
WILSON’S THEOREM: AN ALGEBRAIC APPROACH

PETE L. CLARK

Abstract. We discuss three algebraic generalizations of Wilson’s Theorem: to (i) the product of

the elements of a finite commutative group, (ii) the product of the elements of the unit group of a

finite commutative ring, and (iii) the product of the nonzero elements of a finite commutative ring.

Introduction

We present several algebraic results inspired by Wilson’s Theorem – for all prime numbers p, we have
(p− 1)! ≡ −1 (mod p).

The standard proof of Wilson’s Theorem proceeds by evaluating the product of all elements in the
unit group U(p) – that is, the group of nonzero residues modulo p under multiplication – by a pairing
off argument. A natural algebraic generalization is to evaluate the product of all elements in a finite
commutative group G. In §1 we state such a result – a theorem of G.A. Miller – and give two proofs.
In §2 we consider the case of U(n), the unit group of the ring Z/nZ, recovering a theorem of Gauss.
Our treatment deliberately sidesteps the existence of primitive roots and so is more elementary than
Gauss’s approach, which is mentioned in §4. We then turn to the computation of the product of all
elements of the unit group of a finite commutative ring, beginning in §3 with the case of a residue
ring of a polynomial ring over a finite field – these rings stand in close, though not perfect, analogy
to the rings Z/nZ – and then treating in §5 the general case, a recent theorem of Hirano-Matsuoka.
In §6 we compute the product of all nonzero elements of a finite ring. In §7 we briefly discuss Wilson
semi-products, which are an algebraic generalization of p−1

2 ! modulo p. In §8 we comment on the
history, the literature and some other proofs of Wilson’s Theorem.

The genesis of this paper was a conversation with my colleague Ted Shifrin on how the standard
proofs of Miller’s Theorem use structural results either for finite commutative groups or for finite-
dimensional vector spaces over the field Z/2Z and thus may not be accessible to an undergraduate
student of group theory. I (truly!) believe that both proofs presented in §1 will be accessible to such
students. The material of §2, §3 and §4 should be accessible to an undergraduate student who has
seen groups and rings. We take pains to be as self-contained as possible, for instance giving not only
a statement of the Chinese Remainder Theorem in the rings Z and Z/pZ[t] but also a simpler proof
than the standard one that exploits the finiteness of the residue rings. Many of the results of these
sections are special cases of results in §5, so we are not aiming for logical efficiency but rather to
understand and motivate these later results via accessible examples. The material of §5 and §6 should
be accessible to students in a first graduate algebra course. Moreover we think that such students,
in particular, will enjoy seeing interactions between the theories of finite commutative groups and of
finite commutative rings. In §7 algebraic number theory appears in a rather breezy way: we do not
attempt to be self-contained and some results are merely alluded to rather than stated precisely. Here
we simply wish to convey connections and highlight some interesting open problems.

Notation and terminology: We denote by Z+ the positive integers 1, 2, 3, . . .. By a ring we will
mean a commutative ring with a multiplicative identity. The additive group of a ring R will be denoted
by (R,+). For a ring R, we put

U(R) := {x ∈ R | there is y ∈ R such that xy = 1},
1
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the unit group of R. We also put

U(n) := (Z/nZ)×,

the unit group modulo n. A zero divisor in a ring R is an element x ∈ R for which there is y ∈ R•
with xy = 0. Except in the zero ring, 0 is always a zero divisor; any other zero divisor is called proper.
An integral domain is a nonzero ring without proper zero divisors.

1. Wilson’s Theorem in a Finite Commutative Group

1.1. The problem. Let (G, ·) be a finite commutative group, with identity element e. Put

S :=
∏
x∈G

x,

the product of all elements of G. Can we determine S?

Example 1.1. Suppose G ∼= (Z/nZ,+) is cyclic of order n. Then

S ≡ 1 + · · ·+ n ≡ n(n+ 1)

2
(mod n).

• If n is odd then n+1
2 ∈ Z and S ≡ n

(
n+1
2

)
≡ 0 (mod n). So S = 0.

• If n is even then n(n+1)
2 is not divisible by n, so S 6= 0. But 2S = n(n + 1) = 0, so S has order 2.

The unique order 2 element of G is n
2 , so S = n

2 .

Example 1.2. Let p be an odd prime, and let U(p) be the multiplicative group of nonzero elements
of the field Z/pZ. As in any field, if x2 = 1 then 0 = x2 − 1 = (x + 1)(x − 1), so x = ±1. For every
element x ∈ U(p) with x2 6= 1, we have that x and x−1 are distinct elements of G and thus cancel each
other out in the product. It follows that S = 1 · (−1) = −1.

The unit group U(2) = U(Z/2Z) has a single element 1 = −1. We deduce:

Theorem 1.3 (Wilson’s Theorem). For any prime p, we have (p− 1)! ≡ −1 (mod p).

1.2. Statement of the result. We now state the general case, a result of Miller [Mi03].

Theorem 1.4. Let G be a finite commutative group, and put S :=
∏

x∈G x.
a) If G has no element of order 2, then S = e.
b) If G has exactly one element t of order 2, then S = t.
c) If G has at least two elements of order 2, then S = e.

The elements of G of order greater than 2 come in mutually inverse pairs x 6= x−1, so the product
over all such x is e. Thus S =

∏
x∈G[2] x, where G[2] is the subset of elements of order at most two.

Observe that G[2] is a subgroup of G:

x = x−1, y = y−1 =⇒ (xy)−1 = y−1x−1 = yx = xy.

Although we don’t need it, it seems remiss not to mention the following simple result:

Lemma 1.5. Let G be a group in which each non-identity element has order 2. Then G is commutative.

Proof. Let x, y ∈ G. Since x2 = y2 = e we have x−1 = x and y−1 = y. Multiplying the equation
e = (xy)2 = xyxy on the left by x−1 and on the right by y−1 gives xy = x−1y−1 = yx. �

Thus we have reduced Theorem 1.4 to the case G = G[2]. We will give two treatments of this case.
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1.3. First proof of Theorem 1.4.

Lemma 1.6. Let G be a group in which each non-identity element has order 2. Let H be a subgroup
of G, and let y ∈ G \H. Then the set

{h ∈ H} ∪ {hy | h ∈ H}
is a subgroup of G order twice the order of H.

Proof. This comes out immediately, as we invite the reader to check. �

Lemma 1.7. Let G be a finite group in which each non-identity element has order 2.
a) The order of G is 2k for some k ≥ 0.
b) If G has order greater than 1, it admits a subgroup H of order 2k−1.

Proof. We prove both parts at once by an inductive argument. Put H0 = {e}. If G = H0, we’re
done. Otherwise there is x1 ∈ G \ H0, and by Lemma 1.6, H1 = {e, x1} is a subgroup of order
2. If G = H1, we’re done. Otherwise there i x2 ∈ G \ H1, and applying Lemma 1.6 we get that
H2 = {h ∈ H1} ∪ {x2h | h ∈ H1} has order 4. Continuing in this manner, we suppose that Hn is a
proper subgroup of G of order 2n. Then we can continue the process, choosing xn+1 ∈ G \ Hn and
putting Hn+1 = {h ∈ Hn}∪ {xn+1h | h ∈ Hn}, so Hn+1 is a subgroup of order 2n+1. Since G is finite,
there must be some n such that Hn = G, completing the proof. �

Now we give our first proof of Theorem 1.4: above we reduced to the case in which G = G[2] is a finite
commutative group in which each nonidentity element has order 2. Put S :=

∏
x∈G x. Then:

(i) If G has no elements of order 2, then G is trivial and S = e.
(ii) If G has exactly one element t of order 2, then G = {e, t} and S = et = t.
(iii) Suppose G has at least two elements of order 2. By Lemmas 1.6 and 1.7, the group G has order
2k for some k ≥ 2, there is a subgroup H of order 2k−1 and an element y ∈ G \H such that G is the
disjoint union of {h ∈ H} and {yh | h ∈ H}. Thus∏

x∈G
x =

∏
h∈H

h
∏
h∈H

yh =
∏
h∈H

yh2 =
∏
h∈H

y = y2
k−1

= (y2)2
k−2

= e2
k−2

= e.

1.4. Second proof of Theorem 1.4. We follow Vandiver-Weaver [VW58] and Saucier [Sa18].

Lemma 1.8. Let G be a group in which each nonidentity element has order 2, and let a be a nonidentity
element of G. Then the map

ιa : G→ G, x 7→ ax−1

is a fixed point free involution of G: i.e., for all x ∈ G we have ιa(x) 6= x and ιa(ιa(x)) = x.

Proof. If x ∈ G then we have
ιa(ιa(x)) = a(ax−1)−1 = e.

If for x ∈ G we have x = ιa(x) = ax−1 then e = x2 = a:, a contradiction. �

Now let G be finite commutative: again we may assume that G has order n > 1 and that every
nonidentity element of G has order 2. Let a be a nonidentity element of G. Lemma 1.8 implies that
n = 2m is even and that we may order the elements of G as x1, ..., x2m such that for all 1 ≤ i ≤ m we
have x2i−1x2i = a. Then

S =
∏

1≤i≤m

x2i−1x2i = am.

Case (i): Suppose m = 1; equivalently, a is the unique element of order 2. Then S = a1 = a.
Case (ii): Supose m = 2M is even. Then S = a2M = (a2)M = e.
Case (iii) Suppose m = 2M + 1 with M ≥ 1. Then we get S = a2M+1 = (a2)Ma = a. On the other
hand, since m ≥ 2 there is b ∈ G \ {1, a}, and the same argument shows S = b2M+1 = b and thus
a = b. This contradiction shows that this case cannot occur.1

1This was no surprise, since Lemma 1.7 implies that m is a power of 2. But we are giving an independent proof.
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1.5. The dichotomy given by an order 2 element in a finite commutative group. Let G be
a finite commutative group, and let t ∈ G be an element of order 2. By Theorem 1.4, the product
S =

∏
x∈G x is either e or t. To show S = e we need to find another element of order 2. To show S = t

we need to show there are no other elements of order 2. This is an interesting dichotomy.
In particular, let n ∈ Z+, and let G = U(n) be the unit group of Z/nZ. If n ≤ 2 then U(n) = {1},

so
∏

x∈U(n) x = 1. If n ≥ 3 then −1 is an order 2 element of U(n), and so we get
∏

x∈U(n) x = {±1}.
When n is prime, then (cf. Example 1.2) the equation x2 = 1 has only ±1 as solutions. But x2 = 1

may have more than two solutions in Z/nZ for composite n: e.g. if n = 8 then
∏

x∈U(8) x = 1 ·3 ·5 ·7 =

105 = 1 in Z/8Z, and 12 = 32 = 52 = 72 = 1 in Z/8Z, so U(8) has three elements of order 2.
For all n, Gauss determined the sign in

∏
x∈U(n) x = ±1. We turn to this next.

2. Gauss’s Generalization of Wilson’s Theorem

Let m,n ∈ Z+. There is a homomorphism of rings

Φ : Z→ Z/mZ× Z/nZ, x 7→ (x (mod m), x (mod n)).

The kernel of Φ is the set of integers x such that x ≡ 0 (mod m) and x ≡ 0 (mod n), i.e., the set of
integers divisible by the least common multiple lcm(m,n), and thus we get an injective homomorphism

Z/ lcm(m,n)Z→ Z/mZ× Z/nZ.
Now Z/mZ×Z/nZ has mn elements, so we have a bijection iff lcm(m,n) = mn iff gcd(m,n) = 1. An
easy induction extends this to the following result.

Proposition 2.1 (Chinese Remainder Theorem). Let m1, . . . ,mr ∈ Z+ be such that gcd(mi,mj) = 1
for all 1 ≤ i < j < r. Then we have an isomorphism of rings

Z/m1 · · ·mrZ→
r∏

i=1

Z/miZ, x 7→ (x (mod m1), . . . , x (mod mr)).

For rings R1, . . . , Rr, let
∏r

i=1Ri denote the product R1 ×R2 × . . .×Rr, a ring under coordinatewise
addition and multiplication. For (x1, . . . , xr) ∈

∏r
i=1Ri, we have (x1, . . . , xr) ∈ U(

∏r
i=1Ri) iff xi ∈

U(Ri) for all 1 ≤ i ≤ r. It follows that

(1) U(

r∏
i=1

Ri) =

r∏
i=1

U(Ri),

where on the right hand side we have a direct product of commutative groups.

Theorem 2.2 (Gauss). Let n ∈ Z+, and put Gn :=
∏

x∈U(n) x.

a) If n = 4 or is of the form pa or 2pa for an odd prime p, then Gn = −1.
b) Otherwise we have Gn = 1.

Proof. Recall that for any x ∈ Z, x (mod n) is a unit in Z/nZ iff gcd(x, n) = 1.2

Write n = 2a1pa2
2 · · · par

r with a1 ≥ 0,a2, . . . , ar ≥ 1, so by the Chinese Remainder Theorem and (1),

(2) U(n) ∼= U(2a1)×
r∏

i=2

U(pai
i ).

(We allow r = 1, in which case we mean n = 2a1 .)
Step 1: As above we may assume n > 2, so −1 ∈ U(n)[2] and by Theorem 1.4

∏
x∈U(n) x = −1 if

U(n)[2] = {±1} and
∏

x∈U(n) x = 1 if U(n)[2] ) {±1}. Moreover if a1 = 1 then U(n) ∼= U(2) ×
U(n/2) ∼= U(n/2), and the result is the same for n as for n/2. Thus we may assume that n is odd or
is divisible by 4.

2For instance, by the Eulidean algorithm if gcd(x, n) = 1 then there are integers a, b such that ax+ bn = 1, and thus

(a (mod n)) = (x (mod n))−1. If gcd(x, n) = d > 1, then reducing xa (mod n) modulo d gives 0 ≡ xa ≡ 1 (mod d), a

contradiction.
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Step 2: Suppose n = pa for a prime p > 2 and a ∈ Z+. Let x ∈ U(pa)[2]. If in Z/paZ both x+ 1 and
x− 1 were multiples of p, then (x+ 1)− (x− 1) = 2 would be too, contradicting p > 2. So either x+ 1
is not a multiple of p — in which case it is a unit, so (x+ 1)(x− 1) = 0 implies x− 1 = 0 and x = 1
— or x− 1 is not a multiple of p, and similarly we get x+ 1 = 0 and x = −1.
Step 3: Suppose a1 ≥ 3. Then 1 + 2a1−1 ∈ U(2a1) \ {±1}, so U(2a1) has more than one element of
order 2. Since U(2a1) is isomorphic to a subgroup of U(n), also U(n) has more than one element of
order 2.
Step 4: Suppose a1 = 2. If r = 1 – i.e., n = 4 – then U(n) = {±1} and the result is clear. Otherwise
there is x ∈ U(n) with x ≡ 1 (mod 4) and x ≡ −1 (mod pai

i ) for all i ≥ 2, which gives an element of
order 2 other than ±1.
Step 5: The last case is r ≥ 3, and there is x ∈ U(n) with x ≡ 1 (mod pa2

2 ), x ≡ −1 (mod pai
i ), which

gives an element of order 2 other than ±1. �

3. The Generalized Wilson Theorem in Polynomial Rings

The kinship between Z and the polynomial ring Z/pZ[t] is a rich theme in algebra and number theory.
We will see a glimmer of this now, by giving the analogue of Theorem 2.2 over Z/pZ[t] for p > 2.

Let n(t) ∈ Z/pZ[t] be a polynomial of positive degree, and put

U(n(t)) := U(Z/pZ[t]/(n(t))).

We will compute

Gn(t) :=
∏

x∈U(n(t))

x.

The rings Z/pZ[t]/(n(t)) all have characteristic p > 2, so −1 6= 1 Theorem 1.4 gives Gn(t) ∈ {±1}.

In the ring Z/pZ[t] one can perform division with remainder and thus obtain a Euclidean algorithm,
with the usual consequence that elements factor uniquely into products of prime elements, which here
are irreducible polynomials. Thus

n(t) = p1(t)a1 · · · pr(t)ar ,

with p1(t), . . . , pr(t) distinct monic irreducible polynomials. The Chinese Remainder Theorem adapts
to this context: if m(t), n(t) are coprime polynomials (they have no common divisor of positive degree),
then their least common multiple is their product m(t)n(t), so the kernel of the natural map

Z/pZ[t]→ Z/pZ[t]/(m(t))× Z/pZ[t]/(n(t))

is m(t)n(t), and we get an injective homomorphism

(3) Z/pZ[t]/(m(t)n(t))→ Z/pZ[t]/(m(t))× Z/pZ[t]/(n(t)).

If f(t) has degree d, then Z/pZ[t]/(f(t)) has order pd. If m(t) has degree dm and n(t) has degree dn,
then m(t)n(t) has degree dm + dn, so both Z/pZ[t]/(m(t)n(t)) and Z/pZ[t]/(m(t)) × Z/pZ[t]/(n(t))
have order pdm+dn , and as above, the homomorphism (3) is an isomorphism. Induction gives

Z/pZ[t]/(n(t))
∼→

r∏
i=1

Z/pZ[t]/(pi(t)
ai)

hence

U(n(t)) ∼=
r∏

i=1

U(pi(t)
ai).

Theorem 3.1. (Li-Sha [LS17, Thm. 3.1]) Let p > 2 be a prime, and let n(t) ∈ Z/pZ[t] be monic of
positive degree. If n(t) is a power of an irreducible polynomial, then Gn(t) = −1. Otherwise Gn(t) = 1.

Proof. We invite the interested reader to check that the method of proof of Theorem 2.2 applies. �



6 PETE L. CLARK

Example 3.2. For n ∈ Z+ consider the ring Rn := Z/2Z[t]/(tn), of characteristic 2 and order 2n.
The units are represented by polynomials of degree less than n having constant term 1 (rather than 0).
Thus U(Rn) has order 2n−1.
a) (n = 1): We have R1 = Z/2Z, so U(R1) is the trivial group.
b) (n = 2): We have

∏
x∈U(R2)

x = 1 · (t+ 1) = t+ 1.

c) (n = 3): We have∏
x∈U(R3)

x = 1(t+ 1)(t2 + 1)(t2 + t+ 1) = t5 + 2t4 + 3t3 + 3t2 + 2t+ 1 = t2 + 1.

It follows from Theorem 1.4 (see also Theorem 5.2) that U(R3) is generated by t+ 1.
d) (n ≥ 4): If n

2 ≤ k < n we have 2k ≥ n, so (tk + 1)2 = t2k + 1 = tnt2k−n + 1 = 1. This exhibits
bn2 c ≥ 2 order 2 elements of U(Rn), so

∏
x∈U(Rn)

x = 1.

In fact the paper [LS17] treats the case of polynomials defined over any finite field F. When F has
odd cardinality, Theorem 3.1 and its proof hold verbatim. But as Example 3.2 suggests, the case of
finite fields of even cardinality is more complicated. In turn, their result is a special case of a result of
Hirano-Matsuoaka that we will discuss later: Theorem 5.15.

4. Interlude on cyclicity

Our approach to Gauss’s Generalized Wilson Theorem is not the same as Gauss’s. Rather Gauss went
farther by determining the exact structure of U(n) for all n. In view of (2) the essential case is that
of a prime power.

Theorem 4.1 (Gauss).
a) For every odd prime power pa, we have U(pa) ∼= (Z/pa−1(p− 1)Z,+).
b) For all a ≥ 3, we have U(2a) ∼= (Z/2a−2Z,+)× (Z/2Z,+).

The proof of Theorem 4.1 may be found in many number theory texts, e.g. [C-NT]. We will not give
it here. But we discuss some consequences.

From Theorem 4.1 and Example 1.1 one deduces Theorem 2.2. One also determines when U(n) is
cyclic: in fact, for all n ≥ 3, this occurs iff

∏
x∈U(n) x = −1. In the classical terminology, a generator

of U(n) is called a primitive root, so we find that primitive roots exist modulo n iff n ∈ {1, 2, 4}; n
is an odd prime power; or n is twice an odd prime power. This is a basic and useful result.

But the analogue of Theorem 4.1a) in the context of polynomial rings fails:

Proposition 4.2. For p a prime number and n ≥ 4, the unit group U(tn) of Z/pZ[t]/(tn) is not cyclic.

Proof. Let R be the ring Z/pZ[t]/(tn). We claim 1 + tn−1 and 1 + tn−2 generate distinct order p
subgroups U(tn). Since n ≥ 4, we have 2n− 4 ≥ n and thus t2n−4 = 0 in R. Thus

(1 + tn−2)2 = 1 + 2tn−2 + t2n−4 = 1 + 2tn−2.

By induction, for all j ∈ Z+ we have

(1 + tn−2)j = 1 + jtn−2.

Similarly, for all j ∈ Z+ we have
(1 + tn−1)j = 1 + jtn−1. �

The reader might like to try to show that for all p > 2, the group U(Z/pZ[t]/(t2)) is cyclic and
U(Z/pZ[t]/(t3)) is not. Later we will meet the definitive result in this area. The following result shows
that the lack of cyclicity is just the tip of the iceberg.

Theorem 4.3. ([R, Prop. 1.6]) Let F be a finite field of characteristic p, let f ∈ F[t] be an irreducible
polynomial, let a ∈ Z+. The number of elements of order p in U(F[t]/(fa)) approaches infinity with a.

The exact structure of U(F[t]/(fa)) is known, a result of Smith-Gallian [SG85]. Even the statement
is rather complicated, and we will not reproduce it here.
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5. Wilson’s Theorem in a Finite Ring

Let R be a finite ring. In this section we will compute

u(R) :=
∏

x∈U(R)

x,

recovering a recent theorem of Hirano-Matsuoka [HM13].

5.1. Group Theoretic Preliminaries.

For a finite commutative group G and a prime number p, let Gp be the subgroup of x ∈ G of or-
der a power of p. We call Gp the p-primary component of G.

Theorem 5.1 (Structure Theorem for Finite Commutative Groups).
Let G be a finite commutative group, of order n = pa1

1 · · · par
r .

a) We have G =
∏r

i=1Gpi
, and for all 1 ≤ i ≤ r, we have #Gpi

= pai
i .

b) For all 1 ≤ i ≤ r, Gpi
is isomorphic to a direct sum of finite cyclic pi-groups: there are positive

integers si and ei,1 ≤ ei,2 ≤ . . . ≤ ei,si such that

Gpi
∼=

si∏
j=1

(Z/pei,jZ,+).

c) The integers {si}1≤i≤r, {ei,j}1≤j≤si are independent of the chosen isomorphisms.

Proof. See e.g. [C-NT, Appendix B, §5]. �

Theorem 5.2. For a finite commutative group G, the following are equivalent:
(i) G is cyclic.
(ii) For all primes p dividing the order of G, Gp is cyclic.
(iii) For all primes p dividing the order of G, Gp has exactly one subgroup of order p (equivalently,
there are exactly p elements x ∈ G such that xp = e).

Proof. (i) ⇐⇒ (ii): A product
∏r

i=1Gi of finite groups is cyclic iff each Gi is cyclic and for all
1 ≤ i < j ≤ n, Gi and Gj have coprime order.
(ii) =⇒ (iii): a cyclic group of order n has a unique subgroup of each order d | n.
(iii) =⇒ (ii): Let p divide the order of G. By Theorem 5.1 we have

Gp
∼=

s∏
j=1

(Z/pejZ,+).

So s = 1 iff Gp is cyclic iff Gp has a unique subgroup of order p. �

Remark 5.3. It is rather easy to establish the decomposition G =
∏
Gp, and this is the first step of

the proof of Theorem 5.1. The second step is to show that a finite commutative p-group is cyclic iff it
has a unique subgroup of order p.

Lemma 5.4.
Let f : G→ H be a homomorphism of finite commutative groups, and let p be a prime number.
a) We have f(Gp) ⊂ Hp. Thus there is a well-defined homomorphism

fp = f |Gp : Gp → Hp.

b) If f is surjective with kernel of order prime to p, then fp : Gp
∼→ Hp.

Proof. a) This is left to the reader.
b) Let K be the kernel of f . In general the order of Gp is the largest power of p dividing the order of G.
In this case, the order of G is the order of H times the order of K, which is prime to p, so the largest
power of p dividing the order of G is equal to the largest power of p dividing the order of H, so Gp

and Hp have the same order. Moreover, the kernel K ∩Gp of fp is K ∩G consists of elements of order
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both prime to p and a power of p. So it is trivial, and fp : Gp → Hp is an injective homomorphism
between finite groups of equal order: thus it is an isomorphism. �

5.2. Ring Theoretic Preliminaries.

Theorem 5.5 (Lagrange). Let F be a field, and let f ∈ F [t] be a nonzero polynomial of degree d.
Then the set {x ∈ F | f(x) = 0} has size at most d.

Proof. This is a quick consequence of the Root Factor Theorem from high school algebra: if f(x) = 0
then f(t) = (t− x)g(t) for some polynomial g of degree d− 1. �

Corollary 5.6. Let G be a finite subgroup of the group of units of a field F . Then G is cyclic.

Proof. Let p be a prime dividing the order of G. By Lagrange’s Theorem the polynomial tp− 1 has at
most p roots in F , so there are at most p elements x ∈ G such that xp = 1 We apply Theorem 5.2. �

Lemma 5.7. a) Let R1, . . . , Rr be rings. Then the characteristic of R =
∏r

i=1Ri is the least common
multiple of the characteristics of R.
b) If R is a finite ring, the characteristic of R divides the order of R.

Proof. a) This is left to the reader. b) The characteristic of R is the order of 1 in the additive group
(R,+). Now we use another theorem of Lagrange: the order of a subgroup of a finite group divides
the order of the group. �

Theorem 5.8 (Primary Decomposition Theorem). Let R be a nonzero finite ring.
a) The following are equivalent:
(i) R is local: the set m = R \ U(R) of nonunits forms an ideal of R, which is then necessarily the
unique maximal ideal of R.
(ii) R is primary: every zero divisor x ∈ R• is nilpotent: xn = 0 for some n ∈ Z+.
b) If R is local, its order is a prime power pa. There are integers b, c ≤ a such that R has characteristic
pb, m has order pc and R/m is a finite field of order pa−c.
c) For every finite ring R, there are nonzero local rings R1, . . . , Rr such that R ∼=

∏r
i=1Ri. The ring

R has precisely r maximal ideals.

Proof. A finite ring R is Artinian: it satisfies the descending chain condition on ideals. Part c) is the
finite case of a structure theorem for Artinian rings [C-CA, Thm. 8.35]. Moreover, in a local Artinian
ring R the maximal ideal is precisely the set of nilpotent elements of R [C-CA, Thm. 8.31], so a local
Artinian ring is primary. Conversely no product

∏r
i=1Ri of nonzero rings is primary: the element

e1 = (1, 0, . . . , 0) is a proper zero divisor with e21 = e1, so is not nilpotent. So a primary Artinian ring
is local. It remains to show that a finite local ring (R,m) has prime power order, from which the rest
of part b) follows. The key idea is that there is some N ∈ Z+ such that mN = (0) [C-CA, Thm. 8.31].
The quotient R/m is a finite field of prime power order q, say. But then moreover for all 0 ≤ i ≤ N −1
the quotient mi/mi+1 is naturally a vector space over R/m, hence has order a power of q. Therefore
R has order a product of powers of q, hence a prime power. �

Let R and S be nonzero rings, and let f : R → S be a homomorphism. Then f(U(R)) ⊂ U(S), so
there is an induced map

U(f) : U(R)→ U(S), x 7→ f(x)

which is a homomorphism of groups.
Suppose f is surjective. In general, U(f) need not be surjective: the problem is of course that

for v ∈ U(S), although there is x ∈ R such that f(x) = v, there may not exist any such x that is
a unit. For instance let p > 3 be a prime and consider the quotient map f : Z → Z/pZ. Then 2
(mod p) ∈ U(p), but the units of Z are precisely ±1, neither of which is congruent to 2 modulo p.

On the other hand, in the above situation, at least x cannot be a nilpotent element (unless S is the
zero ring, a trivial case): if xn = 0, then also vn = f(x)n = f(xn) = f(0) = 0, so v is nilpotent. But if
w is such that vw = 1, then 1 = vnwn = 0wn = 0, contradiction. By Theorem 5.8, in any finite local
ring every non-nilpotent element is a unit, and thus we get the following result.
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Lemma 5.9. Let R be a finite local ring, and let f : R→ S be a surjective ring homomorphism. Then
U(f) : U(R)→ U(S) is surjective.

Remark 5.10. More generally, let f : R → S be a surjective ring homomorphism for which the
kernel is contained in all but finitely many maximal ideals of R. Then the induced homomorphism
U(f) : U(R)→ U(S) is surjective [C-CA, Thm. 4.32].

5.3. Wilson’s Theorem in a Finite Ring of Odd Order.

Theorem 5.11. Let R be a finite ring of odd order. Then:
a) If R is local, we have u(R) =

∏
x∈U(R) x = −1.

b) If R is not local, we have u(R) =
∏

x∈U(R) = 1.

Proof. a) This is a generalization of the fact that
∏

x∈U(pa) x = −1, and we can use the same argument:

since R has odd order, it has odd characteristic and thus −1 6= 1 ∈ U(R)[2]. Let x ∈ U(R)[2], i.e.,
x2 = 1. If x+ 1, x− 1 both lie in m then so does (x+ 1)− (x− 1) = 2, contradicting the fact that R
has odd characteristic. If x+ 1 ∈ U(R), then (x+ 1)(x− 1) = 0 implies x− 1 = 0 so x = 1; similarly,
if x− 1 ∈ U(R), then x = −1. By Theorem 1.4 we have

∏
x∈U(R) x = −1.

b) If R is not local, Theorem 5.8 gives R ∼=
∏r

i=1Ri with r ≥ 2. Then U(R) ∼=
∏r

i=1 U(Ri) has more
than one element of order 2 and

∏
x∈U(R) x = 1. �

Remark 5.12. Here is an alternate proof that u(R) = −1 when R is odd order local, say of order pa

for an odd prime p, with m = R \ U(R). The map U(q) : U(R)→ U(R/m) is a surjection with kernel
1 + m a p-group, so by Lemma 5.4 we have U(q)2 ∼= U(R/m)2. Hence U(q)[2] ∼= U(R/m)[2] = {±1},
so u(R) = −1.

5.4. Wilson’s Theorem in a Finite Ring: The General Case.

Suppose R is a finite local ring of even characteristic. Let m = R \ U(R) be the maximal ideal of
R. By the Primary Decomposition Theorem there are 0 ≤ b < a such that R has order 2a and
m = R \ U(R) has order 2b. Then R/m is a field of order 2a−b, so U(R/m) is cyclic of odd order
2a−b − 1. By Lemma 5.9, the quotient map R → R/m induces a surjective homomorphism on unit
groups

U(q) : U(R)→ U(R/m).

The kernel of U(q) is 1+m, of order 2b. So for any prime p > 2, by Lemma 5.4b) we get an isomorphism

U(R)p
∼→ U(R/m)p. By Corollary 5.6 the group U(R/m) is cyclic, hence so is its subgroup U(R/m)p

and thus U(R)p is also cyclic. Applying Theorem 5.2 we find that U(R) is cyclic iff U(R)2 is cyclic
iff U(R) has at most one element of order 2. Moreover, U(R) = R \m has size 2a − 2b hence has odd
order iff b = 0 iff m = (0) iff R is a finite field. Thus:

Proposition 5.13. Let R be a finite local ring of even order. Then:
a) If R is a field, then U(R)[2] = {1} and u(R) = 1.
b) If R is not a field and U(R) is cyclic, then U(R)[2] = {1, t} ) {1} and u(R) = t.
c) If R is not a field and U(R) is not cyclic, then U(R)[2] has more than two elements and u(R) = 1.

Thus, whereas in the odd order case we were able to bypass the issue of cyclicity of the unit group,
in the even order local case we have reduced the problem to knowing when the unit group is cyclic.
Fortunately there is a beautiful answer.

Theorem 5.14. a) (Gilmer [Gi63]) Let R be a finite, local ring. Then U(R) is cyclic iff R is isomorphic
to one of the following rings:
(A) A finite field F.
(B) Z/paZ for an odd prime number p and a ∈ Z+.
(C) Z/4Z.
(D) Z/pZ[t]/(t2) for a prime number p.
(E) Z/2Z[t]/(t3).
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(F) Z[t]/〈2t, t2 − 2〉.
b) We have u(Z[t]/〈2t, t2 − 2〉) = −1.

The argument that a finite local ring with cyclic unit group must be isomorphic to one of the rings
listed in Theorem 5.14a) is rather intricate, and we refer the interested reader to Gilmer’s paper [Gi63].
We will now prove the rest of Theorem 5.14.

Proof. a) First we check that the rings (A) through (F) have cyclic unit group. For (A) this is Corollary
5.6. For (B) and (C) this is Theorem 4.1. For (E), this is Example 3.2c).

As for (D): the ring R = Z/pZ[t]/(t2) is a finite local of order p2 with maximal ideal 〈t〉 of order p,
so the unit group U(R) has order p(p − 1). Because U(p) ⊂ U(R), by part (A) the group U(R) has
an element of order p − 1. The group U(R) has an element of order p: this special case of Cauchy’s
Theorem follows from Theorem 5.1a). Since gcd(p−1, p), the subgroup generated by these two elements
is isomorphic to Z/pZ× Z/(p− 1)Z ∼= Z/(p(p− 1)).

As for (F): put T = Z[t]/〈2t, t2 − 2〉. In T we have

4 = 2 · 2 = 2t2 = t(2t) = 0.

Therefore T is the quotient of the ring Z/4Z[x]/(x2−2), which has 16 elements, by the ideal generated
by 2t, which has two elements, so T has eight elements, represented by 0, 1, 2, 3, t, t+ 1, t+ 2, t+ 3. We
claim that the unit group is cyclic of order 4, generated by t+ 1. First of all, we have

t+ 1, 3 = (t+ 1)2, t+ 3 = (t+ 1)3, 1 = (t+ 1)4,

so t+ 1 ∈ U(T ) has order 4. For every other x ∈ T , x3 = 0, so U(T ) is cyclic, generated by t+ 1. The
element t is not a unit, so the principal ideal m = 〈t〉 is proper. The ideal m contains 0 = 0 · t, 2 = t · t,
t = 1 · t and t+ 2 = (t+ 1) · t, so m = T \ U(T ). It follows that m is the unique maximal ideal, so T
is a local ring. For later reference we mention that T is a principal ring, i.e., every ideal is principal.
Indeed, in a local ring of order 8, a nonzero nonmaximal ideal must have order 2 and thus is certainly
principal.3 Finally, we have

u(T ) = 1 · 3 · (t+ 1) · (t+ 3) = 3(t2 + 4t+ 3) = −(t2 − 1) = −(2− 1) = −1. �

Putting these results together we get the result of Hirano-Matsuoka.

Theorem 5.15 (Wilson’s Theorem in a Finite Ring [HM13]).
Let R be a finite ring. Suppose that R ∼=

∏r
i=1Ri is a product of local rings. Then:

a) If the number of i for which Ri is not a finite field of even order is either 0 or is at least 2, then
u(R) = 1.
b) Otherwise there is exactly one i for which Ri is not a finite field of even order, and u(R) =
(1, . . . , 1, u(Ri), 1, . . . , 1). More precisely:
(i) If Ri has odd order, then u(Ri) = −1.
(ii) If Ri is isomorphic to Z/4Z or to Z[t]/〈2t, t2 − 2〉 then u(Ri) = −1.
(iii) If Ri is isomorphic to Z/2Z[t]/(t2) then u(Ri) = t+ 1.
(iv) If Ri is isomorphic to Z/2Z[t]/(t3) then u(Ri) = t2 + 1.
(v) Otherwise u(R) = u(Ri) = 1.

6. The Product of the Zero-Divisors in a Finite Ring

In elementary number theory courses, Wilson’s Theorem is often supplemented by the remark that
primes are characterized as precisely the integers n ≥ 2 satisfying the congruence (n − 1)! ≡ −1
(mod n). Indeed, for n ∈ Z+, put

Tn :=
∏

x∈(Z/nZ)•
x ∈ Z/nZ.

3In fact in any Noetherian local ring with principal maximal ideal is a principal ring, i.e., every ideal is principal [?,

Prop. 16.5].
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When n is prime we have Tn = Sn = −1. But when n is composite there is some 1 < d < n which
divides n, and thus Tn is a zero divisor in Z/nZ, whereas −1 is a unit in Z/nZ, so certainly Tn 6= −1.
However we can say more.

Proposition 6.1. a) If n is prime, then Tn = Sn = −1.
b) We have T4 = 2.
c) If n ≥ 6 is composite, then Tn = 0.

Proof. a) This is Wilson’s Theorem. b) We have (4− 1)! ≡ 2 (mod 4).
c) First suppose n = p2 for an (odd, since n > 4) prime p. Then 2p < p2, so

p2 | p · 2p | (p2 − 1)!

If n ≥ 6 is composite and not of the form p2, then let p be the smallest prime divisor of n. Then
1 < p < n

p < n, so

n = p(
n

p
) | (n− 1)!. �

Proposition 6.1 seems less interesting than Gauss’s Theorem 4.1. For composite n, taking the product
over all units modulo n seems to be a closer analogue of (p−1)! when p is prime than (n−1)! (mod n)
is. It would be silly to ask for the value of n! modulo n: clearly it is 0. When n is composite, asking
for (n − 1)! modulo n is almost as silly: the product includes all proper zero divisors in Z/nZ. In a
ring with proper zero divisors, if we multiply all of them together, surely the most likely outcome is 0.

But there was one outlying case: in Z/4Z, 2 is the unique proper zero divisor, so the product over
all the zero divisors (and thus all the elements) is not 0. We wonder: is there any other finite ring, not
an integral domain, such that the product over all proper zero divisors is nonzero? In fact yes:

Example 6.2. In R = Z/2Z[t]/(t2), we have∏
x∈R•

x = 1 · t · (t+ 1) = t2 + t = t.

We will find all finite rings R such that
∏

x∈R• x 6= 0. In fact we can set things up so as to treat
infinite rings as well.

Lemma 6.3. Let p be a prime number.
a) Every ring of order p is isomorphic to Z/pZ.
b) Every ring of order p2 is isomorphic to exactly one of the following rings: Z/p2Z;“the” finite field
Fp2 ; Z/pZ× Z/pZ; or Z/pZ[t]/(t2).

Proof. a) The subring generated by 1 must be all of R.
b) The subring generated by 1 is either all of R – in which case R ∼= Z/p2Z – or it is Z/pZ. In the
latter case, let T ∈ R \ Z/pZ; then there is a unique homomorphism ϕ : Z/pZ[t]→ R sending t 7→ T ;
since its image in a ring of order p2 properly contains a subring of order p, this map is surjective. Since
Z/pZ[t] is a principal ideal domain, the kernel of ϕ is generated by a single monic polynomial, which
order considerations show must have degree 2: thus there are b, c ∈ Z/pZ such that

Z/pZ[t]/(t2 + bt+ c) ∼= R.

If the polynomial t2 + bt+ c is irreducible, R is a field. If t2 + bt+ c = (t+ r)(t+ s) for r 6= s, then by
the Chinese Remainder Theorem we have

R ∼= Z/pZ[t]/(t+ r)(t+ s) ∼= Z/pZ[t]/(t+ r) ∼= Z/pZ[t]/(t+ s) ∼= Z/pZ× Z/pZ.

Finally, if t2 + bt+ c = (t+ r)2, then

R ∼= Z/pZ[t]/(t+ r)2 ∼= Z/pZ[t]/(t2);

the last isomorphism is obtained by mapping t 7→ t− r. �
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Theorem 6.4. Let R be a nonzero ring that is not an integral domain. The following are equivalent:
(i) For all distinct x, y ∈ R•, we have xy 6= 0.
(ii) R is isomorphic to either Z/4Z or to Z/2Z[t]/(t2).
(iii) R is finite, contains a unique proper zero divisor t, and

∏
x∈R• x = t.

Proof. (i) =⇒ (ii): Step 1: We show that R has at most 4 elements. Since R is not an integral
domain, it has a proper zero divisor x. Since for all y /∈ {0, x} we have xy 6= 0, it must be the case
that x2 = 0. Consider now the map ·x : R → R given by y 7→ xy. This is a homomorphism from
the additive group (R,+) to itself; let K be its kernel and I its image, so R/K ∼= I. If R has more
than 4 elements, then either K or I has at least 3 elements (otherwise R is the union of at most two
cosets of a subgroup of order at most two). If K has at least 3 elements, it has an element y /∈ {0, x}
and thus x, y are distinct nonzero elements with xy = 0: contradiction. If I has at least 3 elements,
then I has an element y = xz /∈ {0 = 0x, x = 1x}. Then x, y are distinct nonzero elements with
xy = x(xz) = x2z = 0z = 0: contradiction.
Step 2: By Lemma 6.3 the only nonzero rings of order at most 4 that are not integral domains are
Z/4Z, Z/2Z[t]/(t2) and Z/2Z× Z/2Z. In the ring Z/2Z× Z/2Z, we have (1, 0) · (0, 1) = (0, 0) = 0.
(ii) =⇒ (iii): This was shown above.
(iii) =⇒ (i): For distinct x, y ∈ R•, at least one is not a zero divisor, so xy 6= 0. �

7. Wilson Semi-Products

In this final section we discuss a topic that connects algebra to classical number theory in a different
way: via algebraic number theory. We will not emerge with a definitive result, but we point out some
opportunities for further work.

Let R be a nonzero finite commutative ring of odd order. Then its unit group U(R) has even or-
der: by Theorem 5.8 and (1) we reduce to the case in which R has a unique maximal ideal m, and
then since #m divides #R we have that #m is odd, hence #U(R) = #R − #m is even. It follows
from Lemma 5.7 that {±1} is a subgroup of the unit group U(R). A semi-system on R is a subset
H of U(R) such that for all u ∈ U(R), exactly one of ±u lies in H; equivalently, it is a set of coset

representatives of {±1} in U(R). The number of semi-systems is thus 2#
U(R)

2 .

Example 7.1. If R = Z/pZ, then H• := {1, . . . , p−12 } is a semi-system.

For a semi-system H on a finite commutative ring R of odd order, we define the Wilson semi-product

uH(R) :=
∏
x∈H

x.

The element uH(R) depends on the choice of H, but in an understandable way: if H0 is any semi-
system, then for exactly half of the semi-systems H we have uH(R) = uH0

(R), and for the other
half we have uH(R) = −uH0

(R). One can see this for instance by defining an involution H 7→ H on
semi-systems by replacing 1 by −1 if 1 lies in H and replacing −1 by 1 if −1 lies in H.

Proposition 7.2.
Let R be a nonzero finite commutative ring of odd order, and let H ⊂ R× be a semi-system.
a) If R is local and #R× ≡ 2 (mod 4), then we have uH(R) ∈ {±1}.
b) If R is local and #R× ≡ 0 (mod 4), then uH(R) has order 4 in R×.
c) If R is not local, then uH(R)2 = 1.

Proof. Put s := #H = #R×

2 . Then

(4) u(R) =
∏

x∈U(R)

x =
∏
x∈H

x
∏

x∈U(R)\H

x = (−1)suH(R)2.

By Theorem 5.11 we have u(R) = −1 if R is local and u(R) = 1 otherwise. Thus if R is local and
#R× ≡ 0 (mod 4) then uH(R)2 = −1, so uH(R) has order 4, whereas in all other cases we have
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uH(R)2 = 1. As we have seen, in a general ring x2 = 1 need not imply x ∈ {±1}, but the proof of
Theorem 5.11a) shows that this implication does hold when R is local of odd order. �

Proposition 7.2 evaluates the Wilson semi-products when R = Fq is a finite field of odd order: if q ≡ 1
(mod 4), then uH(Fq) has order 4. Since U(Fq) is cyclic, there are two elements of order 4, and as
above both are possible. If q ≡ 3 (mod 4) then uH(Fq) ∈ {±1}, and again both are possible.

But not so fast! This time our abstract perspective has actually obscured the most interesting part.
Let’s reconsider the simplest case of R = Z/pZ for an odd prime p. If p ≡ 3 (mod 4), then for half of
the semi-systems H we have uH(Z/pZ) = 1 and for half we have uH(Z/pZ) = −1. In Example 7.1 we
singled out a semi-system H• = {1, . . . , p−12 }. Then we have

uH•(Z/pZ) =
p− 1

2
! (mod p) ∈ {±1}.

Well, which is it?? The answer lies much deeper:

Theorem 7.3 (Mordell [Mo61]). Let p > 3 be a prime number with p ≡ 3 (mod 4). Then uH•(Z/pZ) =
1 iff the class number h(−p) of the imaginary quadratic field Q(

√
−p) is congruent to 3 modulo 4.

For a squarefree integer n ≡ 1 (mod 4), the class number h(n) of the quadratic field Q(
√
n) is the

number of equivalence classes of nonzero ideals in the ring Z[ 1+
√
n

2 ] under the relation I ∼ J iff there

are nonzero α, β ∈ Z[ 1+
√
n

2 ] such that αI = βJ . Unfortunately this definition is not immediately
enlightening. The class number of a number field is a central topic of study in the field of algebraic
number theory, the roots of which are both old and deep. Indeed, Mordell deduces Theorem 7.3 from
several results of Dirichlet, including his analytic class number formula.

Though it is not obvious from the definition, already by 1800 it was known that for a prime p ≡ 3
(mod 4), the class number h(−p) is odd. (Early number theorists used an equivalent definition of
h(−p) in terms of classes of binary quadratic forms.) There is no correspondingly simple criterion for
class numbers modulo 4. There ought to be infinitely many primes p ≡ 3 (mod 4) such that h(−p) ≡ 1
(mod 4) and infinitely many with h(−p) ≡ 3 (mod 4), but I believe that both are open questions.

Now let p ≡ 1 (mod 4), so uH•(Z/pZ) = p−1
2 ! (mod p) is one of the two fourth roots of unity in

Z/pZ. Which one? Chowla [Ch61] answers this question in terms of the arithmetic of the ring of

integers Z[
1+
√
p

2 ] of the real quadratic field Q(
√
p), which we view as a subfield of R. Also in this case

the class number h(p) is odd, and we have

U(Z[
1 +
√
p

2
]) = {±1} × U+

with U+ the subgroup of positive units. Then U+ is infinite cyclic; let

εp :=
up +

√
pvp

2

be the generator of U+ that is greater than 1, the “fundamental unit” of Q(
√
p).

Theorem 7.4 (Chowla [Ch61]). For a prime number p ≡ 1 (mod 4), we have

p− 1

2
! ≡ 1

2
(−1)

h(p)+1
2 up (mod p).

Since εp is a unit, we have u2p + pv2p = ±4. Using this we see that(
p− 1

2
!

)2

≡
(

1

2
(−1)

h(p)+1
2 up

)2

≡ ±1 (mod p).

By Proposition 7.2 we know that p−1
2 ! (mod p) has order 4, so we deduce that

up + pv2p = −4,
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i.e., fundamental unit of Q(
√
p) has norm −1. This is a nontrivial number-theoretic result.

For any odd n ∈ Z+ there is a canonical semi-system in Z/nZ, namely

H• := {1 ≤ k ≤ n− 1

2
| gcd(k, n) = 1}.

These Wilson semi-products were studied by Cosgrave and Dilcher [CD08] .4 For all odd n they com-
pute [CD08, Thm. 2] the order of uH•(Z/nZ) in U(n), and they explicitly determine uH•(Z/nZ) in
certain cases. From our perspective, when the order is 2, one would also like to know when it is −1: if
not, then uH(Z/nZ) has order 2 for all H, and if so, then uH(Z/nZ) = 1 for some H. E.g. it follows
from their general results that uH0

(Z/15Z) has order 2. In fact uH0
(Z/15Z) = 11 ∈ Z/15Z, so as H

ranges over all semi-systems, the values of uH(Z/15Z) are 4 and 11.

A recent paper of Li-Sha [LS17] gives analogues of the results of Mordell and Cosgrave-Dilcher for
rings of the form Fq[t]/(n(t)) for an odd prime power q. We will restrict our attention to one interest-
ing case: Let p ≡ 3 (mod 4) be a prime number and P ∈ Z/pZ[t] be irreducible of odd degree d, so
that F := Z/pZ[t]/(P ) is a finite field of order pd ≡ 3 (mod 4). For any semisystem H in F, Propo-
sition 7.2 gives that uH ∈ {±1}. Starting from any semisystem s in Z/pZ, one obtains a semisystem
in F by taking the polynomials of degree less than d with leading coefficient in s. We will choose
the semisystem HP obtained in this way from s = {1, . . . , p−12 }. Let h(−P ) be the class number of

the function field Fq(t,
√
−P (t)). This can be described concretely as nonzero ideals modulo nonzero

principal ideals as above, but in the ring Fp[x, y]/(y2 + P (x)).5 Then we get the following result, an
equivalent formulation of a special case of [LS17, Thm. 4.1].

Theorem 7.5. a) If h(−p) ≡ h(−P ) (mod 4), then uHP
= −1.

b) If h(−p) 6≡ h(−P ) (mod 4), then uHP
= 1.

In [W67], Weil wrote: “[I]t goes without saying that the function-fields over finite fields must be
granted a fully simultaneous treatment with number-fields, instead of the segregated status, and at
best the separate but equal facilities, which hitherto have been their lot.” By this he meant, I think,
that one should pursue results for number fields and function fields at the same time. But I am not
sure that I have ever seen the two sitting down at the table of brotherhood quite like this.

In the case when the irreducible polynomial P ∈ Z/pZ[t] has even degree, the results of Li-Sha tell us
that for any semisystem H in Z/pZ[t]/(P ), the order of uH is 4...as we already knew. In this case, if
the leading coefficient of −P is a square, then Z/pZ(t,

√
−P ) is a “real quadratic function field,” so

one should seek an analogue of Chowla’s result [Ch61] giving the answer in terms of a generator of the
infinite cyclic group U(Z/pZ[x, y]/(y2 + P (x)))/U(Z/pZ).

It would also be interesting to find further semi-systems in finite commutative rings for which the
evaluation of a Wilson semi-product comes out in terms of a class number or better still to find a more
general algebraic framework that explains the appearance of class numbers.

8. Complements

8.1. The Vandiver-Weaver Theorem. The following result of Vandiver-Weaver [VW58, Thm.
4.4.9] is a generalization of Theorem 1.4.

Theorem 8.1.
Let G be a finite commutative group of order 2n, and let a be an element of G. The map ιa : G→ G

given by x 7→ ax−1 is an involution on G: ι2a = 1G. Let f be the number of fixed points of ιa, and let

t be any order 2 element of G. Then
∏

x∈G x = ant
f
2 .

4More generally, for N,n ∈ Z+, they consider the Gauss factorial Nn! :=
∏

1≤k≤N, gcd(k,n)=1 k ∈ U(n).
5Beware that we need d to be odd for this description of the class group to be valid.
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Proof. Step 1: The same calculation as in §1.4 shows that ιa is an involution. Suppose first that there
is no x ∈ G such that x2 = a. Then ιa is fixed point free and the same argument as in §1.4 shows that∏

x∈G x = an = ant
0
2 , establishing the result in this case.

Step 2: Suppose there is A ∈ G be such that A2 = a. The map x 7→ Ax gives a bijection from G[2] to
the set F = {x ∈ G | x2 = a} of fixed points of ιa: if x2 = e, then (Ax)2 = A2x2 = a, and if x ∈ F
then ( x

A )2 = x2

A2 = e. Let f = #F = #G[2]. Since #G and #(G \ F ) are even, so is f . By Theorem

1.4, if f = 2 then
∏

y∈G[2] y = t = t
f
2 , while if f ≥ 4 then

∏
y∈G[2] y = e = t

f
2 .

Step 3: The elements of G \ F consist of n− f
2 pairs of distinct x, y ∈ G such that xy = a, so∏

x∈G
x =

∏
x∈G\F

x
∏
x∈F

x = an−
f
2

∏
y∈G[2]

Ay = an−
f
2Af

∏
y∈G[2]

y = ant
f
2 . �

It would be interesting to have an application that uses Theorem 8.1 and not just Theorem 1.4.

8.2. Remarks on the history and the literature.

Wilson’s Theorem is named after the British mathematician John Wilson (1741-1793). As for many
other results in the subject, this attribution seems faulty. Wilson conjectured the result while a student
at Cambridge. He conveyed it to Edward Waring, the Lucasian Chair of Mathematics, who announced
it as a conjecture in 1770. Leibniz had also conjectured it in the 17th century, although he did not
publish it. In fact the statement appears in the work of the Arabic polymath Ibn al-Haytham circa
1000 [Ra80]. It was first proved by Lagrange in 1771.

Gauss’s generalization of Wilson’s Theorem appears in [G, Art. 78].

So far as I know, Theorem 1.4 was first proved by the early American group theorist George Abram
Miller (1863-1951) [Mi03]. It has been rediscovered and published several times: e.g. [Oh77, Lemma
1], [D09, Lemma 4], but I have not been able to find it in any standard textbook.

The proof of Theorem 1.4 given in §1.3 seems to be new. The proof given in §1.4 is very similar
to that of Saucier [Sa18, p. 100]. It is also similar to an argument of Górowski- Lomnicki [GL14]. In
[GL14] the involution ιa is not quite made explicit but its essential use is eventually revealed: “By
Lemma 2.2 the elements of G[2] \ {1, a} can be arranged in pairs (x, y) such that xy = a and x 6= y.”
It seems to me that building the proof around the involution ιa shortens and simplifies it. Saucier also
gives a proof in which the involution ιa features implicitly and is understood and constructed via an
interesting counting argument. Of course the notion of an involution ιa goes back to Vandiver-Weaver
[VW58]. I must confess however that I find the exposition of [VW58, §4.4] to be somewhat opaque.

Following [Sa18], we supply some motivation for the second proof in hindsight. To give a fixed point
free involution on a set X is equivalent to giving a partition of X into 2 element subsets. If G is a
commutative group in which every nonidentity element has order 2 and a is a nonidentity element of
G, then the partition of G associated to the involution ιa is the partition into cosets of the subgroup
{1, a}. Thus the two proofs are “dual” in the sense that we may view G as a Z/2Z-vector space, and
whereas the first proof sums over cosets of a codimension one subspace, the second proof sums over
cosets of a one-dimensional subspace. We leave for the reader to decide which of the two proofs is
more suitable for classroom presentation. In my opinion the second proof is shorter and faster to follow
line-by-line but may be more slick than transparent. On the other hand there is some precedent for
using well-chosen involutions to give short, snappy proofs of results in number theory: see e.g. [Za90].

The main tools Gilmer uses to prove Theorem 5.14a) are Theorems 5.8 and 4.1. Several other proofs
have been given, some extending the result to infinite rings [Ay69], [EF67], [PS70]. Theorem 5.15 in
the case of a residue ring ZK/n of the ring of integers of a quadratic number field K is due to Ohnari
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[Oh77]. For an arbitrary number field K it was proved by Lassak [La00] and then, more simply, by
Dalawat [D09]. By [BC15, Thm. 1.12] this case coincides (up to isomorphism) with the class of all
finite principal rings.6 That fifty years elapsed between [Gi63] and [HM13] seems strange, but better
late than never. Our proof of Theorem 5.15 is different from Hirano-Matsuoka’s and perhaps more
broadly accessible: it leans more heavily on group theory than ring theory.

Theorem 6.4 appears to be new, but it is a consequence of two older results. For a ring R, Anderson-
Livingston [AL99] define a graph Γ(R) with vertices the proper zero divisors of R and in which x, y
are connected by an edge iff x 6= y and xy = 0. Thus R satisfies condition (i) of Theorem 6.4 iff Γ(R)
has no edges. Anderson-Livingston show – in any ring – that any two vertices in Γ(R) are connected
by a path of length at most 3. So Γ(R) can only have no edges if there is only one vertex, i.e., there is
a unique proper zero divisor. Next there is a result of Ganesan [Ga64]: if a ring R has exactly n ≥ 2
zero divisors, then R has order at most n2. So a ring with a unique proper zero divisor has size at
most 4. The proof of Ganesan’s Theorem is similar to the argument we gave: if x is a proper zero
divisor, the kernel K of multiplication by x consists of zero divisors so has size at most n, and there

is an injective homomorphism (R/K,+)
·x→ (R,+), whose image consists of zero divisors, so R has at

most n2 elements.

8.3. Other proofs of Wilson’s Theorem.

Our proof of Wilson’s Theorem is a standard one, and it is essentially Lagrange’s proof. Let us
quickly run through a few other proofs: throughout p is an odd prime.

• (Gerrish [Ge72]) In the symmetric group Sp, the Sylow p-subgroups are cyclic of order p. The
order p elements of Sp are precisely the p-cycles, of which there are p!/p = (p − 1)!. Since a cyclic
group of order p has p−1 generators, the number of Sylow p-subgroups is np = (p−1)!/(p−1) = (p−2)!
According to the Sylow Theorems, we have np ≡ 1 (mod p), i.e., (p− 2)! ≡ 1 (mod p) and thus

(p− 1)! ≡ (p− 1)(p− 2)! ≡ −1 (mod p).

• Lagrange’s Theorem and the Root-Factor Theorem yield the polynomial identity

tp−1 − 1 = (t− 1)(t− 2) · · · (t− (p− 1)) ∈ Z/pZ[t].

Evaluating at 0 gives
−1 ≡ (−1)p−1(p− 1)! ≡ (p− 1)! (mod p).

• If we can establish that U(p) is cyclic, we can apply Example 1.1. By Corollary 5.6, the unit group
of a finite field is cyclic. However, this deduction used the Structure Theorem for Finite Commutative
Groups. We can avoid this as follows.

Theorem 8.2 (Cyclicity Criterion). Let G be a (not necessarily commutative) finite group. If for all
d ∈ Z+ we have #{x ∈ G | xd = e} ≤ d, then G is cyclic.

Proof. Step 1: For n ∈ Z+, let ϕ(n) be the order of U(n). Observe that ϕ(n) is also the number of
generators of the cyclic group (Z/nZ,+). Every 1 ≤ k ≤ n generates a cyclic subgroup of (Z/nZ,+),
and for each d | n there is a unique order d cyclic subgroup of (Z/nZ,+). Therefore n =

∑
d|n ϕ(d).

Step 2: Suppose G has order n. For d ∈ Z+, let f(d) be the number of elements of G of order d. By
Lagrange’s Theorem f(d) = 0 unless d | n, so n =

∑
d|n f(d). If d | n and f(d) ≥ 1 then G has a cyclic

subgroup Cd of order d. We have xd = e for all x ∈ Cd, so by hypothesis Cd contains all such elements
of G and thus all elements of order d. Therefore f(d) = 0 or f(d) = ϕ(d), so f(d) ≤ ϕ(d). So

n =
∑
d|n

f(d) ≤
∑
d|n

ϕ(d) = n,

6It follows from Theorem 5.14 that if R is a finite ring with cyclic unit group then it is a principal ring. It would be

interesting to establish this directly and thus reduce Gilmer’s Theorem to the Lassak-Dalawat Theorem.
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so f(d) = ϕ(d) for all d | n. In particular f(n) = ϕ(n) ≥ 1, so G is cyclic. �

We can use Theorem 8.2 in place of Theorem 5.2 in the proof of Corollary 5.6, getting a more elemen-
tary proof that the unit group of a finite field is cyclic.

The last two proofs immediately adapt to show u(F ) = −1 for any finite field F , but Gerrish’s
proof does not. This is a feature it shares with several combinatorial proofs of Wilson’s Theorem,
some of which solve a more general counting problem parameterized by a positive integer n which
reduces to Wilson’s Theorem when n is prime [Gu85], [An11], [Tr18]. It also shares this feature with
the proofs that use group actions on finite sets [F58], [EH05]. It is tempting to see how many of the
combinatorial proofs of Wilson’s Theorem can be “algebraicized” by recasting them in terms of group
actions, but we will leave this exploration to the interested reader.
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