

One of the purposes of MATH 3100 is to smooth the transition be-
tween “computational” calculus courses and “rigorous” 4000–level courses.
Other “transitional” courses in the Department are MATH 3000 (Linear
Algebra) and MATH 3200 (Introduction to Higher Mathematics). The cur-
riculum was designed so that these three courses, along with MATH 2500
and MATH 2700, can be taken in any order; their common prerequisite is
MATH 2260 (Calculus II for Science & Engineering).

This is perhaps a good place to point out just what we will need from
calculus. Of most immediate use will be intuitive feeling for and ability
to compute limits; L’Hôpital’s rule will often come in handy. You should
also be familiar with exponential, logarithmic, trigonometric, and inverse
trigonometric functions, and the basic differentiation and integration tech-
niques. We probably won’t be doing any fancy trig substitutions, but we
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will definitely use the fact that
∫

1
1+x2

dx = arctanx , and may need an
occasional partial fraction decomposition toward the end of the course.

3. References

The following sources were used in constructing notes for our course.
(MATH 3100 was MAT 350 under quarters.)

(1) MAT 350 notes by Kevin F. Clancey
(2) MAT 350 notes by David E. Penney
(3) Calculus, by Michael Spivak, 2nd Edition, 1967, Publish or Perish,

Houston.
(4) Principles of Mathematical Analysis, by Walter Rudin, 3rd Edi-

tion, 1976, McGraw Hill, New York.

Please do not hesitate to ask questions concerning these course notes
either in or out of class. Corrections and expository suggestions are also
welcome.

4. Notations

The following are some common mathematical notations that will be
used frequently when writing on the board to save time:

• ∀ for any. Example: ∀ real number x, x2 ≥ 0.
• ∃ there exists. Example: ∃ a real number x with x2 < 1
• x ∈ F x is an element of the set F . Example: 2 ∈ Q.
• x 6∈ F x is not an element of the set F . Example:

√
2 6∈ Q.

• E ⊂ F the set E is a subset of the set F , i.e. every element of E
is also an element of F : ∀x ∈ E, x ∈ F . Example: Q ⊂ R.
• E 6⊂ F the set E is not a subset of the set F : ∃x ∈ F such that
x 6∈ E. Example: R 6⊂ Q.
• � end of proof.

5. Acknowledgements

I would like to thank several people for contributing to the development
of these notes. Drs. Clancey and Penney let me examine their own notes
and gave me the benefit of their experience with the course. Drs. Alexeev,
Benson, and Rumely provided valuable feedback on earlier versions of the
notes. In particular, Dr. Benson added the section on Dirichlet’s test, while
Dr. Alexeev added the decimal-based construction of the real numbers, and
transformed my original AMSTeX file to the more flexible AMSLATeX for-
mat.

I’m also grateful for numerous student suggestions over the years, es-
pecially Evan Glover’s efforts to the make whole enterprise more “student
friendly”.



8 INTRODUCTION

Section 1.3 is dedicated to the memory of David Galewski who would
have described it as a “sandbox” for us to play in before we get down to the
serious business of defining limts.



CHAPTER 1

Real Numbers

Intuitively, real numbers are the “measure numbers”, with which one
can measure arbitrary distances. The usual model all of us have in mind is
that of a real line, with a chosen origin and unit measure. In this model,
a real number corresponds to a point on the line. However, this picture
relies on properties of the physical world. What is a point on a line? How
does a line look when you look at it at a greater and greater magnification?
Clearly, “point” and “line” are mathematical abstractions of the physical
world, and have to be dealt with mathematically.

There are various ways to study the real number system. The “bottom-
up” approach starts out with a set of axioms for the set of natural numbers
{1, 2, 3, ...}, and then constructs successively larger number systems until
the full real number system is reached. This is the approach taken in Dr.
Clancey’s notes, and one you may see in MATH 4000. It makes a strong case
for the existence of the real number system, but it is somewhat technical and
takes a good deal of time to complete. We therefore postpone this discussion
till the last chapter of the book.

In this chapter, we will take the “top-down” approach: we begin by
discussing various properties that we want the full real number system to
enjoy. The goal is a minimal set of axioms which characterize the real
number system. We then “look down” to find natural numbers, integers
and rational numbers inside the reals. While not quite as advanced as the
bottom–up approach, this procedure quickly sets the tone for the type of
reasoning we will be using throughout the course. Several implementations
of the “’bottom-up” approach are outlined in Chapter 8.

1. Fields

Definition 1.1. A binary operation on a set S is a function f : S×S →
S. We usually write the name of the function between its arguments.

Definition 1.2. A field is a set F equipped with two binary operations,
denoted “+” and · satisfying the following properties:
Axioms for addition:

A1 (closure) If x ∈ F and y ∈ F , then x+ y ∈ F .
A2 (commutativity) If x ∈ F and y ∈ F , then x+ y = y + x.
A3 (associativity) If x, y, and z each belong to F , then (x+ y) + z =

x+ (y + z).

9



10 1. REAL NUMBERS

A4 (neutral element) There is an element 0 ∈ F such that 0 + x =
x+ 0 = x for every element x ∈ F .

A5 (inverses) Given x ∈ F , there is an element −x ∈ F satisfying
(−x) + x = x+ (−x) = 0.

Axioms for multiplication:

M1 (closure) If x ∈ F and y ∈ F , then x · y ∈ F .
M2 (commutativity) If x ∈ F and y ∈ F , then x · y = y · x.
M3 (associativity) If x, y, and z each belong to F , then (x · y) · z =

x · (y · z).
M4 (neutral element) There is an element 1 ∈ F such that 1 ·x = x for

every element x ∈ F . It is assumed that 1 6= 0.
M5 (inverses) Corresponding to each non–zero member x of F , there

exists an element x−1 ∈ F satisfying x · x−1 = 1.

Distributive law: If x, y, z each belong to F , then x · (y+ z) = x · y+x · z.
A moment’s thought should convince you that we certainly want the real

number system to be a field. Is there anything else we want? The next few
propositions show that many properties of the reals we “forgot” to mention
are consequences of what we already have.

Our primary goal at this point is an appreciation of the power of the field
axioms. More detail will be left for later courses (MATH 4000 and MATH
4100), and we will soon resume taking such “obvious” facts for granted.
In the meantime, we will complete a few sample proofs in class and in the
homework. First, we recall some common abbreviations.

for write

x · y xy (suppress the multiplication sign)

x+ (−y) x− y
xy−1 x

y (justified by commutativity)

(x+ y) + z x+ y + z

(xy)z xyz (justified by associativity)

x+ x 2x (etc.)

xx x2 (etc.)

(x−1)2 x−2 (etc.)

Proposition 1.3. The addition axioms imply the following for any
x, y, z ∈ F :

(1) (cancellation) If x+ y = x+ z, then y = z.
(2) (uniqueness of neutral element) If x+ y = x, then y = 0.
(3) (uniqueness of inverse) If x+ y = 0, then y = −x.
(4) (double negative) −(−x) = x.

Proof. Of course, the way to establish (1) is to add −x to both sides
of the given equation. Axiom A5 assures us that −x exists and since binary
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operations are functions, we know that “equals added to equals are equal”.
Thus we have

(−x) + (x+ y) = (−x) + (x+ z).(1.1)

Working on the left-hand side of this equation, we apply Axioms A5, A3, and
A4 in turn to obtain (−x) + (x+ y) = ((−x) +x) + y = 0 + y = y. Similarly,
the right hand side of Equation 1.1 simplifies to z, and we conclude y = z
as desired.

We could repeat the preceding argument to establish (2), but it is a
little neater to apply the result of (1). Indeed, putting Axiom A4 and the
hypothesis of (2) together, we have x+ y = x+ 0, and thus (1) yields y = 0
as desired. The proof of (3) is similar.

Finally, for (4) write y := −x. Because y is the additive inverse of x, we
have x+ y = 0. But this equation also tells us that x is the additive inverse
of y, i.e., x = −y = −(−x)as desired. �

Slight variation in the wording of this proof gives the corresponding facts
for multiplication.

Proposition 1.4. The multiplication axioms imply the following for any
x, y, z ∈ F :

(1) (cancellation) If x 6= 0 and xy = xz, then y = z.
(2) (uniqueness of neutral element) If x 6= 0 and xy = x, then y = 1.
(3) (uniqueness of inverse) If xy = 1, then y = x−1.
(4) (double inverse) If x 6= 0 then (x−1)−1 = x.

The next result is more subtle because it simultaneously involves multi-
plication and additon. This dictates the use of distributivity as that is the
only axiom involving both operations.

Proposition 1.5. The field axioms have the following consequences for
any x, y ∈ F .

(1) 0x = 0.
(2) xy = 0 implies x = 0 or y = 0.
(3) (−x)y = −(xy) = x(−y).
(4) (−x)(−y) = xy.

Proof. For (1), we apply distributivity to conclude (0 + 0)x = 0x+ 0x.
Since 0 + 0 = 0, we get 0x+ 0x = 0x, whence 0x = 0 by Proposition 1.3(2).

To establish (2), we assume that xy = 0, while x 6= 0. In view of
(1) and commutativity, we have xy = x0,whence y = 0 by multiplicative
cancellation.

For (3), we combine distributivity and Part (1) to get (−x)y + xy =
((−x) + x)y = 0y = 0, whence (−x)y must be the additive inverse of xy by
Proposition 1.3(3).

Applying (3) with −y playing the role of y yields
(−x)(−y) = −(x(−y)) = −(−(xy)). Since this simplifies to xy by the double
negative property, we have (4) and the proof is complete. �
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In particular, now you finally know why (−1)(−1) = 1. Several exercises
at the end of the chapter are designed to bring home the centrality of these
observations in school mathematics.

The following embarrassing example shows that there must be more to
the real number system than the field axioms.

Example 1.6. Take F to be the set whose only elements are 0 and 1.
Define addition on F by 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1. Define
multiplication on F via the equations 0(1) = 1(0) = 0(0) = 0 and 1(1) = 1.
An easy but boring check shows that this F is a field.

Since there are more than two real numbers, we must be missing some-
thing.

2. Order

What we need is order. It turns out to be convenient to first axiomitize
the notion of positivity.

Definition 1.7. An ordered field is a field F equipped with a distin-
guished subset F+ satisfying the following.

(1) (trichotomy) If x ∈ F , then one and only one of the three state-
ments x ∈ F+, x = 0, −x ∈ F+ is true.

(2) (closure) If x, y belong to F+, then x+y and xy also belong to F+.

Members of the distinguished set F+ are called positive.

The following proposition highlights the subtle power of the trichotomy
law.

Proposition 1.8. Let F be an ordered field with positive set F+.

(1) x2 ∈ F+ for each non–zero member x of F .
(2) 1 ∈ F+.
(3) If x ∈ F+, then x−1 also belongs to F+.

Proof. For (1), we apply the trichotomy law to x. Since x 6= 0 by
hypothesis, there are really only two possibilities. If x ∈ F+, then x2 ∈ F+

by closure. On the other hand, if −x ∈ F+, then we get x2 = (−x)2 ∈ F+

by Part (4) of Proposition 1.5 and closure.
Part (2) follows from Part (1) since we know that 1 = 12.
For Part (3), we apply trichotomy to x−1. Having x−1 = 0 would con-

tradict Part (1) of Proposition 1.5. Having −x−1 ∈ F+ would force −1 =
x(−x)−1 ∈ F+ by Part (3) of Proposition 1.5 and closure, thereby contra-
dicting (2). Thus we have eliminated all possibilities except x−1 ∈ F+. �

Note that 1 + 1 must be a positive member of any ordered field, so
the field of Example 1.6 cannot be ordered. More generally, 0, 1, 1 + 1,
1 + 1 + 1, etc. must be distinct in any ordered field F — intuitively F
must contain a “copy” of the natural numbers 1, 2, 3, 4, . . . . In fact, the
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field axioms concerning inverses show that F must contain a “copy” of the
rational number system.

It is time to adopt the usual inequality notation associated with ordered
fields. Both y > x and x < y mean y − x ∈ F+; we also write y ≥ x as an
abbreviation for y > x or y = x. We say x is positive if x > 0 and we call
x negative when x < 0. It is also convenient to say x is non-negative when
x ≥ 0. All the familiar rules for working with inequalities follow from what
we’ve done so far. Once again, we practice with a few formal proofs. (You
can now use results of Propositions 3, 4, and 5 above without comment).

Proposition 1.9. Let x, y, and z be members of an ordered field F.

(1) (unique comparability) Exactly one of the following 3 statements is
true: x < y, x = y, y < x.

(2) (transitivity) If x < y and y < z, then x < z.
(3) If x < y, then x+ z < y + z.
(4) If z > 0 and x < y, then xz < yz.
(5) If z < 0 and x < y, then xz > yz.
(6) If 0 < x < y, then y−1 < x−1.

Proof. For (1), we apply the trichotomy axiom to y − x. Indeed the
mutually exclusive possibilities y − x ∈ F+, y − x = 0, and −(y − x) ∈ F+

directly correspond to x < y, x = y, and x > y respectively.
For (2), we apply the definition of < to conclude that both y−x and z−y

belong to F+. Thus their sum z−x must also belong to F+, and that means
that x < z as desired. For (3), it suffices to note that (y+z)−(x+z) = y−x.

For (4), we apply the definition to get z and y − x in F+. Thus their
product yz − xz ∈ F+, so xz < yz as desired. The proof of (5) is similar,
except that we begin by noting that −z and y − x both belong to F+.
Finally, we get (6) by applying (4) with z = x−1y−1. �

The properties of Proposition 1.9 can be used to solve inequalities. The
following example will be used in the next chapter.

Example 1.10. Solve the inequality 3x− 10000 > x.

Solution. Suppose first that 3x−10000 > x. Subtracting x from both
sides and dividing by 2 leads to x > 5000. So far we have only shown that
any x satisfying (*) must lie in the interval (5000,∞). Conversely, assuming
x > 5000, we can multiply by 2 and add x to recover the original inequality.
Thus we can say that the solution of the original inequlity is precisely the
open interval (5000,∞). �

Special care is needed when multiplying or dividing by a variable quan-
tity because multiplying by a negative quantity reverses the sense of an
inequality.

Example 1.11. Solve the inequality 1
x > 1 (∗).

Solution. By trichotomy, there are three cases.
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(1) x = 0 is not a solution of (*) because 1
0 is not even defined.

(2) When x > 0, then we can multiply both sides of (*) by x to get
1 > x. Thus in order for a solution to come from this case, it
must simultaneously satisfy x > 0 and x < 1. (After checking), we
conclude that the open interval (0, 1) is contained in the solution
set.

(3) When x < 0, then multiplying both sides of (*) by x reverses the
inequality and we get 1 < x. Thus in order for a solution to come
from this case, it must simultaneously satisfy x < 0 and x > 1.
Since the intersection of these sets is empty, this case contributes
nothing to the solution set.

Thus the solution to (*) is the interval: (0, 1). �

The main point to be made here is that uncritical multiplication of (*)
by x would have given us spurrious negative solutions. We will learn more
efficient techniques for solving inequalities in Chapter 4.

3. Eventually Positive Functions

This section is dedicated to the memory of David Galewski who would
have described it as a “sandbox” for us to play in before we get down to the
serious business of defining limts.

In later chapters, we will study various types of limits. These are state-
ments concerning eventual behavior. For example, in calculus, when we

claim that the line y = 1 is a horizontal asymptote of the curve f(x) = x2−1
x2+1

,

we mean that as x gets large, eventually f(x) gets and stays close to 1. In
particular, this means that f(x) is eventually positive in the following sense.

Definition 1.12. Let f be a function mapping an ordered field F into
itself. We say f is eventually positive if there is an N ∈ F such that f(x) > 0
whenever x > N .

While we haven’t finished studying it yet, you can think of F as the field
of real numbers.

Example 1.13.

(1) The function f(x) = x2 + 1 is eventually positve since x2 + 1 > 0
for all x.

(2) The function f(x) = x−100 is eventually positive since x−100 > 0
whenever x > 100; in other words, the definition is satisfied by
taking N = 100.

(3) The function f(x) = x2 − 7x − 18 is eventually positive. To see
this, we write f(x) = x(x− 7)− 18 and take N = 18. Now suppose
x > 18. Then we have x − 7 > 1 so x(x − 7) > 18(1) = 18, and
f(x) > 0 as desired.

(4) The function f(x) = 1
100x

2−95x−50 is eventually positive. To see

this, write f(x) = ( 1
100)[x(x− 9500)− 5000] and take N = 9501.
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(5) The function f(x) = 24−x2 is not eventually positive because f(x)
is negative when x > 5.

(6) The function f(x) = sin2(πx) is not eventually positive. Even
though f(x) is usually posiitive, it returns to zero whenever x is an
integer.

Note that we have not solved any fancy inequalities – we have only
found simple subsets of the full solution sets. In particular, there is nothing
unique about the above choices of N . We have shown for example that
x2−7x−18 > 0 when x > 18, but the full solution set is (−∞,−2)∪ (9,∞).

It is easy to prove (and clear geometrically) not only that the function
f(x) = x2 is eventually positive, but that in fact, it eventually rises above
and stays above any given horizontal line. This notion is captured in the
following definition.

Definition 1.14. We say that a function f diverges to infinity if for
each M ∈ F , it is true that the function f −M is eventually positive.

Another way of putting this is that no matter what “challenge number”
M you give me, I can show that f(x) will eventually surpass it.

Example 1.15. The function f(x) = x2 − 5x diverges to infinity.

Proof. Let M > 0 be given and write f(x) −M = x2 − 5x −M =
x(x − 5) −M . Take N to be the larger of 6 and M . Now suppose x > N .
Then f(x) > (M)(1)−M = 0 as desired. �

We conclude this section with a different kind of proof. Rather than
showing that a particular function is eventually positive, it provides a tool
for building new completely positive functions from old ones. The utility of
such results is analogous to that of the chain rule in differential calculus.

Proposition 1.16. The sum of eventually positive functions is again
eventually positive.

Proof. Suppose f1 and f2 are eventually positive. Choose numbers N1

and N2 that work in the definition, i.e., we have f1(x) > 0 whenever x > N1

and f2(x) > 0 whenever x > N2. Then take N to be the maximum of N1

and N2. Now suppose x > N . Then (f + g)(x) = f(x) + g(x) > 0 + 0 = 0
and we have shown that f + g satisfies the definition. �

4. Absolute Value

Absolute values will play an important role in the sequel. The intuitive
idea is that |x− y| should measure the undirected distance between x and y.

Definition 1.17. Let x be a member of an ordered field F . Then the
absolute value of x, denoted |x|, is defined by

|x| =

{
x, if x ≥ 0

−x, if x < 0
.
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Example 1.18. The equation |x| = 5 has two solutions, namely x = 5
and x = −5. On the other hand, the equation |x| = −2 has no solutions.

Consider next the equation 2x+ |x− 3| = 5. We deal with the absolute
value by considering cases.

(1) x− 3 ≥ 0. Then |x− 3| = x− 3 by definition. Substituting in our
target equation gives 2x + (x − 3) = 5, i.e., x = 8

3 . But this is a

fake solution as it doesn’t satisfy the target equation. (Also 8
3 is

outside the interval defining this case.)
(2) x − 3 < 0. Here the defintion yields |x − 3| = −(x − 3) = 3 − x.

Substituting in our target equation gives 2x + (3 − x) = 5, i.e.,
x = 2, which does indeed satisfy the target equation.

In summary, x = 2 is the only solution of the equation 2x+ |x− 3| = 5.

Proposition 1.19. Let x and y be members of an ordered field.

(1) |xy| = |x||y|.
(2) |x| is the maximum of x and −x.
(3) |x| < y if and only if −y < x < y.
(4) (triangle inequality) |x+ y| ≤ |x|+ |y|.

Proof. We use results of earlier propositions without comment. The
straightforward consideration of cases needed for Part (1) is left to the
reader.

For (2) we consider two cases. When x ≥ 0, we have −x ≤ 0 ≤ x,
so |x| = x is indeed the maximum of x,−x. Similarly, when x < 0, then
−x > 0 > x, so |x| = −x is still the maximum of x,−x.

In view of (2), the inequality |x| < y is equivalent to requiring both
x < y and −x < y. Since the latter two inequalities are in turn equivalent
to the double inequality −y < x < y, we have established (3).

Applying (2) to x and y individually, we obtain

x ≤ |x|, y ≤ |y|, −x ≤ |x|, and − y ≤ |y|.
Adding these in pairs gives

x+ y ≤ |x|+ |y|, and − (x+ y) ≤ |x|+ |y|.
whence another appeal to Part (2) establishes (4). �

Example 1.20. By Part (3) of the preceding proposition, the inequality
|x − 3| < 5 is equivalent to −5 < x − 3 < 5 and thus its solution set is
the open interval (−2, 8). Note that this corresponds to all points on the
number line obtained by wandering at most 5 units from 3.

The solution of the opposite inequality |x−3| ≥ 5 is the complementary
set, namely the union (−∞,−2] ∪ [8,∞).

Example 1.21. How large can |x+ 6| be when |x− 3| < 1?
In view of (3) of the preceding proposition, the given condition means

−1 < x − 3 < 1. Adding 9 then yields 8 < x + 6 < 10, which shows
|x+ 6| < 10.
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A more sneaky approach is to use the triangle inequality to conclude
|x+ 6| = |(x− 3) + 9| ≤ |x− 3|+ |9| < 10.

Example 1.22. Consider the polynomial p(x) = x2+3x. Then p(3) = 18
and it seems reasonable that p(x) should be close to 18 when x is close to
3. To quantify this, note that

|p(x)− 18| = |x2 + 3x− 18| = |x+ 6||x− 3|.

In view of the last example, we have

|p(x)− 18| = |x+ 6||x− 3| ≤ 10|x− 3|, whenever |x− 3| < 1.

From this it follows for example that |p(x)−18| < .01 whenever |x−3| < .001.

5. Completeness

To finish our characterization of the real number system, we must un-
derstand how it differs from the rational number system. We will see shortly
that there is no rational solution to the equation x2 = 2. It’s not that we
can’t get close: the squares of 1, 1.5, 1.41, 1.414, . . . get closer and closer to
2. What we need is a “limit” of these numbers; our last axiom will guarantee
that such a limit exists.

Definition 1.23. Let S be a subset of an ordered field F .

(1) An element b ∈ F is an upper bound of S if x ≤ b for all x ∈ S.
(2) We call b the least upper bound of S if in addition every upper

bound a for S satisfies b ≤ a.
(3) An ordered field F is said to be complete if every non-empty subset

of F which has an upper bound must have a least upper bound as
well.

It will probably take some time for you to feel comfortable with these
concepts; that’s one of the goals of the course. As a first step, plot the sets
discussed in the following (informal) example on a number line.

Example 1.24. Take F to be the rational numbers.

(1) If S = {x ∈ F : x < 3}, then 3, 4, and 543 are all upper bounds for
S, and 3 is its least upper bound. Note that lubS /∈ S.

(2) If S = {x ∈ F : 0 < x and x2 < 2}, then 2, 1.5, 1.42, . . . are upper
bounds of S, but the irrationality of

√
2 means that S cannot have

a lub.
(3) Take S = {.1, .101, .101001, .1010010001, . . . }. Again, there are

many upper bounds to this set, but the non–repeating nature of
these decimal expansions rules out the existence of a rational least
upper bound for S.

No ordered field has an upper bound, much less a least upper bound. The
point of the preceding example is that some bounded sets of rational num-
bers have least upper bounds and others don’t. This means that the rational
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number field is not complete. Geometrically, not all points on a line can be
accounted for by plotting rational distances.

There are several competing notions of completeness in mathematics,
but in this course “complete” will always be used in the sense of Definition
1.23. Hopefully, you are convinced that the real number system should be
a complete ordered field, but several questions remain.

(1) How do we know that there are any complete ordered fields?
(2) How different can two complete ordered fields be?
(3) Have we left anything out in our characterization of the real number

system?

Question 1 is addressed by constructing the reals from more primitive
systems. We will return to this topic in Chapter 8, to which you can skip
ahead now if your curiosity has gotten the best of you.

As for Question 2, we could obviously call numbers by different names -
their French names for example - but the resulting number system would
really be the same. Thus you don’t have to learn a new set of “tables” to do
arithmetic in French: to compute deux fois quatre, you could first translate
to the English problem two times four, next do the computation in English to
get eight, and finally translate the answer back to get the French huit. The
second part of the following theorem states that any two complete ordered
fields are related in this way. Think of the function f (technically known as
an isomorphism) as a dictionary.

Theorem 1.25. (without proof)

(1) Complete ordered fields exist.
(2) Suppose both R and R′ are both complete ordered fields. Then there

is a one-to-one, onto function f : R→ R′ which respects all ordered
field structures, e.g., f(x+ y) = f(x) +′ f(y) for all x, y ∈ R; here
+ denotes addition in R , while +′ denotes addition in R′.

Definition 1.26. The real number system is a fixed complete ordered
field. It is denoted R.

The essential uniqueness of the real number system is also reassuring
concerning Question 3 - we have successfully characterized the system.

6. Induction

Our next task is to identify the natural, integral, and rational number
systems as subsets of R (the “down” part of our top–down approach).

Definition 1.27.

(1) A subset S of R is inductive if x+ 1 ∈ S whenever x ∈ S.
(2) The set of natural numbers is the intersection of all inductive sub-

sets of R which contain 1. It is denoted N.
(3) The set of integers, denoted Z , is defined by Z = {x ∈ R : x = m−n

for some m,n ∈ N}.
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(4) The set of rational numbers , denoted Q , is defined by Q = {x ∈
R : x = m

n for some m,n ∈ Z with n 6= 0}.

The interval [1,∞) = {x ∈ R|x ≥ 1} is an inductive set containing
1. Since N is the intersection of all such sets, we see that N ⊂ [1,∞). In
particular, every natural number is positive and 1 is the smallest member
of N. A more subtle inductive set is {x ∈ R|x = 1 or x ≥ 1 + 1}. Since N
must be contained in this set as well, we see that there is no natural number
between 1 and 2.

It is an exercise to show that N is an inductive set. Since 1 ∈ N , it follows
that 1 + 1 = 2 ∈ N, whence 3 ∈ N , etc; since N is the smallest inductive
subset of R, we see that we really have captured the natural number system.
The next Proposition shows that the principle of mathematical induction is
built into the definition of N.

Proposition 1.28. (Principle of Mathematical Induction) Suppose S is
an inductive subset of N containing 1. Then S = N.

Proof. We have S ⊂ N by hypothesis. The opposite inclusion N ⊂ S
follows since N is the intersection of all inductive sets containing 1. �

The Principle of Mathematical Induction will play an important role in
our course. The following two applications are typical.

Example 1.29. Use induction to prove that 1+3+5+· · ·+(2n−1) = n2

for every natural number n.

Solution. Set S = {n ∈ N : 1 + 3 + 5 + · · ·+ (2n− 1) = n2}. Note first
that 1 ∈ S since 1 = 12.

To see that S is inductive, suppose that k ∈ S. Then 1 + 3 + 5 + · · ·+
(2k − 1) = k2. Adding 2[k + 1]− 1 to both sides of this equation yields

1 + 3 + 5 + · · ·+ (2k − 1) + (2[k + 1]− 1) = k2 + 2k + 1 = (k + 1)2

which means that k + 1 ∈ S. This completes the proof that S is inductive.
The Principle of Mathematical Induction ( Proposition 1.28) allows us

to conclude that S = N and thus completes the proof. �

You can use the abbreviation “by induction” for “by the Principle of
Mathematical Induction”.

Example 1.30. Let a > 1 Use induction to prove that an > 1 for every
natural number n.

Solution. Set S = {n ∈ N : an > 1}. Note first that 1 ∈ S since a1 = a.
To see that S is inductive, suppose that k ∈ S. Then ak > 1. Multiplying

both sides of this inequality by the positive number a yields ak+1 > a. By
transitivity of inequality, we have ak+1 > a > 1 which means that k+1 ∈ S.
By induction, we conclude that S = N and the proof is complete. �
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There are sevral variations of mathematical induction. These are logi-
cally equivalent to one another, but there are times when one is more con-
venient than others. The proofs of the following versions are deferred to the
exercises.

Proposition 1.31 (Well-Ordering Principle). Every non-empty subset
of N has a smallest member.

Proposition 1.32 (Strong Induction). Suppose S is a set of natural
numbers satisfying the following:

(1) 1 ∈ S.
(2) For each natural number n, if all of the natural numbers which are

less than or equal to n belong to S, then n+ 1 belongs to S as well.

Then S = N.

The difference between this and regular induction is in (2) where we get
to assume n and all natural numbers below it belong to S.

A natural number is prime if it has exaclty two positive integral divi-
sorss, namely 1 and itself. The first few primes are 2, 3, 5 . . . . An integer
greater than 1 which is not prime is said to be composite. Note that by this
convention, the integer 1 is neither prime nor composite.

Corollary 1.33. Every composite natural number has a prime divisor.

Proof. Set S := {n ∈ N|n = 1 or n has a prime factor.}. Since 1 ∈
S is given, we only need to establish the implication 1.32(2). So assume
1, 2, . . . n all belong to S. We must show that n+1 ∈ S. Since every number
is a divisor of itself, this is clear when n+ 1 is prime. On the other hand, if
n + 1 is composite, then it must have a divisor x satisfying 1 < x < n + 1.
But then our inductive hypothesis assures us that x has a prime factor p.
But that would make p a prime factor of n+ 1 as well, so n+ 1 ∈ S in any
case. We conclude that S = N and the proof is complete. �

The discussion in the following example is somewhat naive. Full justifi-
cation can be found in Section 1-8 of Topology, by James R. Munkres, 1975,
Prentice-Hall, Engelwoods, N.J.

Example 1.34. Induction can be used to define functions on the natural
numbers. (This procedure is also known as recursion). To illustrate with
factorials, set 1! = 1 and (n+ 1)! = (n+ 1)n!. The set S of natural numbers
whose factorials are defined by this prescription includes 1 and is inductive.
It follows from Proposition 1.28 that the factorials of all natural numbers
are thus defined. Use of this procedure to compute 5! helps explain why
induction is the mathematical version of the “domino theory”.

We proceed to our first application of completeness of R. Proposition
1.35 will be used frequently in the sequel.

Proposition 1.35. The set N of natural numbers does not have an upper
bound.



7. LEAST UPPER BOUNDS VIA DECIMALS 21

Proof. We argue by contradiction. If N had an upper bound, it would
have a least upper bound b. But then b − 1 could not be an upper bound
of N, so there would be a natural number n > b − 1. This however implies
that n + 1 > b, contradicting the fact that b was supposed to be an upper
bound of N. �

Corollary 1.36. (Archimedean Principle) Suppose x and y are positive
real numbers. Then there is a natural number n satisfying nx > y.

Proof. The preceding proposition provides a natural number n > y
x .
�

There is a folk version of the Archimedean Principle: “every little bit
helps”. No matter how small x is, if you keep progressing by that amount,
there is no limit on how high you can go.

We continue with the promised proof that
√

2 cannot be rational. The
argument illustrates the more informal approach to the real numbers which
will be taken in later chapters. Field properties are used without comment.
More significantly, the possibility of reducing fractions to lowest terms is
taken for granted, even though we have not shown how this follows from
Corollary 1.33. (See Problem 1.63).

Proposition 1.37. The equation x2 = 2 does not have a rational solu-
tion.

Proof. We argue by contradiction, assuming that x2 = 2 for some ra-
tional x. By definition of rational, we may write x = p

q for some integers

p, q. We may assume that this fraction is in lowest terms. Algebraic ma-
nipulations lead to the equation 2q2 = p2. This implies that p2 is even, so
p must be even too. Thus we can write p = 2k for some integer k, whence
substitution and cancellation yield q2 = 2k2. This however means that q is
even too, and contradicts the assumption that the fraction p

q was in lowest

terms. �

7. Least Upper Bounds via Decimals

Prior to coming to this course, you probably thought of real numbers
as (possibly nonterminating) decimals. The steps to making this precise
include

(1) interpreting decimals as infinite series
(2) proving that the series of (1) always converge
(3) proving there is a one-to-one correspondence between real numbers

and decimals which do not end in all 9’s (we temporarily call the
latter standard).

(4) describing how decimal expansions can be used to determine when
one real number is smaller than another

We will carry out this program in Chapter 3. In Section 8.1 (which can
be read now), we will even see that this point of view can be turned around,
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i.e., introducing decimals in a purely formal way provides one method of
constructing the complete ordered field guaranteed by Theorem 1.14.1.

At this point, we only want to use decimals to bolster our intuition
concerning order completeness. To do so, we take Items 1–4 for granted.
The order promised by (4) is lexicographic, e.g., if x = .x1x2x3 . . . and
y = .y1y2y3 . . . are standard decimal expansions, then x < y if and only
if these expansions are not identical, and xi < yi at their first point of
disagreement.

Now suppose that S is a non-empty subset of the open interval (0, 1) :=
{x ∈ R : 0 < x < 1}. Since S is bounded, it should have a least upper bound
b. In fact, we can “construct” b. Take b1 to be the largest integer appearing
as the first digit in the standard expansion of some member of S. Next take
b2 to be the largest integer appearing as the second standard digit of some
member of S whose first standard digit is b1. Continue inductively, taking
bn+1 to be largest integer appearing as the (n + 1)’st standard digit in the
expansion of

{x ∈ S : the standard expansion of x begins with .b1 . . . bn }.

Then b = .b1b2b3 . . . may end in all 9’s, but in any case it will represent the
least upper bound of S.

Exercises

Unless otherwise stated, a, b, c, d, and x stand for real numbers through-
out these exercises.

Field Axioms

Problem 1.1. Prove Part (3) of Proposition 1.3. You can either mimick
the proof of Part (2) or base your argument on the equation c = (b+a)+c =
b+ (a+ c) = b .

Problem 1.2. Which addiiion axion is not used in the proofs of Propo-
sition 1.3?

Problem 1.3. Prove Proposition 1.4.

Problem 1.4. Give examples to show that the hypothesis x 6= 0 cannot
be omitted from Parts (1), (2) and (4) of Proposition 1.4. Why wasn’t this
hypothesis included in (3) ?

Problem 1.5. Give another proof of the fact that 0x = 0 by applying
distributivity to the expression (0 + 1)x.

Problem 1.6. Prove that (a+ b)(a− b) = a2 − b2.

Problem 1.7. (Suggested by Brandon Samples) Suppose a set F is
equipped with two binary operations satisfying all the field axioms except
that 0 = 1. Show that F has only one element.
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Problem 1.8. Construct a field with exactly three elements : 0, 1, and
α. You need not verify all the axioms, but you should exhibit the addition
and multiplication tables.

Problem 1.9. Suppose a 6= 0 and b 6= 0. Explain why ab 6= 0.

Problem 1.10. Write up a solution of the equation 3x + 5 = 7 for a
middle school algebra class. Then write a one or two paragraph discussion
of the role of the basic field axioms and properties in your solution.

Problem 1.11. Criticize and correct the following solution of the equa-
tion x2 = 6x.

“Dividing by x, we obtain x = 6, which is thus the unique solution.”

Problem 1.12. Write up a solution of the equation x2−4x−21 = 0 for
a middle school algebra class which hasn’t yet been learned the quadratic
formula. Then write a one or two paragraph discussion of the role of the
basic field axioms and properties in your solution.

Problem 1.13. Criticize and correct the following solution of the equa-
tion x+

√
x = 6.

“Transposing x and squaring both sides of the equation, we obtain x =
36−12x+x2. From here, we tanspose and factor to obtain (x−4)(x−9) = 0.
Thus the orgininal equation has two solutions, x = 4 and x = 9.”

Problem 1.14. While it is always desirable to check solutions to equa-
tions, sometimes it is essential. Explain the relevance of the last four prob-
lems to this assertion.

Problem 1.15. Prove that if neither b nor c is zero, then a
b = ac

bc . Hint:
Compute the product of each side of the equation with bc and compare.

Problem 1.16. Suppose bd 6= 0. Prove that a
b + c

d = ad+bc
bd .

Order

Problem 1.17. Prove Parts (3) and (5) of Proposition 1.9.

Problem 1.18. Prove that if a > b > 0 then a2 > b2.

Problem 1.19. Suppose a > 0, b > 0, and a2 > b2. Prove that a > b.

Problem 1.20. Prove that if x and y are both negative, then their
product xy is positive. Then explain why this does not contradict the closure
assertion in Definition 1.7.

Problem 1.21. Write up a solution of the inequality 2 − 5x < 9 for a
middle school algebra class. Then write a one or two paragraph discussion
of the role of the basic order axioms and properties in your solution.

Problem 1.22. Find all solutions of the equation |2x|+ |x− 3| = 5.

Problem 1.23. Prove Proposition 1.19.1.
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Problem 1.24. Let a, b, c be members of an ordered field. Define what
is meant by the maximum of a, b, denoted max(a, b). Then show that
max(a, b) ≤ c if and only if a ≤ c and b ≤ c both hold. This is used in
the proof of Proposition 1.19.2.

Problem 1.25. Prove that |a| ≤ b if and only if −b ≤ a ≤ b.

Problem 1.26. Solve each of the following four inequalities:
|x| < 3, |x| < −3, |x| > 3, and |x| > −3, expressing your answers in
terms of intervals of real numbers.

Problem 1.27. Graph the solution of the inequality |x − 2| < 4 on a
number line.

Problem 1.28. Apply the triangle inequality to |a| = |(a − b) + b| to
show that |a| − |b| ≤ |a− b| for all a, b ∈ R. Then use symmetry to conclude
that ||a| − |b|| ≤ |a− b| for all a, b ∈ R.

Problem 1.29. Suppose |x− 5| < 1. Prove the following:

(1) |x+ 8| < 14
(2) |x2 + 3x− 40| ≤ 14|x− 5|
(3) If |x− 5| < .001, then |x2 + 3x− 40| < .014

Problem 1.30. Prove that if |x− 1
10 | <

1
20 , then |x| > 1

20 .

Problem 1.31. Prove that if |x− 2| < 0.001 then |x2 − 4| < 0.005.

Problem 1.32. The next to the last line of Example 1.22 reads

|p(x)− 18| = |x+ 6||x− 3| ≤ 10|x− 3|, whenever |x− 3| < 1.

. Why can’t the symbol “≤ be replaced by strict inequality?

Eventual Positivity

Problem 1.33. Show that the following polynomials are eventually pos-
itive.

(1) x2 + 15x
(2) x2 − 15x
(3) x2 + 15x− 38
(4) x3 + 5x2 − 11x− 43

Problem 1.34. Prove that the product of any two eventually positive
functions is again eventually positive.

Problem 1.35. Give an example of two functions f, g, neither of which
is eventually positive, but whose product fg is eventually positive.

Problem 1.36. Give an example of two functions f, g, neither of which
is eventually positive, but whose sum f + g is eventually positive.

Problem 1.37. In the proof of Example 1.15, why is it assumed that
M > 0 ?
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Problem 1.38. Prove that if a and b are any real numbers, then the
function f(x) = x2 + ax+ b is eventually positive.

Problem 1.39. Give an example of a strictly increasing function which
is eventually positive, but does not diverge to infinity.

Problem 1.40. Prove that if two functions both diverge to infinity, then
their sum also diverges to infinity.

Completeness

Problem 1.41. Suppose that b and c are both least upper bounds of a
subset S of R. Prove that b = c.

Problem 1.42. Suppose b is an upper bound of a set S of real numbers.
Prove that b is the least upper bound of S if and only if for each ε > 0 ,
there exists an a ∈ S with a > b− ε.

Problem 1.43. Define lower bound and greatest lower bound. Then
prove that every non-empty subset S of R which has a lower bound must
have a greatest lower bound. Hint : Consider the set T = {−a : a ∈ S}.

Problem 1.44. Give an example of a set of real numbers which has an
upper bound but does not have a lower bound.

Problem 1.45. Take S = {a ∈ R : 0 < a and a2 < 3}. Find several
upper bounds for S and then find its least upper bound.

Problem 1.46. Find the greatest lower bound and least upper bound
of the set { 1n : n ∈ N}.

Problem 1.47. Find the greatest lower bound and least upper bound
of {n−1n : n ∈ N}.

Problem 1.48. Let F be an ordered field. Prove that F+ does not have
a least upper bound. Explain why this doesn’t contradict Theorem 1.25.1.

Problem 1.49. Detail the meaning of the phrase “respects all of the
ordered field structures” appearing in the statement of Theorem 1.25.2.

Induction

Problem 1.50. Describe four different inductive subsets of R.

Problem 1.51. How many bounded inductive subsets of R are there?

Problem 1.52. Prove that N is an inductive set.

Problem 1.53. Use induction to prove that 1 + 2 + · · ·+n = n(n+1)
2 for

every natural number n.

Problem 1.54. Use induction to prove that 1 + 2 + · · ·+ 2n−1 = 2n− 1
for every natural number n.
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Problem 1.55. Use induction to prove that if 0 < a < 1 then 0 < an < 1
for every natural number n. What can you say if we only assume a < 1, but
not that a > 0?

Problem 1.56. Use induction to prove that if |a| < 1 then |an| < 1 for
every natural number n.

Problem 1.57. Argue inductively on degree to prove that everynon-
constant monic polynomial is eventually positive.

Problem 1.58. Argue inductively on degree to prove that every non-
constant monic polynomial diverges to infinity.

Problem 1.59. Use the inductive definition of Example 1.34 to compute
5!.

Problem 1.60. Use Example 1.34 to explain why it is reasonable to
define 0! = 1.

Problem 1.61. Use induction to prove that every natural number n is
greater than or equal to one, and hence positive.

Problem 1.62. Prove that for each natural number n, either n = 1 or
n− 1 is also a natural number.

Problem 1.63. Use the result of the last problem to prove the well
ordering principle, Proposition 1.31. Hint: assume that S does not have a
smallest member and apply regular induction to show that the complement
of S in N would have to exhaust N.

Problem 1.64. How does the result of the last Problem compare with
the result of Problem 1.43 ?

Problem 1.65. Use the well-ordering principle 1.31 to prove the strong
induction principle 1.32.

Problem 1.66. Is N a field? How about Z? How about Q? No proofs
are required, but detail which field axioms hold in each case.

Problem 1.67. Prove that there is a rational number between any two
reals.

Decimals

Problem 1.68. Apply the technique of Section 1.5 to find decimal ex-
pansions for the least upper bounds of the following sets:

(1) {1225 ,
1
2 ,

9
100}

(2) {x ∈ R+ : x ≤ 1
2}

(3) {x ∈ R+ : x < 1
2}

(4) { 37
100 − 10−n : n ∈ N}



CHAPTER 2

Sequences

1. Introduction

Definition 2.1. A sequence of real numbers is a function mapping N
into R.

You are probably accustomed to using letters like f or g to denote func-
tions and x or t for their independent variables. In studying sequences, it is
traditional to employ letters k, l,m, n for natural numbers and letters near
the beginning of the alphabet for the names of the functions themselves.
This should not cause any particular problem. If a is a sequence, it is con-
ventional to write an in place of a(n); in prose, this is referred to as the
n’th term of the sequence. We will also write (an)∞n=1 or even (an) for the
function a. The use of parentheses instead of the more traditional braces
emphasizes the distinction between functions and their ranges. For example,
the sequences ((−1)n) and

(
(−1)n+1

)
are different even though they share

the range {−1, 1}. It should also be kept in mind, here and in the sequel,
that ∞ does not stand for any real number, but is used as a mnemonic
device for an ongoing process.

The usual way to present a sequence is to give a formula for its general
term. This was done implicitly in the preceding paragraph. A less precise
but often suggestive method is to list the few terms of a sequence, leaving
it to the reader to find “the” formula for the general term.

Example 1.34 illustrated the fact that sequences can also be defined
inductively (also called recursively). The next example reviews Newton’s
method, an important instance of this procedure you may have seen in
calculus.

Example 2.2. Fix a real–valued function f defined on some domain
D ⊂ R. Start with any a1 ∈ D. Assuming an has been defined, take an+1

to be the x–coordinate of the point where the line tangent to the graph of
f at (a, f(a)) intersects the x-axis. The explicit formula is

(2.1) an+1 = an −
f(an)

f ′(an)
.

The following special case of Example 2.2 will be used to illustrate several
concepts in this chapter.

27
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Example 2.3. Apply Newton’s method with f(x) = x2 − 2 and a1 = 2.
The inductive formula can be written as

(2.2) an+1 =
an
2

+
1

an
for n ∈ N.

2. Limits

In Chapter 1, we introduced the concepts of eventual positivity and
divergence to infinity. These are easily adapted to sequences.

Definition 2.4. A sequence (an) is eventually positive if there is a nat-
ural number N such that an > 0 whenever n > N .

Definition 2.5. A sequence (an) diverges to infinity if for each number
M it is true that the sequence (an −M) is eventually positive.

It is important to understand that the second definition provides a pre-
cise way of saying that the terms of the sequence eventually pass and stay
past each “challenge number” M .

We now want to capture the notion of what it means for the terms in a
sequence (an) to approach a fixed number L.

Example 2.6. Consider the sequence given by an = 3n
3n−10000 . The first

few terms are close to zero, e.g. a1 = −3
9997 , a2 = −6

9994 . Looking ahead a
bit though, it seems that the numerator might overwhelm the denominator,
e.g., a3332 = −2499, a3333 = −9999. Taking a really long term view however,
we see that eventually the 10000 in the denominator becomes less relevant
and an looks like 3n

3n = 1, e.g., a10000 = 30000
20000 = 1.5, a20000 = 60000

50000 =

1.2, a1000000 = 3000000
2990000 ≈ 1.003. The convergence concept is only concerned

with the long-term view, so this sequence should converge to 1.

We now formulate the precise definition. In a nutshell, instead of claim-
ing that an is eventually large as we did in Definition 2.5, we now want to
guarantee that an is eventually “close to” L. The difference between two
numbers measures how close they are; since we don’t really care which is
larger, it is more appropriate to use the absolute value of the difference.
This leads to the pseudo-definition “When n is large, |an−L| is small”. But
how small is “small” ? We take our cue from Defintion 2.5 where we de-
manded that the sequence eventually meet every largeness test. Similarly,
the following definition demands that the sequence eventually meet every
closeness test.

Definition 2.7. The sequence (an) is said to converge to the number L
if for each number ε > 0 there is a natural number N such that |an−L| < ε
whenever n ≥ N .

The logical structure here is subtle: your give me the closeness challenge
“make |an − L| < ε” and I meet it by showing you that it will “eventually”
(n ≥ N) happen. Our first few examples involve minimal algebra.
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Proposition 2.8. For any real number c, the constant sequence (c)∞n=1
converges to c.

Proof. In the notation of Definition 2.7, our sequence is defined by
an = c for each n and L = c as well. Let ε > 0 be given. Take N = 1 (Any
N would do). Now suppose n ≥ N . Then |an − L| = |c − c| = 0 < ε as
desired. �

Example 2.9. Show that the sequence given by an =

{
n, n < 100,

5, n ≥ 100
converges to 5.

Proof. Given ε > 0, take N = 100. Then whenever n ≥ N , it follows
that |an − L| = |5− 5| = 0 < ε as desired. �

Proposition 2.10. The sequence
(
1
n

)∞
n=1

converges to 0.

Proof. Let ε > 0 be given.
[This paragraph is not part of the formal proof, but it illustrates how

one thinks ahead to find N . We want to guarantee | 1n − 0| < ε. But since n
is to be a positive integer, the absolute value is redundent. Thus we really
want 1

n < ε, which is equivalent to n > 1
ε .]

Returning to the formal proof, apply the Archimedean Principle 1.35 to
get a natural number N > 1

ε . Then n ≥ N forces the desired inequality∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
≤ 1

N
< ε.

�

Definition 2.11. A sequence which does not converge to any real num-
ber is said to diverge. If (an) does converge to L, we also say that L is the
limit of the sequence and write limn→∞ an = L.

As expected, any sequence like (
√
n) which diverges to infinity will di-

verge in the sense of 2.11 as well. But there are other ways for a sequence
to diverge. For example, ((−1)n) diverges because its terms jump back and
forth between 1 and −1, and thus never approach a fixed limit.

On the other hand, having the signs of the terms of a sequence alternate
does not automatically preclude convergence.

Example 2.12. The sequence
(
100(−1)n

n

)
converges to 0.

Proof. For every n we have,

(2.3) |an − 0| =
∣∣∣∣100(−1)n

n

∣∣∣∣ =
100

n
,

and we can argue as in Proposition 2.10. Indeed, given ε > 0, choose a
natural number N > 100

ε . Then assuming n ≥ N , we can continue the
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preceding display as

|an − 0| =
∣∣∣∣100(−1)n

n

∣∣∣∣ =
100

n
≤ 100

N
< ε.

�

In more algebraically complicated examples, one should concentrate on
the target quantity |an−L|, applying the triangle inequality when possible.

Example 2.13. Show that limn→∞
2n2+3n
n2+5

= 2

Outline. Begin by working on the target quantity:

(2.4)

∣∣∣∣2n2 + 3n

n2 + 5
− 2

∣∣∣∣ =
|3n− 10|
n2 + 5

≤ |3n− 10|
n2

≤ 3n

n2
+

10

n2
≤ 13

n

Once you justify each step in this computation, you can introduce ε and
continue as in the last proof. �

Here is a formal proof of the conclusion of Example 2.6. A little more
algebraic creativity is called for because the sign in the denominator is not
so cooperative.

Example 2.14. Show that limn→∞
3n

3n−10000 = 1

Proof. We begin by noting that 3n− 10000 > n when n > 5000. Thus
we have

(2.5)

∣∣∣∣ 3n

3n− 10000
− 1

∣∣∣∣ =

∣∣∣∣ 10000

3n− 10000

∣∣∣∣ < 10000

n
, whenever n > 5000.

Given ε > 0, we choose N to be an integer larger than the maximum of 5000
and 10000

ε . The reason for involving 5000 is to make Inequality 2.5 applicable.
Indeed, when n ≥ N , we can continue the preceding computation to get the
desired inequality:∣∣∣∣ 3n

3n− 10000
− 1

∣∣∣∣ < 10000

n
≤ 10000

N
< ε.

�

We conclude this section by exploiting the analogy between definitions
2.5 and 2.7 to develop a more systematic appproach to the preceding proofs.
While this development will in turn be superceded in the next section, it
provides a good opportunity to gain insight on the limit concept.

We write limn→∞ an = ∞ when the sequence (an) diverges to ∞. For
convenience, we also allow the first few terms of a sequence to be undefined.

The observation that reciprocals of large numbers are small provides a
useful generalization of Proposition 2.10.

Proposition 2.15. If limn→∞ an =∞ then limn→∞
1
an

= 0
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Proof. Let ε > 0 be given. By definition of “diverges to infinity”,
we can find a real number N so that an > 1

ε whenever n > N . By the
Archimedean prinicple, we can even assume N ∈ N. Now suppose n > N .
Then an >

1
ε implies | 1an − 0| = 1

an
< ε as desired. �

Next we solve an exercise from the last chapter.

Proposition 2.16. Let p be a non-constant monic polynomial. Then
limn→∞ p(n) =∞.

Proof. We argue inductively on the degree of p. Suppose first that p
has degree one. Thus p(x) = x + a for some a ∈ R. Now let a challenge
number M ∈ R be given and take N to be a natural number greater than
M − a.. Suppose n > N . Then an = n + a > M − a + a = M . This
establishes the desired result for all monic polynomials of degree one.

For the inductive step, assume the desired result holds for polynomials
of degree k and let p be a monic polynomial of degree k+1. By isolating the
constant term and factoring x out of the rest, we can write p(x) = xq(x)+a
for some monic polynomial q and constant a. Let a challenge number M > 0
be given. Since q has degree k, the inductive hypothesis provides a natural
number N such that q(n) > M + |a| whenever n > N . But then n > N
implies p(n) = nq(n) + a ≥ q(n) + a > M + |a|+ a ≥M , and the inductive
step is established.

An appeal to PMI completes the proof. �

Corollary 2.17. Let p and q be polynomials with q having larger degree

than p. Then limn→∞
p(n)
q(n) = 0.

Proof. Dividing both p and q by the leading coefficient of q if necessary,
we may as well asume q is monic. Let ε > 0 be given. By hypothesis, all
three polynomials q, q − p

ε , and q + p
ε are monic. Thus they all diverge to

∞ and in particular are eventually positive. Choose N ∈ N so that n > N
implies

q(n)− p(n)

ε
> 0 and q(n) +

p(n)

ε
> 0.

Algebraic manipulation then tells us that −ε < p(n)

q(n)
< ε whenever

n ≥ N , completing the proof. �

Corollary 2.18. Suppose p and q are polynomials of equal degree and

write L for the quotient of their leading coefficients. Then limn→∞
p(n)
q(n) = L.

Proof. Set r(x) = p(x)− Lq(x). Then for each n we have∣∣∣∣p(n)

q(n)
− L

∣∣∣∣ =

∣∣∣∣r(n)

q(n)

∣∣∣∣ .
Since the degree of q exceeds the degree of r, an appeal to previous corollary
completes the proof. �
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Note that all the examples in this section are special cases of the last
two corollaries.

3. Algebra of Limits

In calculus, you learned the definition of derivative and were probably
forced to evaluate a few derivatives directly from the definition. This was
necessary to understand the concept, but more efficient computational tools

are needed to differentiate functions like esin x

x2+1
. The situation is analogous for

convergence of sequences. While Examples 2.10ff and the related exercises
were “for your own good”, the time has come to develop better computa-
tional tools.

Proposition 2.19. Suppose the sequence (an) converges to to a real
number L > 0. Then there is a natural number N such that an > 0 for all
n ≥ N .

Proof. The difference between this situation and those in the preceding
section is that we are given the existence of a limit. Thus we don’t have to
show that something is true for every ε > 0; we know and can use that fact.
Moreover, there’s no requirement to use every ε; we can choose which one(s)
we find conveneint.

So take ε = L. By definition of convergence, there is a natural number
N such that n ≥ N implies |an − L| < ε. The latter inequality implies
−L < an − L which in turn implies an > 0. �

Definition 2.20. A sequence (an) is

bounded above if the set {an : n ∈ N} has an upper bound;
bounded below if the set {an : n ∈ N} has an lower bound;

bounded if it is simultaneously bounded above and below.

Proposition 2.21. Every convergent sequence is bounded.

Proof. Suppose (an) converges to L. Taking ε = 1 (any fixed ε would
do), we find a natural number N such that n ≥ N implies |an − L| < 1.
This means −1 < an − L < 1. Thus L − 1 < an < L + 1 for all n ≥ N . It
follows that max{a1, a2, . . . , aN−1, L + 1} provides an upper bound for the
sequence. A similar expression provides a lower bound for the sequence. �

As real-valued functions, sequences can be added, subtracted, and mul-
tiplied. Division can present a problem since we can’t divide by zero. In
order to minimize the inconvenience, we agree to broaden the definition of
sequence to allow functions whose domains take the form {n ∈ N : n ≥ N}
for some fixed natural number N .

Example 2.22. For each natural number n take an = 1, bn = n−2, and
cn = sin nπ

2 . We consider a
b to be a sequence with domain {n ∈ N : n ≥ 3};

the usual notations for this sequence are
(

1
n−2

)∞
n=3

and
(

1
n−2

)
n≥3

. On the
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other hand, since cn = 0 for all even n, we do not consider a
c as a sequence

at all.

Proposition 2.23. Suppose lim an = L.

(1) limKan = KL for each real number K.
(2) If L = 0, then lim anbn = 0 for every bounded sequence (bn).

Proof. (1) Here we are given one limit and must prove another. The
strategy in such situations is not to start with the given limit, but rather to
relate the target quantity for the unknown limit to the target quantity for
the known limit. In the present case we write

(2.6) |Kan −KL| = |K||an − L|
The idea is that we can control the left hand side of this equation by con-
trolling |an − L|, and this sets us up to use the known limit.

Now let ε > 0 be given. Since we know lim an = L, we can find a natural
number N so that n ≥ N implies |an − L| < ε

|K|+1 . (The “+1” is triviality

insurance in case K = 0.) Thus assuming n ≥ N , the preceding display can
be continued to yield |Kan−KL| = |K||an−L| ≤ |K| ε

|K|+1 < ε, as desired.

(2) Once again, we begin by relating the target quantities involved.

(2.7) |anbn − 0| = |bn||an − 0|
Next we apply the boundedness of (bn) to fix a positive number M such that
|bn| < M for all n. This allows us to continue the preceding display as

(2.8) |anbn − 0| = |bn||an − 0| ≤M |an − 0|
The rest of the argument is the same as for Part (1). Given ε > 0, choose
N so that n ≥ N =⇒ |an − 0| < ε

M . Thus n ≥ N =⇒ |anbn| < M ε
M = ε

as required. �

Example 2.24. Suppose (cn) is a sequence of positive numbers which

converges to 1. Prove that the reciprocal sequence
(

1
cn

)
converges to 1 as

well.

Proof. Note first that
∣∣∣ 1cn − 1

∣∣∣ =
∣∣∣ cn−1cn

∣∣∣. Choose N1 such that n ≥ N1

implies |cn− 1| < 1
2 and note that this in turn implies cn >

1
2 . Next, choose

N2 such that n ≥ N2 implies |cn − 1| < ε
2 . Now set N = max{N1, N2}.

Then, whenever n ≥ N , we have∣∣∣∣ 1

cn
− 1

∣∣∣∣ =

∣∣∣∣cn − 1

cn

∣∣∣∣ < 2|cn − 1| < ε,

as desired. �

Proposition 2.25. Suppose (an) and (bn) are convergent sequences.
Then

(1) lim(an + bn) = lim an + lim bn;
(2) lim anbn = lim an lim bn;
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(3) If lim bn 6= 0 then lim an
bn

= lim an
lim bn

.

Proof. Write lim an = L and lim bn = M .
For (1), given ε > 0, choose N large enough so that n ≥ N implies

both |an − L| < ε
2 and |bn −M | < ε

2 . Then, whenever n ≥ N , the triangle
inequality yields

|(an+bn)−(L+M)| = |(an−L)+(bn−M)| ≤ |(an−L|+|bn−M | <
ε

2
+
ε

2
= ε,

and (1) is established.
We have now done enough epsilontics to coast on our earlier work. For

(2), we write anbn = (an−L)bn+Lbn. By Part (1), we know lim(an−L) = 0
and Proposition 2.21 tells us the sequence (bn) is bounded. Thus Proposition
2.23 tells us that the sequences ((an − L)bn) and (Lbn) converge to 0 and
LM respectively. Thus the proof of (2) is completed by another appeal to
Part (1).

For (3), note that the sequence
(

1
M bn

)
converges to 1, whence Example

2.24 yields lim M
bn

= 1 as well. But then we can apply Part (2) to conclude

lim
an
bn

=
(

lim
an
M

)(
lim

M

bn

)
=

L

M
,

and Part (3) is established. �

Example 2.26. Evaluate lim 2n3

5n3−7n+9
.

Solution. Divide numerator and denominator by n3 and apply Propo-
sitions 2.8, 2.10, and 2.25 to conclude the sequence converges to 2

5 . �

Example 2.27. Explain why the sequence
(

2n4

5n3−7n+9

)
diverges.

Solution. If this sequence did converge, so would its quotient with the
sequence of the last example. This contradicts Proposition 2.21. �

4. Monotone Sequences

Definition 2.28. A sequence (an) is

(1) increasing if the an+1 ≥ an for each n ∈ N;
(2) decreasing if the an+1 ≤ an for each n ∈ N;
(3) monotone if it is either increasing or decreasing.

If the corresponding inequalities are always strict, the sequence is said to be
strictly increasing, strictly decreasing, strictly monotone, respectively.

Some authors use the terms “non–decreasing” and “non–increasing” in
the first two parts of Definition 2.28. This and related conventions, such as
whether 0 is considered a natural number, should be checked when consult-
ing a new text.

Theorem 2.29. Every bounded monotone sequence converges to a real
number.
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Proof. Suppose (an) is increasing and bounded. Take L to be the
least upper bound of the set {an : n ∈ N}. Let ε > 0 be given. Since L− ε
is not an upper bound of this set, there is an N ∈ N with aN > L − ε.
Applying monotonicity and the definition of upper bound, we conclude that
−ε < an − L < 0 whenever n ≥ N . Thus n ≥ N =⇒ |an − L| < ε and the
proof is complete for increasing sequences. The decreasing case is left for an
exercise. �

Although the last proof is short and (hopefully) easy to understand,
Theorem 2.29 should be considered a deep result because it depends on the
completeness of the real number system; bounded monotone sequences of
rational numbers do not always converge to rational numbers. While Theo-
rem 2.29 is often thought of a theoretical tool (showing limits exist without
finding them), the following simple observation turns it into a computa-
tional technique as well; it is a special case of Proposition 2.36 below and
implies that throwing away (or inserting or changing) the first few terms in
a sequence does not affect its convergence.

Lemma 2.30. If the sequence (an) converges then lim an = lim an+1.

Example 2.31. The sequence constructed in Example 2.3 can be shown
to be decreasing; clearly its terms are non–negative. Writing L for its limit,

Lemma 2.30 yields L = L2+2
2L . This means L =

√
2.

Proposition 2.32. Let a ∈ R.

(1) If a = 1, then lim an = 1.
(2) If |a| < 1, then lim an = 0.
(3) If a = −1, then the sequence (an) diverges.
(4) If |a| > 1, then the sequence (an) diverges.

Proof. (1) is obvious, so we may as well assume a 6= 1. Lemma 2.30
tells us that if lim an := L exists at all, then L = lim an+1 = aL. Since
a 6= 1, this forces L = 0. Applying the definition of convergence with ε = 1,
there would have to exist a natural number N for which |aN − 0| < 1 and
that can only happen when |a| < 1. This establishes (3) and (4).

When 0 ≤ |a| < 1, an inductive argument tells us the sequence (|a|n) is
decreasing. Since it is also bounded, Theorem 2.29 guarantees that (|a|n)
converges, and the preceding paragraph guarantees that its limit must be 0.
The proof of (2) is completed by noting that |an − 0| = ||a|n − 0| for all a
and n, so that lim |a|n = 0 implies lim an = 0 as well. �

5. Subsequences

In a nutshell, subsequences are composites of sequences. Your reaction
to the topic may mirror your experience with composites of functions in
calculus: the chain rule takes a little getting used to, but once understood,
it becomes the most powerful differentiation technique. In the interests of
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clarity, we revert to the usual functional notation in this section, writing
a(n) instead of an.

Definition 2.33. Suppose a is a sequence and b is a strictly increasing
sequence of natural numbers. Then the composite sequence a ◦ b is said to
be a subsequence of a.

Example 2.34. Think of the sequence a as a list. The subsequence
corresponding to b(n) = n+ 1 is constructed by knocking off the first entry
on the original list and renumbering the rest. Similarly the subsequence built
from b(n) = 2n is constructed by alternately striking and keeping entries on
the original list.

Lemma 2.35. Let b be a strictly increasing sequence of natural numbers.
Then b(n) ≥ n for each n.

Hint. Argue inductively. �

Proposition 2.36. All subsequences of a convergent sequence converge
to the same limit.

Proof. Suppose lim a(n) = L and b is a strictly increasing sequence
of natural numbers. Given ε > 0, find N so that |a(n) − L| < ε whenever
n ≥ N . Thus the lemma tells us |a(b(n)) − L| < ε whenever n ≥ N as
desired. �

Example 2.37. Proposition 2.36 can be used in a negative way. For
example, one way to establish the divergence of the sequence ((−1)n) is to
note that it has subsequences converging to different values.

Proposition 2.38. Every sequence has a monotone subsequence.

Proof. Let a be a sequence.
Call a natural number n peak if a(m) ≤ a(n) for all m ≥ n. We divide

the rest of the proof into two cases depending on how many peak numbers
there are. In both cases, we will define a strictly increasing sequence b
inductively.

Suppose first that there is a largest peak number (or none at all). Take
b(1) larger than all the peak numbers. Assuming b(n) has been defined, the
non–peakness of b(n) allows us to find a natural number b(n+1) > b(n) with
a(b(n+ 1)) > a(b(n)). The resulting subsequence a ◦ b is strictly increasing.

It remains to consider the case when there is no largest peak number.
In this case, take b(1) to be any peak number and assuming b(n) has been
defined, take b(n+1) to be any peak number larger than b(n). The resulting
subsequence a ◦ b is decreasing. �

Theorem 2.39. Every bounded sequence has a subsequence which con-
verges to a real number.

Proof. Combine Theorem 2.29 and Proposition 2.38. �
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It is time to return to the traditional subscript notation for sequences.
The standard usage for a subsequence of (an)∞n=1 is (ank

)∞k=1. The subtlety
here is that while n stands for a natural number in the original sequence,
it actually denotes a strictly increasing sequence of natural numbers in the
subsequence.

6. Cauchy Sequences

Intuitively, a Cauchy sequence is one whose terms are eventually close
to each other.

Definition 2.40. A sequence (an) is Cauchy if for each ε > 0 there is
a natural number N such that |am − an| < ε for all natural numbers m and
n greater than or equal to N .

Proposition 2.41. (1) Every convergent sequence is Cauchy.
(2) Every Cauchy sequence is bounded.
(3) If a Cauchy sequence has a convergent subsequence, then the whole

sequence is convergent.
(4) Every Cauchy sequence of real numbers has a real limit.

Proof. For (1), use an “ ε2” argument based on the triangle inequality:

|am − an| = |(am − L) + (L− an)| ≤ |am − L|+ |an − L|.
For (2), apply the definition with ε = 1.
For (3), we revert to honest function notation. We are given a Cauchy

sequence a and a strictly increasing sequence b so that (a(b(n))) converges
to some number L. We must show that lim a(n) = L as well. As usual, our
hook is the triangle inequality:

|a(n)− L| ≤ |a(n)− a(b(n))|+ |a(b(n))− L|.
Given ε > 0, we apply the two hypotheses to find a natural number N so
that n,m ≥ N simultaneously imply |a(n)−a(m)| < ε

2 and |a(b(n))−L| < ε
2 .

Now if n ≥ N , then b(n) ≥ N as well and thus the last display yields

|a(n)− L| < ε

2
+
ε

2
= ε,

as desired.
For (4), use Proposition 2.40 to get a convergent subsequence, and then

apply Part (3). �

Cauchy sequences, like subsequences, can be used in a negative way to
establish divergence of a sequence. For example, successive terms in ((−1)n)
differ by 2 in absolute value, so this sequence is not Cauchy and hence
diverges by Proposition 2.41(1). Positive (and more serious) applications of
the Cauchy concept will appear in later chapters.

The main emphasis in this course is on real–valued sequences. It should
be mentioned however that the definitions of this chapter make sense in
arbitrary ordered fields. This is not the case for all the results of the chapter
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because we have made use of the least upper bound property. This situation
is summarized by the following result which will be explored in the exercises;
it will not be needed in the sequel.

Proposition 2.42. The following are equivalent for an ordered field F .

(1) Every non–empty subset of F which has an upper bound has a least
upper bound.

(2) Every bounded monotone sequence in F is convergent.
(3) Every Cauchy sequence in F is convergent.

7. Applications of Calculus

Up to this point, our study of convergence has been rather rigorous and
self–contained. It is possible to use what we’ve learned so far to build a
correspondingly rigorous foundation for calculus. We will do a little of this
in Chapter 4, but you will have to wait for MATH 4100 and MATH 4500 for
fuller treatments; the former concentrates on a logical development of the
concepts involved, while the latter is concerned with “practical” issues like
minimizing round-off error and “speeding up” convergence.

For the moment, we will adopt a more relaxed attitude, taking what
you’ve learned in calculus for granted. The key observation is that each
function f : R → R implicitly defines a sequence (f(n)) so that evaluation
of limx→∞ f(x) automatically determines the behavior of the sequence. The
following version of L’Hôpital’s rule is especially useful.

Theorem 2.43 (L’Hôpital). Suppose f and g are differentiable functions
satisfying

lim
x→∞

f(x) = lim
x→∞

g(x) =∞ or lim
x→∞

f(x) = lim
x→∞

g(x) = 0.

Then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
as long as the latter limit exists or is infinite.

Example 2.44. Evaluate limn→∞
lnn
n .

Solution. Technically we should go through the following steps.

(1) Introduce functions f(x) = lnx and g(x) = x.
(2) Note that limx→∞ f(x) = limx→∞ g(x) =∞.

(3) Evaluate limx→∞
f ′(x)
g′(x) = limx→∞

1
x = 0.

(4) Apply Theorem 2.43 to conclude limx→∞
lnx
x = 0.

(5) Conclude that the sequence
(
lnn
n

)
converges to 0.

In practice, it is acceptable to abbreviate the process, merely writing

lim
n→∞

lnn

n
= lim

n→∞

1

n
= 0.

As you may remember from calculus, it is however critical to check (2)— at
least mentally—since failure to do so can lead to incorrect results. �
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Example 2.45. Evaluate limn→∞ n
√
n.

Solution. A complete write–up makes the following points.

(1) Introduce f(x) = x
1
x

(2) Note that ln f(x) = lnx
x .

(3) Apply the previous example to conclude that limx→∞ ln f(x) = 0.
(4) Apply the continuity of the inverse of the logarithm function (better

known as the exponential function) to conclude that limx→∞ f(x) =
e0 = 1.

(5) Conclude that limn→∞ n
√
n = 1.

For an abbreviated presentation, write

lim
n→∞

ln n
√
n = lim

n→∞

lnn

n
= lim

n→∞

1

n
= 0

so lim
n→∞

n
√
n = e0 = 1.

�

Exercises

In the following exercises, a = (an) , b = (bn), and c = (cn) stand for
sequences of real numbers. Formal proofs are not required in problems
requesting examples or computations.

Newton’s Method

Problem 2.1. Draw a graph illustrating the construction of a2 from a1
via Newton’s method.

Problem 2.2. Derive Equation 2.1.

Problem 2.3. Derive Equation 2.2.

Problem 2.4. Graph the function f(x) = x2 − 2 of Example 2.3, draw
the line tangent to the curve at the point (2, f(2)), and label the terms
a1 = 2 and a2 = 3

2 on the x–axis.

Problem 2.5. Compute the first five terms of the sequence from Exam-
ple 2.3, and compare their decimal expansions (to five decimal places) with
the decimal expansion of

√
2.

Problem 2.6. There are three ways Newton’s method can fail to gener-
ate a3: a2 can lie outside the domain of the function f , or f ′(a2) can be zero,
or f can fail to be differentiable at a2. Illustrate each of these possibilities
graphically.

Definition of Limit

Problem 2.7. Prove that | 5
n+3 | <

1
10 whenever n ≥ 48.
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Problem 2.8. Find a natural number N so that | 5
n+3 | <

1
100 whenever

n ≥ N , and prove that it works.

Problem 2.9. Use Definition 2.7 to prove that the sequence
(
10
n

)
con-

verges to 0.

Problem 2.10. Use Definition 2.7 to prove that the sequence
(

n
n+3

)
converges to 1.

Problem 2.11. Define an =

{
500, n < 1000,
2n
n+3 , n ≥ 1000

. Use Definition 2.7

to prove that this sequence converges to 2.

Problem 2.12. Solve the inequality 3n − 5 > n. Then use Definition

2.7 to prove that the sequence
(
7n+5
3n−5

)
convergess to 7

3 .

Problem 2.13. Prove that the constant sequence (0) does not converge
to any number other than zero.

Problem 2.14. In each part, find a natural number N so that n ≥ N
implies |an−L| < 0.001. Formal proofs are not required, but your choice of
N should be economical, e.g. don’t take N = 5 if N = 4 will work.

(1) an = 1
n

(2) an = 3
n−170

(3) an = n
n+2

(4) an = n2−4
n2−3n+2

(5) an = 10(−1)n
n

Problem 2.15. Write out formal justifications of your answers to the
preceding problem.

Problem 2.16. Use Definition 2.7 to prove that the sequences in Prob-
lem 2.14 do indeed converge.

Problem 2.17. Supply the missing details in the discusssions of Exam-
ples 2.13 and2.14.

Problem 2.18. Give an exmple to show that the converse of Proposition
2.15 is false. Show however that both 2.15 are true when an is replaced by
|an|.

Algebra of Limits

Problem 2.19. Suppose (an) converges to the real number L.

(1) Prove that if L < 0, then there is some natural number N such
that an < 0 for all n ≥ N .

(2) Prove that if an ≥ 0 for all n, then L ≥ 0.
(3) Give an example to show that an > 0 for all n does not imply

L > 0.
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Problem 2.20. Find an expression for the lower bound in the proof of
Proposition 2.21.

Problem 2.21. Find upper and lower bounds for the sequences of Prob-
lem 2.14.

Problem 2.22. Give an example of a sequence which is bounded above,
but not bounded below.

Problem 2.23. Give an example of a bounded sequence which is diver-
gent.

Problem 2.24. Prove that the sequence (an) is bounded if and only if
the sequence (|an|) is bounded above.

Problem 2.25. Find the domain of the sequence a
b if an = n2− 9n+ 20

and bn = n2 − 6n+ 8 for all n.

Problem 2.26. Prove that no sequence can have two different limits.
There are many ways to do this including directly from Definition 2.7, by
reduction to Problem 2.13, or via Problem 2.19.

Problem 2.27. Give an example of two divergent sequences whose sum
is convergent.

Problem 2.28. Prove that if (an) converges and (bn) diverges, then the
sequence (an + bn) diverges.

Problem 2.29. Give examples to show that each of the following can
happen when lim an = lim bn = 0.

(1)
(
an
bn

)
converges to 0.

(2)
(
an
bn

)
converges to 17.

(3)
(
an
bn

)
is unbounded.

(4)
(
an
bn

)
is bounded but divergent.

(5)
(
an
bn

)
is not considered a sequence.

Problem 2.30. Use the methods of Examples 2.26 and 2.27 to evaluate
the following limits:

(1) lim 2n2−3n+5
7n2+4n−12 .

(2) lim 2n+5
7n2+4n−12 .

(3) lim 2n3−3n+5
7n2+4n−12 .

Problem 2.31. Let p and q be polynomials. Generalize Examples 2.26

and 2.27 by determining when the sequence
(
p(n)
q(n)

)
converges.

Monotone Sequences
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Problem 2.32. Prove that every increasing sequence is bounded below.

Problem 2.33. Give an example of a sequence which is not monotone.

Problem 2.34. Prove that the sum of two increasing sequences is in-
creasing.

Problem 2.35. Give an example of two monotone sequences whose sum
is not monotone.

Problem 2.36. Prove Lemma 2.30.

Problem 2.37. Define a sequence recursively by a1 = 3 and an+1 =
an+7

2 . Prove that this sequence converges and find its limit.

Problem 2.38. Prove that the sequence of Example 2.3 converges to√
2:

(1) Prove by induction that an > 0 for all n.
(2) Prove by induction that a2n − 2 > 0 for all n.
(3) Divide both sides of the last inequality by 2an to prove that an+1 ≤

an for all n.
(4) Apply Theorem 2.29 and Lemma 2.30.

Problem 2.39. Use Newton’s method (Example 2.2) to construct a
sequence of rational numbers which converges to

√
3 and prove that it works.

Subsequences

Problem 2.40. Take a(n) = (−1)nn
n+5 . For each of the following sequences

b, find a formula for the subsequence a◦ b and list the first five terms of that
subsequence.

(1) b(n) = n.
(2) b(n) = n+ 1.
(3) b(n) = 2n.
(4) b(n) = n2.
(5) b(n) = 2n.

Problem 2.41. Prove Lemma 2.35.

Problem 2.42. Fill in the details of Example 2.37.

Problem 2.43. Find the peak numbers for the sequence an = (−1)n
n and

construct two monotone subsequences of this sequence.

Problem 2.44. Give an example of an unbounded sequence which has
a convergent subsequence.

Cauchy Sequences

Problem 2.45. Fill in the details of the proofs of Parts (2) and (3) of
Proposition 2.41.
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Problem 2.46. Prove that the sum of two Cauchy sequences is again
Cauchy.

Problem 2.47. Determine which results from this chapter are valid in
the field of rational numbers. No proofs are required, but you should give
counterexamples whenever appropriate.

Applications of Calculus

Problem 2.48. Give an example of a misuse of L’Hôpital’s rule which
leads to an incorrect result.

Problem 2.49. Suppose an ≤ bn ≤ cn for all n and lim an = lim cn = L.
Prove that lim bn = L as well. This is called the “squeeze principle”. (The
general result can be reduced to the case an ≡ 0.)

Problem 2.50. Prove the following. The argument for Part (1) can be
based on Probem 1.28 or on Problem 2.19

(1) If lim an = L then lim |an| = |L|.
(2) If lim |an| = 0 then lim an = 0.
(3) If (an) converges to a non-zero number, then ((−1)nan) diverges.

Problem 2.51. Evaluate the following limits. You may use anything
you know.

(1) lim 2n2−3n+5
7n2+4n−12

(2) lim(1.1)n

(3) lim(0.9)n

(4) lim (lnn)2

n

(5) lim en

n2

(6) lim n2+1
n lnn

(7) lim
√
n2+1
n

(8) lim 2n

3n

(9) lim ln(lnn)
n lnn

(10) lim arctan 2n
arctan 3n

(11) lim(
√
n+ 1−

√
n)

(12) lim(
√
n2 + n−

√
n2 − n)

(13) lim(1 + 1
n)n

(14) lim(lnn)
1
n

(15) lim sinn
n

(16) limn sin 1
n

(17) lim (−1)n sinn
n
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(18) lim(−1)nn sin 1
n



CHAPTER 3

Series

It is occasionally useful to allow sequences to have negative indices.
Accordingly, we extend the definition of sequence to include any real–valued
function whose domain takes the form {n ∈ Z : n ≥ N} for some integer N .

1. Introduction

Definition 3.1. Let (an)n≥N be a sequence of real numbers. Define a

new sequence (sn)n≥N inductively by setting sN = aN and sn+1 = sn+an+1

for n ≥ N . We call sn the n’th partial sum of the original sequence; it is
also denoted by

∑n
i=N ai.

Example 3.2. (1) Take an = n. The first three partial sums of this
sequence are given by s1 = 1, s2 = 1+2 = 3, and s3 = 1+2+3 = 6.

In general, sn = 1+2+ · · ·+n = n(n+1)
2 as we saw in Exercise 1.53.

(2) Take an = 1
n −

1
n+1 . Then s1 = 1− 1

2 = 1
2 ,

s2 = (1− 1

2
) + (

1

2
− 1

3
) = 1− 1

3
=

2

3
, and in general

sn = (1− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n
− 1

n+ 1
) = 1− 1

n+ 1
=

n

n+ 1
.

Note that the telescoping nature of these computations would have
been less clear if we had “simplified” the original formula for an. In
fact, if we had been given an = 1

n(n+1) , we would have been better

off using partial fractions to “discover” the original formula.
(3) Take an = 1

n(n−1) . The domain of this sequence is n ≥ 2. Thus s1

is not defined for this sequence. We have s2 = 1
2 , s3 = 1

2 + 1
6 = 2

3 ,

and s4 = 2
3 + 1

12 = 3
4 . An inductive argument can be used to show

that sn = n−1
n for each n ≥ 2.

Definition 3.3. A sequence (an)n≥N is said to be summable if the

corresponding sequence (sn)n≥N of partial sums is convergent. In this case,

we write
∑∞

i=N ai for limn→∞ sn; this number is called the sum of the original
sequence (an)n≥N .

Example 3.4. The constant sequence (1) is not summable since the
corresponding sequence (n)∞n=1 of partial sums does not have a (finite) limit.

45
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On the other hand, the sequence
(

1
n(n+1)

)
of Example 3.2(2) is summa-

ble and we have
∑∞

n=1
1

n(n+1) = limn→∞
n
n+1 = 1.

It should be pointed out that the letters used for indices in sequences

are “dummy variables” and can be changed at will. Thus
(

1
n(n−1)

)
n≥2

and(
1

i(i−1)

)
i≥2

denote the same sequence, both
∑10

n=2
1

n(n−1) and
∑10

i=2
1

i(i−1)

stand for the tenth partial sum of this sequence, and both
∑∞

n=2
1

n(n−1) and∑∞
i=2

1
i(i−1) denote the sum of this sequence. Similarly, i can be replaced by

any letter except n in the expression
∑n

i=2
1

i(i−1) .

Proposition 3.5. If the sequence (an) is summable, then lim an = 0.

Proof. Write S for the sum of the sequence. Applying Lemma 2.30,
we have lim sn = lim sn−1 = S. Since an = sn−sn−1 for all sufficiently large
n, the algebra of limits yields lim an = S − S = 0. �

Proposition 3.5 is a powerful tool for showing sequences are not summa-
ble. Its converse however is false; Parts 4) and 5) of the next example show
that Proposition 3.5 it can never be used to show a sequence is summable.

Example 3.6. (1) The sequence
(

n
n+1

)
is not summable since its

terms approach a number other than zero.
(2) The sequence ((−1)n) is not summable because its terms do not

approach any number at all.

(3) Proposition 3.5 does not help us decide whether
(

1
n(n+1)

)
is sum-

mable; we happen to know that this sequence is summable because
of our work in Example 3.4.

(4) Proposition 3.5 does not help us decide whether the sequence
(
1
n

)
is summable; we will soon see that this sequence is not summable.

(5) Proposition 3.5 does not help us decide whether
(√
n−
√
n− 1

)
summable. Although we have lim

√
n−
√
n− 1 = lim 1√

n+
√
n−1 = 0,

the n’th partial sum of this sequence telescopes to
√
n and hence

this sequence is not summable.

The last part of the preceding example illustrates a sneaky method for
constructing pathological examples: start with a formula for partial sums
and then subtract to get the “original” sequence. In the last example, this
means starting with the formula sn =

√
n, whence a1 = s1 = 1 while

an = sn − sn−1 =
√
n−
√
n− 1 for n > 1.

Definition 3.7. An (infinite) series is a pair of sequences (an)n≥N and

(sn)n≥N where the latter sequence is the sequence of partial sums of the

former sequence. It is denoted by
∑∞

n=N an. We call an the n’th term of
the series and we call sn the n’th partial sum of the series.
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Definition 3.8. The series
∑∞

n=N an converges if the sequence (an)n≥N
is summable. In this case, the sum S of the sequence (an)n≥N is referred to
as the sum of the series and we say that the series converges to S; we also
write S =

∑∞
n=N an. A series which does not converge is said to diverge.

This is the traditional terminology. The most important thing to keep
in mind is that convergence of a series refers to convergence of its sequence
of partial sums. The notation

∑∞
n=N an is ambiguous; one must consider the

context to decide whether it stands for a series (i.e., a pair of sequences) or
a number (i.e., the sum of a convergent series). We recast our earlier results
in the new terminology.

Proposition 3.9 (n’th Term Test). In order for a series to converge,
it is necessary that its terms approach zero.

Proof. This is Proposition 3.5. �

Example 3.10. (1) The series
∑∞

n=1
1

n(n+1) converges to 1.

(2) The series
∑

(−1)n diverges.
(3) The series

∑√
n−
√
n− 1 diverges.

Proof. See Example 3.6. �

Definition 3.11. A series of the form
∑∞

n=0 a
n where a is a fixed real

number is called a geometric series.

Proposition 3.12. The geometric series
∑∞

n=0 a
n converges to 1

1−a if

|a| < 1. If |a| ≥ 1, the series diverges.

Proof. We may as well assume a 6= 1. To derive a general formula for
sn, begin by writing

sn =
n∑
i=0

ai = 1 + a+ a2 + · · ·+ an.

Next multiply both sides of this equation by a to obtain

asn =
n∑
i=0

ai+1 = a+ a2 + a3 + · · ·+ an+1.

Taking the difference between the last two equations yields (1− a)sn =

1 − an+1. Dividing by 1 − a yields the desired result sn = 1−an+1

1−a for each
n ≥ 0; this formula can also be established by induction. The algebra of
limits shows that the sequence (sn) converges to 1

1−a if |a| < 1 but diverges
otherwise. �

Proposition 3.13. Suppose the series
∑∞

n=1 an and
∑∞

n=1 bn converge
to A and B respectively and K is a real number.

(1) The series
∑∞

n=1(an + bn) converges to A+B.
(2) The series

∑∞
n=1Kan converges to KA.
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Proof. Write (rn), (sn), and (tn) for the sequences of partial sums
of the series

∑∞
n=1 an,

∑∞
n=1 bn, and

∑∞
n=1(an + bn) respectively. Then

tn = rn+sn for each n whence lim tn = A+B by the algebra of limits. This
establishes (1); the proof of (2) is similar. �

Proposition 3.14. Omitting or changing the first few terms of a series
does not affect its convergence.

Proof. To see that omitting the first N terms of
∑∞

n=1 an does not
affect convergence, set bn = an+N and write sn and tn for the n’th partial
sums of the series

∑∞
n=1 an and

∑∞
n=1 bn respectively. Then tn = sn+N −sN

for each n, whence convergence of the partial sum sequence (sn) implies
convergence of the sequence (tn) and vice versa.

Changing the first few terms in a sequence can be done in two stages
— omit and insert. By the preceding paragraph, neither of these processes
affects convergence, so this observation completes the proof. �

2. Comparison

As you might imagine, it can be difficult to evaluate sums of series. The
next few results develop Theorem 2.29 into a tool for testing convergence of
many series whose sums can not be explicitly evaluated.

Proposition 3.15. A series with non–negative terms is convergent if
and only if its sequence of partial sums is bounded.

Proof. The non–negativity of the terms means the corresponding se-
quence (sn) of partial sums is increasing. Proposition 2.21 and Theorem
2.29 tell us that this sequence of partial sums converges if and only if it is
bounded. �

Example 3.16. The harmonic series
∑∞

n=1
1
n is divergent.

Proof. An inductive argument shows that the corresponding sequence
(sn) satisfies s2n ≥ n+2

2 for each n. The unboundedness of the latter sequence
shows that the series diverges. �

Alternate proof. Since the function f(x) = 1
x is non–increasing, we

have
1

n
≤
∫ n

n−1

1

x
dx = log n− log(n− 1)

for each n ≥ 2. Adding these inequalities inductively, we find that sn ≥ log n
for each n ∈ N. This again yields the unboundedness of the sequence (sn)
of partial sums and hence the divergence of the series

∑ 1
n . �

Proposition 3.17 (Comparison Test). Suppose
∑∞

n=1 an and
∑∞

n=1 bn
are series with 0 ≤ an ≤ bn for all sufficiently large n.

(1) If
∑∞

n=1 bn converges, then
∑∞

n=1 an also converges.
(2) If

∑∞
n=1 an diverges, then

∑∞
n=1 bn also diverges.
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Proof. Since changing finitely many terms in a series does not affect its
convergence, we may as well assume 0 ≤ an ≤ bn for all n. Write (sn) and
(tn) for the sequences of partial sums of the series

∑∞
n=1 an and

∑∞
n=1 bn

respectively. An inductive argument shows that sn ≤ tn for each n. For
(1), argue that convergence of

∑∞
n=1 bn implies boundedness of the sequence

(tn), which implies boundedness of the sequence (sn), which in turn yields
convergence of the series

∑∞
n=1 an. (2) is the contrapositive of (1). �

Example 3.18. The series
∑∞

n=1
1
n2 converges.

Proof. For each n, take an = 1
n2 and bn = 2

n(n+1) . We have 0 ≤ an ≤ bn
for each n, and

∑∞
n=1 bn converges by Example 3.4. Thus

∑∞
n=1 an converges

by comparison. �

There are two subtleties involved in applying the comparison test. First,
one must choose an appropriate auxiliary series, and then one must prove a
string of inequalities. The following variation of the test often simplifies the
process.

Proposition 3.19 (Ratio-Comparison Test). Suppose
∑∞

n=1 an and∑∞
n=1 bn are series with non–negative terms.

(1) If
∑∞

n=1 bn converges, and the sequence
(
an
bn

)
has a finite limit,

then the series
∑∞

n=1 an also converges.

(2) If
∑∞

n=1 bn diverges, and the sequence
(
an
bn

)
either has a non–zero

limit or diverges to ∞, then the series
∑∞

n=1 an also diverges.
(3) If lim an

bn
is a non-zero finite number, then the two series

∑∞
n=1 an

and
∑∞

n=1 bn either both converge or both diverge.

Proof. For (1), suppose lim an
bn

= L. For all sufficiently large n, we

have an
bn
≤ L + 1 whence 0 ≤ an ≤ (L + 1)bn. The comparison test thus

yields the convergence of
∑∞

n=1 an.
(2) and (3) can be established by similar arguments or by applying (1)

with the roles of an and bn reversed. �

Part (3) of the previous proposition is easiest to apply since you can
just “take the limit and ask questions afterwards”. As for the choice of the
auxiliary series

∑∞
n=1 bn, we basically have three choices at this point:

(1)
∑∞

n=1
1
n (harmonic series, diverges),

(2)
∑∞

n=1
1
n2 (Example 3.18, converges), and

(3)
∑∞

n=1 c
n (geometric series, converges for 0 ≤ c < 1 and diverges

for c ≥ 1).

Example 3.20. Determine which of the following series
∑∞

n=1 an con-
verge.

(1) an = 1
3n+5 ,
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(2) an = n
3n+5 ,

(3) an = n2−3n+5
n4+7n+2

(4) an = n2−3n+5
n5+7n+2

(5) an = 1
ln(n+2) ,

(6) an = n
4n .

Solution. (1) Take bn = 1
n . Then lim an

bn
= 1

3 so
∑
an diverges.

(2) You could use the same comparison as in (1) but it is easier to
obtain divergence via the n’th term test. It is always a good idea
to check the n’th term test before getting involved with any fancier
tests.

(3) Obtain convergence by comparing with
∑ 1

n2 .

(4) Obtain convergence by comparing with
∑ 1

n2 .

(5) Obtain divergence by comparing with
∑ 1

n .

(6) Obtain convergence by comparing with
∑ 1

2n . Indeed,

lim
an
bn

= lim
n2n

4n
= lim

n

2n
= lim

1

(ln 2)(2n)
= 0

by l’Hôpital’s rule. Note how sneaky this is: comparison with
∑ 1

4n

goes the wrong way to give any useful information, so we use the
more delicate comparison to overwhelm the offending factor of n.

�

You should do Exercise 17 now, before learning more convergence tests;
this will provide practice with the ratio-comparison test in a distraction–free
setting.

3. Justification of Decimal Expansions

We take a short break in our development of convergence tests to fulfill
the promise made in Section 1.5.

Definition 3.21. 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are referred to as digits.

(1) A decimal is an infinite series
∑∞

n=N dn10−n where N ≤ 1 is an
integer, and (dn)n≥N is a sequence of digits. We denote this series
by dN · · · d0.d1d2 · · · .

(2) As usual, we write d = dN · · · d0.d1d2 · · · to signify that the se-
ries of (1) converges to the real number d. In such a case, we
call dN · · · d0.d1d2 · · · a decimal expansion of d and we also call
−dN · · · d0.d1d2 · · · :=

∑∞
n=N −dn10−n a decimal expansion of −d.

Proposition 3.22. Every decimal converges to a real number.

Proof. Let (dn)n≥N be a sequence of digits. For each n ∈ N, we have

0 ≤ dn10−n ≤ 9(10−n). Now
∑∞

n=N 9(10−n) is a convergent geometric series,
whence

∑∞
n=N dn10−n converges by the comparison test. �
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The following simple observation makes for more readable proofs.

Lemma 3.23. Shifting the decimal point k places to the right multiplies
the number to which a decimal converges by a factor of 10k.

Proof. This is a special case of Proposition 3.13.2. �

Proposition 3.24. Every real number has a decimal expansion.

Proof. We use the notation byc to denote the greatest integer in the
real number y.

Fix a real number x ≥ 0. In view of the preceding lemma, we may
as well assume 0 < x < 1. Set d0 = s0 = 0. Proceeding recursively,
define dn+1 = b10n+1(x− sn)c and sn+1 = sn + dn+110−(n+1). An inductive
argument shows that 0 ≤ x − sn < 10−n for each n, whence the series∑∞

n=N dn10−n does indeed converge to x. �

Proposition 3.25. Let xN · · ·x0.x1x2x3 · · · and yN · · · y0.y1y2y3 · · · be
decimal expansions of non-negative real numbers x, y respectively. Suppose
there is an integer K such that xK < yK , while xi = yi for all i < K. Then
x ≤ y. In order that x = y it is necessary and sufficient that

(1) yK = 1 + xK ,
(2) xi = 9 for all i > K, and
(3) yi = 0 for all i > K.

Proof. In view of Lemma 3.22, we may as well assume K = 0. There
is also no loss of generality in assuming bxc = 0, in which case we have

x =
∞∑
i=1

xi
10i
≤
∞∑
i=1

9

10i
= 1 ≤ byc+

∞∑
i=1

0

10i
≤ byc+

∞∑
i=1

yi
10i

= y.

Thus x = y precisely when equality holds throughout this display. �

Corollary 3.26. Every real number has a unique decimal expansion
which does not end in all 9’s.

This completes the program outlined in Section 1.5. The proof of one
additional fact will be left for the exercises.

Definition 3.27. A decimal representation dN · · · d0.d1d2 · · · is termi-
nating if di = 0 for all sufficiently large i ∈ N; it is repeating if there is a
p ∈ N satisfying di+p = di for all sufficiently large i ∈ N.

Proposition 3.28. All decimal representations of rational numbers are
repeating and every real number which has a repeating decimal representation
must be rational.
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4. Ratio Test

We return to our general discussion of convergence tests. The next test
is especially convenient because no auxiliary series is needed to apply it.

Proposition 3.29 (Ratio Test). Suppose
∑∞

n=1 an is a series with pos-
itive terms and lim an+1

an
= L exists as a finite number or is infinite.

(1) If L < 1, then the series converges.
(2) If L > 1, then the series diverges.

Proof. (1) Fix a real number r strictly between L and 1. Since we
know lim an+1

an
< r, we have an+1 ≤ ran for all sufficiently large n. Since

omitting the first few terms of a series does not affect convergence, we may
as well assume an+1 ≤ ran for all n. But then an induction argument shows
yields an ≤ a1rn−1 for each n and hence

∑
an converges by comparison with

the geometric series
∑
a1r

n−1.
While (2) also follows by comparison with an appropriate geometric

series, it is easier to note that an+1 > an for sufficiently large n whence
divergence follows by the n’th term test. �

Example 3.30. (1) The ratio test shows that
∑ n

4n converges be-

cause lim an+1

an
= lim n+1

4n = 1
4 . Note that this approach is easier

than that of Example 3.20(6). It is also useful to note that the
n’th term test can be used in a positive way here to conclude that
lim n

4n = 0. Sometimes the easiest way to show that a sequence
converges to zero is to show that it is summable!

(2) The ratio test tells us that
∑ 10n

n! converges because of the compu-

tation lim an+1

an
= lim 10

n+1 = 0.

(3) The ratio test tells us that
∑ 2n

n diverges.
(4) The ratio test gives no information concerning either of the series∑ 1

n or
∑ 1

n2 since lim an+1

an
= 1 in both cases.

(5)

Set an =

{
1
2 , for n odd
1
3 , for n even.

Then
an+1

an
=

{
3
2 , for n odd
2
3 , for n even

so lim an+1

an
does not exist. Thus the ratio test gives no information

concerning
∑
an; it is easily seen to diverge, however, by the n’th

term test.

5. Integral Test

So far, our applications of the comparison tests have been limited by our
poor stock of auxiliary series. For example, comparisons between

∑ 1
n
√
n
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with the known series
∑ 1

n and
∑ 1

n2 both go the wrong way to give any
useful information. The integral test remedies this situation.

Suppose f is a continuous function mapping R+ into itself. Then the

definite integral F (b) =
∫ b
1 f(x)dx exists for each positive number b. In

fact, F is a non–decreasing function of b. In view of the least upper bound
axiom, the limit limb→∞ F (b) exists if and only if F is bounded. If this is the
case, we set

∫∞
1 f = limb→∞ F (b) and say that the improper integral

∫∞
1 f

converges; otherwise, we write
∫∞
1 f =∞ and say that the improper integral∫∞

1 f diverges. The alternate proof given in Example 3.16 is a special case
of the following argument.

Proposition 3.31 (Integral Test). Let f : R+ → R+ be continuous
and non–increasing. Then the series

∑∞
n=1 f(n) converges if and only if the

improper integral
∫∞
1 f converges.

Proof. Write sn for the n’th partial sum of the series. Because f is

non–increasing, we have f(i+ 1) ≤
∫ i+1
i f ≤ f(i) for each natural number i.

Adding these inequalities for i = 1 · · ·n, we obtain sn+1−s1 ≤
∫ n+1
1 f ≤ sn.

This means boundedness of the sequence of partial sums is equivalent to
boundedness of F so the result follows from Theorem 2.29. �

Example 3.32. (1) The function f(x) = 1
x maps R+ to itself and

it is non–increasing since its derivative is always negative. We have∫∞
1

1
xdx = limb→∞ ln b =∞ so the series

∑ 1
n diverges.

(2) For any p > 1,
∫∞
1

1
xpdx = limb→∞

1
p−1 [1− 1

bp−1 ] = 1
p−1 so the series∑ 1

np converges.

(3)
∫∞
1

1
x2+1

dx = limb→∞ arctan b− arctan 1 = π
4 so the series

∑ 1
n2+1

converges. You could reach the same conclusion by comparing∑ 1
n2+1

with
∑ 1

n2 .

(4) The best way to establish convergence of a series like
∑ 1

n3+n2+2n+2

is by comparison with
∑ 1

n3 — you could use partial fractions to

integrate 1
x3+x2+2x+2

, but do you really want to?

(5) The integral test cannot help with the series of Example 3.30(5)
because it is not monotone.

6. Series with Sign Changes

So far, we have no method of establishing convergence of series having
both positive and negative signs. (Of course, the n’th term test can be used
to show that some of these series diverge).

Definition 3.33. The series
∑
an is absolutely convergent if the series∑

|an| is convergent.

Proposition 3.34 (Absolute Convergence Test). Each absolutely con-
vergent series is convergent.
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Proof. Suppose
∑
|ai| converges. Write sn and tn for the n’th partial

sums of the series
∑
ai and

∑
|ai| respectively. By hypothesis, we know

the sequence (tn) is convergent; in view of Proposition 2.41, it must also be
Cauchy. But the triangle inequality shows that |sm − sn| ≤ |tm − tn| for
each pair of indices m,n. It follows that the sequence (sn) is also Cauchy
and hence convergent by a second application of Proposition 2.41. �

In particular, this result removes the non–negativity requirement from
the ratio test.

Corollary 3.35 (Ratio Test). Suppose
∑∞

n=1 an is a series for which
lim |an+1

an
| = L exists as a finite number or is infinite.

(1) If L < 1, then the series converges.
(2) If L > 1, then the series diverges.

Proposition 3.36 (Alternating Series Test). If the sequence (bn)∞n=1
decreases monotonically to zero, then the series

∑∞
n=1(−1)nbn converges.

Proof. Set an = (−1)nbn and write sn for the n’th partial sum of the
series

∑∞
n=1 an. By monotonicity of the bn’s, we see that a2n−1+a2n is always

negative, whence the subsequence (s2n)∞n=1 is decreasing. On the other hand,
a2n + a2n+1 is always positive, so a1 is a lower bound for the subsequence
(s2n). Theorem 2.29 thus tells us that this subsequence converges to some
finite limit L. We also have lim s2n+1 = lim s2n − b2n+1 = L so the full
sequence (sn) of partial sums converges to L and the proof is complete. �

Definition 3.37. A convergent series
∑
an which does not converge

absolutely is said to converge conditionally.

Example 3.38. (1) The series
∑ (−1)nn

n+1 diverges by the n’th term
test.

(2) The series
∑ (−1)n

n2 is absolutely convergent.

(3) The series
∑ (−1)n

n is conditionally convergent.

7. Strategy

We have built up quite an arsenal of tests for convergence of series. It is
important to organize them for your own use. Start by listing the tests by
name and stating each one precisely. (Use the index at the end of this book
for this purpose). Next, summarize situations where each is particularly
useful. For example, factorials and powers are usually amenable to the ratio
test. Finally, write out a plan for dealing with new series, possibly in the
form of a flow chart. Strive to try simple tests first. The n’th term test is
usually quick to apply mentally. It won’t solve all your problems, but you’ll
be sorry if you overlook it when it can help.
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8. Abel’s Inequality and Dirichlet’s Test

(added by Dave Benson)

In this section, we prove a generalization of the alternating series test.
It will be especially handy is Chapter 6.

Theorem 3.39 (Abel’s Inequality). Suppose that we are given numbers
a1, . . . , am and b1, . . . , bm, and suppose that for all n between 1 and m−1 we
have bn ≥ bn+1 ≥ 0. Set sn = a1 + · · · + an, and M = max{|s1|, . . . , |sm|}.
Then ∣∣∣∣∣

m∑
i=1

aibi

∣∣∣∣∣ ≤Mb1.

Proof. We have an = sn − sn−1, so

m∑
i=1

aibi = s1b1 + (s2 − s1)b2 + · · ·+ (sm − sm−1)bm

= s1(b1 − b2) + s2(b2 − b3) + · · ·+ sm−1(bm−1 − bm) + smbm.

Each |sn| ≤M and bn − bn+1 is positive, so

|sn(bn − bn+1)| ≤M(bn − bn+1).

By the triangle inequality, we have∣∣∣∣∣
m∑
i=1

aibi

∣∣∣∣∣ ≤ |s1(b1 − b2)|+ · · ·+ |sm−1(bm−1 − bm)|+ |smbm|

≤M(b1 − b2) + · · ·+M(bm−1 − bm) +Mbm

= Mb1.�

Terminology. We say that a sequence of positive numbers bn tends to zero
steadily if for all n ≥ 1 bn ≥ bn+1 ≥ 0 and limn→∞ bn = 0.

Theorem 3.40 (Dirichlet’s test for convergence). Suppose that an and
bn are two sequences of numbers, and set sn = a1 + · · · + an. Suppose that
the sn are bounded, and that the bn decrease monotonically to zero. Then∑∞

i=1 aibi converges.

Proof. We shall check Cauchy convergence of the partial sums of the
aibi. Given ε > 0, we need to show that there exists N ∈ N such that for all
m ≥ n ≥ N we have ∣∣∣∣∣

m∑
i=n+1

aibi

∣∣∣∣∣ ≤ ε.
In order to apply Abel’s test, we must examine the partial sums

∣∣∣∑n′

i=n+1 ai

∣∣∣
for n′ between n+1 and m. By hypothesis, the partial sums sn are bounded,
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say |sn| ≤ K for all n ≥ 0. By the triangle inequality, we have∣∣∣∣∣
n′∑

i=n+1

ai

∣∣∣∣∣ = |sn′ − sn| ≤ |sn′ |+ |sn| ≤ 2K.

So we need to choose N large enough so that for all n ≥ N we have bn <
ε/2K. We can do this since limn→∞ bn = 0. Now we apply Abel’s inequality
to obtain ∣∣∣∣∣

m∑
i=n+1

aibi

∣∣∣∣∣ ≤ (2K)bn+1 < (2K)(ε/2K) = ε.

This completes the proof of Cauchy convergence of the partial sums, and so
the theorem is proved. �

Exercises

Summability

Problem 3.1. Consider the sequence
(

1
n+3 −

1
n+4

)
. Compute its first

five partial sums and guess a general formula for its n’th partial sum.

Problem 3.2. Give an inductive proof of your conjecture from the pre-
ceding problem.

Problem 3.3. Prove that the sequence of Problem 1 is summable and
find its sum.

Problem 3.4. Prove that the sequence
(

1√
n
− 1√

n+1

)
is summable.

Problem 3.5. Prove that the sequence
(

1
n(n+2)

)
is summable and find

its sum. Hint: Guess a general formula for sn by inspection or use the
method of partial fractions to derive it.

Problem 3.6. Find a general formula for the n’th term of the series
whose sequence of partial sums is

(
n2
)
.

Problem 3.7. What information does the n’th term test give concerning
summability of the following sequences?

(1) an = arctann.

(2) an = n
en .

(3) an = (−1)n
n+1 .

(4) an = sin nπ
8 .

Geometric Series

Problem 3.8. Any series of the form
∑∞

n=N ca
n is considered a geomet-

ric series. When does such a series converge and what is its sum when it
does converge ?
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Problem 3.9. Interpret the repeating decimal 0.999 . . . as an infinite
series and explain why this number equals 1.

Problem 3.10. Criticise the following “proof” of Proposition 3.12.
Assume a 6= 1. Write S for the sum of the series.

Then S =
∞∑
i=0

ai = 1 + a+ a2 + a3 + . . . .

Next multiply both sides of this equation by a to obtain

aS =

∞∑
i=0

ai+1 = a+ a2 + a3 + a4 + . . . .

Taking the difference between the last two equations yields (1 − a)S = 1.
Dividing by 1− a yields the desired result S = 1

1−a for each a 6= 1.

Problem 3.11. Establish the formula for sn derived in the proof of
Proposition 3.12 by induction.

Problem 3.12. Write out the proof of Proposition 3.13(2).

n’th Term and Comparison Tests

Problem 3.13. Give an example of a divergent series whose sequence
of partial sums is bounded.

Problem 3.14. Consider the harmonic series
∑∞

n=1
1
n .

(1) Compute the first two partial sums s1 and s2 of this series.
(2) Explain why s4 = s2 + 1

3 + 1
4 ≥

3
2 + 2(14) = 4

2 .

(3) Explain why s8 = s4 + 1
5 + 1

6 + 1
7 + 1

8 ≥
4
2 + 4(18) = 5

2 .

(4) Give an inductive argument to show that s2n ≥ n+2
2 for each n.

(5) Explain why the series diverges.

Problem 3.15. Use the comparison test (Proposition 3.17) to establish
convergence of the series

∑∞
n=1

1
n2−5n+7

. Then use the ratio–comparison test
to obtain the same result.

Problem 3.16. Determine which of the following series converge. Jus-
tify your conclusions.

(1)
∑ 1

n3−3n .

(2)
∑ 1

5
√
n

.

(3)
∑

( 1
n −

1
n+3).

(4)
∑

( 1
n + 1

n+3).

(5)
∑ 2n

2n−17 .

(6)
∑ 2n

3n+17 .

(7)
∑ n

2n .
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Decimal Expansions

Problem 3.17. Write out the details of the proof of Proposition 3.24.

Problem 3.18. Which real numbers have the following?

(1) exactly one decimal expansion
(2) exactly two decimal expansions
(3) more than two decimal expansions
(4) a terminating decimal expansion
(5) a non-terminating decimal expansion

Problem 3.19. Prove Corollary 3.26.

Problem 3.20. Express the repeating decimals .23 and .135 as quotients
of integers. (The overlined digits constitute the repeating block.) Hint:
Think of geometric series.)

Problem 3.21. Use long division to find the decimal expansion of 1
37 .

Problem 3.22. Prove Proposition 3.28.

Problem 3.23. Describe the decimal expansion of 1
10n−1 .

Problem 3.24. Express .357 + .689 as a repeating decimal.

Problem 3.25. The smallest integer p satisfying Definition 3.27 is the
period of the decimal. Characterize the fractions whose decimal expansion
has period 2.

Ratio and Integral Tests

Problem 3.26. Determine which of the following series converge. Jus-
tify your conclusions.

(1)
∑ n!

(2n)! .

(2)
∑ n2

2n .

(3)
∑ n!

(n+2)! .

(4)
∑ n!

(n+1)! .

Problem 3.27. Determine which of the following series converge. Jus-
tify your conclusions.

(1)
∑ 1√

n
.

(2)
∑ 1

n
√
n

.

(3)
∑ 1

n lnn .

(4)
∑ 1

n(lnn)2
.

Problem 3.28. Make up applications of the ratio–comparison test to
each of the series of the preceding problem. Try to choose your examples so
that it would be hard to apply the regular comparison test.
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Series with Sign Changes

Problem 3.29. Prove Proposition 3.35.

Problem 3.30. Classify the following series as absolutely convergent,
conditionally convergent, or divergent. Justify your conclusions.

(1)
∑ 1

n .

(2)
∑ 1

n2 .

(3)
∑ (−1)n

2n .

(4)
∑ (−1)n

lnn .

(5)
∑ (−1)nn2

n2+n+5
.

Problem 3.31. Use one of the convergent series from Exercise 3.27 to
construct two absolutely convergent series.

Problem 3.32. Use one of the divergent series from Exercise 3.27 to
construct two conditionally convergent series.

Problem 3.33. Prove that the sum of two absolutely convergent series
is always absolutely convergent.

Problem 3.34. Prove that if
∑
an converges absolutely and

∑
bn con-

verges conditionally, then the series
∑

(an + bn) converges conditionally.

Problem 3.35. Give an example of two conditionally convergent series
whose sum is absolutely convergent.

Consolidation

Problem 3.36. Establish the following Root Test; the proof is similar
to that of the ratio test.

Proposition 3.41. Suppose
∑∞

n=1 an is a series and lim n
√
|an| = L

exists as a finite number or is infinite.

(1) If L < 1, then the series converges.
(2) If L > 1, then the series diverges.

Problem 3.37. A convergence test fails if it does not help you decide
whether a series converges. Make up examples illustrating the failure of each
of the following tests. No proofs are necessary, but you should describe the
salient features of your examples.

(1) n’th term
(2) comparison
(3) ratio–comparison
(4) ratio
(5) integral
(6) absolute
(7) alternating
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.

Problem 3.38. The following Cauchy condensation test can often be
used in place of the integral test. It has the (theoretical and practical)
advantage of not relying on calculus

Proposition 3.42. Suppose (an)∞n=1 is a non-increasing sequence of pos-
itive numbers. Then the series

∑
an converges if and only if the series∑

2na2n converges.

(1) Prove this proposition by comparing the partial sums of the two
series involved.

(2) Use this test to show that the p-series
∑ 1

np converges iff p > 1.

(3) Use this test to show that the series
∑∞

n=2
1

(lnn)(np) converges iff

p > 1.

Problem 3.39. Determine which of the following series converge. Iden-
tify relevant convergence tests.

(1)
∑

7n.

(2)
∑ 5

7n−1 .

(3)
∑

(−1)n.

(4)
∑ 1

lnn .

(5)
∑ 1

n3 .

(6)
∑ 1

3n−1 .

(7)
∑ lnn

n .

(8)
∑ 1

n√2 .

(9)
∑ √

n
n2−5 .

(10)
∑ n2

2n .

(11)
∑ arctann

n2+1
.

(12)
∑ lnn

n2 .

(13)
∑ 1√

n3+1
.

(14)
∑ 2+sinn

n2 .

(15)
∑ 2n

n! .

(16)
∑ 1

(2n−1)! .

(17)
∑ 3n

n2+1
.

(18)
∑ n!

9n .

(19)
∑ n+1

n3−3n .

(20)
∑(

1
3√n −

1
3√n+1

)
.
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Dirichlet’s Test

Problem 3.40. Explain why Dirichlet’s test is a generalization of the
alternating series test.

Problem 3.41. Prove that if 0 < θ < 2π, then |
∑n

k=1 sin(kθ)| <
cosec(θ/2).
[Hint: Multiply by sin(θ/2) and use a collapsing sum]

Problem 3.42. Use the previous excercise to show that for all values of

θ,
∑∞

n=1
sin(nθ)
n converges.

Problem 3.43. Show that for θ not an even multiple of π, if bn decreases
monotonically to zero then

∑∞
n=1 bn cos(nθ) converges.





CHAPTER 4

Applications to Calculus

This chapter has a dual purpose. On the one hand, it provides a quick
review of several calculus concepts which you may not have been ready to
appreciate the first time through. It will also provide an opportunity to
apply work from Chapter 2 concerning monotone and Cauchy sequences.
More specifically, we will use sequences to show that continuous functions
on closed intervals attain maximum values and that their ranges do not
“skip” any values.

The placement of this material is somewhat discretionary. We will not
use anything from Chapter 3 here and it is possible to read most of Chapter
5 without going through the details of the present chapter. The text is
brief in order to facilitate “skimming”; most interesting applications and
extensions are explored in the exercises and/or left for later courses.

Definition 4.1. Suppose a is a real number and S is a set of real
numbers.

(1) We say that a is a limit point of S if for each ε > 0 there is some
number x ∈ S satisfying |x− a| < ε.

(2) The set of all limit points of S is called the closure of S.
(3) S is closed if each limit point of S belongs to S.

Example 4.2. Take S to be the open interval (0, 1), that is S = {x ∈
R : 0 < x < 1}.

(1) Every member of S is a limit point of S; this is true for any set.
(2) 0 and 1 do not belong to S, but they are limit points of S.
(3) The closure of S is the interval [0, 1]; this is why we call [0, 1] a

closed interval.

Note the distinction between limits of sequences and limit points of
sets. We will see in Proposition 4.5 however that the two concepts are closely
related.

Definition 4.3. Let S be a set of real numbers. A sequence (an) of real
numbers is said to be in S if an ∈ S for each n.

Example 4.4. The sequence
(
1
n

)∞
n=1

is a sequence in [0, 1] but it is not
a sequence in (0, 1) because its first term fails to belong to that interval.

Proposition 4.5. Suppose a is a real number and S is a set of real
numbers. Then a is a limit point of S if and only if there is a sequence in
S converging to a.

63
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Proof. Suppose first that a is a limit point of S. For each natural
number n, choose a number an ∈ S with |an − a| < 1

n ; this can be done
inductively. The sequence (an) is in S and converges to a.

For the converse, suppose that (an) is a sequence in S converging to a.
Given ε > 0, the definition of convergence tells us that |an − a| < ε for all
sufficiently large n. In particular, |an − a| < ε for some an ∈ S, so a is a
limit point of S as desired. �

Corollary 4.6. Suppose S is a non-empty bounded set of real numbers.
Then the least upper bound of S is a limit point of S.

Proof. Write L for the least upper bound of S. Given ε > 0, we know
that L− ε is not an upper bound of S, so there is some number x in S with
L− ε < x ≤ L. This yields |x− L| < ε as desired. �

Definition 4.7. Suppose D is a non–empty set of real numbers, a ∈ D,
and f : D → R.

(1) We say f is continuous at a if for every ε > 0 there is a δ > 0
such that |f(x)− f(a)| < ε whenever x ∈ D and |x− a| < δ.

(2) We say f is continuous on D if it is continuous at each point of
D.

Proposition 4.8. Suppose a ∈ D ⊂ R and f : D → R. Then the
following are equivalent.

(1) f is continuous at a.
(2) If (an) is any sequence in D converging to a, then the sequence

(f(an)) converges to f(a).

Proof. 1) =⇒ 2). Suppose that f is continuous at a, that (an) is a
sequence in D converging to a, and that ε > 0 is given. Use the definition
of continuity to find δ > 0 such that |f(x)− f(a)| < ε whenever |x− a| < δ.
Next, find N so that |an − a| < δ whenever n ≥ N . Then n ≥ N =⇒
|f(an)− f(a)| < ε as desired.

2) =⇒ 1). We argue contrapositively, assuming that 1) fails. Thus for
some ε > 0, there are points in D arbitrarily close to a whose distances
from f(a) equal or exceed ε. In particular, for each n ∈ N, we can find a
number an ∈ D with |an − a| < 1

n , but |f(an) − f(a)| ≥ ε. Thus (an) is
a sequence in D converging to a, but the image sequence (f(an)) cannot
converge to f(a), and we have shown that 2) fails. �

Proposition 4.9. Suppose f, g : D → R are continuous at some number
c ∈ D.

(1) f + g is continuous at c.
(2) f · g is continuous at c.

(3) If g(c) 6= 0, then f
g is continuous at c.

(4) All polynomial functions are continuous on R.
(5) All rational functions are continuous throughout their domains.
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Hint. One approach is to mimic the proof of Proposition 2.25. It
is easier and neater to use Proposition 4.8 to set up an application of the
result of Proposition 2.25. �

Theorem 4.10. (Intermediate Value Theorem) Suppose f : [a, b] → R
is continuous on its domain, f(a) < 0, and f(b) > 0. Then f(c) = 0 for
some c ∈ (a, b).

Proof. Set S = {x ∈ [a, b] : f(x) ≤ 0}. Note that S is non–empty
and bounded so it has a least upper bound c. By definition of least upper
bound, for each n, we can find a number an ∈ S satisfying c− 1

n < an ≤ c.
Proposition 4.8 tells us that lim f(an) = f(c). On the one hand, the fact
that f(an) ≤ 0 for each n leads to the conclusion that f(c) ≤ 0. On the
other hand, since c is an upper bound of S, we must have f(c+ 1

n) > 0 for
sufficiently large n and this forces f(c) ≥ 0. Thus f(c) = 0 as desired. �

Example 4.11. The Intermediate Value Theorem can be used to show
that certain equations have solutions. For example, the polynomial f(x) =
x2 − 2 is continuous everywhere and satisfies f(1) < 0 < f(2). Thus the
equation f(x) = 0 has a root x ∈ (1, 2); in other words,

√
2 exists as a real

number.

Example 4.12. The Intermediate Value Theorem can also be used to
solve inequalities. Consider, for example the inequality

x3 − 2x2

x− 4
≤ 0.

To solve (4.1), introduce the rational function f(x) = x3−2x2
x−4 . The Interme-

diate Value Theorem tells us that the only places where f could change
sign are points where it is zero (x = 0, 2) and points where it fails to be
continuous (x = 4). Checking signs of f(−1), f(1), f(3), and f(5), we thus
see that

f(x) > 0 for x ∈ (−∞, 0) ∪ (0, 2) ∪ (4,∞),while

f(x) < 0 for x ∈ (2, 4).

Since f(2) = 0, while 4 /∈ Domain(f), we conclude that the solution to (4.1)
consists of the half–open interval [2, 4).

It is usual to organize this work by plotting a sign chart for f , i.e.
representing zeros and discontinuities of f by dots and hollow circles respec-
tively on a number line, and then recording the sign of f on each intervening
interval.

Recall that a function f : D → R is said to attain a maximum value at
c ∈ D if f(x) ≤ f(c) for all x ∈ D.

Theorem 4.13. Suppose f : [a, b] → R is continuous on its domain.
Then f attains a maximum value at some c ∈ [a, b].
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Proof. We first show that the range of f is bounded above. If not, then
for each n, we could find a number an ∈ [a, b] with f(an) > n. Applying
Theorem 2.39, we could then find a convergent subsequence of (an); replac-
ing the original sequence by this subsequence if necessary, we may assume
that lim an = c for some c ∈ [a, b]. But Proposition 4.8 would then yield
lim f(an) = f(c) whence the sequence (f(an) would be bounded in view
of Proposition 2.21. This conclusion is incompatible with the choice of the
(an) and completes our proof by contradiction that the range of f is indeed
bounded.

Write L for the least upper bound of the range of f . By definition of least
upper bound, for each natural number n, we can find a number an ∈ [a, b]
with L− 1

n < f(an) ≤ L. Applying Theorem 2.39 and dropping down to an
appropriate subsequence if necessary, we may as well assume that lim an = c
for some c ∈ [a, b]. But then Proposition 4.8 yields L = lim f(an) = f(c)
and we have shown that L = f(c) is the maximum value of f as desired. �

In keeping with the brief nature of this chapter, we leave it to the reader
to review the derivative concept from his/her favorite calculus book (or the
exercises at the end of this chapter). In particular, the reader is assumed
to feel comfortable with the fact that the number c guaranteed by Theorem
4.13 must either be an endpoint of [a, b], a place where f ′(c) = 0, or a place
where f ′(c) fails to exist.

Theorem 4.14. (Rolle’s Theorem) Suppose f : [a, b]→ R is continuous
on [a, b], differentiable on (a, b), and satisfies f(a) = f(b). Then f ′(c) = 0
for some c ∈ (a, b).

Proof. It follows easily from Theorem 4.13 that f attains maximum
and minimum values. If at least one of these occurs at some c ∈ (a, b),
then f ′(c) = 0 by the preceding paragraph. On the other hand, if the
extreme values of f are both attained at endpoints, then f is constant and
so f ′(c) = 0 for all c ∈ (a, b) �

Example 4.15. We have seen how the Intermediate Value Theorem can
be used to show that an equation has at least one root. Rolle’s Theorem
shows some equations have at most one root. When both theorems can be
applied, it is possible to conclude that an equation has a unique root.

Consider, for example the equation f(x) = x3 + x + 1 = 0. Since f
is differentiable everywhere, and f ′(x) is never zero, Rolle’s Theorem rules
out having f(a) = f(b) for distinct a and b. Since f(−1) and f(0) have
opposite signs, the Intermediate Value Theorem also applies to show that
the equation has a unique root.

Corollary 4.16. (Generalized Mean Value Theorem) Suppose f and g
are real–valued functions which are continuous on some closed interval [a, b]
and differentiable on the open interval (a, b). Then there is some number
c ∈ (a, b) satisfying

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].
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Proof. Set h(x) = [f(x)−f(a)][g(b)−g(a)]− [g(x)−g(a)][f(b)−f(a)].
Note that h satisfies the hypotheses of Rolle’s Theorem. The conclusion of
that theorem thus yields a number c ∈ (a, b) with h′(c) = 0. Substitution
and transposition shows this is the desired result. �

Corollary 4.17. (Mean Value Theorem) Suppose f is a real–valued
function which is continuous on some closed interval [a, b] and differentiable
on the open interval (a, b). Then there is some number c ∈ (a, b) satisfying

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Apply the preceding corollary with g(x) = x. �

The Mean Value Theorem has a nice geometric interpretation concern-
ing secant and tangent lines associated with the graph of f . It also has a
physical interpretation: if you travel 60 miles in one hour, your instanta-
neous velocity will be 60 mph at least once during the trip. The next,
admittedly technical, result will be used in the next chapter.

Corollary 4.18. Suppose h has derivatives of all orders on some open
interval D containing a and b and h(i)(a) = 0 for 0 ≤ i ≤ n. Then there is
some number c between a and b satisfying

h(b) =
h(n+1)(c)

(n+ 1)!
(b− a)n+1.

Proof. We argue by induction on n. When n = 0 this is just the Mean
Value Theorem with f = h.

For the inductive step, assume the result holds for n = k and suppose
that h satisfies h(i)(a) = 0 for 0 ≤ i ≤ k+ 1. Applying the generalized mean
value theorem to f = h and g(x) = (x − a)n+1 yields a number d ∈ (a, b)
with

h(b) =
h′(d)

(n+ 1)(d− a)n
(b− a)n+1.

On the other hand, applying the inductive hypothesis to h′ with d in place
of b yields a number c ∈ (a, d) with

h′(d) =
h(n+1)(c)

(n)!
(d− a)n.

Substituting (4.3) in (4.2) gives the desired result. �

Exercises

Problem 4.1. Find the closures of the following sets of real numbers.
No proofs are required.

(1) R,
(2) ∅ (the empty set),
(3) {x ∈ R : x ≥ 0},
(4) {x ∈ R : x > 0},
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(5) N (the natural numbers),
(6) Q,
(7) { 1n : n ∈ N},
(8) {n+1

n : n ∈ N}.
Problem 4.2. In this problem, we examine operations on closed sets.

(1) Prove that if A and B are closed, then the union A ∪ B is also
closed.

(2) Prove that the union of any finite collection of closed sets is closed.
(3) Give an example of a(n infinite) collection of closed sets whose

union is not closed.
(4) Prove that the intersection of any collection of closed sets is closed.

Problem 4.3. A set S of real numbers is said to be open if for each
a ∈ S, there is some ε > 0 such that x ∈ S whenever |x− a| < ε. Prove that
a set S ⊂ R is open if and only if the complementary set ∼ S is closed.

Problem 4.4. Give examples of the following:

(1) a closed set which is not open,
(2) an open set which is not closed,
(3) a set which is both open and closed,
(4) a set which is neither open nor closed,

Problem 4.5. In this problem, we examine operations on open sets.

(1) Prove that if A and B are open, then the union A∩B is also open.
(2) Prove that the intersection of any finite collection of open sets is

open.
(3) Give an example of a(n infinite) collection of open sets whose in-

tersection is not open.
(4) Prove that the union of any collection of open sets is open.

Problem 4.6. Prove the first part of Proposition 4.9 by mimicking the
proof of Proposition 2.25.

Problem 4.7. Complete the proof of Proposition 4.9 by using Proposi-
tion 4.8 and the results of Proposition 2.25.

Problem 4.8. Suppose D ⊂ R, f : D → R, L ∈ R, and a is a limit point
of D. Give an ε–δ type definition of the limit concept limx→a f(x) = L.
(Caution: The value of f(a) should be irrelevant.)

Problem 4.9. State an analogue of Proposition 4.8 to go with the limit
concept of the preceding problem.

Problem 4.10. Recall the definition of what it means for a function f
to be differentiable at a number a ∈ R and prove that differentiability at a
implies continuity at a.

Problem 4.11. Reread the proofs of various differentiation rules in your
favorite calculus book. Then write a one paragraph essay on your appreci-
ation of such matters.
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Problem 4.12. Find a discontinuous function f : [0, 1]→ R which does
not satisfy the conclusion of the Intermediate Value Theorem. (The domain
of f should not omit any points in [0, 1]).

Problem 4.13. Find a discontinuous function f : [0, 1]→ R which does
satisfy the conclusion of the Intermediate Value Theorem.

Problem 4.14. Use the Intermediate Value Theorem to prove that every
positive real number has a real square root.

Problem 4.15. Solve the inequality x4−10x2+9
x2−x+2

≥ 0.

Problem 4.16. Prove that every continuous function on a closed interval
[a, b] attains a minimum value.

Problem 4.17. Give an example of a continuous function f : R → R
which does not attain a maximum value.

Problem 4.18. Give an example of a continuous function f : (0, 1)→ R
which attains a maximum value, but not a minimum value.

Problem 4.19. Give an example of a continuous function f : (0, 1]→ R
which attains neither a maximum nor a minimum value.

Problem 4.20. Suppose f : R → R. Give a precise definition of the
concept limx→∞ f(x) =∞.

Problem 4.21. Which polynomials p satisfy limx→∞ p(x) =∞? Which
satisfy limx→−∞ p(x) = −∞?

Problem 4.22. Suppose f : R → R is continuous and limx→∞ f(x) =
limx→−∞ f(x) =∞. Prove that f attains a minimum value.

Problem 4.23. Characterize the class of polynomials whose ranges ex-
haust R.

Problem 4.24. Illustrate the meaning of Rolle’s Theorem graphically.

Problem 4.25. Prove that the equation x3 + 3x = sinx has a unique
solution.

Problem 4.26. Prove that the equation x3 + x = sinx has a unique
solution.

Problem 4.27. Give examples to show how Rolle’s Theorem can fail if
any of its hypotheses are violated:

(1) differentiability throughout the open interval,
(2) continuity at the endpoints,
(3) equality of f(a) and f(b).

Problem 4.28. Give an example to show that the number c guaranteed
by Rolle’s Theorem need not be unique.
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Problem 4.29. Illustrate the meaning of the Mean Value Theorem
graphically.

Problem 4.30. Explain the geometric meaning of the auxiliary function
h used in the proof of Theorem 4.16 in the special case g(x) = x.

Problem 4.31. Use Corollary 4.16 to prove the following version of
l’Hôpital’s rule.

Proposition 4.19. Suppose f and g are real–valued functions which are
differentiable in some open interval containing the real number a and satisfy
f(a) = f(b) = 0. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

as long as the latter limit exists as a finite number.

Problem 4.32. State and prove Corollary 4.18 in the special cases n = 1
and n = 2 without appealing to induction.



CHAPTER 5

Taylor’s Theorem

1. Statement and Proof

The underlying theme in differential calculus is using tangent lines to
gain local information about relatively complicated functions. Taylor’s The-
orem refines this idea by using polynomials of arbitrary degree in place of
the first degree polynomials describing tangent lines.

Example 5.1. For a concrete illustration, consider the sine function
f(x) = sinx. The crudest approximation is the constant function p0(x) =
sin 0 = 0. There are three senses in which p0 approximates f near 0.

(1) (at zero) f(0) = p0(0) by construction.
(2) (approaching zero) limx→0 f(x)− p0(x) = 0 by continuity.
(3) (error quantification) For each x ∈ R, the Mean Value Theorem

tells us there is some number c between 0 and x such that the error
f(x)− p0(x) = f ′(c)(x− 0) = (cos c)x.

To see how (3) might be useful, suppose we need information about
sin .01. Since .01 is close to 0 we would expect sin .01 to be near zero, and
(3) tells us that

(5.1) | sin(.01)| = |f(.01)− p0(.01)| = |(cos c)(.01)| ≤ .01.

The key point here is that even though we don’t know what c is, our general
knowledge of the cosine function tells us that | cos c| ≤ 1.

It should also be emphasized that the information provided by (3) deteri-
orates quickly as we move away from the origin, e.g., the fact that | sin 3| ≤ 3
is not particularly enlightening. The problem, of course, is that the sine func-
tion is not constant: geometrically we should do better with a tangent line
than with a horizontal line, so we use the first degree polynomial p1(x) = x.
The above conditions improve to

(1) (at zero) f(0) = p1(0) and f ′(0) = p′1(0) by construction.
(2) (approaching zero) L’hopital’s rule tells us that

lim
x→0

f(x)− p1(x)

x
= lim

x→0

sinx− x
x

= lim
cosx− 1

1
= 0,

i.e., not only does the error f(x)− p1(x) go to zero as x → 0, but
it does so faster than x.

(3) (error quantification) Two applications of the Generalized Mean
Value Theorem 4.16 tell us that for each x ∈ R, there is a number

71
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c between 0 such that the error

f(x)− p1(x) =
f ′′(c)

2
x2 =

− sin c

2
x2.

In particular, Display 5.1 improves to

| sin(.01)− .01| = |f(.01)− p1(.01)| =
∣∣∣∣sin c)2

(.01)2
∣∣∣∣ ≤ .00005,

that is, sin(.01) is between .00995 and .01005.

Taylor’s Theorem generalizes this analysis is two respects: higher deriva-
tives are taken into account, and approximations can be centered at any real
number a.

Definition 5.2. Let a be a real number, n a non-negative integer, and
suppose f is a function having derivatives of all orders at a.

(1) The polynomial

pn(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k

is called the n’th order Taylor polynomial of f about a.
(2) The difference rn(x) := f(x) − pn(x) is called the n’th remainder

of f about a.
(3) The infinite series

(5.2)
∞∑
n=0

f (n)(a)

n!
(x− a)n

is called the Taylor series of f about a.
(4) Taylor polynomials, remainders, and series about 0 are also referred

to as Maclaurin polynomials, remainders, and series, resprctively.

There are two ways to look at Display 5.2. We can think of it as a series of
functions. From this perspective, the n’th partial sum of the series coincides
with the n’th order Taylor polynomial of f about a, so that the Taylor series
of f about a simultaneously encodes all of its Taylor polynomials about a.

Alternatively, we can think of a Taylor series as a “series-valued func-
tion”, that is, for each fixed x ∈ R, it gives us a numerical series which may
or or may not converge. We are interested in determining when such a series
converges to f(x) itself.

Example 5.3. Take a = 0 and f(x) = x2 + 3x + 5. We note that
f(0) = 5, f ′(0) = 3, f ′′(0) = 2, and all higher order derivatives of f are zero.
Thus we have the Maclaurin polynomials p0(x) = 5, p1(x) = 3x + 5, and
pn(x) = x2 + 3x + 5 for all n ≥ 2. In particular, f is its own Maclaurin
series.

As suggested by Example 5.1, Maclaurin polynomials should be regarded
as approximations of f near 0. p0 is the crudest of these: it is designed to
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agree with f at zero, but because it is constant, its accuracy deteriorates
quickly as x leaves zero. y = p1(x) is the equation of the line tangent to f
at 0. Thus it is a better approximation of f near zero than p0. p2 is even
better (perfect in this case) because by taking account of f ′′(0), it corrects
for the fact that f is not linear.

Example 5.4. Take a = 2 and f(x) = x2 + 3x + 5. We note that
f(2) = 15, f ′(2) = 7, f ′′(2) = 2, and all higher order derivatives of f are
zero. Thus we have the Taylor polynomials p0(x) = 15, p1(x) = 7(x−2)+15,
and pk(x) = (x−2)2 +7(x−2)+15 for all k ≥ 2. Direct computation shows
that f coincides with p2.

The zero’th and first degree Taylor polynomials in this example are not
the same as in the previous example; this was to be expected since we are
now approximating f near 2 rather near 0. The fact that p2 agrees with f
in both examples should be regarded as reflecting the simple nature of f .

Example 5.5. Take a = 0 and f(x) = ex. Since f (n)(0) = 1 for all n,
the Maclaurin series for f is given by

∑∞
n=0

xn

n! .

Here is the desired generalization of Example 5.1. To avoid writing too
many primes, we denote the k’th order derivative of f by f (k); in particular,
f (0) is f itself. Also, recall that 0! = 1.

Theorem 5.6. (Taylor’s Theorem) Let a be a real number, and suppose
f is a function having derivatives of all orders in some open interval J
containing a. Then for each non-negative integer n, the Taylor polynomial
pn is a good approximation of f in the following senses:

(1) (at a) For each k ≤ n, we have r
(k)
n (a) = 0, that is, f and each of

its first n derivatives agree with those of pn at a.

(2) (approaching a) limx→a
rn(x)
(x−a)n = 0, that is, as x approaches a, the

n’th remainder approaches zero faster than (x− a)n.
(3) (error quantification) Given x in J , there is some number c between

a and x satisfying

rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.(5.3)

Proof. Fix n and set h(x) = rn(x) = f(x)− pn(x).

An induction argument shows that h(k)(a) = 0 for 0 ≤ k ≤ n, thereby
establishing (1).

Given x ∈ J , apply Corollary 4.18 to find a number c between a and x
with

rn(x) = h(x) =
h(n+1)(c)

(n+ 1)!
(x− a)n+1.(5.4)

Dividing both sides of this equation by (x − a)n and taking the limit as x
approaches a yields (2).
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Finally, the (n+ 1)’st derivative of pn is identically zero, so h(n+1)(c) =

f (n+1)(c) and (5.4) reduces to Equation 5.3, thereby establishing (3). �

Part(2) of the Theorem will be used in Section 3 to provide shortcut
methods for finding Maclaurin series of functions like sinx2 whose successive
derivatives quickly get messy. The rest of the present section will focus on
applications of the third part of the Theorem.

Example 5.7. Use the third order Maclaurin polynomial for f(x) =
cosx to approximate cos .1 and discuss the accuracy of this approximation.

Solution. We have f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f (3)(0) = 0, and

f (4)(x) = cosx. Thus we get

p3(x) = 1− x2

2!
with remainder r3(x) =

cos c

4!
x4.

Thus we approximate cos .1 by p3(.1) = .1 − .01
2 = .095 and can assert

that the error of our approximation is at most |r3(.1)| ≤ .0001
24 < .000005. �

Example 5.8. What Maclaurin polynomial could be used to approxi-
mate

√
e to to within .001 ?

Solution. Take f(x) = ex. We need to find n with |rn(12)| < .001.
Applying Taylor’s Theorem, we get∣∣∣∣rn(1

2

)∣∣∣∣ =
ec

(n+ 1)!2n+1
<

1

(n+ 1)!2n
,

because we know that e < 4 and c < 1
2 . Thus we need to choose n so that

1
(n+1)!2n < 1

1000 , i.e., (n + 1)!2n > 1000. This is done by trial and error.

n = 3 is too small since (4!)23 = 384 but n = 4 will definitely work. Thus

the right polynomial to use is p4(x) = 1 + x+ x2

2 + x3

6 + x4

16 �

Example 5.9. Use a suitable second order Taylor polynomial to approx-
imate

√
99, and discuss the error in your approximation.

Solution. . We take f(x) =
√
x and a = 100; the choice of a is based

on two facts: we know its square root and it’s close to 99. (We could just
as well have used a Maclaurin polynomial of g(x) =

√
x+ 100.) We have

p2(x) = 10 + 1
20(x− 100)− 1

8000(x− 100)2, so we estimate
√

99 ∼ p2(99) =

10 − 401
8000 = 9.94875. The error is given by |r2(99)| = 1

16c
5
2

where c is

somewhere between 99 and 100. The worst scenario is when c is close to
99. Of course, we don’t know how to take the 5

2 power of 99, but we do

know that it exceeds 64
5
2 > 3(105). Thus |

√
99 − 9.94875| < 10−5. In fact,

MAPLE gives
√

99 ∼ 9.9498743, well within our tolerance. �
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2. Taylor Series

The alert reader will have noticed that we have avoided saying that
functions are “equal” to their Taylor series. Here is a silly example to show
why.

Example 5.10. Define f : R → R by f(x) =

{
0, |x| < 2

17, |x| ≥ 2
. Then

the Maclaurin series of f is identically zero, but that doesn’t agree with f
when |x| ≥ 2.

In general, we write f(x) ∼
∑ f (n)(a)

n!
(x− a)n to denote the fact that

the expression on the right is the Taylor series of f .
On the other hand, we write

(5.5) f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, x ∈ D

to signify the fact that the numerical series on the right converges to f(x)
for each x ∈ D. When D is an open interval, we also express Equation 5.5
by saying f is analytic on D.

Thus in the last example, it is correct to write f ∼ 0 or that f(x) =
0, for |x| < 2, but it would be wrong to write f = 0 unrestrictedly.

We turn to less pathological situations. By definition, the n’th remainder
of f about a is the difference between f and the n’th partial sum of its Taylor
series about a. Thus we have the following.

Proposition 5.11. In order that the Taylor series for a function f
converge to f(x) at a real number x it is necessary and sufficient that
limn→∞ rn(x) = 0.

Example 5.12. Find the Maclaurin series for f(x) = cosx and show
that it converges to f(x) for all real numbers x.

Solution. Since all odd-order derivatives of the cosine function vanish
at 0, we only need to compute even-order derivatives. We have f (0)(0) =

cos 0 = 1, f (2)(0) = − cos 0 = −1 and in general, f (2n)(0) = (−1)n, so that
the Maclaurin series for f is given by

∞∑
n=0

f (2n)(0)

(2n)!
x2n =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . .

For any x ∈ R, Part (3) of Taylor’s Theorem yields

|rn(x)| =

∣∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!
.

We know the series
∑ |x|n

n! converges by the ratio test, so limn→∞ rn(x) = 0
by the n’th term test. In other words, limn→∞ pn(x) = f(x), as required. �
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Only now, after showing the Maclaurin series for cos does indeed con-
verge to the original function, is it legitimate to write

(5.6) cosx =
∞∑
n=0

(−1)n

(2n)!
x2n,

and to say that f is analytic throughout R. Similar reasoning shows the
sine function and the exponential function of Example 5.5 are also analytic
everywhere.

Example 5.13. Consider the function f(x) = 1
1−x . Direct computation

gives f (n)(x) = n!
(1−x)n+1 so the Maclaurin series of f is the geometric series∑∞

n=0 x
n. By our analysis of geometric series in Proposition 3.12 we know

this function is analytic on all of (−1, 1), i.e.,

(5.7)
1

1− x
=
∞∑
n=0

xn, −1 < x < 1.

This is an example where the error estimate in Taylor’s Theorem does
not give us complete information. Indeed, that error estimate is rn(x) =
xn+1

(1− c)n+2
for some c between 0 and x. It’s easy to show that these remain-

ders approach zero when −1 < x < 1
2 , but when x > 1

2 , we have no way of

knowing c 6= 1
2 , in which case xn+1

(1−c)n+2 would not approach 0.

3. Operations on Taylor Polynomials and Series

Throughout this section f has derivatives of all orders in some open
interval (−b, b) containing 0. By definition, the n’th order Maclaurin poly-
nomial pn of f is given by

(5.8) pn(x) =

n∑
k=0

f (k)(0)

k!
xk

and this is related to the n’th Maclaurin remainder of f by

(5.9) f(x) = pn(x) + rn(x), |x| < b

In this section, we perform various operations on these equations to give
us new Taylor polynomials. As a mnemonic device, each application is given
a brief title.

Proposition 5.14. (Differentiation) The n’th order Maclaurin polyno-
mial of f ′ is the derivative of the (n+1)′st order Maclaurin polynomial of f .
The same is true for the corresponding remainders on the interval |x| < b.

Proof. Write g = f ′. Then successive derivatives of g are always one
behind of those of f . In particular, g(k)(0) = f (k+1)(0) for each non-negative
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integer k, so the n’th order Maclaurin polynomial of g is given by

n∑
k=0

g(k)(0)

k!
xk =

n∑
k=0

f (k+1)(0)

k!
xk,

which we recognize from Equation 5.8 as the derivative of pn+1(x).
On the other hand, differentiating Display 5.9, we obtain

g(x) = f ′(x) = p′n+1(x) + r′n+1(x), |x| < b

Now that we have identified p′n+1 to be the n’th order Maclaurin polynomial
of g, this equation forces r′n+1 to be the n’th Maclaurin remainder of g. �

Corollary 5.15. The Maclaurin series for f ′ can be obtained from the
Maclaurin series of f by termwise differentiation.

Proof. This follows from Proposition 5.14 because Maclaurin polyno-
mials are partial sums of the corresponding Maclaurin series. �

Note that we are not yet making any convergence claims, that is, even
if the Maclaurin series of f converges to f , we do not yet know whether the
Maclaurin series of f ′ must converge to f ′. The deeper considerations of the
next chapter will show that this is in fact true.

Example 5.16. Since the fourth order Maclaurin polynomial of 1
1−x is

1+x+x2 +x3 +x4, the Proposition identifies 1+2x+3x2 +4x3 as the third
order Maclaurin polynomial of 1

(1−x)2 . This can also be checked directly.

Moreover, differentiating Equation 5.7 term by term yields the Maclaurin
series of the function f(x) = 1

(1−x)2 .. At this point, it takes a little extra

work to establish analyticity of f on (−1, 1), but that will be an automatic
consequence of Theorem 6.7.

Proposition 5.17. (Integration) Define a function F by setting F (x) =∫ x
0 f(t)dt, for |x| < b and suppose n is a natural number.

(1) The n’th order Maclaurin polynomial of F is given by Pn(x) =∫ x
0 pn−1(t)dt.

(2) For |x| < b, the n’th Maclaurin remainder of F is given by Rn(x) =∫ x
0 rn−1(t)dt.

Proof. By the Fundamental Theorem of Calculus, F is the unique
antiderivative of f which vanishes at 0. Thus successive derivatives of F are
always one ahead of those of f . In particular, F (k)(0) = f (k−1)(0) for each
positive integer k, so the n’th order Maclaurin polynomial of F is given by

n∑
k=0

F (k)(0)

k!
xk =

n∑
k=1

f (k−1)(0)

k!
xk,

which we recognize from Equation 5.8 as
∫ x
0 pn−1(t)dt.
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On the other hand, integrating Display 5.9, we obtain

F (x) =

∫ x

0
f(t)dt+

∫ x

0
pn−1(t)dt+

∫ x

0
rn−1(t)dt, , |x| < b

Now that we have identified
∫ x
0 f(t)dt as Pn(x), the rightmost term in the

last display must be Rn(x). �

Example 5.18. Term-by-term integration of Equation 5.6 recovers the
Maclaurin series of sin.

As expected, the Maclaurin series of the exponential function is not
affected by termwise differentiation or integration.

Example 5.19. Since the third order Maclaurin polynomial of 1
1−x is

1 + x + x2 + x3, the Proposition identifies P4(x) = x + x2

2 + x3

3 + x4

4 as
the fourth order Maclaurin polynomial of F (x) = − ln(1 − x). This can
be checked by computing the fourth order Maclaurin polynomial directly
from Definition 5.2. In any case, P4(

1
2) = 131

192 ∼ .6823 should approximate

− ln(12) = ln 2.
To assess the accuracy of this approximation, recall from the proof of

Proposition 3.12, that for x 6= 1, we have 1+x+x2+x3 = 1−x4
1−x . This means

the third Maclaurin remainder of 1
1−x is r3(x) = x4

1−x . Thus r3(t) ≤ 2t4

for 0 ≤ t ≤ 1
2 , so the fourth Maclaurin remainder of F satisfies R4(

1
2) =∫ 1

2
0 r3(t)dt ≤

∫ 1
2
0 2t4dt = 1

80 ∼ .0125. The true value of ln 2 ∼ .6931 so
our error bound is fairly tight. Direct use of Taylor’s remainder formula
Theorem 5.6.3 and Proposition 5.17.4 would have given much poorer error
bounds.

The next application provides a tool for passing between Maclaurin poly-
nomials and Taylor polynomials based at other points. The algebraic oper-
ation involved in this proposition is simple enough that we do not need to
wait for the next chapter to obtain its consequence vis a vis analyticity.

Proposition 5.20. (Translation) Let a ∈ R, and define a new function
g by g(x) = f(x− a).

(1) The n’th order Taylor polynomial of g about a can be obtained by
substituting x − a for x in the n’th order Maclaurin polynomial of
f .

(2) The same is true for n’th order remainders on the interval |x| < b.
(3) If f is analytic on the interval |x| < b, then g is analytic on the

interval |x− a| < b.

Proof. We have g(x) = f(x− a) by hypothesis. Since Dx(x− a) = 1,
the chain rule yields g′(x) = f ′(x − a). In fact, differentiating repeatedly

yields g(k)(x) = f (k)(x − a) for each non-negative integer k. In particular,
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taking x = a, we get g(k)(a) = f (k)(0). Substituting in Equation 5.8, we get

pn(x− a) =
n∑
k=0

f (k)(0)

k!
(x− a)k =

n∑
k=0

g(k)(a)

k!
(x− a)k,

which we recognize as the n’th order Taylor polynomial of g about a.
On the other hand, substituting x− a for x in Display 5.9, we obtain

g(x) = f(x− a) = pn(x− a) + rn(x− a), |x− a| < b

Now that we have identified pn(x−a) to be the n’th order Taylor polynomial
of g about a, this equation forces rn(x − a) to be the n’th remainder of g
about a.

The analyticity hypothesis in the final assertion of the Proposition means
that limn→∞ rn(x) = 0 whenever |x| < b. Taking the limit of the last display
as n→∞ thus yields analyticity of g. �

Example 5.21. It follows from Proposition 5.20 that the third order
Maclaurin polynomial of f(x) =

√
x+ 100 is the same as the third order

Taylor polynomial of g(x) = f(x− 100) =
√
x about a = 100. This is easily

checked directly.

Consider the problem of finding the fourth order Maclaurin polynomial
of the function f(x) = x2 cosx. The product rule makes repeated differ-

entiation rather messy. On the other hand, we already know that 1 − x2

2
is the second degree Maclaurin polynomial of cosx and is tempting to just
multiply by x2 to get the desired Maclaurin polynomial for f . The way we
see that’s right is by applying Part (2) of Taylor’s Theorem.

Proposition 5.22. (Maclaurin Characterization) Suppose a function
h has derivatives of all orders in some open interval about 0 and n is a
non-negative integer. If a polynomial q has degree at most n and satisfies

limx→0
h(x)−q(x)

xn = 0, then q must be the n’th order Maclaurin polynomial
of f about a.

Proof. Write qn for the n’th order Maclaurin polynomial of h. Part (2)

of Taylor’s Theorem tells us that limx→0
h(x)−qn(x)

xn = 0. Subtraction then

yields limx→0
q(x)−qn(x)

xn = 0. Since the degree of q − pn is at most n, this
forces q − qn ≡ 0. �

Corollary 5.23. (Monomial Multiplication) Suppose k is a positive
integer and define a function F by F (x) = xkf(x), for |x| < b. For each
natural number n,

(1) The (n+k)’th order Maclaurin polynomial of F is given by the for-
mula Pn+k(x) = xkpn(x).

(2) For |x| < b, the (n+k)’th order Maclaurin remainder of F is given
by Rn+k(x) := xkrn(x).

(3) If f is analytic for |x| < c, then so is F .
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Proof. Canceling a factor of xk from numerator and denominator we
obtain

lim
x→0

F (x)− xkpn(x)

xn+k
= lim

x→0

f(x)− pn(x)

xn
= 0

by Part (2) of Taylor’s Theorem. Thus Proposition 5.22 tells us that xkpn(x)
must be the (n + k)′th order Maclaurin polynomial of F . That establishes
(1). (2) follows by multiplying both sides of Display 5.9 by xk.

The proof of (3) is similar to the proof of the final assertion of Proposition
5.20 and is therefore left for an exercise. �

Example 5.24. From Example 5.18, we learn that x2 sinx has Maclaurin

series
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+3 and this series converges to x2 sinx throughout the

reals.

Corollary 5.25. (Monomial Substitution) Suppose k is a positive in-
teger and d is a real number. Define a function F by F (x) = f(dxk), for
|x| < b. For each natural number n,

(1) The (nk)’th order Maclaurin polynomial of F is given by Pnk(x) =
pn(dxk).

(2) For |x| < b, the (nk)’th order Maclaurin remainder of F is given
by Rnk(x) := rn(dxk).

(3) If f is analytic for |x| < c, then F is analytic for |dxk| < c.

Proof. Substituting y = dxk we obtain

lim
x→0

F (x)− pn(dxk)

xnk
= lim

y→0
dn
f(y)− pn(y)

yn
= 0

by Part (2) of Taylor’s Theorem. Thus Proposition 5.22 shows that pn(dxk)
must be the (nk)′th order Maclaurin polynomial of F . That establishes (1).
(2) follows by substituting dxk for x in both sides of Display 5.9. The proof
of (3) is left as an exercise. �

Example 5.26. From Example 5.12, we know the cosine function is
analytic on all of R. Hence the function f(x) = cos(x3) is also analytic on
all of R. To get its Maclaurin series, we substitute x3 for x in Display 5.6,
obtaining

∞∑
n=0

(−1)n

(2n)!
x6n.

Note how much easier that was than computing successive derivatives of f
at zero. In fact these can be read off from the last display. For example, the
coefficient of x6 is −12 . But by definition, we know the coefficient of x6 in

the Maclaurin series of f must be f (6)(0)
6! . Equating these two expressions,

we obtain f (6)(0) = 6!
−2 = −360. (If you have time to waste, try getting that

by direct differentiation.)
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Example 5.27. Substituting −x2 for x in Equation 5.7, see that the
Maclaurin series for 1

1+x2
converges to 1

1+x2
throughout the open interval

(−1, 1).

1

1 + x2
=

∞∑
n=0

(−1)nx2n, −1 < x < 1.

From here, integration gives us the Maclaurin series for arctan.

arctanx ∼
∞∑
n=0

(−1)n

2n+ 1
x2n+1, −1 < x < 1.

Proposition 6.19 of the next section (or a little extra work here) allows
replacement of “∼” by equality.

Exercises

Proofs and Computations

Problem 5.1. Carefully state and independently prove the special case
of Taylor’s Theorem 5.2 corresponding to n = 1.

Problem 5.2. Write out details of the inductive proof needed to estab-
lish Part (1) of Taylor’s Theorem.

Problem 5.3. Find Maclaurin series for the following functions:

(1) 5x3 − 4x+ 13
(2) (1− x)4

(3) sinx
(4) cos 2x

(5) sinhx = ex−e−x

2

(6) 1
1+3x

(7) ln(1 + 2x)
(8)
√

1 + x.

Problem 5.4. Use appropriate third degree Taylor polynomials to ap-
proximate each of the following. Try to choose the function f and the base
point a as efficiently as possible.

(1) sin .01,
(2) sin 1,
(3) e,
(4)
√

3.9,

Problem 5.5. Give reasonable upper bounds on the errors of your ap-
proximations in the preceding problem.

Problem 5.6. Outline efficient methods for approximating each of the
following to five decimal place accuracy. In each part, specify the relevant
function f , base point a, and number of terms n.



82 5. TAYLOR’S THEOREM

(1) cos .01,
(2) sin 1,
(3)
√

99.

Problem 5.7. Find an exact expression for the remainder rn in the
Maclaurin series of 1

1−x . Hint:See the proof of Theorem 3.12.

Problem 5.8. Find the coefficient of x5 in the expansion of (x− 3)10.

Problem 5.9. Find the partial fraction expansion of x3+5x2

(x−2)4 . Hint: Ex-

press the numerator in terms of powers of x− 2.

Problem 5.10. Follow the argument of Example 5.12 to show that the
exponential function is analytic on all of R.

Problem 5.11. Follow the argument of Example 5.12 to show that the
sine function is analytic on all of R.

Operations on Taylor Polynomials and Series

Problem 5.12. Find Maclaurin series for the following functions:

(1) x3 cos(x4),
(2) 1

1+x4
,

(3) arctanx2,
(4)

∫ x
0 cos t2dt.

Problem 5.13. Manipulate Equation 5.7 to find functions having the
following Maclaurin series.

(1)
∑∞

n=0 3n(x− 4)n

(2) xn

2n

(3)
∑∞

n=0 nx
n−1

(4)
∑∞

n=0 nx
n

(5)
∑∞

n=0 n
2xn

(6)
∑∞

n=1
xn

n

(7)
∑∞

n=1
xn

n2

Problem 5.14. Find the Maclaurin series of f(x) = exp(x2), and use it

to evaluate f (10)(0).

Problem 5.15. Suppose p is a polynomial of degree at most n satisfying

lim
x→0

p(x)

xn
= 0. Argue inductively on n to show that p ≡ 0. This fact was

used in the proof of Proposition 5.3.

Problem 5.16. Prove the final assertion of Proposition 5.23.

Problem 5.17. Prove the final assertion of Proposition 5.25.

Problem 5.18. Prove that the function f(x) = 1
(1−x)2 of Example 5.16

is analytic.
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Problem 5.19. Use a Taylor series centered at 1 prove that the function
f(x) = 1

x is analytic on the interval (0, 2).

Problem 5.20. Suppose f is analytic in some interval (−r, r), and c
is a non-zero real number. Relate the various Maclaurin polynomials and
series of cf to those of f . Then prove that cf is also analytic in the interval
(−r, r).

Problem 5.21. Suppose f i and g are analytic in some interval (−r, r).
Prove that f + g is also analytic in the interval (−r, r).

Problem 5.22. Use the result of Problem 5.7 to prove that the arctan-
gent function is analytic.





CHAPTER 6

Power Series

The exponential function is one of the most important functions in math-
ematics. If you look back at your precalculus/calculus text however, you will

realize that it took quite a bit of effort to define quantities like e and e
√
2.

On the other hand the Maclaurin series

(6.1)
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

of exp is rather simple. It is tempting to use this expression to define the
exponential function. The steps to making this precise include

(1) Show that for each x ∈ R, the numerical series determined by (6.1)
converges to some number S(x).

(2) Show that the function S is continuous.
(3) Show that it makes sense to differentiate (6.1) term by term.
(4) Close the cycle by showing that (6.1) is the Maclaurin series of S.

It then follows easily that S is its own derivative and enjoys other prop-
erties we expect of the exponential function.

The purpose of this Chapter is to carry out the above program for general
power series

∑
bnx

n. This is important in differential equations, where it is
frequently easy to find series solutions of initial value problems even when
such solutions cannot be expressed in terms of elementary functions.

We begin with an official record of the relevant definitions.

Definition 6.1. Suppose A is a non–empty set of real numbers and for
each natural number n, we are given a function fn : A→ R.

(1) (fn) is said to be a sequence of functions on A.
(2) The series

∑
fn is comprised of two function sequences: the se-

quence of terms (fn) and its sequence of partial sums (sn). The
latter are defined by sn := f1 + . . . fn.

(3) The domain of convergence of
∑
fn is the set D of real numbers x

for which the numerical series
∑
fn(x) converges.

(4) The sum of the series
∑
fn is the function S whose value at each

x ∈ D is the sum of the numerical series
∑
fn(x).

1. Domains of Convergence

A power series is a function series of the form
∑
bn(x− a)n where a is

a real number and (bn) is a sequence of real numbers. We say this series is

85
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centered at a. We can use the tests of Chapter 3 to determine the domain
of convergence of a power series. The ratio test is particularly effective since
it can be applied to most x simultaneously.

Example 6.2. Determine the domains of convergence of the following
power series.

(1)
∑ xn

2n

(2)
∑ xn

n2n

(3)
∑ xn

n22n

(4)
∑ (x−2)n

n2n

(5)
∑
n!xn

(6)
∑ xn

n!

Solution. (1) We apply the absolute version of the ratio test,
Corollary 2.10. (Technically, the following computation makes no
sense when x = 0, but convergence is obvious in that case.)

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2nxn+1

2n+1xn

∣∣∣∣ =
|x|
2
.

Thus we get convergence if |x| < 2, divergence when |x| > 2, and no
information when |x| = 2. Testing x = 2,−2 individually, we get
the numerical series

∑
1 and

∑
(−1)n respectively, both of which

diverge by the n’th term test.
Thus the domain of convergence is the open interval (−2, 2).

(2) The ratio test gives us the same information as in Part (1):

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2nxn+1

n2n+1xn

∣∣∣∣ =
|x|
2
.

Thus we get convergence if |x| < 2, divergence when |x| > 2, and
no information when |x| = 2. Testing x = 2,−2 individually, we

get the numerical series
∑ 1

n and
∑ (−1)n

n respectively; the former
(harmonic) series diverges while the latter series converges by the
alternating series test.

Thus the domain of convergence is the interval [−2, 2).
(3) Once again, the ratio test gives convergence if |x| < 2, divergence

when |x| > 2, and no information when |x| = 2. Testing x = 2,−2

individually, we get the numerical series
∑ 1

n2 and
∑ (−1)n

n2 , both
of which converge absolutely.

Thus the domain of convergence is the closed interval [−2, 2].
(4) One could repeat the computations of Part (2), but it easier to note

that the substitution y = x−2 transforms this series to
∑ yn

n2n . The
result of Part (2) shows that the transformed series converges for
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−2 ≤ y < 2 whence
∑ (x−2)n

n2n converges for −2 ≤ x − 2 < 2, i.e.,
for 0 ≤ x < 4.

Thus the domain of convergence is the half–open interval [0, 4).
(5) The series converges for x = 0. For any other x, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣ = lim
n→∞

(n+ 1)|x| =∞.

Thus the domain of convergence is the singleton set {0}.
(6) As in Part (5), the result of the ratio–test computation does not

depend on x.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ n!xn+1

(n+ 1)!xn

∣∣∣∣ = lim
n→∞

|x|
(n+ 1)

= 0.

Thus the domain of convergence is R.
�

The following proposition shows that it is no accident that all the answers
to the preceding exercise are intervals.

Proposition 6.3. Suppose the power series
∑
bnx

n converges at x = c
and that 0 < s < |c|. Then there are constants K > 0 and ρ ∈ (0, 1) such
that |bnxn| ≤ Kρn whenever 0 ≤ |x| ≤ s.

In particular the power series
∑
bnx

n converges whenever |x| < c.

Proof. Since the terms of every convergent series are bounded, there is
some number K such that |bncn| ≤ K for all n. Set ρ := s

|c| . Then 0 < ρ < 1.

Moveover, for |x| ≤ s, we have |bnxn| ≤ Kρn for all n. Thus
∑
bnx

n

converges absolutely by comparison with the geometric series
∑
Kρn. �

Corollary 6.4. The domain of convergence of any power series cen-
tered at a is an interval centered at a. It may, however, include neither,
one, or both of the endpoints of the interval.

Proof. The assertion concerning endpoints is settled by Example 6.2.
Power series centered at a real number a can be transformed to power series
centered at 0 by making the substitution y = x− a.

Consider then a power series
∑
bnx

n centered at 0. If the domain of con-
vergence of this series is bounded, it has a least upper bound r. Proposition
6.3 then shows that the series converges whenever |x| < r; the contraposi-
tive of Proposition 6.3 shows that the series diverges whenever |x| > r. The
possible sets of convergence are thus (−r, r), [−r, r), (−r, r], and [−r, r], all
of which are intervals centered at 0. (When r = 0, only the interval [r, r]
which reduces to the singleton set {0} is possible.)

If the domain of convergence of
∑
bnx

n is unbounded, Proposition 6.3
shows that it converges for all real x. This completes the proof since R is
considered to be an interval (centered at any point). �
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Definition 6.5. The domain of convergence of a power series is also
called its interval of convergence. If this interval is bounded, half its length
is referred to as the radius of convergence of the power series. A power series
which converges for all x is said to have an infinite radius of convergence.

The following corollary of the ratio test could be used to abbreviate the
computations we made in Example 6.2. The proof is left as an exercise.

Proposition 6.6. If lim
∣∣∣ bn
bn+1

∣∣∣ = r exists as a finite number or is infi-

nite, then r is the radius of convergence of the power series
∑
bn(x− a)n.

2. Uniform Convergence

It is the goal of this chapter to show that sums of power series are ‘nice”
functions in the following sense.

Theorem 6.7. Suppose
∑
bn(x − a)n is a power series whose radius

of convergence r is strictly positive, and write J for the open interval (a −
r, a + r). Define a function S by setting S(x0) =

∑
bn(x0 − a)n for each

x0 ∈ J . Then S has derivatives of all orders throughout the interval J , and
the original power series is the Taylor series of S about a. In particular, S
is analytic throughout J .

Our first job is showing that S is continuous.

Definition 6.8. Let D be a non-empty set of real numbers. A sequence
(fn) of functions converges pointwise to function L on D if limn→∞ fn(x) =
L(x) for each x ∈ D.

The adverb “pointwise” is used to emphasize the point of view that we
are considering one x at a time. Reviewing Definition 2.7, this means given
x ∈ D and ε > 0, there is a natural number N allowed to depend on x as
well as ε such that |fn(x) − L(x)| < ε whenever n ≥ N . The drawback to
this concept is that pointwise limits of nice functions may be badly behaved.

Example 6.9. Each of the power functions fn(x) = xn is continuous
everywhere, but their pointwise limit on [0, 1] is the discontinuous function

L(x) =

{
0, 0 ≤ x < 1

1, x = 1
.

This is a serious setback to our proof of Theorem 6.7. By definition, the
sum of a power series is the pointwise limit of its partial sums. Those partial
sums seem as nice as could be (polynomials), but the example suggests that
all could be lost when we take pointwise limits. We get around this problem
by introducing a stronger notion of convergence.

Definition 6.10. Let D be a non-empty set of real numbers. A sequence
(fn) of functions converges uniformly to function L on D if given ε > 0, there
is a natural number N such that |fn(x) − L(x)| < ε simultaneously for all
x ∈ D and all n ≥ N .
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The key point here is that we have to choose N without knowing what
x we’re talking about.

Example 6.11. Define functions fn and gn on R by fn(x) = 1
n sinx and

gn(x) = x
n . For each individual x, we have limn→∞ fn(x) = limn→∞ gn(x) =

0, so both sequences of functions converge to zero pointwise on R.
(fn) also converges to zero uniformly on R. Indeed, given ε > 0, choose

a natural number N > 1
ε . Then for all n ≥ N and all x ∈ R, we have

|fn(x)− 0| = | 1
n

sinx| ≤ 1

n
≤ 1

N
< ε,

as required.
On the other hand (gn) does not converge (to zero) uniformly. To see

this, take ε = 1
2 and suppose N is some natural number. Then, taking x =

N = n, we have |fn(x)− 0| = 1 > ε, so there is no N which simultaneously
works for this ε and all x.

We now show that uniform convergence does preserve continuity.

Proposition 6.12. Suppose (fn) is a sequence of functions converging
uniformly to a function L on an interval D ⊂ R and a ∈ D. If each fn is
continuous at a, then L is continuous at a as well.

Proof. For each x ∈ D and N ∈ N, the triangle inequality yields

|L(x)− L(a)| ≤ |L(x)− fN (x)|+ |fN (x)− fN (a)|+ |fN (a)− L(a)|.

Given ε > 0, apply uniform convergence to find N ∈ N so that |fn(x) −
L(x)| < ε

3 for all x (including a) in D. Then apply the continuity of fN to
get δ > 0 so that |fN (x) − fN (a)| < ε

3 whenever |x − a| < δ. Thus when
|x− a| < δ, we can continue the preceding display to get

|L(x)− L(a)| < ε

3
+
ε

3
+
ε

3
= ε,

and we have satisfied the continuity Definition 4.7. �

In particular, the convergence in Example 6.9 cannot be uniform.
While power series need not converge uniformly on their domains of

covergence, they do converge uniformly on smaller intervals. That will set
us up to apply Proposition 6.12. We need one more definition to carry out
this program.

Definition 6.13. A sequence (fn) of functions is uniformly cauchy on
a domain D if for each ε > 0, there is a natural number N such that

(6.2) |fm(x)− fn(x)| < ε for all m,n ≥ N and all x ∈ D

Proposition 6.14. Let D be a non-empty subset of R. Every uniformly
cauchy sequence on D is uniformly convergent on D.
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Proof. Suppose (fn) is uniformly convergent on D. For each fixed
x ∈ D, (fn(x)) is a cauchy numerical sequence and hence converges to some
number L(x). In other words, (fn) converges pointwise to L, and we must
show this convergence is uniform.

So let ε > 0 be given and choose N as in Display 6.2 corresponding to
ε
2 . Now suppose x ∈ D and n ≥ N . Then for each m ≥ N , the triangle
inequality yields

|fn(x)− L(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− L(x)| ≤ ε

2
+ |fm(x)− L|

Now choose m (depending on x) so large that |fm(x)−L| < ε
2 . (It’s okay to

have m depend on x becuase m doesn’t appear on the lefthand side of the
Display). Thus the Display continues to show |fn(x)−L| < ε as desired. �

Definition 6.15. Let D be a subset or R. An infinite series
∑
fn of

functions converges uniformly to a function S on D if its sequence (sn) of
partial sums of the series converges uniformly to S.

Theorem 6.16. (Weierstrauss M-test) Suppose
∑
fn is a series of func-

tions on a domain D, and
∑
Mn is a convergent series of positive numbers.

If |fn(x)| ≤ Mn for all n and all x ∈ D, then the function series
∑
fn

converges uniformly on D.

Proof. Write (sn) for the sequence of partial sums of (fn). Given
ε > 0, choose N so that

∑n
k=mMk < ε whenever n ≥ m ≥ N . Then for all

n ≥ m ≥M and all x ∈ D, we have

|sn(x)− sm(x)| =

∣∣∣∣∣
n∑

k=m

fk(x)

∣∣∣∣∣ ≤
n∑

k=m

Mn < ε

This shows the sequence (sn) is uniformly Cauchy, hence uniformly conver-
gent by Proposition 6.14. �

We’re now ready to put everything together. For ease of reading, we
restrict attention to power series centered at 0.

Corollary 6.17. Suppose the power series
∑
bnx

n has radius of con-
vergence r > 0, and let s be a positive number which is less than r. Then
the power series converges uniformly on the interval |x| ≤ s

Proof. Fix c in the open interval (s, r) and apply Proposition 6.3 to get
K > 0 and ρ ∈ (0, 1) such that |bnxn| ≤ Kρn for all n and all |x| ≤ s. The
proof is completed by applying the Weirstrauss M-test with Mn = Kρn. �

Here is the first step towards Theorem 6.7.

Corollary 6.18. Suppose the power series
∑
bnx

n has radius of con-
vergence r > 0 and denote the function which is the limit of its partial sums
by S. Then S is continuous on the open interval |x| < r.
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Proof. Fix s < r. Each partial sum sn of the power series is a polyno-
mial and hence continuous everywhere. The previous Corollary tells us (sn)
converges uniformly on [−s, s], whence Proposition 6.12 yields continuity of
S on each closed subinterval of |x| < r. That’s enough to give continuity of
S throughout |x| < r. �

3. Analyticity of Power Series

In this section, we complete the proof of Theorem 6.7. The following
Proposition means that integration preserves uniform convergence.

Proposition 6.19. Suppose (fn) is a sequence of continuous functions
converging uniformly to a function g on the interval |x| < r. Define func-
tions Fn, G by

Fn(x) =

∫ x

0
fn, G(x) =

∫ x

0
g, for all x ∈ (−r, r).

Then (Fn) converges uniformly to G on (−r, r).

Proof. Given ε > 0, find a natural number N so that |fn(x)−g(x)| < ε
r

for all n ≥ N and for all |x| < r. Then whenever n ≥ N and |x| < r, we
have

|Fn(x)−G(x)| =
∣∣∣∣∫ x

a
(fn − g)

∣∣∣∣ ≤ |x− a| εr < ε

�

Unfortunately, differentiation does not preserve uniform convergence.

Example 6.20. Take fn(x) = 1
n sinn2x. Then (fn) converges to 0 uni-

formly on R. However f ′n(0) = n for each n so (f ′n) does not even converge
pointwise.

The next Proposition overcomes this last obstacle. A function f is said
to be continuously differentiable if its derivative f ′ is continuous.

Proposition 6.21. Let (fn) be a sequence of continuously differentiable
functions on the open interval (−r, r). Suppose (fn) converge uniformly to
some function g on (−r, r) while (f ′n) converge uniformly to some function
h on that interval. Then h = g′ on (−r, r).

Proof. Applying Proposition 6.19 at the last step, we have

g(x)− g(0) = lim
n→∞

fn(x)− fn(0) = lim
n→∞

∫ x

0
f ′n =

∫ x

0
h, |x| < r.

Differentiating with respect to x gives the desired result. �

Proposition 6.22. Suppose the power series
∑∞

n=0 bnx
n has radius of

convergence r > 0 and denote the function which is the limit of its partial
sums by S.

(1) The derived power series
∑∞

n=1 nbnx
n−1 converges on (−r, r).

(2) S is differentiable on the the interval (−r, r).
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(3) S′ is the sum of the derived power series on (−r, r).

Proof. Fix numbers c, s satisfying 0 < s < c < r and apply Proposition
6.3 to get K > 0 and ρ ∈ (0, 1) such that |bnxn| ≤ Kρn for all n and all |x| ≤
s. Since the numerical series

∑
Knρn−1 by the ratio test, the Weierstrauss

M-test tells us that the derived power series converges uniformly on the
interval |x| ≤ s. This means the partial sum sequence (s′n) of the derived
series converges uniformly to some function T on |x| ≤ s. Since the original
power series also converges uniformly on that interval, its sequence (sn)
of partial sums converges uniformly to S on that interval as well. Now
Proposition 6.21 guarantees that S′ = T which simultaneously establishes
(2) and (3) on the interval (−s, s). Since this is true for every s < r, the
proof is complete. �

We’re now ready to prove the main result of this Chapter, which we
restate for convenience.

Theorem 6.23. Suppose
∑
bn(x − a)n is a power series whose radius

of convergence r is strictly positive, and write J for the open interval (a −
r, a + r). Define a function S by setting S(x0) =

∑
bn(x0 − a)n for each

x0 ∈ J . Then S has derivatives of all orders throughout the interval J , and
the original power series is the Taylor series of S about a. In particular, S
is analytic throughout J .

Proof. For notational simplicity, we continue to assume a = 0.
We have just shown the derived power series converges to S′ on (−r, r).

This can be repeated inductively to get

(6.3) S(k)(x) =

∞∑
n=k

n!

(n− k)!
bnx

n−k, k ∈ N, |x| < r.

This establishes the assertion that S has derivatives of all orders on J .
Plugging in x = 0 in the display, we conclude S(k)(0) = k!bk for each natural
number k, that is, the bk’s are the Maclaurin coefficients of S and

∑
bnx

n is
indeed the Taylor series of S. Analyticity of S now follows since the original
power series converges to it on (−r, r) by assumption. �

Exercises

Domains of Convergence

Problem 6.1. Determine the domains of convergence of the following
power series:

(1) the series
∑ xn

3n
√
n

,

(2) the series obtained via term by term differentiation of the series
from Part (1)

(3) the series obtained via term by term integration of the series from
Part (1)



EXERCISES 93

(4) the series
∑ (x−2)2n√

n
.

Problem 6.2. Prove Proposition 6.6.

Problem 6.3. Use a comparison argument like that of Proposition 6.3
to show that the power series

∑
bnx

n and
∑
nbnx

n have the same radius of
convergence.

Uniform Convergence

Problem 6.4. Prove that the sequence (xn) of power functions does not
converge to 0 uniformly on the open interval (0, 1).

Problem 6.5. Suppose 0 ≤ r < 1. Prove that the sequence (xn) of
power functions does converge to 0 uniformly on the interval [−r, r].

Problem 6.6. Give an example of a sequence (fn) of bounded functions
which converge pointwise to an unbounded function f on the interval (0, 1).

Problem 6.7. Let (fn) be a sequence of bounded functions which con-
verge uniformly to a function f on some interval J . Prove that f is also
bounded.

Problem 6.8. Prove that the power series
∑ 1

n2x
n converges uniformly

on the interval [−1, 1].

Problem 6.9. Suppose the infinite series of functions
∑
fn converges

uniformly on some interval J . Prove that its sequence (fn) of terms must
converge to 0 uniformly on J .

Problem 6.10. Suppose the power series
∑
bnx

n converges uniformly
on R. Prove there is some natural number N such that bn = 0 for all n ≥ N .
In other words, such a series must be a polynomial.

Problem 6.11. Prove that the power series
∑
xn does not converge

uniformly on the interval (0, 1).

Problem 6.12. Prove that the power series
∑ 1

nx
n does not converge

uniformly on the interval (0, 1).

Problem 6.13. Prove that the power series
∑ 1

nx
n does converge uni-

formly on the interval (−1, 0).

Problem 6.14. Establish Equation 6.3.

Problem 6.15. Use Equation 6.3 to show that if the two power series∑
bn(x− a)n and

∑
cn(x− a)n converge to the same function in some open

interval about a, then bn = cn for all n.

Approximation of π

Problem 6.16. A theorem of Abel states that if a numerical series
∑
bn

has a real sum L, then limx→1−
∑
bnx

n = L as well. Use this result to obtain
a series representation of π. Hint: What is arctan 1 ?
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Problem 6.17. Suppose the numerical sequence (bn)∞n=0 decreases
monotonically to zero. Show that the error involved in approximating the
alternating series

∑∞
k=0(−1)kbk by its n’th partial sum is at most bn+1.

Problem 6.18. How many terms from the series expansion you found
in Problem 6.16 are needed to approximate π to within .001 ?

Problem 6.19. Show that arctan(1) = 4 arctan(15) − arctan( 1
239) and

explain how this can be used to approximate π more efficiently.



CHAPTER 7

Complex Sequences and Series

1. Motivation

In Chapter 1, we characterized the real number system as a complete
ordered field.

Proposition 7.1. The equation x2 = −1 does not have a solution in
any ordered field.

Proof. Let x be an element of an ordered field F . By Proposition 1.8,
we know that x2 + 1 ∈ F+, whence x2 + 1 6= 0 by trichotomy. �

This is somewhat of a nuisance in various areas of mathematics. For
example, because x2 − 1 can be factored, the method of partial fractions

yields
2

x2 − 1
=

1

x− 1
− 1

x+ 1
, whence∫

2

x2 − 1
dx = ln

x− 1

x+ 1
+ C.

On the other hand, (real) partial fractions cannot be used to simplify 2
x2+1

,
and the corresponding integral looks quite different:∫

2

x2 + 1
dx = 2 arctanx+ C.

Example 7.2. A similar problem arises in differential equations. Sub-
stituting y = erx in the differential equation

(7.1) y′′ − y = 0,

we obtain (r2 − 1)erx = 0, which is satified when r = ±1; this leads to
y = C1e

x + C2e
−x as the general solution to Equation 7.1.

If we try the same substitution in the differential equation

(7.2) y′′ + y = 0,

we obtain (r2 + 1)erx = 0, which is not satisfied by any real number r;
in fact, the general solution to Equation 7.2 is the totally different-looking
y = C1 cosx+ C2 sinx.

In seeking to understand Example 7.2, it is natural to try to find a
larger field F which contains the real numbers, together with a new number
“i” satisfying the equation i2 = −1. Since fields are closed under addition
and multiplication, for each a, b ∈ R, there must be a number a + bi in F .

95
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Moreover, the commutative, associative, and distributive laws dictate how
these numbers must be added and multiplied. For a, b, c, d ∈ R,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = ac+ bdi2 + (ad+ bc)i = (ac− bd) + (ad+ bc)i.

2. Complex Numbers

It is not difficult to make this informal procedure precise. We define C
to be the collection of all ordered pairs of real numbers, equipped with the
operations:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)(c, d) = (ac− bd, ad+ bc)

It must be shown that these operations make C into a field, i.e., that Def-
inition 1.2 is satisfied. Closure and commutativity are obvious; checking
associativity and distributivity is tedious but straightforward. The additive
identity is (0, 0), while the multiplicative identity is (1, 0). Clearly (−a,−b)
provides the additive inverse of (a, b). Finally, if (a, b) 6= (0, 0), a direct
computation confirms ( a

a2+b2
, −b
a2+b2

) as its multiplicative inverse.
We call C the complex number field. By introducing i as an abbreviation

for (0, 1), and a as an abbreviation for (a, 0), we recover our motivating
notation a+ bi = (a, b).

You will have to wait for MATH 4150 for a proper appreciation of com-
plex numbers. For example, although we have only built in a root of the
polynomial x2 + 1, it turns out that every non-constant polynomial has a
root in C. The modest goal of the rest of this chapter is simply to adapt
our earlier results to the complex setting.

Of course, Proposition 7.1 implies that C cannot be ordered. This is
why absolute values (which are real) come up so often in the study of C; the
triangle inequality (Proposition 7.4.3) is particularly important.

Definition 7.3. Let z = a+ bi, with a, b ∈ R.

(1) a is called the real part of z, denoted Re (z)
(2) b is called the imaginary part of z, denoted Im (z)
(3) z is real if b = 0 and pure imaginary if a = 0

(4)
√
a2 + b2, called the absolute value of z, is denoted |z|.

Proposition 7.4. Let z, w ∈ C.

(1) |Re (z) | ≤ |z|
(2) | Im (z) | ≤ |z|
(3) |z + w| ≤ |z|+ |w|

Proof. Write z = a + bi, w = c + di with a, b, c, d ∈ R. (1) follows by
applying non-negative square roots to the inequality a2 ≤ a2 + b2; the proof
of (2) is similar.
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For (3), note first that

(a2 + b2)(c2 + d2)− (ac+ bd)2 = (bc− ad)2.

Since the right-hand side of this equation is non-negative, we conclude that

ac+ bd ≤
√

(a2 + b2)(c2 + d2) = |z||w|.
It follows that

|z + w|2 =(a+ c)2 + (b+ d)2 = a2 + b2 + c2 + d2 + 2(ac+ bd)

≤a2 + b2 + c2 + d2 + 2|z||w| = (|z|+ |w|)2.
Taking non-negative square roots yields the desired result. �

3. Complex Sequences

Definition 7.5. A sequence of complex numbers is a function mapping
N into C.

Unless indicated otherwise, all sequences discussed below will be complex
sequences. Convergence is defined as in the real case.

Definition 7.6. A complex sequence (an) is said to converge to the
number L if for each number ε > 0 there is a natural number N such that
|an − L| < ε whenever n ≥ N . In this case the number L is called the limit
of the sequence (an) and we write limn→∞ an = L. A sequence which does
not converge to any complex number is said to diverge.

Proposition 7.7. In order for a complex sequence to converge, it is
necessary and sufficient that its real and imaginary parts be convergent.

Proof. Suppose (zn) is a complex sequence converging to a number L,
and let ε > 0 be given. Choose N such that n ≥ N implies |zn − L| <
ε. In view of Proposition 7.4, we also have |Re (zn) − Re (L) | < ε and
| Im (zn)−Im (L) | < ε whenever n ≥ N . This means (Re (zn)) and (Im (zn))
converge to Re (L) and Im (L) respectively.

Conversely, suppose limn→∞Re (zn) = a, and limn→∞ Im (zn) = b.
Given ε > 0, choose N so that n ≥ N implies

|(Re (zn)− a)| < ε

2
and |(Im (zn)− b)i| < ε

2
.

Then whenever n ≥ N , the triangle inequality yields

|zn − (a+ bi)| ≤ |(Re (zn)− a)|+ |(Im (zn)− b)i| < ε,

whence limn→∞ zn = a+ bi. �

The absence of an order on C makes it impossible to talk about upper
or lower bounds of complex sequences. However, we can use absolute values
to define boundedness.

Definition 7.8. A complex sequence (an) is bounded if there is a posi-
tive (real) number M such that |an| ≤M for all n ∈ N.
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Proposition 7.9. Every convergent complex sequence is bounded.

Proof. Suppose (an) converges to L. Taking ε = 1 (any fixed ε would
do), we find a natural number N such that n ≥ N implies |an−L| < 1. But
|an| ≤ |an−L|+|L| by the triangle inequality. Thus |an| < |L|+1 for all n ≥
N . The proof is completed by taking M = max{|a1|, |a2|, . . . , |aN−1|, |L| +
1}. �

Most of the remaining results in this chapter parallel our work in Chap-
ters 2, 3, and 5. Proofs can be constructed either by mimicking the earlier
arguments or by combining Proposition 7.7 with the earlier results.

Proposition 7.10. If (zn) and (wn) are convergent complex sequences,
then

(1) lim(zn + wn) = lim zn + limwn;
(2) lim znwn = lim zn limwn;
(3) If limwn 6= 0 then lim zn

wn
= lim zn

limwn
.

Definition 7.11. A sequence (an) of complex numbers is Cauchy if for
each ε > 0 there is a natural number N such that |am − an| < ε for all
natural numbers m and n greater than or equal to N .

Proposition 7.12. (1) Every complex sequence which converges is
Cauchy.

(2) Every Cauchy sequence of complex numbers has a complex limit.

4. Complex Series

Definition 7.13. Let (an)n≥N be a sequence of complex numbers. De-

fine a new sequence (sn)n≥N inductively by setting sN = aN and sn+1 =
sn+an+1 for n ≥ N . We call sn the n’th partial sum of the original sequence;
it is also denoted by

∑n
i=N ai.

Definition 7.14. An (infinite) series is a pair of sequences (an)n≥N
and (sn)n≥N where the latter sequence is the sequence of partial sums of

the former sequence. It is denoted by
∑∞

n=N an. We call an the n’th term
of the series and we call sn the n’th partial sum of the series.

Definition 7.15. A complex series
∑∞

n=N an converges if its sequence
(sn)n≥N of partial sums converges to some complex number S. In this case,
S is referred to as the sum of the series and we say that the series converges
to S; we even write S =

∑∞
n=N an. A series which does not converge is said

to diverge.

As in the real case, the important thing to keep in mind is that conver-
gence of a series refers to convergence of its sequence of partial sums. The
notation

∑∞
n=N an is ambiguous; one must consider the context to decide

whether it stands for a series (i.e., a pair of sequences) or a number (i.e.,
the sum of a convergent series).
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Proposition 7.16. In order for a complex series to converge, it is nec-
essary and sufficient that its real and imaginary parts be convergent.

Proposition 7.17 (n’th Term Test). In order for a complex series to
converge, it is necessary that its terms approach zero.

Proposition 7.18. Suppose the complex series
∑∞

n=1 an and
∑∞

n=1 bn
converge to A and B respectively and K is a complex number.

(1) The series
∑∞

n=1(an + bn) converges to A+B.
(2) The series

∑∞
n=1Kan converges to KA.

Corollary 7.19. Omitting or changing the first few terms of a series
does not affect its convergence.

Definition 7.20. The complex series
∑
an is absolutely convergent if

the series
∑
|an| is convergent.

Proposition 7.21 (Absolute Convergence Test). Each absolutely con-
vergent complex series is convergent.

Corollary 7.22 (Ratio Test). Suppose
∑∞

n=1 an is a complex series for
which lim |an+1

an
| = L exists as a finite number or is infinite.

(1) If L < 1, then the series converges.
(2) If L > 1, then the series diverges.

Theorem 7.23 (Dirichlet’s test for convergence). Let (zn) and (bn) be
sequences of numbers, and set sn = z1 + · · · + zn. Suppose that (sn) is
bounded, while (bn) is a real sequence which decreases montonically to zero.
Then

∑∞
n=1 bnzn converges.

Example 7.24. Suppose z ∈ C has absolute value one, but z 6= 1. Then
the series

∑∞
n=1

zn

n converges.

Proof. Apply Dirichlet’s Test with an = zn and bn = 1
n . The bound-

edness hypothesis is satisfied since

|sn| = |z + z2 + z3 + · · ·+ zn| =
∣∣∣∣z − zn+1

1− z

∣∣∣∣ ≤ 2

|1− z|
.

�

5. Complex Power Series

Definition 7.25. Suppose D is a non–empty set of complex numbers
and for each natural number n, we are given a function fn : D → C.

(1) (fn) is said to be a sequence of functions on D.
(2) The sequence of partial sums (sn) and the series

∑
fn are defined

as in the numerical case.
(3) The domain of convergence of

∑
fn is the set of complex numbers

z for which the numerical series
∑
fn(z) converges.
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(4) A complex power series is a series of the form
∑
bn(z − a)n where

a is a complex number and (bn) is a sequence of complex numbers.
The power series is said to be centered at a.

Proposition 7.26. Suppose the power series
∑
bnz

n converges when
z = c. Then the power series

∑
bnz

n converges whenever |z| < |c|.

Definition 7.27. Let D be the domain of convergence of a complex
power series centered at a. Then the least upper bound of {|z − a| : z ∈ D}
is called the radius of convergence of the power series. (If D is unbounded,
we say the radius of convergence is infinite.)

Corollary 7.28. Suppose
∑
bnz

n has radius of convergence r. If r
is infinite, then the series converges for all z ∈ C. Otherwise, the series
converges whenever |z| < r and diverges whenever |z| > r. The domain
of convergence may include none, all, or some of the points on the circle
|z| = r.

Proposition 7.29. If lim
∣∣∣ bn
bn+1

∣∣∣ = r exists as a finite number or is

infinite, then r is the radius of convergence of the power series
∑
bn(x−a)n.

Example 7.30. Example 7.11 shows the domain of convergence of
∑ zn

n
is {z ∈ C : |z| ≤ 1, z 6= 1}.

Derivatives of functions mapping C to C are defined as in the real case:
for f : C→ C,

f ′(a) := lim
z→a

f(z)− f(a)

z − a
,

provided the limit exists. Basic differentiation rules also carry over, e.g.,
Dz(z

n) = nzn−1. The accompanying theory, however, holds quite a few
surprises. For example, while it is easy to construct a differentiable function
f : R → R for which f ′′(0) fails to exist, differentiable functions from C
to C automatically have derivatives of all orders. We leave these matters,
including proof of the next proposition, for later courses.

Proposition 7.31. (Term by term differentiation) Let
∑
bn(z − a)n be

a complex power series with radius of convergence r > 0 and set

f(z) =
∑

bn(z − a)n, |z − a| < r.(7.3)

(1) The derived power series
∑
nbn(z − a)n−1 also has radius of con-

vergence r.
(2) f is differentiable on the interval |z − a| < r.
(3)

f ′(z) =
∑

nbn(z − a)n−1, |x− a| < r.(7.4)
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6. De Moivre’s Formula

We close this chapter by applying complex power series to explain Ex-
ample 7.2. To begin, recall the Maclaurin series for the (real) exponential
function:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . , x ∈ R.

We simply adopt this expansion as our definition for the complex expo-
nential function:

(7.5) exp(z) :=
∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ . . . , z ∈ C.

Proposition 7.29 tells us that this power series converges for all z, and Propo-
sition 7.31 assures us that exp(z) continues to be its own derivative.

Remark 7.32. We can use a trick to justify the “exponential” property:
exp(z + w) = exp(z) exp(w) for all complex numbers z, w.

Proof. Temporarily fix a ∈ C, and set g(z) = exp(z) exp(a − z). Ap-
plying the chain and product rules, we obtain

g′(z) = exp(z)[− exp(a− z)] + exp(z) exp(a− z) = 0.

It follows that g is constant, that is, g(z) = g(0) for all z ∈ C. Applying
this with a = z + w yields exp(z) exp(w) = exp(z + w) as desired. �

In the same way, we adapt the power series expansions of the sine and
cosine functions to the complex setting.

(7.6) sin z :=
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
+ . . . , z ∈ C.

(7.7) cos z :=

∞∑
n=0

(−1)nz2n

(2n)!
= 1− z2

2!
+
z4

4!
+ . . . , z ∈ C.

Theorem 7.33 (De Moivre). exp(ix) = cosx+ i sinx for all x ∈ R.

Proof. Substitute z = ix in the power series 7.5, 7.6, and 7.7. �

Reviewing the “mysterious” Example 7.2, we find the (complex) solution
y = B1 exp(ix) + B2 exp(−ix) to Equation 6.2, which really does look like
the solution to Equation 6.1. Substituting from De Moivre’s formula, we
get

y = (B1 +B2) cosx+ i(B1 −B2) sinx,

which explains our original solution y = C1 cosx+C2 sinx to Equation 7.2.
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Exercises

In the following exercises, z and w stand for complex numbers.

Complex Numbers

Problem 7.1. Compute the multiplicative inverse of 3 + 4i.

Problem 7.2. Check that the multiplicative inverse axiom holds in C.

Problem 7.3. Check that the distributive property holds in C.

Problem 7.4. Graph the following equations and inequalities in the
cartesian plane:

(1) Re (z) = 0,
(2) |z| = 1,
(3) Im (z) > 3,
(4) |z − i| < 2.

Problem 7.5. The complex conjugate z of a complex number z is defined
by z := Re (z) − i Im (z). Prove that |z + w|2 = |z|2 + |w|2 + 2 Re (zw) for
all z, w ∈ C.

Problem 7.6. Prove that | |z| − |w| | ≤ |z − w| for all z, w ∈ C.

Complex Sequences

Problem 7.7. Prove Proposition 7.10 by applying Proposition 7.7 to
the corresponding real result Proposition 2.26. Hint: For Part (3), note

that
1

wn
=

wn
|wn|2

.

Problem 7.8. Prove that a complex sequence (an) is bounded if and
only if both real sequences (Re (an)) and (Im (an)) are bounded.

Problem 7.9. Use the result of the last problem to give an alternate
proof of Proposition 7.9.

Problem 7.10. Prove Proposition 7.12.

Complex Series

Problem 7.11. Prove Proposition 7.16.

Problem 7.12. Prove Proposition 7.17.

Problem 7.13. Prove Proposition 7.21 and Corollary 7.22.

Complex Power Series

Problem 7.14. Prove Proposition 7.26 and Corollary 7.28.

Problem 7.15. Prove Proposition 7.29.
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Problem 7.16. Find the domains of convergence of the following com-
plex power series:

(1)
∑
zn

(2)
∑ nzn

2n

(3)
∑ zn

n2

(4)
∑ (z−5)n√

n

Problem 7.17. Let f : R → R by f(x) = x|x|. Prove that f is every-
where differentiable, but that f ′′(0) does not exist.

Problem 7.18. Let f : C → C by f(z) = z|z|. Prove that f is not
differentiable at 0.

Problem 7.19. Prove that if the derivative of f : C → C is identically
zero, then f is constant.

De Moivre’s Formula

Problem 7.20. Take real and imaginary parts of the equation

exp(i(x+ y)) = exp(ix) exp(iy)

to derive the usual identities for cos(x+ y) and sin(x+ y).

Problem 7.21. Apply complex exponentials to solve the initial value
problem

y′′ − 2y′ + 5y = 0.

y(0) = 1, y′(0) = 7.

Use De Moivre’s Theorem to express your answer in a form which doesn’t
involve i.





CHAPTER 8

Constructions of R

In this chapter, we outline three separate (but equivalent) approaches to
proving the existence of the real number system, which was formulated in
Theorem 1.25 without proof. Each approach is based on the time-honored
trick of turning a mathematical question into its own answer; this is the
technique we used to construct C from R in Chapter 6. The three sections
of this chapter devoted to these approaches are independent of one another
and can be read in any order.

It is not possible to construct something from nothing in mathematics–
one must start with undefined terms and axioms. The most primitive start-
ing point is set theory, with its undefined terms “set” and “element” and its
axioms guaranteeing that many sets exist. It is possible to construct R from
these alone, but such a project is well beyond the scope of this course. A
more common procedure is to axiomitize the existence of the natural number
system, and then successively construct larger number systems from there.
One rationale for accepting N is that its existence is intuitively appealing.
In fact, you will learn how to construct Z and Q from N in MATH 4000.
For this reason, and because you probably feel comfortable with the ratio-
nal numbers, the constructions of this chapter only describe how to build R
from Q.

The construction of Section 1 is based on formal decimals, that is, we
don’t assume such expressions have any prior meaning, but we introduce
two operations and an order on them, which turn them into a complete
ordered field. This is perhaps the most cumbersome of the three approaches.
However, because it mirrors the way most people are first introduced to real
numbers, you will probably find it intuitive and familiar.

The Dedekind construction of Section 2 is based on the idea that each
real number should be determined by the set of rationals which are smaller
than it. This approach is more elegant than using decimals, and it is fairly
easy to appreciate why it works, but the technical details are still quite
messy and we only outline them.

The Cauchy sequence construction of Section 3 is based on the idea that
an individual real number should be determined by the class of rational
sequences converging to it. This approach has the virtue that it is relatively
easy to fill in the details; it is presented last because it assumes familiarity
with equivalence relations.
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1. Formal Decimals

(added by Valery Alexeev)

A complete rigorous proof of all the axioms is quite delicate and requires
a lot more time than we are willing to spend on this in our course. We only
give an overview of it.

Definition 8.1. A real number x is a sequence

±amam−1 . . . a0.α1α2 . . .

of digits 0 through 9, which is finite on the left but is infinite on the right.
By convention, the sequence can be shortened if all the digits starting from
some place are zeros:

±amam−1 . . . a0.α1α2 . . . αn000 · · · = ±amam−1 . . . a0.α1α2 . . . αn

By definition, the two sequences ±amam−1 . . . a0.α1α2 . . . αn999 . . . and
±amam−1 . . . a0.α1α2 . . . (αn + 1)000 . . . represent the same real number.
Also, +0 and −0 are the same.

Except for ±0, numbers with “+” in front are called positive, and those
with “−” in front are called negative.

Definition 8.2. For a real number x as before, the n-th decimal cut
x(n) is the real number ±amam−1 . . . a0.α1α2 . . . αn which corresponds to the
expression

±(am10m + am−110m−1 + . . . a01 + α110−1 + α210−2 . . . αn10−n)

In particular, we see that the cut x(n) is itself a rational number.

Definition 8.3. Let x = am . . . a0.α1 . . . and y = bk . . . b0.β1 . . . be two
positive real numbers. Then we say that x < y if, starting from the left, in
the first place where the digits of x and y are not the same, the corresponding
digit of x is smaller. Before making this test the infinite tails of 9’s have to
be converted to 0’s as before. Also, if for one of the sequences the number
of digits to the left of the dividing point is smaller, the missing digits are
assumed to be zeros.

If both x and y have the minus sign in front of them, the order is the
opposite to the one just defined. If one of them has a “+” sign and the other
“−”, the positive number is greater. Finally, 0 is greater than any negative
number, and less than any positive number.

The next lemma corresponds to the discussion of Section 1.5.

Lemma 8.4. Any bounded set S of real numbers as defined above has a
least upper bound.

Outline of the proof. To simplify the notation, we assume all the
elements are positive. The boundedness assumption guarantees that the
numbers of digits to the left of the point for any x ∈ S is bounded by a
fixed integer k. Look at the k-th digit ak for all x ∈ S. All these digits are
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0 through 9. Take the maximum of these, and call it ck. Next, look only at
the numbers x ∈ S which have ak = ck, i.e. the maximal possible. Among
those pick the maximal (k− 1)-th digit and call it ck−1. Narrow down your
set further to only those numbers x whose (k − 1)-th digit is ck−1 and look
at the (k − 2)-th place etc. Now it must be obvious that the real number

z = ckck−1 . . . c0.γ1γ2 . . .

is the least upper bound of the set S. �

Hence, with this definition, the least upper bound property is quite easy.
What is harder, however, are the definitions for x ± y, xy and x/y. You
certainly should know how to add finite decimal fractions, with only finitely
many digits. But in doing this, you sometimes have to carry out a 1 to the
left. However, when working with the infinite sequences of digits you have
to work your way from the left to the right! So, suppose you have added
the numbers x and y up to the n-th place, i.e. you have found x(n) + y(n).
If the (n − 1)-th and the n-th digits to the right of the point of x(n) + y(n)

are not 9 then whatever happens to the right will not change the (n− 1)-th
digit or any of the digits to the left of it. However, if you have a tail of
9s then down the road, after looking at many, many consequent cuts, you
will be still unsure if at some point you will have to carry 1 all the way to
the left. And that is a problem - you don’t know whether your n-th digit is
going to be 9 or 0 without doing infinitely many computations! There are
similar complications with the definitions of xy and x/y. The solution is the
following:

Definition 8.5. For positive real numbers x, y the sum x+ y is defined
as the least upper bound of the set {x(1) + y(1), x(2) + y(2), . . . }.

To handle subtractions, we define

Definition 8.6. 1−0.α1α2 . . . αn · · · = 0.(9−α1)(9−α2) . . . (9−αn) . . .

The definitions for the remaining operations are similar. The checking
of the field axioms is direct but very tedious, and we will omit it.

Which of these infinite decimals correspond to rational numbers? (This
was explored in some of the problems for Chapter 3.) You can easily guess
the answer once you look at some examples.

Example 8.7. (1) 11/3 = 3.6666 . . .
(2) 1/11 = 0.090909 . . .
(3) 1/7 = 0.142857142857142857 . . .

Definition 8.8. A periodic decimal is the one that that has a repeating
pattern starting at some place.

Proposition 8.9. Rational numbers correspond to periodic decimals.

Proof. First take a rational number p/q and try to find its decimal
expansion by repeatedly dividing with a remainder. At every step you will
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have a remainder. If it is zero, then we have our answer. If it is some number
n < q then we continue by adding a 0 to the right from it and dividing
again, this time (10n)/q. Since there are only finitely many possibilities for
the remainder – 0, 1, . . . q− 1 - at some step we will get the same remainder,
and the process will repeat itself over and over again.

We illustrate this by finding the decimal expansion of 1/7: 1÷ 7 yields
a quotient of 0 with a remainder 1. Next, 10

7 = 1 3
7 . Next, 30

7 = 4 2
7 . Next,

20
7 = 2 6

7 . Next, 60
7 = 8 4

7 . Next, 40
7 = 5 5

7 . Next, 50
7 = 7 1

7 . At this point
we got 1 again, so starting from this place the pattern 1428571 is going to
repeat over and over again.

To show the converse, that every decimal which starts repeating it-
self after some place must be rational, note that 1/9 = 0.111 . . . , 1/99 =
0.010101 . . . , 1/999 = 0.001001001 . . . etc. Therefore, a repeating decimal

x = bm . . . b0.β1 . . . bkα1 . . . αnα1 . . . αn . . .

can be written as

bm . . . b0.β1 . . . bk + 10−k
α1 . . . αn
10n − 1

and so is a rational number.
To illustrate this,

0.57123123123 · · · = 0.57 + 10−2
123

999
=

57

100
+

123

99900

�

2. Dedekind Cuts

This construction is motivated by the idea that each real number should
be determined by the collection of rational numbers below it. Details of the
following outline can be found in Rudin’s text.

Definition 8.10. A cut is a non-empty set α of rational numbers sat-
isfying

(1) If x ∈ α, and y < x, then y ∈ α,
(2) α has an upper bound, and
(3) α has no largest element.

The collection of all cuts is denoted by R.

In view of (1), we could replace (2) with the assumption that α does not
exhaust Q.

We first equip R with an order.

Definition 8.11. Let α, β be cuts. We say α < β if and only if α is a
proper subset of β.

Proposition 8.12. (R, <) has the least upper bound property.



3. CAUCHY SEQUENCES 109

Proof. Let S be a non-empty collection of cuts having an upper bound
β. We take γ to be the union of all the cuts comprising S. It is clear that γ
satisfies the first and third conditions of Definition 8.10. Since any (rational)
upper bound of β is automatically an upper bound of γ, we see that γ is in
fact a cut. By definition of union, every member of S must be a subset of
γ, and any set which contains each member of S must also contain γ. But
that is just what it takes to make γ the least upper bound of S. �

Next, we take up addition.

Definition 8.13. (1) α+ β := {x+ y : x ∈ α, y ∈ β},
(2) the zero cut is θ := {x ∈ Q : x < 0},
(3) −α := {y ∈ Q : −x− y /∈ α for some x ∈ Q+}.

It is necessary to check that these are all cuts; the presence of x in 8.13.3
guarantees that −α does not have a largest member. Commutativity and
associativity are clear, but it must be verified that that θ and −α act as
additive identity and inverse respectively.

An interesting consequence of these definitions is that

R+ := {α ∈ R : α > θ} = {α ∈ R : 0 ∈ α}.
(We have reversed the procedure of Chapter 1, where order was defined in
terms of the disinguished set of positive elements.)

A somewhat subtle and long-winded definition of multiplication is needed
because {xy : x ∈ α and y ∈ β} is never a cut.

Definition 8.14. Let α and β be positive cuts.

(1) αβ = {xy : x ∈ α, y ∈ β, x > 0, and y > 0} ∪ {0} ∪Q−;
(2) (−α)(β) = (β)(−α) = −(αβ),
(3) θγ = γθ = θ for every cut γ.
(4) (−α)(−β) = αβ.

3. Cauchy Sequences

This construction is based on the idea that an individual real number is
determined by the collection sequences of rationals converging to it. We use
an equivalence relation to identify all such sequences.

Definition 8.15. Take C to be the collection of Cauchy sequences of
rational numbers. For x, y ∈ C,

(1) x ∼ y if and only if limn→∞ xn − yn = 0;
(2) [x] denotes the equivalence class of x;
(3) R denotes the set of equivalence classes of C under ∼;
(4) [x] + [y] := [x+ y];
(5) [x][y] := [xy].

It is easy to verify that ∼ is in fact an equivalence relation.
Two things must be checked in order for Part (4) of the definition to

make sense: that sums of Cauchy sequences are again Cauchy, and that
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[x + y] only depends on the classes of x, y. The first matter is left to the
reader. For the second, suppose x ∼ z and y ∼ w. Then

lim
n→∞

(xn + yn)− (zn + wn) = lim
n→∞

(xn − zn) + lim
n→∞

(yn − wn) = 0,

so [x+ y] = [z + w]. Thus addition is well defined; the argument for multi-
plication is the same. The field axioms also follow easily. For example, the
additive identity is [0], the class of the constant zero sequence.

Definition 8.16. R+ is the collection of equivalence classes [x] such
that there exists an integer N satisfying xn >

1
N for all n ≥ N .

Once again, it must be checked that this definition only depends on the
class [x], but not on the specific representative tested. It is clear that R+

is closed under addition and multiplication. As for trichotomy, note that
if neither [x] nor −[x] belong to R+, then for each ε > 0, we will have
|xn| < ε for infinitely many values of n. Since x is Cauchy, this implies
limn→∞ xn = 0, i.e., [x] = [0].

It remains to check completeness.

Proposition 8.17. As defined in this section, (R, <) has the least upper
bound property.

outline of proof. We have not explicitly mentioned our axiomitiza-
tion of Q. The simplest characterization is that Q is a minimal ordered
field, that is, no proper subset of Q is an ordered field in its own right. It
follows from this that Q has the archimedean property, and hence that every
bounded set of integers in Q has a largest element.

Suppose now that S is a bounded non-empty subset of R. For each
q ∈ Q, we write q̄ for the equivalence class of the constant sequence (q)∞n=1.
Set

T := {q ∈ Q : q̄ is smaller than some member of S}.
For each n ∈ N, we take pn to be the largest integer such that xn := pn

10n ∈ T .
Then x = (xn) is a bounded increasing sequence. The proof is completed
by checking that x is Cauchy and that [x] is the least upper bound of S. �

Remark 8.18. Proposition 8.17 is usually established via Proposition
2.42, but the above proof is more self-contained for our purposes.
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