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Introduction

The book Uniform distribution of sequences by Kuipers and Niederreiter, long
out of print, has recently been made available again by Dover books.1 I came across
a copy at the Borders bookstore in San Francisco and decided to give it a try (the
price, as they say, was right). It turned out to be full of interesting results, so I
decided to take some notes on what seemed to me to be the parts most worthy of
memory.

Uniform distribution – or, as it is now more often called, “equidistribution” – of
various arithmetic, (and geometric, spectral,. . .) objects is a hot topic nowadays,
and was the subject of a recent SMS-NATO conference in Montréal. It seems that
there is not so much in the way of foundational material available online, and most
contemporary treatments of equidistribution expose the foundations with such ex-
treme brevity that mistakes can arise.2 One notable exception is the 12 page article
[?] based on Andrew Granville’s opening lecture at the Montréal conference. Their
article has the merits of (i) true brevity (it can be digested in one sitting leaving
a full but not aching stomach) and (ii) having been written by two of the leading
authorities of the day. In contrast [KN] possesses (ii), but – instead of (i) – (i’):
in its 330 pages it gives a wonderfully careful and complete (especially if one reads
the fine printed “notes”) presentation of the foundations of the subject and some
of the most important work up until about 1970. These notes, I hope, possess
(i”): a treatment which is more systematic and complete than [?] but shorter than
[KN] and presented in somewhat more modern language and style. Unfortunately
I cannot claim (ii); caveat emptor.

A word on the organization and the style: in view of the fact that I recently
taught an undergraduate analysis class that ended with a treatment of the Weier-
strass approximation theorem, it was striking to me that the most basic results –
and in particular, the nice application to the uniform distribution of the fractional
parts of nα for irrational α – depend on nothing more advanced than this. So I con-
sciously wrote §1 so as to be accessible to (presumably rather bright and inquisitive)
students who have just taken such a course: in particular, I deliberately phrased
everything so as to work in terms of Riemann rather than Lebesgue integrals. As

1In case you don’t know, this is a company which publishes mathematical books at uniquely
reasonable prices, the only catch being that they must have been written at least thirty or so years
ago. For most of my mathematical life, their line of books seemed to be of interest primarily for
amateurs, students and professionals in other fields, but in the last few years the number of books

worthy of attention of research mathematicians seems to have spiked rather dramatically.
2In particular the definition of equidistribution given in [?, Chapter X] is incorrect.
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I dug deeper into the theory, I learned that in fact the theory of equidistribution
is closely linked to Riemann (and not Lebesgue!) integration. This connection is
developed more fully than in most introductory treatments.

On the other hand, one of the charms of the subject is that it quite naturally
draws upon a certain number of basic topics from measure theory, functional anal-
ysis, topology, groups and representation theory, and after §2 I have not shied away
from presenting results in “proper generality.” It would certainly be nice to bal-
ance out this rather Bourbakistic treament with a second part amassing examples
of the sort of equidistributed sequences (and more general objects) one encounters
in contemporary mathematics. Unfortunately I am by no means capable of doing
so; fortunately the SMS-NATO proceedings address these disparate applications.

Some notation and terminology:

If f, g : Z+ → R, then by f = O(g) we mean that there exists some C such
that for all n ∈ Z+, |f(n)| ≤ C|g(n)|. By f = o(g) we mean that g(n) 6= 0 for
sufficiently large n and limn→∞

|f(n)|
|g(n)| = 0). If f and g depend also on other quan-

tities, then the “constant” C (resp. the convergence to zero) is not assumed to be
uniform in these other quantities.3

e(x) = e2π
√
−1x.

We write E to mean either R or C (n’importe quelle).

In §1, C denotes the E-vector space of continuous functions f : [0, 1] → E, an
(E)-Banach space for the supremum norm.

Following Bourbaki, we call a topological space for which each open cover admits a
finite subcover quasi-compact; a compact space is a Hausdorff quasi-compact space.

1. Uniform distribution in [0, 1]

1.1. The definition.
In this section, unless otherwise indicated all sequences {xn}∞n=1 will be sequences
in the unit interval I = [0, 1]. We say that x is uniformly distributed (often
abbreviated u.d.) if for all 0 ≤ a ≤ b ≤ 1,

(1) lim
N→∞

#{n ≤ N | a ≤ xn ≤ b}
N

= b− a.

This is a good starting point because it is concrete and reasonably perspicuous:
we are requiring of a sequence that for every closed subinterval, the proportion of
the first N elements lying in that subinterval should approach the length of the
subinterval as N approaches ∞. On the other hand, some modern readers might
see in its very concreteness a sort of puzzle, and try to figure out both “what it
really means” – i.e., what are the fundamental properties of sequences in I, closed
subintervals and their lengths that the definition purports to be relating, and how
might the definition be extended to sequences in more general spaces? – and also

3Occasionally we may write something like O∗(g), which is a rhetorical device: we are empha-
sizing the dependence on some auxiliary quantity ∗.
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“whether it is strong enough” – e.g. should we perhaps be requiring a similar con-
dition on more general subsets of I? Both of these questions will be addressed in
due course.

There is a natural variant with, instead of a single infinite sequence x, a dou-
ble sequence of the following form: for each n ∈ Z+ we are given a finite sequence
xn,i in I of length `n (i.e., i ranges from 1 to `n). We can then define uniform
distribution of xn,i in the analogous way: for all 0 ≤ a ≤ b ≤ 1,

lim
n→∞

#{i | a ≤ xn,i ≤ b}
`n

= b− a.

This is closely related to the previous notion of uniform distribution but more gen-
eral: given any infinite sequence x, we can define a double sequence D(x) with
`n = n by taking xn,i = xi for 1 ≤ i ≤ n, and then (tautologically) x is u.d. iff
D(x) is. Note that for any given n the definition of u.d. of a double sequence does
not depend upon the ordering of the terms of the finite sequence xn,i, so an entirely
equivalent notion is that of uniform distribution of a sequence Sn of finite multisets4.

Exercise 1.1.1:
a) Suppose that Sn is a u.d. multiset sequence. Show that #Sn →∞.5

b) Given a double sequence xn,i, we can form an ordinary sequence L(xn,i) by lex-
icographic ordering: i.e., x1,1, . . . , x1,`1 , x2,1, x2,`2 , . . .. Show that, in general, the
u.d. of the double sequence xn,i does not imply the u.d. of L(xn,i).
c) For a double sequence xn,i, put sn =

∑n
i=1 `i. Suppose that `n = o(sn) (e.g.

`n = n). Then xn,i u.d. implies L(xn,i) is u.d. Show moreover that this holds
under all reorderings of the finite sequences xn,i, so that we also get a criterion for
passing from u.d. multiset sequences to u.d. sequences.

1.2. First examples. It is not quite trivial to show that any sequence is u.d. ac-
cording to the definition. Perhaps the following is the simplest example.

Example 1.2.1: The multiset sequence Sn = {0, 1
n ,

2
n , . . . , 1} is u.d., since for all

0 ≤ a ≤ b ≤ 1, #Sn ∩ [a, b] = n(b− a) +O(1) = n(b− a) + o(n). By Exercise 1, the
associated concatenated sequence is u.d.:

0, 1, 0,
1
2
, 1, 0,

1
3
,

2
3
, 1, . . .

Observation 1. Let x and y be two sequences such that the set

D = D(x,y) = {n ∈ Z+ | xn 6= yn}

has density zero (i.e., limN→∞
#(D∩[1,N ])

N = 0). Then x is u.d. iff y is.6

Observation 2. If x is u.d. in I, then it has dense image.

4A multiset is the generalization of a set obtained by attaching a cardinal number to each
element, its multiplicity. By a finite multiset we mean that there are finitely many distinct

elements, each occurring with finite multiplicity.
5The cardinality of a multiset is defined in the obvious way, i.e., by taking the multiplicities

into account. It is also true, however, that the number of distinct elements in Sn must tend to ∞.
6By an “observation” I mean an assertion whose statement is worth pointing out and whose

truth the reader will have no trouble verifying unaided.
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Observation 3. The sets of u.d. sequences, of non-u.d. sequences, and of all
sequences all have cardinality c.

Whether a sequence has dense image does not depend upon the ordering of the
terms. On the other hand, given a sequence with dense image, whether or not it is
u.d. is entirely a matter of the ordering of the terms:

Theorem 4. a) Any sequence has a rearrangement which is not u.d.
b) If x has dense image, it has a rearrangement which is u.d.

Proof: a) If the sequence is not dense, no rearrangement is u.d. If it is dense, we can
divide the index set Z+ into I1 = x−1([0, 1/2]) and I2 = x−1((1/2, 1]); the density
implies that both of these sets are infinite. We can then rearrange the terms in such
a way that xn ∈ [0, 1/2] iff n is a multiple of 100 (say), and then the proportion
lying in [0, 1/2] will be 99/100 instead of the desired 1/2.

b) Since x has dense image, a moment’s thought shows that we may rearrange
it so that x1 ∈ [0, 1

2 ], x2 ∈ [ 12 , 1], x3 ∈ [0, 1
3 ], x4 ∈ [ 13 ,

2
3 ], and so on. This sequence

is u.d. by the argument of Example 1.

Exercise 1.2.1: Show that if x is dense, we can in fact rearrange the terms such
that for every a < b, in (1) we have that the lower limit is 0 and the upper limit is 1.

So at this point we have constructed “plenty” of u.d. sequences, all, however,
of a rather contrived and uninteresting type.

1.3. The Weyl Criterion. As for e.g. irrationaity or transcendence, it is quite
another matter if we ask about the uniform distribution of a pre-existing sequence.

Example 1.3.1: What about the sequence {n
√

2} – here {x} = x − bxc is the
fractional part of the real number x? Even to show that for irrational α, {nα} is
dense in the unit interval is a not entirely trivial result7, due originally to Kronecker.

To answer this question, and many others, about u.d., the following is invaluable.

Theorem 5. (Weyl Criterion) The sequence x = {xn} is u.d. iff: for all 0 6= h ∈ Z,

(2) lim
N→∞

1
N

N∑
n=1

e(hxn) = 0.

Remark: For h = 0 we have 1
N

∑N
n=1 e(hxn) = 1 for all sequences x and all N .

The ubiquitous first application is a refinement of Kronecker’s theorem:

Corollary 6. (“The” equidistribution theorem) For α ∈ R, TFAE:
(i) The sequence of fractional parts {nα} is u.d.
(ii) α ∈ R \Q.

7At least if we take a sufficiently elementary perpective. On the other hand a Lie theorist
would probably regard it as trivial. More on this later.
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Proof: That (i) =⇒ (ii) is immediate from Observation 2. Conversely, the irra-
tionality of α gives that for all 0 6= h, e(hα) 6= 1, so∣∣∣∣∣ 1

N

N∑
n=1

e(hnα)

∣∣∣∣∣ =
∣∣∣∣ 1
N
· e(h(N + 2)α)− e(hα)

1− e(hα)

∣∣∣∣ ≤ 2
N · (1− e(hα))

→ 0.

The intriguing content of Weyl’s criterion is that the problem of uniform distribu-
tion of a sequence is equivalent to one of cancellation in exponential sums, a topic
whose importance in (analytic and algebraic) number theory and harmonic analysis
could hardly be overstated. The idea here is that for all sequences x and all h ∈ Z
we have that | 1

N

∑N
n=1 e(hxn)| ≤ 1. This is the trivial bound, and it is sharp iff

h = 0 or x1 = . . . = xN . Otherwise the xn’s will be pointing in different directions,
and like forces acting on us from all sides, will at least partially cancel each other
out. Weyl’s criterion asks simply for qualitative improvement: that the sum be
oh(1) rather than just O(1).8

Ideally, we would develop the theory in a way so as to make it completely “self-
evident”: in other words, we strive the illusion that we could have discovered all
the main results ourselves. However, things will go much more smoothly if we allow
ourselves a few well-chosen hints: i.e., every so often an oracle speaks to us to push
us in the right direction. Here is a good example: it seems not to be at all obvious
how to prove Weyl’s criterion, until we receive the following

Hint 1. For a subset E ⊂ [0, 1], consider χE : [0, 1] → R, the characteristic
function of E. Then (1) says precisely that

(3) lim
N→∞

1
N

N∑
n=1

f(xn) =
∫ 1

0

f

holds with f = χ[a,b].

Aha! This suggests the following important result.

Theorem 7. (Fundamental Theorem) For a sequence x = {xn} in [0, 1], the fol-
lowing are equivalent:
a) (3) holds for all Riemann integrable f : [0, 1] → E.
b) (3) holds for all continuous f : [0, 1] → E.
c) x is uniformly distributed on [0, 1].

The following notation will be helpful in the proof:

Let R be the linear space of Riemann-integrable functions f : [0, 1] → E;

C the linear space of continuous E-valued functions on [0, 1];

S the E-span of the characteristic functions of closed intervals (“step functions”).

Proof: If (3) holds for all f in a subset S of R, then by linearity it holds also
for its E-span 〈S〉. Therefore we must show that (3) holds for all f ∈ R iff it holds
for all f ∈ C iff it holds for all f ∈ S.

Since C ⊂ R, (a) implies (b).

8Note that the requirement that the sum approach 0 uniformly in h would be much stronger.



6 PETE L. CLARK

(b) =⇒ (c): Given a step function f and ε > 0, there are continuous functions
g1 and g2 such that g1 ≤ f ≤ g2 on I and

∫ 1

0
(g2 − g1) < ε. Then:(∫ 1

0

f

)
− ε ≤

(∫ 1

0

g2

)
− ε ≤

∫ 1

0

g1 = lim
N→∞

1
N

N∑
n=1

g1(xn)

≤ lim inf
N

1
N

N∑
n=1

f(xi) ≤ lim sup
N

1
N

N∑
n=1

f(xn) ≤ lim sup
N

1
N

N∑
n=1

g2(xn)

=
∫ 1

0

g2 ≤
∫ 1

0

g1 + ε ≤
∫ 1

0

f + ε.

(c) =⇒ (a): if f is Riemann integrable, there exist two step functions g1, g2 with
g1 ≤ f ≤ g2 on I and

∫
(g2 − g1) ≤ ε. The result follows by exactly the same

inequalities as in the previous paragraph.

This result is “part one” of the foundation of the “Monte Carlo” approach to
integration. It remains also to formalize and prove the fact that a randomly chosen
sequence is u.d. (“part two”, coming up) and to develop a quantitative theory lead-
ing to explicit upper bounds on the error (“part three”, to be almost completely
ignored in these notes).

Exercise 1.3.1: Check that the proof of Theorem 7 works to give analogous re-
sults for double sequences xn,i and multiset sequences Sn.

We are now ready to prove the Weyl criterion: let us view R as a (complete)
normed linear space, with ||f || = supx∈[0,1] |f(x)|. For a given sequence x, we can
define E-linear functionals on R

FN : f 7→ 1
N

N∑
n=1

f(xi), G : f 7→
∫ 1

0

f.

These functionals have norm one: for all f ∈ R, |Fn(f)| ≤ ||f || with equality for
f ≡ 1 (and the same for G). It follows that if FN (f) → G(f) holds for all f in some
subset S of R, then it holds also on the closed linear span 〈S〉 of S. By the Weier-
strass approximation theorem, we may take for instance the polynomial functions
f : [0, 1] → R, or indeed the sequence of monomials xn. Just by separating real
and imaginary parts, it follows immediately from this that the set of polynomials
with C-coefficients is dense in the space of C-valued continuous functions. Com-
posing with e1 = e2πix, it follows that every continuous complex valued function
f : [0, 1] → C with f(0) = f(1) is a uniform limit of trigonometric polynomials –
i.e., expressions of the form

∑
n∈Z αne

nix with αn = 0 for all but finitely many n
(Fejer’s Theorem). This is almost the Weyl criterion, except that we get (3) for
“periodic” step functions, i.e., f with f(0) = f(1). However, if x is u.d. then xn = 1
for only o(n) terms of the sequence (apply the definition with a = b = 1), and this
means that for an arbitrary step function f and ε > 0, for all sufficiently large N
there exists a periodic step function g such that |FN (f − g)|, |G(f − g)| < ε. Thus
the Weyl criterion is necessary and sufficient for uniform distribution.

Exercise 1.3.2: Verify the analogue of the Weyl criterion for double sequences and
multiset sequences.
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Exercise 1.3.3: Show that if, in fact, (3) holds for all h ∈ Z+, then x is u.d.

Exercise 1.3.4: If x is u.d. and α ∈ Z \ 0, then αx is u.d.

The proof of Weyl’s criterion suggests that things will be equivalent but slightly
easier if we consider instead uniform distribution on S1 = [0, 1]/ (0 ∼ 1). For the
remainder of this section – when the group structure of S1 will not be used – we will
stubbornly stick with [0, 1]. However, in giving examples of x ∈ [0, 1), we will allow
sequences of real numbers, with the understanding that we are really speaking of
the associates sequence {xn} of fractional parts (contained in [0, 1)).

By calling Theorem 7 “fundamental” we are imparting a slightly nonstandard spin
on matters; it is the Weyl criterion which is usually held to be paramount. We give
the following justifications: (i) the Weyl criterion is readily deduced as a corollary
of Theorem 7, but the converse is not true; (ii) Theorem 7 is any case also due to
Weyl; and (iii) as we shall see, Theorem 7 generalizes nicely to any compact space,
whereas the Weyl criterion has an analogue only on compact groups.

1.4. Uniform distribution and Riemann integrability.
Perhaps the reader noticed that the property of Riemann integrable functions used
in the proof c) =⇒ a) is in fact a characteristic property, by a famous theorem
of Darboux. This leads us to suspect the following relation betweeen uniform
distribution and Riemann integrability, proved by de Bruijn and Post in 1968,
nearly fifty years after Weyl’s Theorem 7.

Theorem 8. Let f : [0, 1] → R be any function, and L a real number. TFAE:
a) For all u.d. sequences x, limN→∞

1
N

∑n
n=1 f(xn) = L.

a’) For all u.d. double sequences xn,i, limn→∞
1
n

∑`n

i=1 f(xn) = L.
b) f is Riemann integrable to L.

It seemed more fun9 to try to figure out the proof for myself than track down the
reference (apparently other proofs have subsequently appeared in the literature).
So I don’t know if the following proof is “new.”

Proof: Theorem 7 and its variant for double sequences shows b) =⇒ a) and
b) =⇒ a′).

All of the Riemann sums intervening in the proof will be with respect to Pn,
the uniform partition of [0, 1] into n subintervals, for some n, so let us employ the
simplified notation Rn(f, xn,i) for R(f,Pn, xn,i). We will use the fact that a func-
tion f is Riemann integrable to L iff: for any sequence xn,i of taggings of Pn (i.e.,
xn,i ∈ [ i−1

n , i
n ]) the Riemann sums Rn(f, xn,i) approach L. (For instance, one can

check that this implies equality of the upper and lower Darboux integrals.)
This remark makes the proof that a′) implies b) easy: indeed for any function g,

Rn(g, xn,i) =
1
n

n∑
i=1

g(xi),

9For me, at least. Perhaps apologies are owed to the reader.
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so it follows from Theorem 7 that any sequence of taggings xn,i of Pn is u.d. (note
that this generalizes Example 1.2.1). So in a’) we have assumed, in particular,
the convergence of all sequences Rn(f, xn,i) to a common value L, which gives the
Riemann integrability of f to L.

The proof that a) implies b) is morally the same but with a few unpleasant
technicalities: given any sequence of taggings xn,i as above, we can concatenate
lexicographically to get a sequence x which, by the previous paragraph and Exercise
1.1.1, is u.d. We would like to argue that if a) holds for all these sequences, f is
Riemann integrable to L. This is true, but not as obvious, since the sum involved
is no longer a Riemann sum but rather (has a subsequence which is) a weighted
average of Riemann sums. One thing one learns in undergraduate real analysis10 is
that it is much easier to show that a function is Darboux integrable, so let us do
this instead. In other words, define

Ln(f) =
1
n

n∑
i=1

inf f |[ i−1
n , i

n ],

Un(f) =
1
n

n∑
i=1

sup f |[ i−1
n , i

n ],

and it suffices to show that infn Ωn(f) = Un(f)− Ln(f) = 0.
First we must convince ourselves that Ωn(f) <∞ for all n, i.e., that f is bounded.

If not, assume WLOG that f is unbounded above, so that for each n there is
some point yn with f(yn) ≥ 2n. Let xn be any u.d. sequence, so by assumption
1
N

∑n
n=1 f(xn) → L; in particular

(4)
N2∑
n=1

f(xn) = O(N2).

If we then modify the sequence xn by taking xn2 = yn, then since we have changed
it only on a set of density zero it remains u.d. But clearly (4) does not hold on our
modified sequence, a contradiction.

Now fix ε > 0 and let us choose two double sequences x′n,i, x
′′
n,i (in linear order)

so that the corresponding Riemann sums Rn(f, x′n) and Rn(f, x′′n) are extremely
close to Ln(f) and Un(f). We cannot, in general, make them equal because f need
not attain its subinterval infima and suprema; however, for each n and 1 ≤ i ≤ n,
we can choose the tagging point x′n,i (resp. x′′n,i) to be within ε of the infimum
(resp. supremum) of f on [ i−1

n , i
n ], and then we will have

Rn(f, x′n) ≤ Ln(f) + ε,

Rn(f, x′′n) ≥ Un(f)− ε.

By assumption, the sequence 1
N

∑N
n=1 f(x′′n) − f(x′n) converges to zero, hence so

does the subsequence obtained by restricting toN of the form 1+. . .+M = M(M+1)
2 .

So for all sufficiently large M we have

ε >
1

1 + . . .+M

1+...+M∑
n=1

f(x′′n)− f(x′n) =
M∑

n=1

n

1 + . . .+M
(Rn(f, x′′n)−Rn(f, x′n))

10One learns it especially well by teaching real analysis.
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≥
M∑

n=1

n

M(M + 1)/2
(Ωn(f)− 2ε).

If Ωn(f) were greater than 3ε for all n, the final expression would exceed ε, a con-
tradiction. Since ε was arbitrary, this shows that infn Ωn(f) = 0 so f is Riemann
integrable (to L, clearly). This completes the proof.

To my knowledge this result is only of “philosophical” importance, but it nev-
ertheless seems intriguing: it suggests that, as soon as we can formulate a notion
of uniform distribution in an abstract setting, we will then get at least a candidate
for the notion of an “abstract Riemann integrable function.”

1.5. “Linearity” properties of u.d. sequences. Let x, y be sequences (taken
(mod 1) as usual), and α ∈ R×.

Nonexample 1.5.1: Take xn = n
√

2, yn = −n
√

2. Then x and y are u.d., but
x + y is not.

Nonexample 1.5.2: Take xn = n
√

2, α = 1√
2
. Then x is u.d. but αx is not.

Thus the set of all sequences of real numbers which are u.d. (mod 1) is not an
R-subspace of the space of all real sequences. Nevertheless there is something to
the idea, as the following two results show:

Proposition 9. If x is u.d. and y (mod 1) is convergent, then x + y is u.d.

Proof: Let us first do the special case in which yn = y is a constant sequence. From
the right viewpoint (i.e., that of Haar measure on S1) the result is obvious, but
it is no trouble to give a direct proof: note that as x 7→ f(x) ranges through all
continuous functions on S1, so does x 7→ f(y+x), and apply Theorem 7. To tackle
the general case we may now perform a translation and hence assume y → 0. Let
f : S1 → E be continuous; since S1 is compact, f is uniformly continuous. So given
ε > 0, for all N ≥ N0, |f(xn + yn)− f(xn)| < ε and |

∑N
n=1 f(xn)−

∫ 1

0
f | < ε, so

| 1
N

N∑
n=1

f(xn + yn)−
∫ 1

0

f | ≤ | 1
N

N∑
n=1

f(xn)−
∫ 1

0

f |+ | 1
N

N∑
n=1

f(xn + yn)− f(xn)|

≤ ε+
N0||f ||
N

+
(
N −N0

N

)
ε→ 0

as N →∞, completing the proof.

Theorem 10. (Weyl) If x is a sequence of distinct integers, then the set of real
numbers α such that αx is not u.d. has measure zero.

Proof: It is easy to see that it suffices to look at α ∈ [0, 1). Now, for fixed 0 6= h ∈ Z,
define

Sh(N,α) =
1
N

N∑
n=1

e(hxnα).

Then

|Sh(N,α)|2 = Sh(N,α)Sh(N,α) =
1
N2

N∑
m,n=1

e(h(xm − xn)α),
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so ∫ 1

0

|Sh(N,α)|2dα =
1
N2

N∑
m,n=1

∫ 1

0

e(h(xm − xn)α)dα =
1
N
.

So ∫ 1

0

∞∑
N=1

|Sh(N2), α)|2dα ≤
∞∑

N=1

∫ 1

0

|Sh(N2, α)|2dα =
∑
N

1
N2

<∞,

where the first inequality holds by Fatou’s Lemma. It follows that
∑

N |Sh(N2, α)|2
is finite for almost all α ∈ [0, 1] and a fortiori that limN→∞ Sh(N2, α) = 0 for almost
all α. For fixed N , let m be the positive integer such that N ∈ [m2, (m + 1)2).
Trivial estimates give:

|Sh(N,α)| ≤ |Sh(m2, α)|+ 2m
N

≤ |Sh(m2, α)|+ 2√
N
.

We therefore get that Sh(N,α) → 0 for almost all α. Since the nonzero integers
form a countable set, we are done by Weyl’s criterion.

Remark: Here some of Lebesgue’s integration theory has snuck in. It is not clear
that this is necessary – one can certainly define “measure zero” without defining
“measure” – and I would be inclined to doubt that Weyl’s 1914 proof uses Fatou’s
Lemma. Perhaps someone can suggest a more elementary argument.

Using similar methods, one can show:

Theorem 11. ([KN, Cor. 1.4.3]) Let x be a sequence of real numbers such that
infm6=n λm − λn > 0. Then αx is u.d. (mod 1) for almost every real number α.

On the other hand, there is the following result of Dress:

Theorem 12. (Dress) If x is a nondecreasing sequence with xn = o(log n), then
for no real α is αx u.d.

I was not able to find in [KN] an answer to the following

Question 1. If x is u.d., then is it true that for almost every α, αx is u.d.?

1.6. The difference lemma.

Theorem 13. (Fejér) Let x be a sequence of real numbers such that (∆x)n :=
xn+1 − xn is monotone. If, further,

lim
n→∞

(∆x)n = 0, lim
n→∞

n(∆x)n = ∞,

then x is u.d.

Corollary 14. (Fejér) Let f : [1,∞) → R, differentiable for sufficiently large x. If
f ′(x) tends monotonically to 0 as x → ∞ and limx→∞ x|f ′(x)| = ∞, then {f(n)}
is u.d.

Theorem 15. (Van der Corput Difference Theorem) If for each h ∈ Z+,
{xn+h − xn} is u.d., then x is u.d.

As a consequence, we get what is perhaps the single most interesting “classical”
result.
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Theorem 16. Let P (x) = anx
n + . . . + a0 ∈ R[x] be a degree n polynomial with

real coefficients. TFAE:
a) There exists i > 0 such that ai is irrational.
b) {P (n)} is u.d.

Proofs to be added, perhaps by someone else.

1.7. Discrepancy. There is a rich quantitative theory of u.d.; it is this part of the
theory that has the clearest connections with “classical number theory” and espe-
cially with Diophantine approximation. We will not even attempt to survey this
aspect of the theory, except to give one basic definition and one remarkable theorem.

Definition: The discrepancy of a finite sequence x1, . . . , xn (still in [0, 1]) is de-
fined to be

D(x1, . . . , xn) = sup
0≤a≤b≤1

|#{i ||a ≤ xi ≤ b}
n

− (b− a)|.

Given an infinite sequence x we define for each n, Dn(x) = D(x1, . . . , xn).

Proposition 17. ([KN, Thm 2.1.1]) A sequence x is u.d. iff limn→∞Dn(x) = 0.

The fact that Dn(x) → 0 implies u.d. is obvious; the other direction is not, and
indeed expresses the fact that the uniformity over all subintervals [a, b] of the con-
vergence of the expression in (1) is automatic. (Given the compactness of [0, 1],
this is not too surprising, however.)

We can use the discrepancy to quantify the idea that some sequences are more
uniformly distributed than others.

One ought not even to define the discrepancy without citing the following result:

Theorem 18. (Erdos-Turan) For any sequence x and any positive integers N and
m we have

DN (x) ≤ 6
m+ 1

+
4
π

m∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

e(hxn)

∣∣∣∣∣ .
This is a spectacular sharpening of the sufficiency of Weyl’s criterion for u.d. (Con-
versely, given the necessity of Weyl’s criterion, we recover Proposition 17.)

We will refer the reader to Chapter 2 of [KN] for the development of this theory,
and in particular §2.5 which discusses applications to Monte Carlo integration.

Interlude: Where to go from here?

At this point we have presented what we understand to be a fairly complete pic-
ture of the classical qualitative theory of uniform distribution. In some sense it is
parallel to the elementary theory of convergence of infinite series: our basic prob-
lem is to resolve a dichotomy (convergent/divergent) or (u.d./not u.d.) We have
some general criteria that work at least for certain important classes of examples;
nevertheless, when presented with a specific, and not overly simple, example, we
may be left to our own devices and not able to resolve the question. For instance,
it is not known whether {en} is uniformly distributed (mod 1).
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Where do we go from here?

There are first of all some obvious questions:

Question 2. Are most sequences x u.d. mod 1?

We must, of course, define what we mean by “most.” Apart from the (often trivial,
as here) sense of cardinality, there most common interpretations across mathemat-
ics are in the sense of measure and in the sense of Baire category. Both will be
considered.

Question 3. How do we extend the notion of uniform distribution to sequences in
more general spaces?

If by a more general space we meant only the hypercubes [0, 1]d or the tori (S1)d,
then it is fairly clear how one would try to do it (say in [0, 1]d): we define uni-
form distribution in terms of volumes of rectangular subboxes. One finds without
any trouble that the fundamental theorem holds verbatim. To find the analogue
of the Weyl criterion it helps to have had some exposure to Fourier analysis on
(S1)d: in place of the scalar exponential functions we use all functions of the form
v = (x1, . . . , xd) 7→ e(v · h), where h = (h1, . . . , hd) ∈ Zd, i.e., the characters of
(S1)n.

If we want to talk about uniform distribution on, say, a compact real (or p-adic!)
manifold, it is clear that some further data is needed: e.g. if ϕ is a homeomorphism
of [0, 1] – then the u.d. of a sequence x obviously does not imply that of ϕ(x).

Question 4. What about sequences which are asymptotically distributed according
to a non-linear distribution function?

In other words, if g : [0, 1] → [0, 1] is a monotone function with g(0) = 0 and
g(1) = 1, we could define a sequence x as being asymptotically g-distributed if for
all 0 ≤ a ≤ b ≤ 1 we have

lim
N→∞

#{n ≤ N | a ≤ xn ≤ b}
N

= g(b)− g(a);

of course we recover uniform distribution by taking g(x) = x. In most modern
number-theoretic applications (e.g. random matrices, spectral graph theory) the
distribution function of interest is not g(x) = x.

If we were to continue our push to keep things as elementary as possible, we
could develop a theory of g-distributed sequences by using, in place of the Rie-
mann integral, the Riemann-Stieltjes integral dg. But here (for me at least) the
elementary approach loses its charm: rather than fussing about what happens at
the points of discontinuity of g, why not just work with any measure µ on [0, 1]
which is absolutely continuous with respect to Lebesgue measure and thus recover
g as the Radon-Nikodym derivative dµ/dx? It seems that Question (3) is virtually
begging for us to consider a measure space (X,µ), and once we do this, studying
g-distribution on [0, 1] becomes the special case of ([0, 1], gdx).
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2. Uniform distribution in a compact measure space

2.1. First steps. So let us start anew and try to build a theory of uniform distri-
bution in a measure space (X,A, µ) – here A is a σ-algebra which is the “domain”
of µ. We would like to work in as much generality as possible, and what we re-
quire of our theory is that it at least recovers the theory of §1 in the special case
of Lebesgue measure on [0, 1]. Moreover it would be nice to have an analogue of
the Weyl criterion and/or the “fundamental” Theorem 7. This turns out to be less
straightforward (and hence more interesting) than one might think.

To fix ideas, let us start with the case of a regular Borel measure µ on a com-
pact space X. In particular, let us always take the σ-algebra in question to be the
Borel algebra, i.e., the one generated by the open subsets. (Afterwards, we can
think about how to extend to a locally compact space.) Let us write B = B(X) for
the Banach algebra of R-valued Borel measurable functions, with the supremum
norm. Write C = C(X) for the closed subalgebra of continuous functions.

As a first attempt, given a sequence x in X, suppose we define it to be u.d. if
for each Borel subset A of X,

(5) lim
N→∞

#{1 ≤ i ≤ N | xi ∈ A}
N

= µ(A).

First of all, since lim supN of the left-hand expression is clearly at most one, we
must evidently be thinking that µ is a probability measure, i.e., µ(X) = 1. Let us
make this assumption.

Unfortunately this does not work: the given condition does not hold for all Borel
subsets of [0, 1]. For instance it would tell us that the density of the set of n for
which xn is rational is zero, but we saw that there are uniformly distributed se-
quences consisting entirely of rational numbers.

In (3) the limit is only required to exist when A is a closed subinterval of [0, 1],
but it is less than clear what the analogue of a closed interval in our arbitrary
compact space X should be, so our next guess is to require that (5) hold for all
closed subsets A. Does this work?

No again. There exist nowhere dense closed subsets C of [0, 1] with any given
Lebesgue measure 0 < λ < 1 – e.g., consider a set which is constructed like the
Cantor set except instead of removing the middle 1

3 from each line segment we
remove a centered line segment whose length is α percent of the total length for
a suitably chosen α < 1

3 . Then the complement U of C is dense so there exists a
uniformly distributed sequence with image contained in U , so that taking A = C
in (5) the left-hand side is zero and the right hand side is λ. The same example, of
course, shows that we cannot require (5) to hold for all open sets.11 What then is
the nice property of closed intervals that made the theory work?

Hint 2. Define a subset A of X to be a Jordan set if it is a Borel set with µ(∂A) = 0.
(Recall ∂A = A ∩X \A.)

11Unfortunately this is the definition suggested by Iwaniec and Kowalski.
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Exercise X.X: a) Show that the Jordan sets form an algebra of sets, which we will
denote J , and call the Jordan algebra.12 Show that J is, in general, not a σ-
algebra.
b) When X = [0, 1], show that the algebra generated by the closed subintervals is
a proper subalgebra of the Jordan algebra.
c) When X = [0, 1], show that Jordan sets are precisely the sets whose character-
istic functions are Riemann-integrable.

Exercise X.X: Show that every nonempty open subset U contains a nonempty Jor-
dan open subset.

2.2. The Fundamental Theorem.

Theorem 19. (Abstract Fundamental Theorem) For a sequence x in X, TFAE:
a) For all f ∈ C,

(6)
1
N

N∑
n=1

f(xn) →
∫

X

fdµ.

b) We have

(7)
#{1 ≤ n ≤ N | xn ∈ A}

N
→ µ(A)

for all Jordan sets A.
c) Equation (7) holds for all closed Jordan sets.

It is therefore reasonable to define a sequence x in X to be µ-equidistributed if
it satisfies the equivalent conditions of Theorem 19.

Remark: Note that Theorem 19 is not just an abstraction the case of X = [0, 1],
as even in that classical case it tells us that u.d. on closed subintervals implies u.d.
on all Jordan sets.

The proof of Theorem 19 cannot quite consist of reshashing the proof of Theo-
rem 7 because in a general compact space it is not immediately clear where to
come by nontrivial examples of Jordan sets. Rather, we must exploit Urysohn’s
Lemma. But first a straightforward preliminary result:

Proposition 20. Suppose S is a subset of the Borel functions B(X) whose closed
linear span contains C, the continuous functions. Let x be any sequence in X. Then
if (6) holds for all f ∈ S, it holds for all f ∈ C.
Proof: Define

F : f 7→= lim sup
N

1
N

N∑
n=1

f(xn),

F : f 7→= lim inf
N

1
N

N∑
n=1

f(xn),

and G : f 7→
∫

X
fdµ. Then F , F , and G are all linear functionals on B of norm 1,

hence in particular are continuous. Therefore the assumed equality F = F = G on

12The Jordan in question here is Camille Jordan, not to be confused with the Jordan algebras
named after the mathematical physicist (and brownshirt) Pascuale Jordan.
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S implies the same equality on the closed linear span, which was to be shown.

Now let us prove Theorem 19. Of course b) =⇒ c).
Let us show a) =⇒ b): if we can show that for all Jordan sets A and all

ε > 0, there exist continuous functions g1 and g2 on X such that g1 ≤ χA ≤ g2 and∫
X

(g2 − g1)dµ < ε, then the same two lines which proved (b) =⇒ (c) in Theorem
7 will work here. Now, using the fact that A is a Jordan set and the regularity of
the measure, we can find a closed subset C ⊂ A0 with µ(A0 \ C) < ε/2 and an
open subset D ⊃ A with µ(D − A) < ε/2. Next recall that as a compact space X
is completely regular, so that disjoint closed sets may be separated by continuous
functions. In particular there is a continuous function g1 : X → [0, 1] which is
identically equal to 1 on C and identically 0 on X \ A0, and another continuous
function g2 : X → [0, 1] which is identically 1 on A and identically zero on X \D.
This works, since∫

X

(g2− g1)dµ−
∫

D\C
(g2− g1)dµ ≤ µ(D \C) = µ(D \A) +µ(∂A) +µ(A0 \C) < ε.

We now show that c) =⇒ a). Note that in asuming c) we are equivalently assuming
that (6) holds for all characteristic functions of closed Jordan sets. By Proposition
2.2, it is enough to show that, say W, the closed linear span of the characteristic
functions of closed Jordan sets, contains C. Since W is a linear subspace containing
the constant functions, it is harmless to rescale and thus assume that f(X) ⊂ [0, 1).
Consider the closed sets

Mα = f−1([α,∞)).

Since ∂Mα ⊂ f−1(α), Mα is a Jordan set for all but at most countably many α.13

Fix ε > 0. There exists a finite sequence

0 = αa < α1 < . . . < αn = 1

such that for all i, αi+1 − αi < ε and Mαi
is a Jordan set. Take an x ∈ X. There

exists some k such that αk ≤ f(x) < αk+1. Then
k−1∑
i=0

(αi+1 − αi)χMαi
(x)− f(x)| = |

k∑
i=0

(αi+1 − αi)− f(x)| = αk+1 − f(x) ≤ ε.

Thus we have shown that

||
n−1∑
i=0

(αi+1 − αi)χMαi
− f || ≤ ε,

i.e., that f is in W. This completes the proof of the theorem.

Exercise XX: Let µ1, µ2 be distinct measures. Show that it is not possible for
a sequence be u.d. w.r.t. both µ1 and µ2. (Hint: Riesz representation theorem.)

Define the support supp(µ) of a measure µ to be the set of points x ∈ X such
that µ(U) > 0 for every open neighborhood U of x. It is a closed set.

13We are using here the fact that the sum of an uncountable set of non-negative real numbers
can only be finite if all but at most countably many of these numbers are zero.
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Exercise XX: Show that if x is u.d. in X, it is dense in supp(µ).

2.3. Metric theorems. There are two major shortcomings in our development
thus far. In contrast to the classical case, we do not yet have a Weyl criterion, and
we do not yet know that there are any u.d. sequences at all!

Let us begin with the first point. We still have the Stone-Weierstrass theorem:
in other words, given any algebra A of continuous functions containing the con-
stant functions and separating points of X, its uniform closure will be all of C, so
by Proposition 2.2 we can test for u.d. using A: i.e., a sequence in u.d. iff (6) holds
for all f ∈ A. It ought to be fairly clear that the existence of such a nice algebra as
the algebra of trigonometric polynomials is closely linked to the group structure of
S1, and since we are not assuming that X is the underlying space of a topological
group, we are not going to get anything so explicit. We will not even in general be
able to find a countable subset S of C whose closed span is all of C. Indeed, there
is the following general fact:

Theorem 21. For a compact space X, TFAE:
a) X has a countable basis of open sets (“second countable”).
b) C is the closed linear span of a countable subset (is “separable”).
c) X is metrizable.

To see a space that satisfies none of these hypotheses, let X be any compact space
consisting of more than a single point, and take X̃ = XR with the product topology.
Then Tychonoff’s theorem ensures that X̃ is compact, but it is easy to see that a)
does not hold, because for any given open subset U of X̃, the set of α ∈ R such that
the projection of U onto the αth copy of X is proper in X is finite (by definition
of the product topology), so arbitrary unions formed from a countable collection
of open sets project surjectively onto all but countably many α ∈ R, whereas ob-
viously for any α ∈ R there exists an open set Uα which does not have this property.

It is also true that in a general compact space there may not exist any u.d. se-
quences at all. That is to say, in a general compact space, the weak sequential
closure of the convex hull of the Dirac measures need not be equal to the entire set
of probability measures on X. See ??? for a counterexample.

Thus to make progress we must assume that X has a countable basis.14 The good
news is that once we assume this we also get to assume the existence of a metric,
which makes life much easier. As a very important example, we can demonstrate
the existence of u.d. sequences in (X,µ) by proving a much stronger result. To
set the stage, consider the space X∞ = XZ+

of all sequences in X. It is again a
compact space, and carries a natural measure µ∞, characterized by the following:
for any subset Y such that πn(Y ) = X for all but finitely many n, we have

µ∞(Y ) =
∏

n∈Z+

µ(πn(Y )).

14I don’t know about you, but the compact spaces I meet in my daily life all have countable
bases, so it distresses me very little to make this extra assumption.
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Let U ⊂ X∞ be the subset of u.d. sequences. What is its measure? Note that
since the property of membership in U is unaffected by modifying a sequence in
any finite number of terms, the 0− 1 Law of Kolmogorov asserts that either (µ∞)-
almost every sequence is u.d. or almost every sequence is not u.d.15 The following
result ends the suspense:

Theorem 22. We have in fact µ∞(U) = 1.

Proof: The key is the following

Claim: For any given f ∈ B, (6) holds for µ∞-almost every x ∈ X∞.

For if so, the result follows from the assumed separability of C, Proposition 2.2,
and the fact that a countable union of sets of measure zero has measure zero.

Let us prove the claim. Certainly it holds for f a constant function, so by re-
placing f by f −

∫
X
f , we may assume that

∫
f
Xdµ = 0. Consider the function FN

on X∞ defined by

x 7→ 1
N

N∑
n=1

f(xn).

Then∫
X∞

F 2
Ndµ∞ =

1
N2

N∑
n=1

∫
X∞

f2(xn)dµ∞+
2
N

∑
1≤i<j≤N

∫
X∞

f(xi)f(xj)dµ∞ =
1
N

∫
X

f2dµ.

So
∞∑

m=1

∫
X∞

(Fm2)2dµ∞ =
(∫

X

f2dµ

) ∞∑
m=1

1
m2

<∞.

It follows from the dominated convergence theorem that limm→∞ Fm2 = 0 µ∞-
almost everywhere. For each N ≥ 1, choose m such that m2 ≤ N < (m + 1)2.
Then

|FN | = |m
2

N
Fm2 +

1
N

(f(xm2+1) + . . .+ f(xN ))| ≤ |Fm2 |+ 2
m
||f ||.

Since the last expression tends to 0 µ∞-almost everywhere as N →∞, we are done.

2.4. Connections with ergodic theory.

An attractive alternate proof of Theorem 22 can be obtained using the rudiments
of ergodic theory.

Namely, let (Y,A, µ) be a measure space and T : U → U be a measure-preserving
transformation: for all A ∈ A, µ(T−1(A)) = µ(A). A measure-preserving T is
called ergodic if T−1(A) = A implies µ(A) ∈ {0, 1}.

Proposition 23. Let (X,µ) be a probability space, Y = (X∞, µ∞) the product
space, and let T : Y → Y be the shift operator:

x = {xn}∞n=1 7→ T (x) = {xn+1}∞n=1.

Then T is an ergodic transformation.

15Or, technically, that U is not µ∞-measurable.
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Theorem 24. (Birkhoff pointwise ergodic theorem) Let (Y,A, µ) be a probability
space, and let T : Y → Y be a measure-preserving transformation, and g ∈ L1(µ).
a) There exists a unique ψg ∈ L1(µ) such that we have (for µ-.a.e. y ∈ Y )

lim
N→∞

1
N

N−1∑
n=0

g(Tny) = ψg(y).

b) If T is ergodic, then for µ-a.e. y ∈ Y we have

ψg(y) =
∫

Y

gdµ.

In particular, the function y 7→ limN→∞
1
N

∑N−1
n=0 g(T

ny) is µ-a.e. constant.

Now apply Proposition and Theorem 24 with Y = (X∞, µ∞), T : Y → Y the shift
operator, f any element of C = C(X,E) and g = f ◦ π1 : Y → E. The conclusion is
precisely that for µ∞-a.e. x in X∞ we have

1
N

N−1∑
n=0

f(n) →
∫

X

fdµ,

which was the essence of the proof of 22. (The full proof follows, as before, by
applying the result to each member of a countable basis of C and noting that the
union of a countable collection of sets of measure zero has measure zero.)

Example: Consider the simplest nontrivial caseX = {±1} with µ({−1}) = µ({1}) =
1
2 . A sequence xn is µ-equidistributed if, asymptotically, half of its values are
+1 and half are −1. Or, applying the Fundamental Theorem to the function
f : 1 7→ 1, −1 7→ −1, one sees that if x is µ-equidistributed then the “expected
value” converges to zero. Thus in this case Theorem 22 is none other than the
Strong Law of Large Numbers.

Notwithstanding the name, as probabilists well know, stronger statements are in-
deed possible:

Theorem 25. (Kolmogorov Law of the Iterated Logarithm) For any f ∈ B, we
have for µ∞-a.e. x

1
N

N∑
n=1

f(xn)−
∫

X

fdµ = O

(√
log logN

N

)
.

Exercise X.X (Thanks to R. Varley and J. Manning): Let α ∈ R, and consider the
transformation T : [0, 1) → [0, 1) given by x 7→ {x+ α}.
a) Show that T is ergodic iff α ∈ R \Q.
b) Apply Birkhoff’s Pointwise Ergodic Theorem (Theorem 24) to deduce the fol-
lowing result.

Theorem 26. For α ∈ R, TFAE:
(i) For any Lebesgue measurable subset E of [0, 1) and almost every x ∈ [0, 1) we
have

(8) lim
N→∞

#{n ≤ N | {x+ nα} ∈ E}
N

→ µ(E).

(ii) α ∈ R \Q.
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Compare: According to Corollary 6 plus Proposition 9 (or just Theorem 16) to-
gether with Remark X.X, if α is irrational then (8) holds for every x ∈ [0, 1) provided
that E is a Jordan set. Thus, compared to Corollary 6, Theorem 26 has both a
weaker hypothesis and a weaker conclusion.

2.5. Equidistribution and Baire category.

We can also ask if U = U(µ) is large in some topological sense. If we consider
the following three facts –

(a) A sequence x in X can be u.d. w.r.t. at most one measure.
(b) Given any probability measure µ on X, there are, by Theorem 22 “plenty” of
µ-u.d. sequences.
(c) The space of measures on X is infinite-dimensional if X is infinite –

then it is implausible that the subset U(µ) is residual in X∞, i.e., that its comple-
ment is of the first category:16 certainly this could hold for at most one measure µ,
so we would have to believe that X carries a “distinguished” measure, which for a
general compact space is not the case.17

Theorem 27. a) The set U(µ) is dense in X∞.
b) If #X > 1, U(µ) is of the first category in X∞.

2.6. Equidistribution and rearrangement.

Recall that in the case of X = [0, 1], a sequence x can be rearranged to be equidis-
tributed iff it has dense image. This is seen not to be true in general:

Example XX: If X = {±1}, the sequence 1, −1, −1, −1, . . . is not u.d., despite
having dense (and even surjective) image.

We can, so to speak, isolate the problem: given a space (X,µ), let us say a point
x ∈ X is a bad point if all of the following hold: x is an isolated point of X,
X 6= {x}, and µ({x}) > 0.

Theorem 28. TFAE:
a) X has no bad points.
b) Every sequence x with dense image has a u.d. rearrangement.

Proof: If X has a bad point x, we can construct a non-u.d. sequence with dense
image as follows: take x1 = x, and let x2, x3, . . . be any dense sequence in the
(separable, compact) subspace X \ {x}. Conversely. . .

The general criterion for rearrangement is as follows:

Theorem 29. A sequence x in X admits a u.d. rearrangement iff every open
neighborhood of every point of supp(µ) contains infinitely many terms of x.

16Recall that a subspace is of the first category if it can be expressed as a countable union of
nowhere dense sets. A theorem of Baire asserts that no compact Hausdorff space is itself of the

first category.
17E.g. there is no measure on [0, 1] which is invariant under all homemorphisms.
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2.7. Riemann integration in compact metrizable spaces. We are taught that
one of the merits of the Lebesgue integral over the Riemann integral is its abstrac-
tion: the latter can be defined for functions on a general measure space, while the
former is limited to functions defined on Rn or on very nice subsets thereof.

But this is not true. For instance, in studying functions on Qp one sometimes
encounters a limit of finite sums looking very much like a Riemann integral. If X is
a metrizable compact space endowed with a probability measure µ, then comparing
Theorems 7, 8 and 19, it seems plausible to define a µ-Riemann integrable function
f to be a Borel function f such that (6) holds for all u.d. sequences x in X. At
least this definition includes the continuous functions. In fact one has the following
generalization of a well-known theorem of Lebesgue:

Theorem 30. Let f : X → R be any function. TFAE:
a) There exists a number L such that for all µ-u.d. x, 1

N

∑N
n=1 f(xn) → L.

b) f is bounded and continuous µ-a.e.

By choosing a metric d on X, one can indeed define the Riemann integral of a
function in a way that is almost a direct generalization of the usual case X =
[0, 1]. Namely, we define a Riemann sum R(f,P, xi), where P is a finite collection
Y1, . . . , Yn of Jordan sets18 whose union is X, whose pairwise intersections have
measure zero, and where xi ∈ Yi is a sample point, to be

∑n
i=1 f(xi)µ(Yi). Define

the mesh of a partition to be the largest diameter of any Yi. We then define a
function to be Riemann integrable to L if for every ε > 0, there exists δ > 0 such
that for all tagged partitions (P, xi) of mesh at most δ, |R(f,P, xi)− L| < ε. One
finds that the functions which are Riemann integrable in this sense are exactly the
functions satisfying the equivalent conditions of the previous theorem. In particular
one gets a version of Theorem 19 which mirrors Theorem 7 in allowing us to test
for u.d. using the Riemann-integrable functions.
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