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Abstract.

1. Introduction

1.1. Kaplansky’s Galois Connection and Correspondence.

For an arbitrary field extension K/F , define L = L(K/F ) to be the lattice of
1
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subextensions L of K/F and H = H(K/F ) to be the lattice of all subgroups H of
G = Aut(K/F ). Then we have

Φ : L → H, L 7→ Aut(K/L)

and
Ψ : H → F , H 7→ KH .

For L ∈ L, we write

c(L) := Ψ(Φ(L)) = KAut(K/L).

One immediately verifies:

L ⊂ L′ =⇒ c(L) ⊂ c(L′), L ⊂ c(L), c(c(L)) = c(L);

these properties assert that L 7→ c(L) is a closure operator on the lattice L in
the sense of order theory. Quite similarly, for H ∈ H, we write

c(H) := Φ(Ψ(H)) = Aut(K/KH)

and observe

H ⊂ H ′ =⇒ c(H) ⊂ c(H ′), H ⊂ c(H), c(c(H)) = c(H),

so c is a closure operator on H. A subextension L (resp. a subgroup H) is said to
be closed if L = c(L) (resp. H = c(H)). Let us write Lc (resp. Hc) for the subset
of closed subextensions (resp. closed subgroups). Then:

Theorem 1. (Kaplansky’s Galois Correspondence) The antitone maps

Φ : Lc → Hc, Ψ : Hc → Lc

are mutually inverse.

If Theorem 1 looks profound, it is only because we are reading into it some prior
knowledge of Galois theory. In fact the result is, by itself, a triviality. In the next
section we will give a significant generalization of this result – to an arbitrary Ga-
lois connection – and include the full details of the proof.

Example 1.1: Suppose K = Q( n
√
2), F = Q and n ≥ 3. Then Aut(K/F ) = 1.

Then for any subextension L of K/Q, we have Aut(K/L) = 1, so L = KAut(K/L) =
K{1} = K. That is, the closure operator takes every intermediate field L to the
top field K. Such a closure operator will be called trivial. And indeed it is: there
is nothing interesting happening here.

Of course the closure operator on subextensions will be trivial whenever Aut(K/F )
is the trivial group. There are lots of field extensions having this property, e.g. R/Q.

1.2. Three flavors of Galois extensions.

An extension K/F is perfectly Galois if every subextension L of K/F and every
subgroup H of Aut(K/F ) is closed.

An extension K/F is Dedekind if every subextension L of K/F is closed. An
extension K/F is quasi-Dedekind if for every subextension K of K/F , L/L is
purely inseparable.

An extension K/F is Galois if KAut(K/F ) = F . An extension K/F is quasi-
Galois if KAut(K/F )/F is purely inseparable.
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An extension K/F is normal if every irreducible polynomial f(t) ∈ F [t] with a
root in K splits completely in K. Normality only depends on the “algebraic part”
of the extension in the following sense: K/F is normal iff the algebraic closure of
F in K is normal over F .

Lemma 2. If K/F is Galois, then ClK(F )/F is separable.

Proposition 3. Let K/F be an extension, and let ClK(F ) be the algebraic closure
of F in K. Then K/F is normal iff ClK(F ) is normal.

Theorem 4. Let K/F be a field extension.
a) If K/F is quasi-Galois, it is normal.
b) If K/F is normal and algebraic, it is quasi-Galois.
c) (T/F?) The class of Galois (resp. quasi-Galois, resp. normal) extensions is very
distinguished.

1.3. Galois theory for algebraic extensions.

Theorem 5. (Algebraic Galois Theory) Let K/F be an algebraic field extension.
a) The following are equivalent:
(i) K/F is perfectly Galois.
(ii) K/F is Dedekind and of finite degree.
(iii) K/F is Galois and of finite degree.
(iv) #Aut(K/F ) = [K : F ] < ℵ0.
(v) K/F is Galois and #Aut(K/F ) ≤ [K : F ].
b) The following are equivalent:
(i) K/F is Dedekind.
(ii) K/F is Galois.
(iii) K/F is normal and separable.
(iv) K/F is the splitting field of a set of separable polynomials.
When these equivalent conditions holds, then a subextension L is normal over K iff
Aut(K/L) is normal in Aut(K/F ), and if so Aut(K/F ) is canonically isomorphic
to Aut(K/F )/Aut(K/L).
c) The following are equivalent:
(i) K/F is quasi-Galois.
(ii) K/F is normal.

Remark: Condition (v) of part a) perhaps looks strange. Its content is in fact the
following: when K/F is infinite algebraic Galois, the infinite cardinal #Aut(K/F )
is greater than the infinite cardinal [K : F ].

Mention something about Krull topology here?

1.4. Transcendental Extensions.

Theorem 6. For a field extension K/F , TFAE:
(i) K/F is perfectly Galois.
(ii) K/F is finite and Galois.

One of the key features of algebraic Galois theory is that a Galois extension is
automatically Dedekind. This is no longer the case for transcendental extensions:
e.g., for every infinite field K, the pure transcendental extension K(t)/K is Galois
but not Dedekind. In fact the next result records all known Dedekind extensions.
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Theorem 7. Let K/F be a field extension.
a) Suppose that either K/F is algebraic and Galois or that K is algebraically closed
of characteristic zero. Then K/F is Dedekind.
b) Suppose that either K/F is algebraic and quasi-Galois or that K is algebraically
closed. Then K/F is quasi-Dedekind.

2. Galois Connections

2.1. The basic formalism.

Let (X,≤) and (Y,≤) be partially ordered sets. A map f : X → Y is isotone
(or order-preserving) if for all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≤ f(x2). A map
f : X → Y is antitone (or order-reversing) if for all x1, x2 ∈ X, x1 ≤ x2 =⇒
f(x1) ≥ f(x2).

Let (X,≤) and (Y,≤) be partially ordered sets. An antitone Galois connec-
tion between X and Y is a pair of maps Φ : X → Y and Ψ : Y → X such that:

(GC1) Φ and Ψ are both antitone maps, and
(GC2) For all x ∈ X and all y ∈ Y , x ≤ Ψ(y) ⇐⇒ y ≤ Φ(x).

Remark 2.1: There is a pleasant symmetry between X and Y in the definition.
That is, if (Φ,Ψ) is a Galois connection between X and Y , then (Ψ,Φ) is a Galois
connection between Y and X.

Definition: If (X,≤) is a partially ordered set, then a mapping f : X → X is
called a closure operator if it satisfies all of the following properties:

(C1) For all x ∈ X, x ≤ f(x).
(C2) For all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≤ f(x2).
(C3) For all x ∈ X, f(f(x)) = f(x).

Proposition 8. The mapping Ψ◦Φ is a closure operator on (X,≤) and the mapping
Φ ◦Ψ is a closure operator on (Y,≤).

Proof. By symmetry, it is enough to consider the mapping x 7→ Ψ(Φ(x)) on X.
If x1 ≤ x2, then since both Φ and Ψ are antitone, we have Φ(x1) ≥ Φ(x2) and

thus Ψ(Φ(x1)) ≤ Ψ(Φ(x1)): (C2).
1

For x ∈ X, Φ(x) ≥ Φ(x), and by (GC2) this implies x ≤ Ψ(Φ(x)): (C1).
Finally, for x ∈ X, applying (C1) to the element Ψ(Φ(x)) of X gives

Ψ(Φ(x)) ≤ Ψ(Φ(Ψ(Φ(x)))).

Conversely, we have
Ψ(Φ(x)) ≤ Ψ(Φ(x)),

so by (GC2)
Φ(Ψ(Φ(x)) ≥ Φ(x),

and applying the order-reversing map Ψ gives

Ψ(Φ(Ψ(Φ(x)))) ≤ Ψ(Φ(x)).

1In other words, the composition of two antitone maps is isotone.
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Thus
Ψ(Φ(x)) = Ψ(Φ(Ψ(Φ(x))).

�

Corollary 9. The following tridempotence properties are satisfied by Φ and Ψ:
a) For all x ∈ X, ΦΨΦx = Φx.
b) For all y ∈ X, ΨΦΨy = Ψy.

Proof. By symmetry, it suffices to prove a). Since Φ ◦ Ψ is a closure operator,
ΦΨΦx ≥ Φx. Moreover, since Ψ ◦Φ is a closure operator, ΨΦx ≥ x, and since Φ is
antitone, ΦΨΦx ≤ Φx. So ΦΨΦx = Φx. �

Proposition 10. Let (Φ,Ψ) be a Galois connection between partially ordered sets
X and Y . Let X = Ψ(Φ(X)) and Y = Ψ(Φ(Y )).
a) X and Y are precisely the subsets of closed elements of X and Y respectively.
b) We have Φ(X) ⊂ Y and Ψ(Y ) ⊂ X.
c) Φ : X → Y and Ψ : Y → X are mutually inverse bijections.

Proof. a) If x = Ψ(Φ(x)) then x ∈ X. Conversely, if x ∈ X, then x = Ψ(Φ(x′)) for
some x′ ∈ X, so Ψ(Φ(x))) = Ψ(Φ(Ψ(Φ(x′)))) = Ψ(Φ(x′)) = x, so X is closed.
b) This is just a reformulation of Corollary 9.
c) If x ∈ X and y ∈ Y , then Ψ(Φ(x)) = x and Ψ(Φ(y)) = y. �

We speak of the mutually inverse antitone bijections Φ : X → Y and Ψ : Y → X
as the Galois correspondence induced by the Galois connection (Φ,Ψ).

Example 2.2: Let K/F be a field extension, and G a subgroup of Aut(K/F ).
Then there is a Galois connection between the set of subextensions of K/F and the
set of subgroups of G, given by

Φ : L→ GL = {σ ∈ G | σx = x∀x ∈ L},

Ψ : H → KH = {x ∈ K | σx = x∀σ ∈ H}.
Taking G = Aut(K/F ), we recover Kaplansky’s connection of §1. Thus the mate-
rial just exposed serves as a proof of Theorem 1. For a general Galois connection
and especially for Kaplansky’s connection, the content lies in determining which
elements are closed.

Having established the basic results, we will now generally abbreviate the closure
operators Ψ ◦ Φ and Φ ◦Ψ to x 7→ x and y 7→ y.

2.2. Lattice Properties.

Recall that a partially ordered set X is a lattice if for all x1, x2 ∈ X, there is
a greatest lower bound x1 ∧ x2 and a least upper bound x1 ∨ x2. A partially or-
dered set is a complete lattice if for every subset A of X, the greatest lower bound∧
A and the least upper bound

∨
A both exist.

Lemma 11. Let (X,Y,Φ,Ψ) be a Galois connection.
a) If X and Y are both lattices, then for all x1, x2 ∈ X,

Φ(x1 ∧ x2) = Φ(x1) ∨ Φ(x2),

Φ(x2 ∨ x2) = Φ(x1) ∧ Φ(x2).
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b) If X and Y are both complete lattices, then for all subsets A ⊂ X,

Φ(
∧
A) =

∨
Φ(A),

Φ(
∨
A) =

∧
Φ(A).

Proof. . . . �
Complete lattices also intervene in this subject in the following way.

Proposition 12. Let A be a set and let X = (2A,⊂) be the power set of A, partially
ordered by inclusion. Let c : X → X be a closure operator. Then the collection
c(X) of closed subsets of A forms a complete lattice, with

∧
S =

∩
B∈S B and∨

S = c(
∪

B∈S B).

2.3. Examples.

Example 2.3 (Indiscretion): Let (X,≤) and (Y,≤) be posets with top elements
TX and TY respectively. Define Φ : X → Y , x 7→ TY and Ψ : Y → X, y 7→ TX .
Then (X,Y,Φ,Ψ) is a Galois connection. The induced closure operators are “in-
discrete”: they send every element ofX (resp. Y ) to the top element TX (resp. TY ).

Example 2.4 (Perfection): Let (X,≤) and (Y,≤) be anti-isomorphic posets, i.e.,
suppose that there exists a bijection Φ : X → Y with x1 ≤ x2 ⇐⇒ Φ(x2) ≤ Φ(x1).
Then the inverse map Ψ : Y → X satisfies y1 ≤ y2 ⇐⇒ Ψ(y2) ≤ Ψ(y1). Moreover,
for x ∈ X, y ∈ Y , x ≤ Ψ(y) ⇐⇒ y = Ψ(Φ(y)) ≤ Φ(x), so (X,Y,Φ,Ψ) is a Galois
connection. Then X = X and Y = Y . As we saw above, the converse also holds:
if X = X and Y = Y then Φ and Ψ are mutually inverse bijections. Such a Galois
connection is called perfect.2

Example 2.5: Let R be a commutative ring. Let X be the set of all ideals of
R and Y = 2SpecR the power set of the set of prime ideals of R. For I ∈ X, put

Φ(I) = V (I) = {p ∈ SpecR | I ⊂ p}.
For V ∈ Y , put

Ψ(V ) =
∩
p∈V

p.

The maps Φ and Ψ are antitone, and for I ∈ X , V ∈ Y,

(1) I ⊂ Ψ(V ) ⇐⇒ I ⊂
∩
p∈V

p ⇐⇒ ∀p ∈ V, I ⊂ p ⇐⇒ V ⊂ Φ(I),

so (Φ,Ψ) is a Galois connection. Then X consists of all ideals which can be written
as the intersection of a family of prime ideals. For all I ∈ X,

I =
∩
p⊃I

p = rad I = {x ∈ R |∃n ∈ Z+ xn ∈ I};

2There is a small paradox here: in purely order-theoretic terms this example is not any more
interesting than the previous one. But in practice given two posets it is infinitely more useful to

have a pair of mutually inverse antitone maps running between them than the trivial operators of
the previous example: Galois theory is a shining example! The paradox already shows up in the
distinction between indiscrete spaces and discrete spaces: although neither topology looks more

interesting than the other, the discrete topology is natural and useful (as we shall see...) whereas
the indiscrete topology entirely deserves its alternate name “trivial”.
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that is, the induced closure operation on X takes any ideal to its radical r(I). In
particular X consists precisely of the radical ideals.

It is not so easy to describe the closure operator on Y or even the subset Y
explicitly, but there is still something nice to say. Since:

(2) V ((0)) = SpecR, V (R) = ∅,

(3) V (I1) ∪ V (I2) = V (I1I2),

(4)
∩
α∈A

V (Iα) = V (
∑
α∈A

Iα),

the elements of Y are the closed subsets for a topology, the Zariski topology.

Example 2.6: Take R and X as above, but now let S be any set of ideals of R
and put Y = 2S . For I ∈ X, put

Φ(I) = V (I) = {s ∈ S | I ⊂ s}
and for V ∈ Y, put

Ψ(V ) =
∩
s∈V

s.

Once again Φ and Ψ are antitone maps and (1) holds, so we get a Galois connection.
The associated closure operation on X is

I 7→ I =
∩
s∈S

s.

The relation (4) holds for any S, and the relation (2) holds so long as R /∈ S. The
verification of (2) for R = SpecR uses the fact that a prime ideal p contains I1I2
iff it contains I1 or I2, so as long as S ⊂ SpecS, Y = {V (I) | I ∈ X} are the closed
subsets for a topology on S. This is indeed the topology S inherits as a subspace
of SpecR, so we call it the (relative) Zariski topology.

Various particular choices of S ⊂ SpecR have been considered. Of these the
most important is certainly S = MaxSpecR, the set of all maximal ideals of R.
In this case, X consists of all ideals which can be written as the intersection of
some family of maximal ideals. Such ideals are necessarily radical, but in a general
ring not all radical ideals are obtained in this way. Observe that in a general ring
every radical ideal is the intersection of the maximal ideals containing it iff every
prime ideal is the intersection of maximal ideals containing it; a ring satisfying
these equivalent conditions is called a Jacobson ring.

Example 2.7: Let k be a field and put R = k[t1, . . . , tn]. Then R is a Jacob-
son ring. To prove this one needs as prerequisite knowledge Zariski’s Lemma –
for every m ∈ MaxSpecR, the field extension R/m/k is finite – and the proof uses
a short but clever argument: the Rabinowitsch trick.

Suppose that k is algebraically closed. Then Zariski’s Lemma assumes a stronger
form: for allm ∈ MaxSpecR, the k-algebraR/m is equal to k. Let q : R→ R/m = k
be the quotient map, and for 1 ≤ i ≤ n, put xi = q(ti) and x = (x1, . . . , xn). It fol-
lows that m contains the ideal mx = ⟨t1−x1, . . . , tn−xn⟩, and since mx is maximal,
m = mx. This gives the following description of the Galois connection between the
set X of ideals of R and Y = 2MaxSpecR, Hilbert’s Nullstellensatz:
(i) Maximal ideals of R are canonically in bijection with n-tuples of points of k,



8 PETE L. CLARK

i.e., with points of affine n-space An
/k.

(ii) The closure operation on ideals takes I to its radical ideal rad I.
(iii) The closure operation on subsets of An coincides with topological closure with
respect to the Zariski topology, i.e., the topology on An for which the closed subsets
are the intersections of the zero sets of polynomial functions.

Example 2.8: Let K be a field, let X = 2K , let RSpecK be the set of orderings on
K, and let Y = 2RSpecK . Let H : X → Y by

S 7→ H(S) = {P ∈ RSpecK | ∀x ∈ S x >P 0}.
Let Ψ : Y → X by

T 7→ Ψ(T ) = {x ∈ RSpecK |∀P ∈ T x >P 0}.
Then (X,Y,H,Ψ) is a Galois connection.

The set RSpecK carries a natural topology. Namely, we may view any ordering

P as an element of {±1}K×
: P : x ∈ K× 7→ +1 if P (x) > 0 and −1 is P (x) < 0.

Giving {±1} the discrete topology and {±1}K×
, it is a compact (by Tychonoff’s

Theorem) zero-dimensional space. It is easy to see that RSpecK embeds in {±1}K×

as a closed subspace, and therefore RSpecK is itself compact and zero-dimensional.

Example 2.9: Let L be a language, let X be the set of L-theories, and let Y
be the class of all classes C of L-structures, partially ordered by inclusion.3 For a
theory T , let Φ(T ) = CT be the class of all models of T , whereas for a class C, we
define Ψ(C) to be the collection of all sentences φ such that for all X ∈ C, X |= φ.

2.4. Galois Connections Decorticated (Relations).

Example 2.10: Let S and T be sets, and let R ⊂ S × T be a relation between S
and T . As is traditional, we use the notation xRy for (x, y) ∈ R. For A ⊂ S and
y ∈ T , we let us write ARy if xRy for all x ∈ A; and dually, for x ∈ S and B ⊂ T ,
let us write xRB if xRy for all y ∈ B. Finally, for A ⊂ S, B ⊂ T , let us write
ARB if xRy for all x ∈ A and all y ∈ B.

Let X = (2S ,⊂), Y = (2T ,⊂). For A ⊂ S and B ⊂ T , we put

ΦR(A) = {y ∈ T |ARy},
ΨR(B) = {x ∈ S |xRB}.

We claim that GR = (X,Y,ΦR,ΨR) is a Galois connection. Indeed, it is immediate
that ΦR and ΨR are both antitone maps; moreover, for all A ⊂ S, B ⊂ T we have

A ⊂ ΨR(B) ⇐⇒ ARB ⇐⇒ B ⊂ ΦR(A).

Remarkably, this example includes most of the Galois connections above. Indeed:

• In Example 2.2, take X to be 2K and Y = 2Aut(K/F ). The induced Galois
connection is the one associated to the relation gx = x on K ×Aut(K/F ).
• In Example 2.5, take X to be 2R. The induced Galois connection is the one
associated to the relation x ∈ p on R×SpecR. Similarly for Examples 2.7 and 2.8.
• The Galois connection of Example 2.8 is the one associated to the relation x ∈ P

3Here we are cheating a bit by taking instead of a partially ordered set, a partially ordered
class. We leave it to the interested reader to devise a remedy.
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on K × RSpecK.
• The Galois connection of Example 2.9 is the one associated to the relation X |= φ.

Theorem 13. Let S and T be sets, let X = (2S ,⊂), Y = (2S ,⊂), and let G =
(X,Y,Φ,Ψ) be any Galois connection. Define a relation R ⊂ S × T by xRy if
y ∈ Φ({x}). Then G = GR.

Proof. Note first that X and Y are complete lattices, so Lemma 11b) applies.
Indeed, for A ⊂ S, A =

∪
x∈A{x} =

∨
x∈A{x}, so

Φ(A) =
∩
x∈A

Φ({x}) =
∩
x∈A

{y ∈ T | xRy} = {y ∈ T | ARy} = ΦR(A).

Moreover, since G is a Galois connection we have {x} ⊂ Ψ({y}) ⇐⇒ {y} ⊂
Φ({x}) ⇐⇒ xRy. Thus for B ⊂ T , B =

∪
y∈B{y} =

∨
y∈B{y}, so

Ψ(B) =
∩
y∈B

Ψ({y}) =
∩
y∈A

{x ∈ S | xRy} = {x ∈ S | xRB} = ΨR(B).

�

For any partially ordered set (X,≤), a downset is a subset Y ⊂ X such that for
all x1, x2 ∈ X, if x2 ∈ Y and x1 ≤ x2 then x1 ∈ Y . Let D(X) be the collection of
all downsets of X, viewed as a subset of (2X ,⊂). To each x ∈ X we may associate
the principal downset d(x) = {y ∈ X | y ≤ x}. The map d : X → D(X) is an
order embedding; composing this with the inclusion D(X) ⊂ 2X we see that every
partially ordered set embeds into a power set lattice.

Let G = (X,Y,Φ,Ψ) be a Galois connection with X and Y complete lattices.
Then we may extend G to a Galois conection between 2X and 2Y as follows: for A ⊂
X, put Φ(A) =

∧
{Φ(x)}x∈A, and simialrly for B ⊂ Y , put Ψ(B) =

∧
{Ψ(y)}y∈B .

Thus every Galois connection between complete lattices may be viewed as the Galois
connection induced by a relation between sets.

2.5. Indexed Galois Connections.

Let ω+ = Z+ ∪ {∞} be the extended positive integers, i.e., the usual positive
integers together with a distinct element∞, with the order structure, addition and
multiplication extended as follows: ∀x ∈ ω+, x ≤ ∞, x+∞ =∞, x · ∞ =∞.

Let (X,≤) be a poset. An index structure on X is the assignment to each pair
(x1, x2) ∈ X2 with x1 ≤ x2 an index [x2 : x1] ∈ ω+ satisfying both of the following:

(IP1) (Multiplicativity) For all x1 ≤ x2 ≤ x3 ∈ X we have

[x3 : x1] = [x3 : x2][x2 : x1].

(IP2) (Equality by Degree) For all x1 ≤ x2 ∈ X, we have

[x2 : x1] = 1 ⇐⇒ x1 = x2.

An index structure is finite if it takes values in Z+.

Example 2.11: An index structure on (Z,≤) is completely and freely determined
by the assignment of a value in ω+ to each [n+ 1 : n]. In particular (Z,≤) admits
c = 2ℵ0 finite index structures.
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Proposition 14. Let (X ≤) be a poset.
a) The assignment [x : x] = 1, [x1 : x2] = ∞ for all x1 < x2 is an index structure
on X, which we will denote by I∞.
b) If (X,≤) is dense – i.e., for all x1 < x2 ∈ X, there exists x3 with x1 < x3 < x2
– it admits no index structure other than I∞.
c) If (X,≤) has top and bottom elements and admits a finite index structure then
it has finite height: the supremum of all lengths of chains in X is bounded.
d) If (X,≤) has finite height and is catenary – i.e., for all x ≤ y, any two maximal
chains from x to y have the same length – then it admits a finite index structure,
e.g. [x : B] = 2height x.
e) If ι : (X,≤) → (Y,≤) is an isotone injection and I is an index structure on Y ,
then the I|X is an index structure on X.
f) Every finite poset admits a finite index structure.

Proof. Parts a) through e) are left to the reader. f) Let d : X → (2X ,⊆), x 7→
d(x) = {y ∈ X | y ≤ x}. This is an embedding from X into a catenary poset of
finite height, hence by parts d) and e) X admits a finite index structure. �

Example 2.12: Let K/F be a field extension, and L be the lattice of subextensions
of K/F . For F ⊂ L1 ⊂ L2 ⊂ K, defining [L2 : L1] to be the dimension of L2

as an L1 vector space if this dimension is finite and ∞ if this dimension is infi-
nite is an index structure on L. It is a finite index structure iff K/F is a finite
extension. (Note though that for finite L/K the lattice L need not be finite, al-
though by the Primitive Element theorem L will be finite if L/K is finite separable.)

Example 2.13: Let G be a group, and let H be the lattice of subgroups of G.
For {1} ⊂ H1 ⊂ H2 ⊂ G, let [H2 : H1] be the number of cosets of H1 in H2 if this
number is finite and ∞ if this number is infinite. This index structure is finite iff
G is finite iff the lattice H is finite.

Let G = (X,Y,Φ,Ψ) be a Galois connection. An index structure I = (IX , IY ) on
G is a pair of index structures IX on X and IY on Y satisfying

(IGCX) For all x1 ≤ x2 ∈ X, [Φ(x1) : Φ(x2)] ≤ [x2 : x1], and
(IGCY) For all y1 ≤ y2 ∈ Y , [Ψ(y1) : Ψ(y2)] ≤ [y2 : y1].

An indexed Galois connection (G, I) is a Galois connection endowed with an
index structure. An indexed Galois connection is finite if both IX and IY are finite.
The notions of an indexed Galois connection and finite indexed Galois conncetion
are symmetric in X and Y : if (X,Y,Φ,Ψ, IX , IY is an indexed Galois connection
(resp. finite indexed Galois connection) so is (Y,X,Ψ,Φ, IY , IX).

Example 2.14: Let π : Y → X be a covering map. The associated Galois con-
nection G has a natural index structure: if H1 ≤ H2 ≤ Aut(π), let [H2 : H1] be the
index of H1 in H2, and for subcovers Y → Z2 → Z1 → X we let [Z2 : Z1] be the
degree of Z2 → Z1. Here (G, I) is finite iff X and Y are both finite.

Theorem 15. (Kaplansky-Roman)
Let (G, I) be an indexed Galois connection, and let x1 ≤ x2 ∈ X.
a) If x1, x2 ∈ X, then [Φ(x1) : Φ(x2)] = [x2 : x1].
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b) If x1 ∈ X and [x2 : x1] <∞, then x2 ∈ X.
c) Suppose x1 ≤ x2, [x2 : x1] <∞ and [x2 : x1] = [Φ(x1) : Φ(x2)]. Then x1 = x1.
d) In particular, if [T : x] = [x : B] <∞, then x = x.

Proof. a) We have

[x2 : x1] ≥ [Φ(x1) : Φ(x2)] ≥ [Ψ(Φ(x2)) : Ψ(Φ(x1))] = [x2 : x1] = [x2 : x1].

b) We have

[x2 : x1] ≥ [Φ(x1) : Φ(x2)] ≥ [x2 : x1] = [x2 : x2][x2 : x1].

Since [x2 : x1] <∞ we may cancel, getting [x2 : x2] = 1. Now apply (IGX).
c) By part b), x2 = x2, so by tridempotence

[x2 : x1] = [Φ(x1) : Φ(x2)] = [x2 : x1] = [x2 : x1][x1 : x1].

Cancelling [x2 : x1] and applying (IGX) we get x1 = x1.
d) If [T : x] <∞, then [T : x] <∞, and we apply part c) with x1 = x, x2 = T . �
Corollary 16. Let (G, I) be a finite indexed Galois connection possessing top and
bottom elements. TFAE:
(i) The Galois connection is perfect.
(ii) The bottom elements of X and Y are closed.

3. Galois Theory of Group Actions

3.1. Basic Setup.

Let X be a set and G be a group acting on X. The maps:

Φ : Y ⊂ X 7→ GY := {σ ∈ G | ∀y ∈ Y σy = y},
Ψ : H ⊂ G 7→ XG := {y ∈ X | ∀σ ∈ H σy = y}

give a Galois connection between the complete lattice 2X of all subsets of X and the
complete lattice of all subgroups of G. Indeed, extending its codomain to 2G, it is
the Galois connection associated to the “fixing relation” {(x, σ) ∈ X×G | σx = x}
between X and G.

3.2. Normality and Stability.

Proposition 17. Let H be a subgroup of G, Y a subset of X and σ ∈ G. We have:
a) σGY σ

−1 = GσY .

b) σXH = XσHσ−1

.

Proof. We have g ∈ GσY ⇐⇒ ∀y ∈ Y, gσy = σy ⇐⇒ ∀y ∈ Y, σ−1gσy = y ⇐⇒
σ−1gσ ∈ GY ⇐⇒ g ∈ σGY σ

−1. Similarly, y ∈ σXH ⇐⇒ σ−1y ∈ XH ⇐⇒
∀h ∈ h, hσ−1y = σ−1y ⇐⇒ ∀h ∈ H, (σhσ−1)y = y ⇐⇒ y ∈ σHσ−1. �
Corollary 18.
a) If Y ⊂ X is Galois-closed and σ ∈ G, then σY is also Galois-closed.
b) If H ⊂ G is Galois-closed and σ ∈ G, then σHσ−1 is also Galois-closed.

Proof. a) By Proposition 17, σY = σXGY = XσGY σ−1

= XGσY .
b) By Proposition 17, σHσ−1 = σGXHσ−1 = GσXH . �
We say a subset Y ⊂ X is stable if for all g ∈ G, gY ⊂ Y . Since G acts by
bijections, stability is equivalent to gY = Y for all g ∈ G.
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Corollary 19.
a) A Galois-closed subgroup H of G is normal iff XH is stable.
b) A Galois-closed subset Y of X is stable iff GY is normal in G.
c) The Galois-closure of a normal subgroup is normal.
d) The Galois-closure of a stable subset is stable.

Proof. a) Put Y = XH , so H = GY . Suppose H is normal. Then for all g ∈ G,

GXH = gGXHg−1 = GgXH .

By Corollary 18, gXH is Galois-closed, so

XH = XGXH = XGgXH = gXH .

The remaining parts of a) and b) are quite similar and left to the reader.
c) Suppose H is a normal subgroup of G. Then for all g ∈ G,

gGXHg−1 = GgXH = GXgHg−1 = GXH .

d) Suppose Y is a stable subset of X. Then for all g ∈ G,

gXGY = XgGY g−1

= XGgY = XGY .

�

3.3. The J -topology and the K-topology.

Let G be a group acting effectively on a set K. For x ∈ K, we define

Gx = {σ ∈ G | σx = x}

and

Ux = G \Gx = {σ ∈ G | σx ̸= x}.
The J -topology on G is the topology with subbase of open sets given by all sets
of the form σ1Uxσ2 for σ1, σ2 ∈ G and x ∈ K.

Proposition 20. Let G be a group acting effectively on a set K, and consider the
topological space (G,J ).
a) For all σ ∈ G, the translation maps Lσ : G→ G by τ 7→ στ and Rσ : G→ G by
τ 7→ τσ are homeomophisms of G, as is the inversion map ι : G→ G by σ 7→ σ−1.
b) G is a separated (or “T1”) topological space: points are closed.
c) G has a subbase of open sets of the form {σUx}σ∈G,x∈K .
d) Every Galois-closed subgroup H of G is J -closed.

Proof. a) . . .
b) For all x ∈ K, the set Gx is closed, hence so is

∩
x∈K Gx = GK = {1}. Since

translations are homeomorphisms, this implies that all points are closed.
c) As in [SV71]...
d) . . . �

We define the K-topology on G as follows: first, we endow K with the discrete
topology, and then give the set KK of all maps from K to K the product topology.
Finally, we give G ⊂ KK the subspace topology. More explicitly, a subbase for the
K-topology on G is given by all sets of the form

Vx,y = {σ ∈ G | σ(x) = y}.
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A topological space is zero-dimensional if it is Kolmogorov (“T0”) and admits a
base of clopen sets; such spaces are necessarily Hausdorff.

Proposition 21. Let G be a group acting effectively on a set K, and consider the
topological space (G,K).
a) G is a topological group and a zero-dimensional space.
b) The K-topology is finer than the J -topology.
c) Every Galois-closed subgroup is K-closed.
d) The K-topology is the coarsest topology on G such that the action of G on K is
continuous for the discrete topology on K.

Proof. a) This is routine, and we leave it to the reader.
b) For fixed x, y,

Vx,y = G \
∪
x′ ̸=x

Vx′,y,

so each Vx,y is K-closed as well as K-open. In particular Vx,x = Gx is K-closed, so
its complement Ux is K-open. Since (G,K) is a topological group, translations are
homeomorphisms, hence for all x ∈ K and allσ1, σ2 ∈ G, σ1Uxσ2 is K-open.
c) This follows from part b) and Proposition 20d).
d) If K is discrete, the action G×K → K is continuous iff for all σ ∈ G, x, y ∈ K
such that σx = y, there exists a neighborhood N of σ such that Nx = y iff Vx,y is
a neighborhood of σ. �
A Cantor cube is a topological group of the form 2A for some A, i.e., a product
of copies of the discrete group of order 2.

Theorem 22.
a) Subspaces, products and inverse limits of zero-dimensional spaces are zero-dimensional.
b) A zero-dimensional space may be embedded in a Cantor cube.
c) A topological space is zero-dimensional compact iff it is homeomorphic to a closed
subspace of some Cantor cube.
d) An infinite topological group is zero-dimensional compact iff it is homeomorphic
to some Cantor cube.

Proof. a) Left to the reader.
b) [E, Thm. 6.2.16].
c) Since 2A is compact, a subspace of 2A is compact iff it is closed.
d) More generally: let G be a topological group with infinitely many connected
components, and let G0 be its identity component. By [HM, Thm. 10.40], G is
homeomorphic to G0 × 2A for some index set A. �
The action of G on K is locally finite if for all x ∈ K, the G-orbit of x is finite; by
the Orbit-Stabilizer Theorem, this condition is equivalent to all the point stabilizers
Gx having finite index in G.

Theorem 23. Let G be a group acting locally finitely on a set K.
a) We have J = K.
b) A subgroup of G is K-open iff it contains GS for some finite subset S ⊂ K.
c) The following are equivalent:
(i) Every K-open subroup is of the form GS for some finite subset S ⊂ K.
(ii) A subgroup is K-closed iff it is Galois-closed.
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Proof. a) Suppose the action is locally finite, fix x ∈ K, and let

x1 = x, x2 = σ2x, . . . , xn = σnx

be the G-orbit of x. Then Vx,y = ∅ if y ̸= xi for some i, and

Vx,xi =
∩

1≤j≤n, j ̸=i

σjUx.

b) By definition of the K-topology GS is open for all finite S. Moreover a subgroup
of any topological group containing an open subgroup is itself open. Conversely,
every K-subbasis element Vx,y is a coset of a subgroup Gx. Let H be a K-open
subgroup of G. Then G is a union of finite intersections of subbase elements, so
G contains at least one finite intersection of subbase elements containing {1}. But
a finite intersection of subbase elements contains 1 iff every one of the subbase
elements contains 1 iff every subbase element is of the form Gx for some x ∈ K,
and thus H contains

∩n
i=1Gxi = G{x1,...,xn} = GS .

c) . . . �

Proposition 24. If (G,K) is compact, then the action is locally finite.

Proof. Fix x ∈ K. Then {Vx,y}y∈K is a covering of G by pairwise disjoint K-open
subsets. By compactness, we must have Vx,y = ∅ for all but finitely many y. But
{y ∈ K | Vx,y ̸= ∅} is the G-orbit of x. �

The converse of Proposition 24 does not hold in this level of generality. For in-
stance, a countably infinite group admits no compact group topology but may well
act locally finitely on a set. For a specific example, Z acts locally finitely on Fp

by (n, x) 7→ xp
n

. The issue here is that Z is not the full automorphism group of
Fp/Fp. This suggests a remedy in our general context, as follows.

We say that an action of G on K is finite-complete if when given for each fi-
nite G-stable set S ⊂ K a permutation sS of S which is the restriction to S of the
action of some σS ∈ G compatibly with each other in the sense that when S′ ⊃ S,
(sS′)S = sS , there exists σ ∈ G such that for all S, σ|S = sS .

Let F be the family of finite G-stable subsets of K. Put

Ĝ = lim←−
S∈F

G/GS

and let ι : G → Ĝ denote the natural map, called the profinite completion of
G. (Note that this is the profinite completion of G with respect to the K-topology,
not necessarily its profinite completion as an abstract group.)

For any group G acting effectively on a set K, there is a unique maximal sub-
set on which G acts locally finitely, namely the union of all finite G-orbits. We
denote this subset by Kf . Thus the action of G on K is locally finite iff Kf = K.

Theorem 25. Let G be a group acting effectively on a set K with profinite com-
pletion ι : G→ Ĝ.
a) If the action is locally finite, ι is injective.
b) The action is finite-complete iff ι is surjective.
c) The following are equivalent:
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(i) The map ι is an isomorphism of topological groups.
(ii) The action is locally finite and finite-complete.
(iii) (G,K) is compact.

Proof. a) We have

ker ι =
∩
S∈F

GS = G∪
S∈F S = GKf

= GK = {1}.

b) This is immediate from the definition.
c) (i) =⇒ (ii): If ι is an isomorphism, then the action is finite-complete. Moreover
(G,K) is compact, so the action is locally finite by Proposition XX.

(ii) =⇒ (iii): By part a), ι is injective and thus an isomorphism, so (G,K) ∼= Ĝ is
compact.
(iii) =⇒ (i): (G,K) is always zero-dimensional, so if it is compact it is profinite
and then ι is an isomorphism. �

Remark: There are non-locally finite actions with injective ι. Indeed, let G be any
infinite group acting locally finitely on a set K, so that GKf

= GK = {1}. Now
extend the action to K

⨿
G by letting G act on itself by translation.

Corollary 26. Let ι : G → Ĝ be the profinite completion of (G,K), and put

N = ker ι. Then AutGKf = Ĝ, and G/N acts effectively on Kf as a dense

subgroup of Ĝ.

Example: Suppose that G acts freely on a set K, i.e., Gx = {1} for all x ∈ K. Then
every J -closed set is a (possibly empty) intersection of finite unions of translates of
the identity subgroup, so the proper J -closed sets are precisely the finite sets: J
is the cofinite topology on G (the coarsest separated topology). On the other hand
Gx is K-open, so the K-topology on G is discrete. Thus J = K iff G is finite iff
(by the Orbit-Stabilizer Theorem) the action is locally finite. When G is infinite,
(G,J ) is separated but not Hausdorff so is not a group topology.

The associated Galois-closure on subgroups is as follows: {1} = GK{1} = GK =
{1}, and for any nontrivial subgroup H, GKH = G∅ = G. For no nontrivial G
does this coincide with the K-closure; it coincides with the J -closure iff G has no
nontrivial elements of finite order.

Finally, note that when G is finite and noncyclic, the equivalent conditions of
Theorem 23c) do not hold.

4. Return to the Galois Correspondence for Field Extensions

4.1. The Artinian Perspective.

Artin’s approach to Galois theory is to start not with a field extension K/F but
with a field K and a group G of field automorphisms of K. Then we can “recover”
F as F = KG, but something is gained: K/F is now necessarily Galois.

In this section we generalize the Artinian perspective to the context of a topo-
logical group G acting effectively by automorphisms on a field K.

One further piece of terminology will be helpful. Throughout this paper the only
topology we will ever consider on a field is the discrete topology. So let us agree that
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when we say “the action of a topological group (G, τ) on a field K is topological,”
we mean that the action is continuous when K is given the discrete topology.

Theorem 27. Let K be a field, and let (G, τ) be a topological group which acts
effectively on K by field automorphisms, with fixed field F . Consider the induced
embedding ι : G ↪→ Aut(K/F ).
a) The following are equivalent:
(i) The action of G on K is locally finite.
(ii) The extension K/F is algebraic.
b) The following are equivalent:
(i) The map ι : (G, τ)→ (Aut(K/F ),K) is continuous.
(ii) The action of (G, τ) on K is topological.
c) Suppose (G, τ) is compact. TFAE:
(i) The action of (G, τ) on K is topological.
(ii) K/F is algebraic and ι is an isomorphism of topological groups.

Proof. a) (i) =⇒ (ii): Since the action if locally finite, the point stabilizers Gx

have finite index in G. For any finite subset S ⊂ K, put GS =
∩

x∈S Gx, and let

NS =
∩

g∈G gHSg
−1 be the normal core of GS , so that NS is a finite index normal

subgroup of G and every element of NS leaves S pointwise fixed. Let LS be the
subextension of K/F obtained by adjoining to F all elements gx for g ∈ G and
x ∈ S. Then NS is the subgroup of G which acts trivially on LS , so the finite group
G/NS acts faithfully on LS . By the finite Artin Theorem, LS/F is a finite Galois
extension with Galois group G/NS . But K = lim−→S

LS , so K/F is algebraic.

(ii) =⇒ (i): For x ∈ K, let p(t) ∈ K[t] be the minimal polynomial for x. Elements
of the G-orbit of x are roots of p(t), so the orbit is finite.
b) The map τ is continuous iff (G, τ) is finer than (ι(G),K). The equivalence of (i)
and (ii) now follows from Proposition 21d).
c) (i) =⇒ (ii): Since (G, τ) is compact, the open subgroups Gx have finite index,
and therefore the action is locally finite. By part a), K/KF is algebraic. Moreover,
by part b) the homomorphism ι : (G, τ)→ (ι(G),K) is a continuous bijection from
a compact space to a Hausdorff space, so it is an isomorphism of topological groups.
(ii) =⇒ (i): If K/KG is algebraic, then by part a) G acts locally finitely on K, so
by Theorem XX (G, τ) = (ι(G),K) is profinite and acts topologically on K. �

We immediately deduce the following result of W.C. Waterhouse [Wa74, Thm. 1].

Corollary 28. Let K be a field, and let (G, τ) be a profinite group acting effectively
on K by field automorphisms, and such that for all x ∈ K the point stabilizer
Gx is open in (G, τ). Then K/KG is algebraic Galois, and the canonical map
ι : G→ Aut(K/KG) is an isomorphism of topological groups.

Theorem 29. (Leptin [Le55], Waterhouse [Wa74]) For every profinite group G
there is an algebraic Galois extension K/F and an isomorphism of topological
groups G ∼= Aut(K/F ).

Proof. ([Wa74]) Let T be the disjoint union of the coset spaces G/H as H ranges
over the open subgroups of G. Let k be any field. View T as a set of independent
indeterminates and put K = k(T ). There is a unique G-action on K extending the
action on T and leaving k pointwise fixed. It is faithful, locally finite, with open
stabilizers, and G is compact, so by Corollary 28, G ∼= Aut(K/KG). �
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4.2. The Index Calculus.

Theorem 30.
Let K/F be a field extension, and let G be a subgroup of Aut(K/F ). The Galois
connection between the indexed poset of subextensions L of K/F and the indexed
poset of subgroups of G is an indexed Galois connection.

Proof. a) Let F ⊂ M1 ⊂ M2 ⊂ K with [M2 : M1] = n < ∞. We must show
[GM1 : GM2 ] ≤ n.

We go by induction on n, the case n = 1 being trivial. Suppose that n > 1 and
that the result holds for all pairs of subextensions of smaller degree. If there exists
M1 ( M3 ( M2 then degree multiplicativity and induction gives us the result.
Thus we may assume that M2/M1 has no proper subextensions, so in particular it
is monogenic: M2 =M1[u]. Let f ∈M1[t] be the minimal polynomial of u overM1,
so deg f = n. Let C = gGM2 be a left coset of GM2 in GM1 . Since every σ ∈ GM2

fixes u, for every σ ∈ C we have σ(u) = g(u). We claim that if C ′ = g′GM2 is a coset
distinct from C, then g′(u) ̸= g(u). Indeed, if g′(u) = g(u) then (g−1g′)(u) = u,
and then g−1g fixes M2 pointwise, so (g−1g′) ∈ GM2 and C = C ′. Therefore the
number of left cosets of GM2 in GM1 is at most the size of the G-orbit G(u), but
since every element of G(u) is a root of f , #G(u) ≤ deg f = n.
b) Let H1 ⊂ H2 ⊂ G ⊂ Aut(K/F ) with [H2 : H1] = n < ∞. We must show that
[KH1 : KH2 ] ≤ n. Let C = gH1 be a left coset of H1 in H2, and let x ∈ KH1 . As
above, the action of σ ∈ H2 on x depends only on σH1, so we may write Cx = gx
and speak of applying C to any element of KH1 .

Seeking a contradiction we suppose that [KH1 : KH2 ] > n and choose x1, . . . , xn+1 ∈
KH1 which are KH2 -linearly independent. Let C1, . . . , Cn be the distinct cosets of
H1 in H2. Now consider the linear system

a1(C1x1) + a2(C1x2) + . . .+ an+1(C1xn+1) = 0,

a1(C2x1) + a2(C2x2) + . . .+ an+1(C2xn+1) = 0,

. . .

a1(Cnx1) + a2(Cnxn) + . . .+ an+1(Cnxn+1) = 0,

where we regard a1, . . . , an+1 ∈ K as being unknowns. Because we have more
unknowns than equations, there exists a nonzero solution (a1, . . . , an+1) ∈ Kn+1.
Among all nonzero solutions we choose one with as many of the coordinates equal
to zero as possible, and after permuting the variables we may assume this solution
is of the form v = (a1, . . . , ar, 0, . . . , 0) with a1, . . . , ar ̸= 0. Since the solutions form
a linear space, we may also assume a1 = 1. It is not possible for a1, . . . , ar to all lie
in KH2 , for one of the cosets, say Ci, is equal to H1 so the ith equation reads

a1x1 + . . .+ an+1xn+1 = 0,

giving a nontrivial linear dependence relation for the xi’s over K
H2 . Let J be such

that aJ /∈ KH2 , so there exists σ ∈ H2 such that σaJ ̸= aJ . Applying σ to the above
linear system, we get

∑
(σai)(σCjxi) = 0 for all 1 ≤ j ̸= n+1. But σ1C1, . . . , σnCn

is simply a permutation of C1, . . . , Cn, so the new system is simply a permutation
of the old system and thus w = (1, σa2, . . . , σar, 0, . . . , 0) is also a solution of the
system. Then v − w is a solution with at least one more of the coordinates equal
to zero than v but with Jth coordinate nonzero, contradiction. �
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4.3. Normality and Stability. . .and Normality.

Let K/F be a field extension with G = Aut(K/F , and let L be a subextension. As
in §3.2, we say that L is stable if σ(L) ⊂ L for all σ ∈ Aut(K/F ). The results
established there in the context of general G-actions specialize as follows [K, Thm.
12, Cor. 13].

Proposition 31.
a) If L is a stable subextension, then Aut(K/L) is normal in G.
b) If H is a normal subgroup of G, then KH is a stable subextension.
c) The Galois-closure of a normal subgroup of G is normal.
d) The Galois-closure of a stable subextension of K/F is stable.

Theorem 32. Suppose K/F is Galois and L is stable. Then L/F is Galois.

Proof. For x ∈ L \ F , choose σ ∈ Aut(K/F ) such that σx ̸= x. Since L is stable,
σ restricts to an automorphism of L. �

Proposition 33. Let K/L/F be a tower of fields.
a) If L/F is normal algebraic, then L is stable.
b) If K/F is Galois and L is stable then L/F is normal.

Proof. a) Let σ ∈ Aut(K/F ) and x ∈ L. Then σ(x) satisfies the minimal polyno-
mial of x over F , so σ(x) ∈ L. Thus σ(L) ⊂ L.
b) Let x ∈ L, and let x1, . . . , xd be the roots of the minimal polynomial of x over
F . For each 1 ≤ i ≤ n, there is a unique F -algebra automorphism σi : F (x) → K
such that σi(x) = xi. By Lemma 41, σi extends to an F -algebra automorphism σi
of K. Since L is stable, xi = σi(x) ∈ L. �

Theorem 34. Suppose L is a stable subextension of K/F . Then Aut(K/F )/Aut(K/L)
is canonically isomorphic to the subgroup of Aut(L/F ) consisting of automorphisms
which can be extended to K.

Proof. By Proposition 31, Aut(K/L) is normal in Aut(K/F ) so the quotient group
exists. Since L is stable, restriction to L gives a homomorphism Φ : Aut(K/F )→
Aut(L/F ). Moreover, KerΦ = Aut(K/L) and by construction, Φ(Aut(K/F )) is
the subgroup of automorphisms which can be extended to K. �

Example (GIVE AN EXAMPLE WHERE Φ IS NOT SURJECTIVE).

4.4. Finite Galois Extensions.

Theorem 35. Let K/F be a field extension of finite degree, and put G = Aut(K/F ).
For L a subextension of K/F , put GL = Aut(K/L).
a) The following are equivalent:
(i) K/F is Dedekind: for all subextensions L of K/F , KGL = L.
(ii) K/F is Galois: KG = F .
(iii) #G = [K : F ].
(iv) K/F is normal and separable.

Proof. (i) =⇒ (ii) is immediate.
(ii) =⇒ (i) follows from Theorem 30 and Corollary 16.
(ii) =⇒ (iii): in our finite indexed Galois connection G is closed, so by Theorem
15 #G = [G : {1}] = [K{1} : KG] = [K : F ].
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(iii) =⇒ (ii): Apply Theorem 30c) with x1 = F , x2 = K.
(iii) ⇐⇒ (iv): By Lemma 2 K/F is separable, hence monogenic: K = F [u] =
F [t]/(p(t)) with deg p = [K : F ] = n, say. So #Aut(K/F ) is equal to the number
of distinct roots of p(t) in K. Therefore, if this number is equal to [K : F ] = deg p,
K is the splitting field of p and is normal. Conversely, if K/F is separable and
normal it is of the form K[t]/(f(t)) for an irreducible polynomial which splits into
[K : F ] distinct roots in K, so Aut(K/F ) = [K : F ]. �

Corollary 36. (Artin) Let G be a finite group of automorphisms of a field K, and
put F = KG. Then K/F is a finite Dedekind extension.

Proof. We consider the Galois connection between subextensions of K/F and sub-
groups ofG. By Theorem 30 this is an indexed Galois connection, and by hypothesis
F is Galois-closed. Therefore we may apply Theorem 15a) we get

[K : F ] = [GF : GK ] = [G : 1] = #G <∞.

Thus K/F is finite Galois, so by Theorem 42 it is finite Dedekind. �

4.5. Algebraic Galois Extensions.

Theorem 37. Let K/F be a field extension, and put G = Aut(K/F ). TFAE:
(i) G is compact in the K-topology.
(ii) K/F is algebraic.

Proof. (i) =⇒ (ii): If (G,K) is compact, then by XX the action of G on K is
locally finite, so by XX K/F is algebraic.
(ii) =⇒ (i): Since K/F is algebraic, by Theorem 27 the action of G on K is locally
finite. Moreover it is finite-complete: that is, an automorphism of K is determined
by a compatible sequence of automorphisms on finite G-stable subsets ofK. Indeed,
observe first that finite subextension L of K/F is of the form L = F (S) for a finite
subset S of K and the action of G on S determines the action on L. Next, observe
that since K/F is algebraic, K is the direct limit of its finite normal subextensions,
so giving an automorphism on each finite normal subextension in a compatible way
determines a unique automorphism of K. By Theorem 25c), G is K-compact. �

Theorem 38. Let K/F be algebraic, and put G = Aut(K/F ). For a subgroup
H ⊂ G, TFAE:
(i) H is K-compact.
(ii) H is K-closed.
(iii) H is Galois-closed, i.e., H = GL for some subextension L of K/F .

Proof. (i) ⇐⇒ (ii): By Theorem 37, G is K-compact. It follows that a subgroup
H of G is K-compact iff it is K-closed.
(ii) ⇐⇒ (iii): by Theorem 23c), it suffices to show that every K-open subgroup
is of the form GS for some finite subset S of K, so let H be a K-open subgroup of
G. By Theorem 23b), H contains a subgroup GS = GF (S) for some finite subset
S ⊂ K. So H has a finite-index closed subgroup and is therefore itself closed by
Theorem 15b). �

Corollary 39. (Shimura [S, 6.11]) LetK/F be a field extension with G = Aut(K/F ).
The Galois correspondence induces a bijection between K-compact subgroups H of
G and subextensions L of K/F such that K/L is algebraic Galois.
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Proof. Let H be a K-compact subgroup of G. Then by Theorem 37 K/KH is
algebraic Galois, and by Theorem 38, H is Galois-closed.

Conversely, if K/L is algebraic Galois then by Theorem 37 Aut(K/L) is K-
compact, and tautologically L is Galois-closed. �

Theorem 40. Let K/F be a field extension. Let L be a subextension of K/F such
that L ⊃ KF and L/KF is algebraic. Then K/L is Galois.

Proof. It is no loss of generality to replace F with KF and thus assume that K/F
is Galois. Let us do so. The field L is the direct limit of the finite subextensions
M of L/F . By XXX, since F is Galois closed, so is each M : M = KGM . Then

K
∩

M GM =
∨
M

KGM =
∨
M

M = L.

�

Lemma 41. (Extension of Automorphisms I) Let K/F be normal algebraic. Then
every homomorphism ι : F → K extends to an automorphism of K.

Proof. A standard Zorn’s Lemma argument shows that there is a maximal subex-
tension L of K/F such that ι extends to ιL : L → K. If L ̸= K, let x ∈ K \ L.
Suppose x1, . . . , xd are the distinct roots of the minimal polynomial for x over F .
Since K/F is normal, x1, . . . , xd ∈ K. If all of x1, . . . , xd lie in ιL(L), then L itself
contains all d distinct conjugates of x so contains x itself, contradiction. So there
must exist at least one i such that xi /∈ ιL(L), and then we can extend ιL to a
homomorphism from L(x) → K by mapping x to xi. This contradicts the maxi-
mality of L, so we must have L = K and thus an extension of ι to a homomorphism
ι : K → K. Moreover, for any x ∈ K, ι is an injection from the finite set of
F -conjugates of x to itself, so every F -conjugate of x lies in ι(K). �

Theorem 42. Let K/F be an algebraic field extension, and put G = Aut(K/F ).
For L a subextension of K/F , put GL = Aut(K/L).
a) The following are equivalent:
(i) K/F is Dedekind: for all subextensions L of K/F , KGL = L.
(ii) K/F is Galois: KG = F .
(iii) K/F is normal and separable.
b) Suppose K/F is Galois. The following are equivalent:
(i) L is a stable subextension of K/F .
(ii) L/F is normal.
(iii) Aut(K/L) is a normal subgroup of Aut(K/F ).
c) Under the equivalent conditions of part b), we have a canonical isomorphism
Aut(K/F )/Aut(K/L) = Aut(L/F ).

Proof. a) (i) =⇒ (ii) is immediate.
(ii) =⇒ (i) follows from Theorem 40.
(ii) =⇒ (iii): By Lemma 2 K/F is separable. Moreover, every finite subextension
L of K/F is normal, so K/F is the splitting field of a set of polynomials, so is
normal.
(iii) =⇒ (ii): Since K/F is algebraic, normal and separable, by Theorem 42 it is a
direct limit of finite Galois extensions. So if x ∈ K \ F , there exists a finite Galois
subextension L of K/F such that x ∈ L \F , and thus there exists σ ∈ G such that
σx ̸= x. It follows that KG = F .
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b) (i) ⇐⇒ (ii) by Proposition 33.
(i) =⇒ (iii) by Proposition 31a).
(iii) =⇒ (i) by Proposition 31b).
c) This is immediate from Theorem 34 and Lemma 41. �

Corollary 43. (Shimura [S, 6.13]) Let K/F be Galois with G = Aut(K/F ).
a) The extension ClK(F )/F is algebraic Galois.
b) The subgroup H = Aut(K/ClK(F )) is normal in G, and G/H is naturally
isomorphic to a K-dense subgroup of Aut(ClK(F )/F ).

Proof. a) Since ClK(F ) is a G-stable subextension of the normal extension K/F ,
it is itself a normal extension. Separability is clear from Lemma X.X. So ClK(F )
is algebraic, normal and separable and thus algebraic Galois.
b) Since ClK(F ) is G-stable, H is normal in G. The density follows from the fact
that F = (ClK(F ))G/H . �

Theorem 44. (Excess Cardinality I) Let K/F be infinite algebraic Galois with
group G = Aut(K/F ). Let F be the set of all finite normal subextensions L of
K/F and put κ = #F .
a) [K : F ] ≤ κ < 2κ = #G.
b) There exists a subgroup H ⊂ G with #H = κ such that KH = F .

Proof. a) Step 1: Since K/F is algebraic Galois, K = lim−→L is the direct limit of
its finite nomal subextensions. Choose for each L ∈ F a finite spanning set SL for
L/F . Then

∪
L∈F SL is a spanning set for K/F of cardinality at most ℵ0 · κ = κ.

Since every spanning set has a basis as a subset, this shows [K : F ] ≤ κ. (Of course
κ < 2κ holds for all cardinals, by a famous theorem of Cantor.)
Step 2: The Galois correspondence puts F in bijection with the set of all open
subgroups of G, so there are κ open subgroups. By [T, Thm. 4.9], #G = 2κ.
b) By part a) and Theorem 22d), G is homeomorphic as a topological space to the
Cantor cube 2κ. The subspace of 2κ consisting of all finitely nonzero sequences
is dense of cardinality κ, so G admits a dense subset S of cardinality κ, and the
subgroup generated by S is a dense subgroup of cardinality κ. �

(Remark: It seems likely that [K : F ] = α in all cases. Try a little harder to prove
this!)

Theorem 45. ([So70, Thm. 19]) Let K/F be algebraic Galois, and put G =
Aut(K/F ). Then the Krull topology on G is:
a) The coarsest group topology τ such that Galois-closed subgroups are τ -closed.
b) The unique quasi-compact group topology τ such that Galois-closed subggroups
are τ -closed.
c) The unique compact group topology τ such that τ -closed subgroups are Galois-
closed.
d) The unique locally compact group topology τ on G such that the Galois cor-
repondence induces a bijection between all subextensions of K/F and all τ -closed
subgroups of G.

Theorem 46. ([So70, Thm. 3]) Let K/F be a Dedekind extension with G =
Aut(K/F ). Suppose that there exists a topology τ on G such that:
(i) (G, τ) is a topological group and
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(ii) A subgroup of G is Galois-closed iff it is τ -closed.
Then K/F is algebraic.

Proof. The trivial subgroup {1} of G is Galois-closed, hence τ -closed. Thus (G, τ) is
a separated space, and – since it is assumed to be a topological group – a Hausdorff
space. But by [So70], this implies K/F is algebraic. �

4.6. The J -topology.

Lemma 47. ([SV71, Prop. 2.7]) For any field extension K/F , the J -topology on
G = Aut(K/F ) is compatible with the Galois connection and (G,J ) is a semi-
topological group with continuous inversion. A subbase for the J -open subsets of G
is given by {σU(x)}σ∈G,x∈K .

4.7. The K-topology.

Theorem 48. (Shimura [S, 6.12]) Let K/F be a Galois extension with G =
Aut(K/F ). Suppose there exists a subextension L0 of K/F such that K/L0 is
algebraic Galois and L0/F is finitely generated. Then:
a) G is locally compact in the K-topology.
b) The Galois correspondence induces a bijection from the set of K-compact open
subgroups H of G to the subextensions L such that K/L is algebraic Galois and
L/F is finitely generated.

Proof. Step 1: Let L = F (x1, . . . , xn) be a finitely generated extension of F with
K/L is algebraic Galois. By Theorem 39, GL = Aut(K/L) is K-compact. But also

GL = {σ ∈ G | σ(x1) = x1, . . . , . . . , σ(xn) = xn}

is a finite intersection of K-subbasic sets, so GL is K-open.
Step 2: In particular, it follows that GL0 is a K-compact open subgroup of the
topological group G, so G is locally compact in the K-topology.
Step 3: Let L be a subextension of K/F such that GL is K-compact open. Then
GLL0 = GL ∩GL0 is a K-compact open subgroup of the compact subgroup GL0 , so

ℵ0 > [GL0 : GLL0 ] = [KGLL0 : KGL0 ] = [LL0 : L0].

Since L0/F is finitely generated and LL0/L0 is finite, LL0/F is finitely generated,
hence so is the subextension L0. �

Corollary 49. If K/F is finitely generated, (Aut(K/F ),K) is discrete.

4.8. When K is algebraically closed.

Lemma 50. (Extension of Automorphisms II) Let K/L/F be a tower of field ex-
tensions, with K algebraically closed. Let ι : L→ L be an F -algebra automorphism
of L. Then there is an extension of ι to an F -algebra automorphism of K.

Proof. Let T = {ti}i∈I be a transcendence basis for K/L. There is a unique F -
algebra automorphism of L(T ) extending ι and mapping each ti to itself. We are
now reduced to extending ι : L(T ) → L(T ) over the algebraic extension K/L(T ),
and this is possible by Lemma 41. �

Theorem 51. Let K be an algebraically closed field. Then #Aut(K) = 2#K .
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Proof. Step 0: Being algebraically closed, K is infinite, so the family of all set maps
from K to K has cardinality #K#K = 2#K . Thus it suffices to exhibit a subgroup
of Aut(K) of cardinality 2#K .
Step 1: Suppose K is algebraic over its prime subfield K0. Then it follows from
Theorem 44 that #Aut(K/K0) ≥ 2[K:K0] ≥ 2ℵ0 .4

Step 2: Suppose K is countable, and let K0 be the algebraic closure of the prime
subfield. Then by Step 1, AutK0 = 2ℵ0 , and by Lemma 50 each of these automor-
phisms extends to an automorphism of K, so also AutK ≥ 2ℵ0 .
Step 3: SupposeK is uncountable, so #K = trdegK/K0. Let T be a transcendence
basis for K over K0. Then every permutation of T gives rise to an automorphism
of K(T )/K0, and the set of permutations of T has cardinality 2#T = 2#K . By
Lemma 50, each of these automorphisms extends to an automorphism of K. �

Theorem 52. Suppose K/F is an extension with K algebraically closed. Then

KAut(K/F ) = F p−∞
, the perfect closure of F .

Proof. Let x be an element of K which is not purely inseparable algebraic over x.
We claim there is an automorphism σ of K such that σ(x) ̸= x.
Case 1: x is algebraic over F . Then the minimal polynomial P (t) of x over F
has at least one distinct root x′ in K. The map x 7→ x′ determines a unique F -
algebra isomorphism σ : F [x] → F [x′], which can be extended to an F -algebra
automorphism σ of F , the algebraic closure of F in K. By Lemma 50, σ extends
to an automorphism of K.
Case 2: x is transcendental over F . Then, for instance, the map x 7→ x+1 induces
an F -algebra automorphism of the pure transcendental extension F (x), which by
Lemma 50 extends to an automorphism of K. �

Corollary 53. Let K/F be a field extension with K algebraically closed.
a) The extension K/F is quasi-Dedekind.
b) The extension K/F is Galois iff F is perfect.
c) The extension K/F is Dedekind iff either:
(i) F has characteristic zero or
(ii) F is perfect of characteristic p > 0 and K/F is algebraic.

Theorem 54. (Excess Cardinality II) Let K/F be an extension of infinite degree,
with K algebraically closed of characteristic 0.
a) #Aut(K/F ) ≥ 2[K:F ].
b) There exists H ⊂ Aut(K/F ) with #H = [K : F ] such that KH = F .

Proof. a) Let F be the algebraic closure of F in K.
Case 1: If K/F is algebraic, the result is immediate from Corollary 53 and 44.
Case 2: Suppose K/F is transcendental and #K = #F . Let t ∈ K be transcen-
dental over F . By Lemma 50, we have

#Aut(K/F ) ≥ #Aut(F (t)/F ) ≥ #Aut(F (t)/F (t)) ≥ Aut(F (t)/F (t)).

Moreover, by Theorem 44, #Aut(F (t)/F (t)) = 2κ, where κ is the number of finite

normal subextensions of F (t)/F (t). Clearly κ = #F = #K ≥ [K : F ].

4Perhaps the appeal to Theorem 44 is overkill. The topological groups (Aut(Q/Q),K),

(Aut(Fp/Fp),K) are infinite, compact and second countable, so are completely metrizable spaces

without isolated points. They must therefore have at least continuum cardinality.
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Case 3: Suppose K/F is transcendental and #K > #F . Then #K = trdeg(K/F ).
Let T be a (necessarily infinite) transcendence basis for K/F . Then by Lemma 50,

#Aut(K/F ) ≥ #Aut(F (T )/F ),

whereas as in the proof of Theorem 51, considering all permutations of T gives

#Aut(F (T )/F ) = 2#T = 2#K ≥ 2[K:F ].

b) . . . �

Theorem 55. If K/F is an extension with K algebraically closed, then a subex-
tension L is stable iff L = K or L is algebraic and normal over F .

Proof. Let F be the algebraic closure of F in K – it is, in particular, an algebraic
closure of F . Clearly for any x ∈ K and σ ∈ Aut(K/F ), x is algebraic over F iff
σ(x) is algebraic over F , so that F is stable. Moreover, as is well known, if L is a
normal algebraic extension of F , it is the splitting field of a set S of polynomials
with coefficients in F , and then for any σ ∈ Aut(K/F ), σ(L) is the splitting field
of σ(S) = S, so σ(L) = L.

Conversely, of course if L/F is algebraic but not normal, then there exists an
irreducible polynomial P ∈ F [t] with a root x ∈ L and another root x′ ∈ F \L, and
then we can build an F -automorphism of K which sends x to x′, so L is not stable.
Suppose now that x ∈ L is transcendental over L. By the theory of automorphisms
of algebraically closed fields, we know that the orbit of x under Aut(K/F ) is the
set of all elements of K which are transcendental over F , so if L is stable it must
contain all such elements. Moreover, if y ∈ K is algebraic over F then x + y is
transcendental over F , so x+ y ∈ L and therefore x ∈ L. That is, L = K. �

We immediately deduce the following result.

Corollary 56. Let K/F be an extension of algebraically closed fields. Then the
only Galois-closed normal subgroups of G are {1} and G.

Remark: In the situation of Corollary 56 one wonders whether G = Aut(K/F )
is simple as an abstract group (the result leaves open the possibility that there is
a proper, nontrivial normal subgroup H of G with Galois closure G). In fact D.
Lascar has shown that the abstract group Aut(C/Q) is simple [La97]. So far as I
know the general case remains open and may not have received enough attention.

5. Three Flavors Revisited

5.1. Galois Extensions.

Theorem 57. Let K be a field and T = {ti}i∈I be a nonempty set of independent
indeterminates over K, so that K(T )/T is a purely transcendental extension. The
following are equivalent:
(i) K(T )/K is Galois.
(ii) K is infinite or #T ≥ 2.

Proof. Step 0 (Background): Let K be any field and t1, . . . , tn independent indeter-
minates over K. Then PGLn+1(K) acts effectively on K(t1, . . . , tn) by field auto-
morphisms. This action comes from the natural action of GLn+1(K) on An+1(K),
which induces an effective action of PGLn+1(K) on Pn

/K by birational automor-

phisms, hence automorphisms of the function field K(Pn) = K(t1, . . . , tn). It is a
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basic fact that for all n the group of biregular automorphisms of Pn is PGLn+1(K)
[H, Example II.7.1.1]. Since every rational map from a smooth curve into a
projective variety is everywhere regular, when n = 1 we have Aut(K(t)/K) =
AutK(P1

/K) = PGL2(K).

Step 1: It follows from Step 0 that Aut(K(t)/K) is infinite iff K is infinite. So if K
is finite, then by Corollary 36, K(t)/K(t)Aut(K(t)/K) is finite, henceK(t)Aut(K(t)/K)

has transcendence degree 1 over K so is not equal to K.
Step 2: Suppose K is infinite and T = {t}. Let f ∈ K(t) \K. The set of x ∈ K
such that f(x) = f(0) is finite and nonempty, so since K is infinite there exists x
with f(x) ̸= f(0), which means that f is not fixed by the automorphism t 7→ t+ x.
It follows that K(t)Aut(K(t)/K) = K.
Step 3: Suppose K is arbitrary and #T ≥ 2. Write T = {ti}i∈I , and for each i ∈ I,
put Ki = K({tj}j ̸=i and Hi = Aut(K/Ki) = Aut(Ki(ti)/Ki). Since #I ≥ 2, each

Ki is infinite, so by Step 2, K(T )Hi = Ki(ti)
Aut(Ki(ti)/Ki) = Ki. Therefore

K(T )Aut(K(T )/K) ⊂ K(T )
∨

i∈I Hi =
∩
i∈I

K(T )Hi =
∩
i∈I

Ki = K.

�
Theorem 58. A nontrivial finitely generated regular extension K/F of general
type has Aut(K/F ) finite and is therefore not Galois.

Proof. A variety V/K of general type has finite birational automorphism group:
e.g. [Sz96]. As in the proof of Theorem 57 above, this immediately implies that the
field extension K(V )/K cannot be Galois, since K(V )Aut(K(V )/K)/K has positive
transcendence degree. �
More precise results are available for one-dimensional function fields.

Lemma 59. A regular extension k(C)/k is Galois iff G = Aut(k(C)/k) is infinite.

Proof. We have k ↪→ k(C)G ↪→ k(C). Clearly [k(C) : k] = ∞, so if G is finite,
[k(C) : k(C)G] is finite and then [k(C)G : k] is infinite, so k ̸= k(C)G. Conversely,
if [k(C) : k(C)G] is infinite, then k(C)/k(C)G is transcendental, and that implies
k(C)G = k. �
Theorem 60. For an absolutely integral algebraic curve C/k, the extension k(C)/k
is Galois iff k is infinite and one of the following conditions hold:
(i) C has genus 0;
(ii) C has genus 1 and its Jacobian Pic0(C) has infinitely many k-rational points.

Proof. The automorphism group of any curve C/k is an algebraic group over k,
so if k is finite, the automorphism group is finite. So suppose k is infinite. If C
has genus at least 2, then again it is known that the automorphism group of C/k
is finite. If C has genus 1, then Aut(C/k) contains, as a finite index subgroup,
the group Pic0(C)(k) of k-rational points on the Jacobian. Therefore k(C)/k) is
Galois iff the Jacobian has infinitely many k-rational points. If C has genus 0, its
automorphism group is PGL2(k) if C ∼= P1; otherwise C corresponds to a division
quaternion algebra B/k and the automorphism group is B×/k×. Both of these
groups are infinite when k is infinite. �
This result has the following consequence, which shows that transcendental Galois
extensions behave quite differently from algebaic ones.
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Corollary 61. Let F be a field, and let K/F be a Galois extension which is finitely
generated, regular and transcendence degree one. Then for any subextension L of
K/F , L/F is a Galois extension.

Proof. Translating the algebraic conditions on K/F into geometric language, we
may write K = F (C) for a nice curve C/F . By Theorem 60, C is either a curve of
genus zero or is of genus one with #C(F ) ≥ ℵ0. Now any subextension L of K/F
is of the form L = F (C ′) for a nice curve C ′

/F and the finite F -algebra extension

L/K corresponds to a finite morphism of F -varieties φ : C → C ′. By Riemann-
Hurwitz, the genus of C ′ is at most the genus of C, so either C ′ is itself a genus
one curve – in which case by Theorem 60 L/F is Galois – or C is of genus one with
infinitely many F -rational points, C ′ has genus one and φ is an unamified covering
map. Choose any F -rational point OC , and put OC′ = φ(OC). Then C and C ′

become elliptic curves and φ : C → C ′ is an isogeny. The induced homomorphism
φK : C(F ) → C ′(F ) has finite kernel (over F , hence a fortiori over F ) and hence
φK(C(F )) is an infinite subgroup of C ′(F ). Applying Theorem 60 once more we
conclude that L/F is Galois. �

5.2. Dedekind Extensions.

Lemma 62. Let K/F be transcendental Dedekind. Then F has characteristic zero.

Proof. We go by contraposition: suppose that F has characteristic p > 0. Let
x ∈ K be transcendental over F . Then every automorphism of K which fixes xp

also fixes x, so F (xp) ( F (x) ⊆ KAut(K/F (xp)). �

Theorem 63. ([So70, Thm. 23]) Let K/F be a Dedekind extension with G =
Aut(K/F ). Suppose that τ is a topology on G such that (G, τ) is a quasi-compact
topological group and such that a subgroup of G is Galois-closed iff it is τ -closed.
Then K/F is algebraic and τ is the Krull topology.

Theorem 64. ([SV71, Thm. 2.9]) For K/F a Dedekind extension with G =
Aut(K/F ), TFAE:
(i) The topologies J and K on G coincide.
(ii) The topology J is Hausdorff.
(iii) K/F is algebraic.

Theorem 65. ([SV71, Thm. 2.8]) Let K/F be a Dedekind extension with G =
Aut(K/F ). Then the Galois correspondence induces a bijection between all subex-
tensions L of K/F and all J -closed subgroups of G.

Proof. Since a subgroup is J -closed iff it is Galois-closed, this is immediate from
the definition of a Dedekind extension. �

Theorem 66. ([SV71, Thm. 2.10]) Let K/F be a Dedekind extension with G =
Aut(K/F ). If the transcendence degree of K/F is finite, then (G,J ) is quasi-
compact.

There is also a(n at least!) partial converse.

Theorem 67. ([SV71, Thm. 2.11]) Let K/F be a field extension with G =
Aut(K/F ). Suppose K is algebraically closed and the transcendence degree of K/F
is infinite. Then (G,J ) is not quasi-compact.
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Theorem 68. ([SV71, Thm. 2.12]) Let K/F be a field extension with G =
Aut(K/F ). Suppose K is algebraically closed and the transcendence degree of K/F
is infinite. Then there is no quasi-compact quasi-group topology τ on G such that
a subgroup of G is Galois-closed iff it is τ -closed.

Theorem 69. Let K/F be a transcendental Dedekind extension, and let T be a
transcendence basis for K/F . Then K/F (T ) is infinite.

Proof. Step 1: Write T = T ′ ⨿{t}. Since K/F is Dedekind, so is K/F (T ′). We
may thus replace F by F (T ′) and reduce to showing: if K/F (t) is finite, then K/F
is not Dedekind.
Step 2: As in Step 1, we may replace F by ClK(F ) and thus assume that K/F is
a regular function field in one variable. Thus K = F (C) for a nice algebraic curve
C/F and the finite extension K/F (t) corresponds to a finite morphism φ : C → P1.

If K = F (t) then replace t by t2; thus we may assume that [K : F (t)] = degφ > 1
and in particular that the map φ is ramified.
Step 3: If φ is not a Galois cover, we are done already, so assume it is. Our
strategy is to compose with a finite map ψ : P1 → P1 to get composite map
ψ ◦ φ : C → P1 which is not a Galois covering. This corresponds to a non-Galois
F -algebra extension K/F (t) which may be viewed as a subextension of K/F .

To construct ψ, let P ∈ P1(F ) be a branch point of φ, and let Q ∈ P1(F ) such
that every point in the Galois orbit of Q is a non-branch point. Let ψ : P1 → P1

be an F -morphism which is unramified at every point in the Galois orbit of P and
Q and such that ψ(P ) = ψ(Q) = 0. Then in the composite map ψ ◦ φ there is at
least one preimage of 0 which is ramified and at least one preimage of 0 which is
unramified, so the covering ψ ◦ φ is not Galois. �
Theorem 70. (Barbilian-Krull) a) For a field extension K/F , TFAE:
(i) K/F is Dedekind.
(ii) For every subextension M of K/F , ClK(M)/M is algebraic Galois.
b) For a field extension K/F , TFAE:
(i) K/F is quasi-Dedekind.
(ii) For every subextension M of K/F , ClK(M)/M is algebraic quasi-Galois (or
equivalently, algebraic and normal).

Proof. a) (i) =⇒ (ii) is immediate from Theorem 43.
(ii) =⇒ (i): . . .
b) . . . �
5.3. Perfectly Galois Extensions.

Theorem 71. For a field extension K/F , TFAE:
(i) K/F is perfectly Galois.
(ii) K/F is Galois and finite.

Proof. (i) =⇒ (ii): Suppose K/F is perfectly Galois. Then so is K/L for any
subextension L of K/F . Choose a transcendence base T for K/F , so the alge-
braic extension K/F (T ) is perfectly Galois. If K/F (T ) is infinite Galois, then its
automorphism group is an infinite compact group, hence possesses a non-closed
subgroup H (e.g. the subgroup generated by any countably infinite subset), so
K/F (T ) is not perfectly Galois. Thus K/F (T ) is finite.

If T = ∅, then we are done. Otherwise K/F is a transcdendental Dedekind
extension with K/F (T ) finite, contradicting Theorem 69. �
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6. Notes

That there is an at least formal Galois correspondence for any field extension K/F
is conspicuously missing from the “standard” (i.e., Artinian) exposition on Galois
theory and is at best hinted at in most texts. A notable exception to this is Ka-
plansky’s text [K], which sets things up just as we have at the beginning of §1
(or rather, the other way around, of course). Kaplansky writes (p. 11) “We shall
mostly deal with the case whereM is finite-dimensional over K, but it is interesting
and enlightening to push as far as possible the general case where K and M are
absolutely arbitrary.” I agree most heartily.

Kaplansky’s main technical contribution is the index calculus of §4.2, which
establishes finite Galois theory in a relative setting. It is also valuable in that it
sieves a nugget of field-theoretic content (Theorem 30) from a stream of results of a
much more formal character. In this paper we have strived to continue this sieving
process, attempting to discern which results crucially involve the rich structure and
theory of fields, and which can be derived in a simpler context. To this end we
have included an axiomatized version of the conclusion of Kaplansky’s theorems on
indices – namely the notion of an indexed Galois connection, which we have
taken from a text of S. Roman [R, §6.1]. To the best of my knowledge, indexed
Galois connections do not appear elsewhere in the literature. The material on sta-
bility for arbitrary field extensions also apparently first appeared in [K].

Our presentation of the Galois theory of group actions in §3 seems to be new.
The role played by the two topologies J and K is inspired by [SV71] and also by
M. Fried’s MathSciNet review of it, in which he observes that the authors are study-
ing the interplay of two topologies but with the second topology not made explicit.
In fact the name K-topology comes from Fried’s review. Surely the ‘K’ stands for
Krull, but the authors of [SV71] only use the term “Krull topology” in the case of
an algebraic extension. This seems insightful, as the K-topology has only a minor
role to play for non-algebraic extensions. Let me also thank the authors of [SV71]
for introducing the name J -topology, as I would otherwise have felt it necessary
to call it the Soundararajan-Venkatachaliengar topology!

The main theorem of §4.1 was inspired by the result of Waterhouse which appears
as a corollary. Our presentation of Kaplansky’s Index Calculus is a slightly general-
ized version of what appears in [K] in that we start with an arbitrary subgroup G of
Aut(K/F ). However the more general result is useful, since we get an easy proof of
Corollary 36. We claim this as one of the merits of the present approach: Corollary
36 is a basic and important result – finiteness of invariants – which in standard
treatments of Galois theory is often proved only under the additional hypothe-
sis of finiteness of K/F . One should compare the present treatment with that of
[L, Thm. VI.1.8], which does prove Corollary 36 and exerts some ingenuity to do so.

I have not found the Excess Cardinality Theorem in the literature.

The results on the size and structure of automorphism groups of algebraically closed
fields given in §X.X are easy consequences of the theory of transcendence bases de-
veloped by Steinitz a century ago [St10]. Nevertheless this seems to have been a
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source of consternation to many over the years. In his award-winning 1966 arti-
cle [Ya66], P. Yale describes the existence of automorphisms of C other than the
identity and complex conjugation as “[o]ne of the best known bits of mathematical
folklore” and carefully discusses their construction using a special case of Lemma
50. His paper ends as follows: “As the final comment I mention an additional bit
of mathematical folklore. In [1]5 it is claimed, without proof or reference to the

proof, that the cardinality of the set of automorphisms of C is 22
ℵ0
. I have heard

this from other sources and am convinced that it is true although I don’t know
where the proof may be found.” And indeed it seems that the first published proof
of Theorem 51 is [Ch70].

The material of §5.1 concerning function fields may be new; it provided an op-
portunity to digress into some arithmetic geometry. For a field k and n ∈ Z+, the
Cremona group Crn(k) = Aut(k(t1, . . . , tn)/k) of birational automorphisms of
projective space has been the topic of intense algebraic geometric study for almost
150 years. As above, when n = 1 it is simply PGL2(k), but for n ≥ 2 Crn(K)
strictly contains PGLn+1(K). Broadly speaking, the discrepancy between these
two groups is well understood when n = 2 and very poorly understood when n ≥ 3,
notwithstanding a lot of interesting work in the area: see e.g. [Se10] for a survey
of some of the recent results in the field.
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