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Introduction – Study of an Elementary Proof

Perhaps the first nontrivial, nonfoundational result in number theory is Fermat’s
Two Squares Theorem: an odd prime number is a sum of two integer squares
iff it is congruent to one modulo four.1

Fermat claimed a proof of the Two Squares Theorem (Christmas day, 1640) but

Date: November 23, 2011.
c⃝ Pete L. Clark, 2011.
1Whether or not this vague claim is accurate in a historical sense, it is certainly accurate as

a personal statement about the author. For me, number theory began in a three week course
taught in the summer of 1992 by Tim Marks and Jamie Pommersheim, and if number theory was

the queen of mathematics, the Two Squares Theorem was the jewel in her crown. Almost twenty
years later, my fascination with this result shows no signs of abatement.
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(as usual) never published it, describing it only as an application of his method of
Infinite Descent. The first “public” proof, also using Infinite Descent, was given by
Euler in 1747. By now many proofs have been given: the most currently popular
one exploits the fact that x2 + y2 is the norm form of Z[

√
−1].

The text [AZ], which compiles “book proofs” in the sense made popular by P.
Erdős, gives two proofs of the Two Squares Theorem. One is an involutory proof
by Heath-Brown and Zagier. The other exploits a combinatorial lemma of A. Thue.

One may ask why there is so much interest in giving new proofs of very old the-
orems like the Two Squares Theorem. There are many possible answers, including
the thrill that comes with finding one’s own proof of a classic result. But there is
another reason, and one which provides a test of the worth of a “new proof”: what
other theorems can be proved by the same or similar arguments?

Thus one has the natural question “What else can be proved via Thue’s Lemma?”
Although a substantial minority of introductory number theory texts include the
Thue’s Lemma proof of the Two Squares Theorem – e.g. [O, Thm. 11-7], [Sho,
Thm. 2.33], [L] – very few put Thue’s Lemma to the test by investigating what
other results – especially, what other representation theorems for binary quadratic
forms – can be proved using it. The only significant exception I know is T. Nagell’s
classic text [N], which uses Thue’s Lemma to determine the primes represented by
the forms x2 + y2, x2 + 2y2, x2 + 3y2, x2 + 7y2, 2x2 + 3y2 [N, Thm. 100] and sets
as exercises the determination of primes represented by x2 + xy + y2, x2 + 6y2,
2x2 + 3y2, x2 + xy + 3y2 [N, pp. 265-266].2 Why Nagell (a student of Thue) chose
these particular forms and not others is not explained.

I began thinking seriously about the method of Thue’s Lemma when M. Hamel
brought a similar argument to my attention in early 2010. I had recently taught
a course from Cox’s text [C] on the quadratic forms x2 + Dy2, so it occurred to
me to wonder which further such forms could be handled by Thue’s Lemma. It
is well known – and well described in [C] – that sufficient congruential conditions
for a prime p to be of the form x2 +Dy2 exist only for finitely many values of D
called idoneal numbers (more on them below). In the summer of 2010 I showed
that Thue’s Lemma can be used to determine which primes are represented by any
squarefree idoneal number D. (There are 37 known squarefree idoneal numbers,
the largest being D = 1365, and at most one further such number, whose existence
would contradict the Generalized Riemann Hypothesis.) Unfortunately these argu-
ments required substantial calculations: not every value of D was included in the
writeup, but for instanceD = 1365 was and that case alone filled nearly three pages.

Later in 2010 I showed the results to A. Granville, who quickly suggested that
replacing the appeal to Thue’s Lemma by a mild “rectangular” generalization –
Vinogradov’s Lemma – would result in a quantitative improvement in the main
result (Theorem 9) which should significantly reduce the amount of calculation. I
have followed Granville’s suggestion and substantially rewritten the present paper
along these lines. By replacing Thue’s Lemma with Vinogradov’s Lemma (and im-
proving the organization), I have been able to treat all 65 known idoneal numbers
as well as give complete proofs, all within a smaller amount of space.

2Nagell’s text has the following organizational idiosyncrasy: Theorem 100 appears in Chapter
VI, but the aforementioned exercises appear at the end of Chapter VII and are thus easy to miss.
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There are two other works which are closely related to this one. In 2010 T. Hage-
dorn gave a new proof of the representation theorem for primes by x2 + Dy2 for
idoneal D using Minkowski’s Convex Body Theorem (this generalizes yet another
standard proof of the Two Squares Theorem). Hagedorn’s argument and mine
follow the same basic strategy: we show that for an odd prime number p with
(−D

p ) = 1, there are x, y ∈ Z+ and a positive integer k bounded in terms of D

such that x2 + y2 = kp, and then we analyze all cases of k > 1 using elementary
congruence considerations to either deduce a contradiction or deduce a represen-
tation of p asX2+DY 2. However, the methods lead to different upper bounds on k:

• Using Thue’s Lemma gives k ≤ D.
• Using Vinogradov’s Lemma gives k < 2

√
D.

• Using Minkowski’s Theorem gives k ≤ 4
π

√
D.

(• Using a sharper Geometry of Numbers bound [HW, Thm. 253] gives k ≤ 2√
3

√
D.)

Thus Vinogradov’s Lemma is a big improvement over Thue’s Lemma but is slightly
worse than Geometry of Numbers methods. On the other hand, our main result
(Theorem 9) applies to any binary quadratic form, not just to diagonal positive
definite forms. Nevertheless, we believe Hagedorn’s approach is “the right one”:
there are other (especially, non-diagonal) positive definite binary forms q(x, y) for
which the primes of the form q(x, y) are determined by congruence conditions, and
to prove the representation theorem by the above methods, the improvement of-
fered by Geometry of Numbers bounds seems essential.

Finally, just I was completing this paper I found [Mo66]. Mordell studies prime
numbers represented by diagonal forms. Moreover he uses Vinogradov’s Lemma to
derive Theorem 9 when B = 0 and n is prime and applies this to study represen-
tations of certain quadratic forms by primes. The only other significant difference
is that Mordell’s paper is six pages so treats matters in less detail. For instance
he writes “I notice that this method [i.e., via Thue-Vinogradov] can be extended
apparently to all the cases included in the classical theory when the class number
of the genus is one, and gives the results with a minimum of effort.” Note “appar-
ently”: here we show that these results indeed hold for all idoneal forms x2 +Dy2.

At the end of [Mo66] is an addendum acknowledging prior similar work of Venkoff
(in a Russian textbook from the 1930’s) and Nagell (in [N]), and writes “Neither
author seems to have realized the full possibilities of the method.” This seems
ironic: although Mordell came closer to realizing the full possibilities of the method
(again, there is more to be said about non-diagonal forms), he did not write much
of it down, and 45 years later his work seems to have been nearly forgotten.3 We
hope that this semi-expository paper as well as the work of Hagedorn [Ha10] will
revive some interest in this elementary but powerful approach to quadratic forms.

Acknowledgments: I thank Mariah Hamel for introducing me to Thue’s Lemma
and the “book proof” of the Two Squares Theorem, Jonathan P. Hanke for several
helpful conversations, Thomas Hagedorn for cociting me in [Ha10], and Lee Goswick
for finding some typographical errors. I am especially grateful to Andrew Granville

3[Mo66] has zero MathSciNet citations as of October 2011.
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for suggesting the replacement of Thue’s Lemma with Vinogradov’s Lemma and
the corresponding improvement from Theorem 8 to Theorem 9.

1. The Lemmas of Thue and Vinogradov

The following remarkably simple and useful result was apparently first proved by
A. Thue [Th02] (and published in what seems to be a very obscure journal) and
later, but independently, by the brilliant amateur mathematician L. Aubry [Au13].

Theorem 1. (Thue’s Lemma) Let n > 1 be an integer, and let b be an integer
which is relatively prime to n. There are integers x, y, not both zero, such that
(i) 0 ≤ |x| <

√
n, 0 ≤ |y| ≤

√
n, and (ii) x ≡ by (mod n).

Although well known in certain circles – e.g. [N], [AZ] – we maintain that Thue’s
Lemma is not nearly as famous as it should be. Its extreme innocuousness notwith-
standing, Theorem 1 is a powerful tool in many number-theoretic endeavors, in-
cluding the study of integers represented by binary quadratic forms.

We will find useful a generalization of Theorem 1 due to I.M. Vinogradov [Vi27]
(and later, but presumably independently, to A. Scholz [Sch]).

Theorem 2. (Vinogradov’s Lemma) Let a, b, n ∈ Z+ with n > 1 and gcd(ab, n) =
1, and let α ∈ R>0. There are integers x, y, not both zero, such that:
(i) ax ≡ by (mod n),
(ii) |x| < α, |y| ≤ n

α .

Proof. Step 1: Consider {S = (i, j) ∈ Z2 | 0 ≤ i ≤ ⌊α⌋, 0 ≤ j ≤ ⌊n
α⌋}. Since

#S = (⌊α⌋ + 1)
(
⌊n
α⌋+ 1

)
> α · n

α = n, by the Pigeonhole Principle there are
distinct elements (i1, j1), (i2, j2) ∈ S such that

ai1 − bj1 ≡ ai2 − bj2 (mod n).

Put x = i1− i2 and y = j1− j2. Then x and y are not both zero, ax ≡ by (mod n),
|x| ≤ ⌊α⌋ and |y| ≤ ⌊n

α⌋.
Step 2: If α ̸∈ Z, then |x| ≤ α ⇐⇒ |x| < α, and we are done. If α ∈ Z, then
take 0 < ϵ < α and apply the result of Step 1 with α− ϵ in place of α: there exist
integers x and y, not both zero, so that |x| ≤ α − ϵ < α and |y| ≤ n

α−ϵ . But for

sufficiently small ϵ we have ⌊ n
α−ϵ⌋ = ⌊n

α⌋ and thus |y| ≤ ⌊n
α⌋ ≤

n
α . �

Remark 1.1: Vinogradov’s Lemma implies Thue’s Lemma: take α =
√
n.

Remark 1.2: Vinogradov had a = 1 in Theorem 2, as in fact will be the case
in all of our applications. But it costs nothing extra to state and prove the result in
this more general way, and doing so identifies Theorem 2 as a (very) special case of
a theorem of Brauer-Reynolds on small solutions to systems of linear congruences
[BrRe51]. The Brauer-Reynolds Theorem should also be better known – the lone
example I know of an elementary number theory text which makes use of it is [L]
– but this is an axe to be ground elsewhere.

2. Preliminaries on Quadratic Reciprocity and Quadratic Forms

2.1. Quadratic reciprocity law.

Recall that for an integer n and an odd prime p, the Legendre symbol (np ) is
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defined to be 0 if p | n, 1 if gcd(p, n) = 1 and n is a square modulo p and −1 if n
is not a square modulo p.

Theorem 3. (Quadratic Reciprocity) Let ℓ and p be distinct odd primes. Put

ℓ∗ = (−1)
ℓ−1
2 ℓ. Then:

a) (−1
p ) = 1 ⇐⇒ p ≡ 1 (mod 4).

b) ( 2p ) = 1 ⇐⇒ p ≡ ±1 (mod 8).

c) ( ℓ
∗

p ) = (pℓ ).

Proof. See e.g. [HW] or [IR, §5.2, Thm. 1]. �
2.2. Binary quadratic forms.

By a binary quadratic form we mean a polynomial

q(x, y) = Ax2 +Bxy + Cy2

with A,B,C ∈ Z.

We say that an integer m is represented by q – or, less formally, “of the form
q(x, y)” – if there are x, y ∈ Z such that q(x, y) = m. An integer n is primitively
represented by q if there are x, y ∈ Z with gcd(x, y) = 1 such that q(x, y) = n.

A quadratic form q(x, y) is primitive if gcd(A,B,C) = 1. When considering
integer reperesentations, it is no loss of generality to restrict to the primitive case.

A quadratic form q is anisotropic if for all (x, y) ∈ Z2, q(x, y) = 0 =⇒ (x, y) =
(0, 0). We will only be interested in anisotropic forms here. In fact, we will al-
most entirely be concerned with forms satisfying the stronger property that for all
x, y ∈ R, q(x, y) ≥ 0, with equality iff (x, y) = (0, 0). Such forms are called posi-
tive definite.4 A quadratic form is indefinite if there exist (x1, y1), (x2, y2) ∈ R2

such that q(x1, y1) > 0 and q(x2, y2) < 0.

The discriminant of q(x, y) is defined as ∆ = B2 − 4AC.

Remark 2.1: The binary quadratic form q(x, y) is anisotropic iff ∆ is not a square.

Evidently ∆ ≡ 0, 1 (mod 4). Conversely, given any integer ∆ ≡ 0, 1 (mod 4),
there exists a binary quadratic form of discriminant ∆. Indeed, if ∆ = −4D then

q∆(x, y) = x2 +Dy2

has discriminant −4D = ∆; whereas if ∆ ≡ 1 (mod 4) and E = 1−∆
4 , then

q∆(x, y) = x2 + xy + Ey2

has discriminant 1− 4E = ∆. The forms q∆ are called principal.

Proposition 4. Let Q(x, y) be a quadratic form of discriminant ∆; let n ∈ Z\{0}.
a) If n is squarefree, then all representations of n by Q(x, y) are primitive.
b) If Q(x, y) primitively represents n, then ∆ is a square modulo n.

4Negative definite forms are defined in the obvious way but not usually studied, since replacing
q with −q we get back to the positive definite case.
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Proof. a) Suppose n = Q(x, y) and e = gcd(x, y). Then e2 | n.
b) Suppose there exist p, q ∈ Z with gcd(p, q) = 1 such that Q(p, q) = n. Then

there exist integers r and s such that ps − rq = 1. Then the matrix

(
p q
r s

)
has determinant 1, so that the discriminant ∆′ of the quadratic form Q′(x, y) =
Q(px+ qy, rx+ sy) is equal to ∆. On the other hand, we compute

Q′(x, y) = Q(px+ qy, rx+ sy) = nx2 + (2apr + bps+ brq + 2cqs)xy +Q(r, s)y2.

Thus

(1) ∆ = ∆′ = (2apr + bps+ brq + 2cqs)2 − 4nQ(r, s),

so ∆ is a square modulo n. �

Next we record some simple multiplicative identities.

Proposition 5. Let D,A,B, x1, x2, y1, y2 ∈ Z. Then:(
x2
1 +Dy21

) (
x2
2 +Dy22

)
= (x1x2 −Dy1y2)

2
+D (x1y2 + x2y1)

2
,(

Ax2
1 +By21

) (
x2
2 +ABy22

)
= A (x1x2 −By1y2)

2
+B (x2y1 +Ax1y2)

2
,(

Ax2
1 +By21

) (
Ax2

2 +By22
)
= (Ax1x2 −By1y2)

2
+AB (x1y2 + x2y1)

2
.

Corollary 6. For any ∆ ≡ 0 (mod 4), the set of integers represented by the prin-
cipal form q∆ is closed under multiplication.

Remark 2.2: There are analogous multiplicative identities which show that the set
of integers represented by a principal form of discriminant ∆ ≡ 1 (mod 4) is also
closed under multiplication. We will be mainly interested in diagonal forms, so we
do not give the identities here. (In fact, it is a pleasant exercise to discover them.)

Theorem 7. Let q(x, y) = Ax2 +Bxy + Cy2 be a primitive anisotropic quadratic
form of discriminant ∆, and let p be an odd prime such that (∆p ) = −1.

a) Suppose that x, y ∈ Z are such that p | q(x, y). Then p | x and p | y.
b) It follows that for all (x, y) ∈ Z2 \ {(0, 0)}, ordp(q(x, y)) is even.

Proof. Step 0: Put P (t) = At2 +Bt+C ∈ Z[t]. Since ∆ is not a square modulo p,
a fortiori it is not a square in Z – or equivalently, in Q – so that p(t) ∈ Q[t] is an
irreducible quadratic. Our assumption gcd(A,B,C) = 1 ensures that p(t) ∈ Z[t]
is primitive, so by Gauss’s Lemma p(t) is an irreducible element of the UFD Z[t].
Hence it is also prime, so that R = Z[t]/(p(t)) is an integral domain.

On the other hand, let α be the complex number −B+
√
∆

2A . Then the homomor-

phism Z[t] → Z[α] which sends t to α induces an isomorphism of rings R
∼→ Z[α].

Step 1: Let p be an odd prime number such that (∆p ) = −1. We claim that pR is a

prime ideal; equivalently, we claim that the quotient ring R/pR ∼= Z/pZ[t]/(At2 +
Bt+C) is an integral domain. But in turn this is equivalent to the (natural image
in Z/pZ[t] of the) polynomial p(t) being irreducible in Z/pZ[t], which follows from
our assumption that the discriminant ∆ is not a square in the field Z/pZ. By Step
0, we also have that pZ[α] is a prime ideal of Z[α].
Step 2: Put α = −B−

√
∆

2A . Note that Z[α] = Z[α]. For integers x and y, not both
zero, we have in Z[α] a factorization

q(x, y) = (x+ αy)(x+ αy).
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Therefore if p | q(x, y), then since pZ[α] is a prime ideal, we must have either
p | x + αy or p | x + αy. Without loss of generality we consider the first case: we
have that x

p + y
pα ∈ Z[α], i.e., there exist integers X and Y such that(

x

p

)
+

(
y

p

)
α = X + Y α.

Thus X = x
p and Y = y

p , so that p | x and p | y, establishing part a).

Step 3: By Step 2, if p | q(x, y), then x
p ,

y
p ∈ Z and thus ordp(q(

x
p ,

y
p )) = 2 +

ordp(q(x, y)). An evident induction finishes the proof. �

In light of Theorem 7, it is useful to give a name to odd prime numbers p bearing
the property (∆p ) = −1 with respect to a fixed discriminant ∆. We call such primes

anisotropic primes for ∆.

3. Thue-Vinogradov Applied to Binary Quadratic Forms

Let’s apply Theorems 1 and 2 to the representation of integers by quadratic forms.

Theorem 8. Let q(x, y) = Ax2 +Bxy +Cy2 ∈ Z[x, y] be an anisotropic quadratic
form of discriminant ∆ = B2 − 4AC. Let n ∈ Z+ be a nonsquare such that
gcd(n, 2C) = 1 and ∆ is a square modulo n.
a) There exist k, y, z ∈ Z with 0 < |x|, |y| <

√
n, 0 < |k| < |A| + |B| + |C|, such

that q(x, y) = kn.
b) If q is positive definite, then k > 0.
c) If A > 0, B = 0, C < 0, then C < k < A.
d) If AC < 0, then |k| < max(|A|+ |B|, |C|+ |B|).

Proof. a) Since n is odd, 1
2 ∈ Z/nZ and thus the quadratic formula is valid: since

the discriminant ∆ of the quadratic Ax2 + Bx + C is a square modulo n, there is
a rational root. Thus there exist b, l ∈ Z such that Ab2 + Bb+ C = ln. If a prime
p divides b and n, it also divides C, contradicting our assumption; thus we must
have gcd(b, n) = 1. We apply Thue’s Lemma (Theorem 1) to get x, y ∈ Z, not both
zero, such that 0 ≤ |x| <

√
n, 0 ≤ |y| ≤

√
n and x ≡ by (mod n). On the one hand

q(x, y) = Ax2 +Bxy + y2 = y2(Ab2 +Bb+ C) ≡ 0 (mod n)

and on the other,

0 < |q(x, y)| ≤ |Ax2 +Bxy + Cy2| < (|A|+ |B|+ |C|)n,

proving part a).

b) If q is positive definite, then k = q(x,y)
n > 0.

c) Suppose q(x, y) = Ax2 + Cy2 with A > 0, C < 0. Then

C <
q(x, y)

n
< A.

d) If AC < 0, then

|q(x, y)|
n

≤ |B|+ |Ax2 + Cy2| < |B|+max(|A|, |C|) = max(|A|+ |B|, |C|+ |B|).

�
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Theorem 9. Let q(x, y) = Ax2 + Bxy + Cy2 ∈ Z[x, y] be an anisotropic. Let
n ∈ Z+ be such that gcd(n, 2AC) = 1 and B2 − 4AC is a square modulo n.

a) There are nonzero integers x, y, k with |k| < |B|+ 2
√

|A||C| and q(x, y) = kn.
b) In addition to the hypotheses of part a), suppose moreover that AC < 0. Then

there are nonzero integers x, y, k with 0 < |k| < |B|+
√
|A||C|.

Proof. By interchanging x and y if necessary, we may assume |A| ≤ |C|.
a) As in the proof of Theorem 8, there are b, l ∈ Z with gcd(b, n) = 1 and Ab2+Bb+

C = ln. Now apply Vinogradov’s Lemma (Theorem 2) with a = 1 and α = |CA | 14
√
n

to get x, y ∈ Z, not both zero, such that x ≡ by (mod n) and

0 ≤ |x| < |C
A
| 14
√
n, 0 ≤ |y| ≤ |A

C
| 14
√
n.

Thus we have

q(x, y) = Ax2 +Bxy + y2 = y2(Ab2 +Bb+ C) ≡ 0 (mod n),

0 < |q(x, y)| ≤ |A||x|2 + |B||x||y|+ |C||y|2 < (|B|+ 2
√
|A||C|)n.

b) If AC < 0, then

0 < |q(x, y)| ≤ |Bxy|+ ||A|x2 − |C|y2| < (|B|+
√
|A||C|)n.

�

Remark 3.1: By the arithmetic-geometric mean inequality, if |A| ̸= |C|, the bound

|k| < |B|+2
√
|A||C| of Theorem 9 is an improvement of the bound |k| < |A|+ |B|+

|C| of Theorem 8. When |A| and |C| are approximately equal in size the gain is
modest, but when one is much larger than the other it is a significant improvement.
When applied to principal forms, Theorem 9 gives a considerably more useful result.

Corollary 10. a) Let D be an integer such that −D is not a square. Suppose
n ∈ Z+ is a nonsquare such that gcd(n, 2D) = 1 and −D is a square modulo n.
Then there exist integers x, y, k such that

x2 +Dy2 = kn, 0 < |k| < 2
√

|D|.

b) Let E be an integer such that 1 − 4E is not a square. Suppose n ∈ Z+ is a
nonsquare such that gcd(n, 2E) = 1 and 1− 4E is a square modulo n. Then there
exist integers x, y, k such that

x2 + xy + Ey2 = kn, 0 < |k| < 1 + 2
√
|E|.

4. First Applications of Theorem 9

In this section we give some especially simple applications of Theorem 9, of a sort
that we feel would be suitable for a first undergraduate course in number theory in
which quadratic reciprocity has been introduced.

4.1. Indefinite forms.

Theorem 11. Let n be an odd integer such that 2 is a square modulo n. Then
there exist integers x, y such that n = x2 − 2y2.
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Proof. By Theorem 8c), there are integers x, y, not both zero, such that x2−2y2 =
kp for −2 < k < 1. Thus k = −1, so that x2 − 2y2 = −n. This is just the
opposite of what we wanted to show, but take heart. The form q(x, y) = x2−2y2 is
the principal form of discriminant −8, so that by Proposition 5 the set of nonzero
integers it represents is closed under multiplication. Moreover, 12 − 2 · 12 = −1.
Therefore Proposition 5 implies that q represents n iff it represents −n. �
Corollary 12. A nonzero integer is of the form q(x, y) = x2 − 2y2 iff for every
prime p ≡ 3, 5 (mod 8), ordp(n) is even.

Proof. By Proposition 5, the set of nonzero integers of the form x2 − 2y2 is closed
under multiplication. It certainly includes all squares, 2 = 22 − 2 · 12, and by
Theorem 11 all primes p ≡ ±1 (mod 8). Therefore the conditions given in the
statement of the corollary are sufficient for n to be of the form x2−2y2. Conversely,

the primes p ≡ 3, 5 (mod 8) are precisely those for which (∆(q)
p ) = ( 8p ) = ( 2p ) = −1

– i.e., are anisotropic primes – so by Theorem 7, it is necessary that ordp(n) be
even at all such primes. �
Theorem 13. Let p > 3 be a prime number such that ( 3p ) = 1. Then there exist

integers x, y such that x2 − 3y2 = (−1)
p−1
2 p.

Proof. Applying Theorem 9c), we get nonzero integers x, y, k with x2 − 3y2 = kp
and −3 < k < 1, i.e., k = −2 or k = −1.
Case 1: p ≡ 1 (mod 4). Together with ( 3p ) = 1, this implies p ≡ 1 (mod 3).

Reducing x2 − 3y2 = kp modulo 3 shows k ≡ 1 (mod 3), so k = −2. Thus −2p is
of the form x2 − 3y2, which is not the answer that we want. But we can get there:
−2 = 12 − 3 · 12 is also represented, so by Proposition 4 also (−2p)(−2) = 4p is of
the form x2 − 3y2. Reducing x2 − 3y2 = 4p modulo 4 shows that x and y are both

even, so (x2 )
2 − 3(y2 )

2 = p = (−1)
p−1
2 p.

Case 2: p ≡ 3 (mod 4). Together with ( 3p ) = 1, this implies p ≡ 2 (mod 3).

Reducing x2−3y2 = kp modulo 3 shows k = −1, so x2−3y2 = −p = (−1)
p−1
2 p. �

Corollary 14. Let n be a nonzero integer.
a) If ord3(n) is even, then n is of the form x2 − 3y2 iff:
(i) For all odd primes p with ( 3p ) = −1, ordp(n) is even; and

(ii) n is positive iff the number of prime divisors p of n such that 3 is a square
modulo p and p ≡ 2 (mod 3), counted with multiplicity, is even.
b) Suppose that ord3(n) is odd. Then n is of the form x2 − 3y2 iff both of the
following hold:
(i) For all odd primes p with ( 3p ) = −1, ordp(n) is even;

(ii) n is positive iff the number of prime divisors p of n such that 3 is a square
modulo p and p ≡ 2 (mod 3), counted with multiplicity, is odd.

Proof. Step 0: Suppose n = 3aN with gcd(3, N) = 1 and x2 − 3y2 = 3aN . Then
3 | x so we may put x = 3X and substitute, getting 3X2 − y2 = 3a−1N . If a > 1,
then 3 | y so we may put y = 3Y and substitute, getting X2 − 3Y 2 = 3a−2N . So
we see: if a is even, n = 3aN is of the form x2 − 3y2 iff N is of that form; and if n
is odd, n = 3aN is of the form x2 − 3y2 iff −N is of that form.
Step 1: Taking Step 0 into account, it suffices to find necessary and sufficient
conditions for an integer n with gcd(3, n) = 1 to be of the form x2 − 3y2. Since
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every square is of the form x2 − 3y2 and for every prime p with ( 3p ) = 1, Theorem

13 shows that ±p is of the form x2 − 3y2, if n satisfies conditions (i) and (ii) in the
statement of the corollary, then ±n = x2 − 3y2. Reducing modulo 3, we see that
the sign is determined by the parity condition in (ii).
Conversely, suppose n = x2 − 3y2. The primes p with ( 3p ) = −1 are precisely

those for which (∆(q)
p ) = −1 – i.e., are anisotropic primes – so by Theorem 7, it

is necessary that ordp(n) be even at all such primes, so (i) is necessary. Again,
reduction modulo 3 shows that (ii) is necessary. �

Several more indefinite forms can be treated in this manner. In fact – unlike the
case of positive definite forms – it seems likely that representation theorems can
be proven for infinitely many indefinite binary quadratic forms. So we had better
leave this aside for now and turn to the definite case.

4.2. Positive definite forms.

If D = 1, then Corollary 10a) immediately yields:

Theorem 15. Let n be a positive integer such that −1 is a square modulo n. Then
there exist integers x and y such that n = x2 + y2.

Corollary 16. A positive integer n is of the form x2+y2 iff for every prime p ≡ 3
(mod 4), ordp(n) is even.

Proof. By quadratic reciprocity, for an odd prime p, (−1
p ) = 1 if p ≡ 1 (mod 4) and

(−1
p ) = −1 if p ≡ 3 (mod 4). Therefore the conditions on the p-order at primes

congruent to 3 modulo 4 are necessary by Theorem 7b). Conversely, 2 = 12 + 12

and for any n, n2 = n2 + 02. Also, if p ≡ 1 (mod 4), then −1 is a square modulo
p, so by Theorem 15, p is of the form x2 + y2. By Proposition 5a), if

n = 2apb11 · · · pbrr q2c11 · · · q2css , p1, . . . , pr ≡ 1 (mod 4), q1, . . . , qs ≡ 3 (mod 4),

then n is of the form x2 + y2. �

Theorem 17. Let n be an odd positive integer such that −2 is a square modulo n.
Then there exist integers x and y such that n = x2 + 2y2.

Proof. By Corollary 10a), there are integers x, y ∈ Z such that either x2 +2y2 = n
or x2 + 2y2 = 2n. In the former case we are done, so assume that x2 + 2y2 = 2n.
Then 2 | x, so we may write x = 2X and obtain 2n = x2 + 2y2 = 4X2 + 2y2, so
n = y2 + 2X2. �

Corollary 18. A positive integer n is of the form x2 + 2y2 iff for every prime
p ≡ 5, 7 (mod 8), ordp(n) is even.

Proof. By quadratic reciprocity, for an odd prime p, (−2
p ) = 1 if p ≡ 1, 3 (mod 8)

and (−2
p ) = −1 if p ≡ 5, 7 (mod 8). The remainder of the proof is very similar to

that of Corollary 16. Details left to the reader. �

Theorem 19. Let n be a positive integer such that gcd(12, n) = 1 and −3 is a
square modulo n. Then there exist integers x and y such that n = x2 + 3y2.
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Proof. Applying Corollary 10a), there exist integers x, y ∈ Z such that x2+3y2 = kn
for some k, 1 ≤ k ≤ 3. If k = 1, we’re done.

Consider the case x2 + 3y2 = 2n. Reducing modulo 3 we get x2 ≡ 2n (mod 3).
Let p be any (odd, by hypothesis) prime divisor of n. Then, since −3 is a square
mod n, a fortiori we have (−3

p ) = 1. By quadratic reciprocity, this implies p ≡ 1

(mod 3). That is, to say, n divisible only by primes of the form 1 (mod 3), from
which it follows that n ≡ 1 (mod 3), and thus 2n ≡ 2 (mod 3). But then x2 ≡ 2
(mod 3), a contradiction.
Consider the case x2 + 3y2 = 3n. Then x = 3X for X ∈ Z: substituting and
simplifying gives 3X2 + y2 = n, so n is of the form x2 + 3y2. �

Corollary 20. A positive integer n is of the form x2 +3y2 iff ord2(n) is even and
for every prime p ≡ −1 (mod 3), ordp(n) is even.

Proof. The method of proof of Corollaries 16 and 18 establishes this result for
all odd n. It follows by Proposition 6 that the given conditions are sufficient for
representability of n. Now suppose that n = 2am with m and a both odd. We
must show that n is not of the form x2 + 3y2.
Case 1: a = 1. Then reducing x2 + 3y2 = 2m modulo 4 gives a contradiction.
So we may assume a ≥ 3 and, seeking a contradiction, that we have integers x and
y such that x2 + 3y2 = 2am.
Case 2: x and y are both odd. Then reducing modulo 8 gives a contradiction.
Case 3: x and y have opposite parity. Then reducing modulo 2 gives a contradiction.
Case 4: x = 2X, y = 2Y . Then X2 + 3Y 2 = 2a−2m and an inductive argument
completes the proof. �

Theorem 21. Let n be an odd positive integer such that −4 is a square modulo n.
Then there exist integers x and y such that n = x2 + 4y2.

Proof. Writing x2 + 4y2 as x2 + (2y)2, the result becomes equivalent to the claim
that in the conclusion of Theorem 15, we can take one of x or y to be even. This is
certainly true, because if they were both odd, then x2 + y2 = n would be even. �

Corollary 22. A positive integer n is of the form x2 +4y2 iff ord2(n) ̸= 1 and for
every prime p ≡ −1 (mod 4), ordp(n) is even.

Proof. Again the arguments for odd n are similar to those given above. If ord2(n) =
1, then reducing modulo 4 shows that n is not of the form x2 + 4y2. On the other
hand, 4 = 22 + 4 · 02 and 8 = 22 + 4 · 12 are both of the form x2 + 4y2, hence so is
every n = 2k with k > 1. The result follows. �

Theorem 23. Let n be a positive integer such that gcd(14, n) = 1 and −7 is a
square modulo n. Then there exist integers x and y such that n = x2 + 7y2.

Proof. Applying Corollary 10a), there exist integers x, y ∈ Z such that x2+7y2 = kn
for some k, 1 ≤ k ≤ 5. If k = 1 we are done, so assume k > 1.
Step 1: Reducing modulo 7, we get x2 ≡ kn (mod 7), i.e., kn is a nonzero square
modulo 7. Let p be any (odd, by hypothesis) prime divisor of n. Then our hypoth-
esis implies (−7

p ) = 1, so by quadratic reciprocity p is a square modulo 7. Therefore

n is a product of nonzero squares modulo 7 so it itself a nonzero square modulo
7. Therefore k, being the quotient of nonzero squares modulo 7, is itself a nonzero
square modulo 7: i.e., k = 1, 2, 4.
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Step 2: Suppose x2 +7y2 = 2n. The possible values of the left hand side modulo 8
are 0, 1, 3, 4, 5, 7. The possible values of the right hand side are 2, 6: contradiction.
Step 3: Suppose x2+7y2 = 4n. Since the right hand side is even, x and y must have
the same parity. If they are both odd, x2 + 7y2 ≡ 0 (mod 8), contradiction. So x
and y are both even: x = 2X, y = 2Y , 4X2 +4 · 7Y 2 = 4p, and X2 +7Y 2 = p. �

Corollary 24. A positive integer is of the form x2 + 7y2 iff ord2(n) ̸= 1 and for
every prime p ≡ 3, 5, 6 (mod 7), ordp(n) is even.

Proof. By quadratic reciprocity, for an odd prime p, (−7
p ) = 1 if p ≡ 1, 2, 4 (mod 7)

and (−7
p ) = −1 if p ≡ 3, 5, 6 (mod 7). The rest is left to the reader. �

5. Primes of the form x2 +Dy2 for idoneal D

5.1. Auxiliary Congruence Conditions and Small Examples.

The reader may have wondered why, in §4.2, the values D = 5 and D = 6 were
skipped. The answer is that, for these values, the converse of Proposition 4 is false:
the necessary condition (−D

p ) = 1 is no longer sufficient for a prime p to be of the

form x2 +Dy2.

Example 5.1: Let D = 5 and p = 3. Then (−5
3 ) = 1, but the equation 3 = x2 +5y2

has no solutions.

Example 5.2: Let D = 6 and p = 5. Then (−6
5 ) = 1, but the Diophantine equation

5 = x2 + 6y2 has no solutions.

The reasons for this are not so mysterious: for these values of D – as well as infin-
itely many others – there are auxiliary congruence conditions to take into account.
Indeed we have the following result.

Proposition 25. (Auxiliary Congruences) Let D ∈ Z+, and let p be a prime with
gcd(p, 2D) = 1. Suppose that there exist x, y ∈ Z such that x2 +Dy2 = p. Then:
a) For each odd prime ℓ dividing D, (pℓ ) = 1.
b) If D ≡ 0 (mod 8), then p ≡ 1 (mod 8).
c) If D ≡ 1, 4, 5 (mod 8), then p ≡ 1 (mod 4).
d) If D ≡ 2 (mod 8), then p ≡ 1, 3 (mod 8).
e) If D ≡ 6 (mod 8), then p ≡ 1, 7 (mod 8).

Proof. For part a) we reduce modulo ℓ to get x2 ≡ p (mod ℓ). Since gcd(p,D) = 1,
gcd(p, ℓ) = 1 and thus (pℓ ) = 1. The other cases involve reducing modulo 8 and
considering the various possibilities for p (mod 8): details are left to the reader. �

Theorem 26. Let p be a prime number with gcd(10, p) = 1. Suppose that p ≡ 1
(mod 4) and (−5

p ) = 1. Then there exist x, y ∈ Z such that p = x2 + 5y2.

Proof. By Corollary 10a), there are integers x, y ∈ Z such that x2 + 5y2 = kp for
some k, 1 ≤ k ≤ 4. Reducing modulo 5, we get x2 ≡ kp (mod 5), i.e., kp is a
nonzero square modulo 5. Our hypotheses imply that p is a square modulo 5, and
hence so is k: i.e., k = 1 or k = 4. If x2 + 5y2 = 4p, then by Lemma 31, x and y
are even, so p = (x2 )

2 + 5(y2 )
2. �
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Theorem 27. A prime p is of the form x2+6y2 iff (−6
p ) = 1 and p ≡ ±1 (mod 8).

Proof. We may assume gcd(p, 10) = 1. The given conditions are necessary by
Proposition 25. Conversely, assume they hold. By Corollary 10a), there are x, y ∈ Z
such that x2+6y2 = kp for some k, 1 ≤ k ≤ 4. Reducing modulo 3, we get x2 ≡ kp
(mod 3), so that kp ≡ 0, 1 (mod 3). Our hypotheses imply p ≡ 1 (mod 3), so
k = 1, 3, 4. By Lemma 31, if 4p is of the form x2 + 6y2, so is p.

It remains to consider the case k = 3: x2+6y = 3p. Write x = 3X and substitute,
getting 3x2 + 2y2 = p. Certainly 3 is not of the form x2 + 6y2, so we may assume
p > 3. Reducing modulo 3 then gives p ≡ 2y2 ≡ 2 (mod 3), a contradiction. �

The following result applies the method to a nonprincipal form.

Theorem 28. A prime p different from 2 and 5 is of the form 2x2 + 5y2 iff
(−10

p ) = 1 and p ≡ 2, 3 (mod 5) iff p ≡ 7, 13, 23, 27 (mod 40).

Proof. Necessity: Suppose p = 2x2 + 5y2. Reducing modulo p gives 2x2 + 5y2 ≡ 0
(mod p). If x ≡ 0 (mod p), then p = 2x2 + 5y2 shows y ≡ 0 (mod p) and thus
p = 2x2+5y2 is divisible by p2, a contradiction. Therefore 2, 5, x, y are all invertible
modulo p, and 2x2 + 5y2 ≡ 0 =⇒ −5

2 ≡ X2 (mod p), which holds iff −10 ≡ X2

(mod p), i.e., iff (−10
p ) = 1. Similarly, reducing modulo 5 gives p ≡ 2x2 (mod 5),

so p is not a square modulo 5 and hence p ≡ 2, 3 (mod 5). Thus

1 = (
−10

p
) = (

−2

p
)(
5

p
) = −(

−2

p
),

so −2
p = −1, and thus p ≡ 5, 7 (mod 8). A Chinese Remainder Theorem calculation

gives p ≡ 2, 3 (mod 5) and p ≡ 5, 7 (mod 8) ⇐⇒ p ≡ 7, 13, 23, 27 (mod 40).
Sufficiency: Suppose p > 5 satisfies the necessary congruence conditions. In partic-
ular p is prime to 10 and such that (−10

p ) = 1, so by Theorem 9 there are x, y, k ∈ Z
with 2x2 + 5y2 = kp and 1 ≤ k < 2

√
10, i.e., 1 ≤ k ≤ 5. If k = 1, we’re done.

• Suppose 2x2+5y2 = 2p. Reducing modulo 5 gives p ≡ x2 (mod 5), contradiction.
• Suppose 2x2+5y2 = 3p. Reducing modulo 5 gives p ≡ x2 (mod 5), contradiction.
• Suppose 2x2 +5y2 = 4p. Then y is even, and reducing modulo 4 shows x is even.
So we may put x = 2X, y = 2Y to get 2X2 + 5Y 2 = p.
• Suppose 2x2 + 5y2 = 5p. Put x = 5X to get 10X2 + y2 = p. Reducing mod 5
shows (p5 ) = 1, contradiction.

�

5.2. The representation theorem.

Example 5.3: Consider the quadratic form q(x, y) = x2 + 11y2. In this case, the
congruence conditions (−11

p ) = 1 togther with the auxiliary congruence conditions

of Proposition 25 are not sufficient for a prime p to be of the form x2+11y2. Indeed,
take p = 353; it is congruent to 1 modulo 44, so satisfies all congruence conditions,
but is easily seen not to be of the given form. In fact, with a bit more work it can
be shown that the congruence x2 + 11y2 ≡ 353 (mod n) has solutions for every
n ∈ Z+. That is, the set of primes represented by x2+11y2 is not characterized by
any set of congruence conditions whatsoever. In fact, the following is true.

Theorem 29. For a positive integer D, the following are equivalent:
(i) There exist coprime positive integers a and N such that every prime number
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p ≡ a (mod N) is of the form x2 +Dy2.
(ii) Every prime number p ≡ 1 (mod 4D) is of the form x2 +Dy2.
(iii) There is a nonempty subset S ⊂ (Z/4DZ)× such that for a prime number p
with gcd(p,D) = 1, p is of the form x2 +Dy2 iff p ≡ s (mod 4D) for some s ∈ S.
(iv) D = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33,
37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133,
165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408,
462, 520, 760, 840, 1320, 1365, 1848, plus at most two further values of D. Any
further values of D which exist are at least 108.
A positive integer D satisfying the above equivalent conditions is said to be idoneal.

Proof. This is a classical, but not easy, result. The most accessible reference for
the nonspecialist is probably [C]. �
Remark 5.2: It has been shown that assuming the Generalized Riemann Hypothesis
(GRH), D = 1848 is indeed the largest idoneal number. It is known unconditionally
that if there are any idoneal numbers D > 1848, there is exactly one such squarefree
number Dbig. Depending upon certain congruence properties of Dbig, there may
also be one further nonsquarefree idoneal number of the form N2Dbig.

5

In other words, we need only try out our elementary methods on idoneal numbers
D. Conversely, we will now show that (at least) for all squarefree idoneal numbers
D appearing on the above list, our elementary methods succeed in determining all
primes represented by x2 +Dy2.

Theorem 30. (Representation Theorem) Let D be one of the 65 idoneal numbers
listed in Theorem 29. Then an odd prime p is of the form x2 +Dy2 iff p = D or
all of the following hold:
(i) (−D

p ) = 1,

(ii) For all odd primes ℓ | D, (pℓ ) = 1,
(iii) If D ≡ 0 (mod 8), then p ≡ 1 (mod 8),
(iv) If D ≡ 1, 4, 5 (mod 8), then p ≡ 1 (mod 4),
(v) If D ≡ 2 (mod 8), then p ≡ 1, 3 (mod 8),
(vi) If D ≡ 6 (mod 8), then p ≡ 1, 7 (mod 8).

Of course Theorem 30 is really 65 different results, of which we have already proved
the first (and easiest!) seven, corresponding to 1 ≤ D ≤ 7. I don’t know how
to prove any 65 theorems without taking some time and space, but I have tried
to organize cognate cases and describe various routine calculations in a uniform,
high level way so as to make the proof reasonably palatable. We give two easy
preparatory lemmas and then begin the proof proper. In view of the of the Auxiliary
Congruences (iii) through (vi), it is natural to group together the values of D lying
in the same congruence class modulo 8, and this is what we do.

5.3. Preparatory Lemmas.

Lemma 31. Suppose A,B, x, y ∈ Z are such that 4n = Ax2 + By2. Suppose
moreover that one of the following holds:
(i) A is odd and B ≡ 2 (mod 4) (or conversely).

5It is very common the find in the literature the statement that there is at most one further
idoneal value of D, but in [Ka09], E. Kani argues convincingly that this must be a mistake.
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(ii) A and B are both odd and A ≡ B (mod 4).
Then x and y are both even, hence n = A(x2 )

2 +B(y2 )
2.

Proof. We need only reduce 4n = Ax2 +By2 modulo 4 and note that under either
hypothesis, Ax2 +By2 ≡ 0 (mod 4) forces x and y to be even. �
Lemma 32. Let q be a prime number with gcd(q, n) = 1. Suppose that ordq(D) = 1
and ordq(kn) ≥ 2. Then if x2 + Dy2 = kn, then x = qX and y = qY so that

X2 +Dy2 = k
q2n.

Proof. Since q | D and q | k, q | x2. Since q is prime, by Euclid’s Lemma q | x and
we may take x = qX. Substituting and simplifying gives qX2 + D

q y
2 = k

qn. Since

q | qX2 and q | k
qn, q | D

q y
2. Since q is prime and q - D

q , q | y2 and then q | y.
Taking y = qY and simplifying, we get X2 +Dy2 = k

q2n. �

5.4. Proof of the Representation Theorem: D ≡ 1, 5 (mod 8).

Suppose D ∈
{5, 9, 13, 21, 25, 33, 37, 45, 57, 85, 93, 105, 133, 165, 177, 253, 273, 345, 357, 385, 1365}.
We have x, y, k ∈ Z with x2 +Dy2 = kp and 1 ≤ k ≤ 2

√
D.

Step 0: If k = 1, we are done.
Step 1: We claim first that we cannot have k = 2: indeed, each of the above values
of D is divisible by some q ∈ {3, 5, 11, 13, 19, 37}, hence by an odd prime q with
( 2q ) = −1. Therefore reducing x2 + Dy2 = 2p modulo q gives a contradiction.

Moreover, suppose 4 | k. Put k = 4K. By Lemma 31 x2 + Dy2 = 4K implies
x = 2X, y = 2Y and thus X2 +DY 2 = k. So we may assume k is odd.
Step 2: Since p,D ≡ 1 (mod 4), reducing modulo 4 shows k ̸≡ 3 (mod 4).
Step 3: If q is an odd prime dividingD, then reducing (2) modulo q shows (kq ) ̸= −1.

Step 4: If q is an odd prime exactly dividing D, then by Lemma 32 we need not
consider any values of k with ordq(k) ≥ 2.

Step 5: We compile the list of anisotropic primes, i.e., primes ℓ ≤ 2
√
D with

gcd(ℓ, 2D) = 1 and (−D
ℓ ) = −1. For each of these primes, if ℓ | k then ℓ | x,

ℓ | y, so (xℓ )
2 + D(yℓ )

2 = k
ℓ2 p. Thus we need not consider values of k which are

divisible by any anistropic prime. It turns out that in all cases every prime ℓ <
√
D

with gcd(ℓ, 2D) = 1 is anisotropic, but there may be “isotropic primes” ℓ with√
D ≤ ℓ < 2

√
D with (−D

ℓ ) = 1. Thus the values of k we need to consider are those
for which every odd prime divisor is istotropic or divides D; are exactly divisible
by q if ordq(D) = 1; are either odd or exactly divisible by 2; and are not congruent
to 3 modulo 4. Happily, in all cases this leaves us with a short (possibly empty)
list of values of k to consider. In fact, it turns out that the above considerations
complete the proof for each of the following values of D:

D ∈ {9, 13, 21, 33, 37, 85, 93, 105, 133, 165, 177, 253, 273}.
Step 6: We consider the remaining cases.
D = 25: We are left to consider k = 5, and reducing modulo 5 gives a contradiction.
D = 45: We are left to consider k = 6, 9, 10. If k = 6, take x = 3X to get
3X2 +9y2 = 6p and reduce modulo 3 to get a contradiction. If k = 9, take x = 9X
to get 9X2 + 5y2 = p, and reduce modulo 3 to get a contradiction. If k = 10, take
x = 5X to get 5X2 + 9y2 = 2p, and reduce modulo 5 to get a contradiction.
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D = 57: We are left to consider k = 6. Take x = 3X to get 3X2 +19y2 = 2p, and
reduce modulo 3 to get a contradiction.
D = 345: We are left to consider k = 30. Take x = 5X to get 5X2 + 69y2 = 6p,
and reduce modulo 23 to get a contradiction.
D = 357: We are left to consider k = 21. Take x = 21X to get 21X2 + 17y2 = p,
and reduce modulo 3 to get a contradiction.
D = 385: We are left to consider k = 14. Take x = 7X to get 7X2 + 55y2 = 2p,
and reduce modulo 7 to get a contradiction.
D = 1365: We are left to consider k = 30. Take x = 15X to get 15X2+91y2 = 2p,
and reduce modulo 5 to get a contradiction.

5.5. Proof of the Representation Theorem: D ≡ 2, 6 (mod 8).

Suppose D ∈ {2, 4, 6, 10, 18, 22, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462}.

Let p > D be a prime satisfying the necessary congruences of the Representa-
tion Theorem. We wish to show that there are x, y ∈ Z such that x2 +Dy2 = p.
By Corollary 10a) there exist x, y, k ∈ Z such that

(2) x2 +Dy2 = kp

with 1 ≤ k ≤ 2
√
D =

√
4D.

Step 0: If k = 1, we’re done.
Step 1: Suppose k = 2. Then for any odd prime ℓ | D, reducing x2 + Dy2 = 2p
modulo ℓ yields 1 = ( 2pℓ ) = ( 2ℓ )(

p
ℓ ). Since one of our auxiliary congruences is

(pℓ ) = 1, we conclude ( 2ℓ ) = 1, i.e., every odd prime divisor of D is congruent to ±1
(mod 8). But this is not the case for any of our D’s, a contradiction.
Step 2: If 4 | k, then since D ≡ 2 (mod 4), reducing x2 + Dy2 ≡ 4k′p modulo 4
gives a contradiction.
Step 3: Suppose k is divisible by a prime ℓ with gcd(ℓ,D) = 1. Then (one computes)
in all cases we have (∆ℓ ) = −1, so ℓ is an anisotropic prime for q, so x2 +Dy2 = kp

implies x and y are both divisible by ℓ and thus (xℓ )
2 +D(yℓ )

2 = ( k
ℓ2 )p. Continuing

in this way, we may assume that k is not divisible by any anisotopic primes.
Case 4: Suppose k is divisible by an odd prime q | D.
D = 10: Then q = k = 5. If x2 + 10y2 = 5p, then we may put x = 5X to get
5X2 + 2y2 = p, and reducing modulo 5 gives a contradiction.
D = 18: Then q = 3. Since ⌊2

√
18⌋ = 8, we must then have that ord3(kp) = 1.

Thus x2+18y2 = 3Kp yields 3X2+6y2 = Kp with gcd(Kp, 3) = 1, a contradiction.

D = 22 or 58: Then there is no odd prime q | D with q ≤ 2
√
D.

D = 30: Then q = 3 or 5 and k = 6 or 9. If k = 6, take x = 6X to get
6X2 + 5y2 = p, and reduce modulo 3 to get a contradiction. If k = 9, take x = 3X
to get 3X2 + 10y2 = 3p and then y = 3Y to get X2 + 30y2 = p.
D = 42: Then q = 3 or q = 7. Suppose first that q = 3, so k = 3 or k = 6.
Since (p7 ) = 1 and (37 ) = (67 ) = −1, reducing x2 + 42y2 = kp modulo 7 gives a

contradiction. Now suppose q = 7, so k = 7: put x = 7X to get 7X2 + 6y2 = p;
reducing modulo 7 gives a contradiction.
D = 70: Reducing (2) modulo 5 and 7 gives (k5 ), (

k
7 ) ̸= −1. Moreover q = 5

or q = 7. If q = 5, then we need consider only k = 15: take x = 5X to get
5X2 + 14y2 = 3p; reducing modulo 5 gives a contradiction. If q = 7, we need
consider only k = 14: take x = 14X to get 14X2 + 5y2 = 2p; reducing modulo 5
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gives a contradiction.
D = 78: Reducing (2) modulo 3 and 13 gives (k3 ), (

k
13 ) ̸= −1. Moreover q = 3 or

q = 13. If q = 3, we need consider only k = 3: take x = 3X to get 3X2 +26y2 = p;
reducing modulo 3 gives a contradiction. If q = 13, we need consider only k = 13:
take x = 13X to get 13X2 + 6y2 = p; reducing modulo 13 gives a contradiction.
D = 102: Reducing (2) modulo 3 and 17 gives (k3 ), (

k
17 ) ̸= −1. Moreover q = 3 or

q = 17. If q = 3, we need consider only k = 15: take x = 3X to get 3X2+34y2 = 5p;
reducing modulo 3 gives a contradiction. If q = 17 then k = 17 and (173 ) = −1.

D = 130: Reducing (2) modulo 5 and 13 gives (k5 ), (
k
13 ) ̸= −1. Moreover q = 5 or

q = 13. If q = 5 we need consider only k = 10: take x = 5X to get 5X2+26y2 = 2p;
reducing modulo 5 gives a contradiction. If q = 13 then k = 13 and (135 ) = −1.

D = 190: Reducing (2) modulo 5 and 19 gives (k5 ), (
k
19 ) ̸= −1. Moreover q = 5 or

q = 19. If q = 5 we need only consider k = 5: take x = 5X to get 5X2 + 38y2 = p;
reducing modulo 5 gives a contradiction. If q = 19 then k = 19: take x = 19X to
get 19X2 + 10y2 = p; reducing modulo 19 gives a contradiction.
D = 210: Reducing (2) modulo 3, 5 and 7 gives (k3 ), (

k
5 ), (

k
7 ) ̸= −1. Moreover

q = 3, 5, 7. If q = 3 then k = 15 or 21. In the former case, take x = 15X to get
15X2 + 14y2 = p; reducing modulo 3 gives a contradiction. In the latter case, take
x = 21X to get 21X2+10y2 = p; reducing modulo 7 gives a contradiction. If q = 5,
then k = 15: take x = 15X to get 15X2 + 14y2 = p; reducing modulo 3 gives a
contradiction. If q = 7, then k = 21, which we have already ruled out.
D = 330: Reducing (2) modulo 3, 5 and 11 gives (k3 ), (

k
5 ), (

k
11 ) ̸= −1. Morever,

q = 3, 5, 11. From these values of q we need consider only k = 15. Take x = 15X
to get 15X2 + 22y2 = p, and reduce modulo 5 to get a contradiction.
D = 462: Reducing (2) modulo 3, 7 and 11 gives (k3 ), (

k
7 ), (

k
11 ) ̸= −1. Moreover

q = 3, 7, 11 and from these values of q we must consider k = 15, 22, 42. If k = 15,
take x = 3X to get 3X2 + 154y2 = 5p; reducing modulo 3 gives a contradiction.
If k = 22, take x = 22X to get 22X2 + 21y2 = p; reducing modulo 11 gives a
contradiction. If k = 42, take x = 42X to get 42X2 + 11y2 = p; reducing modulo
3 gives a contradiction.

5.6. Proof of the Representation Theorem: D ≡ 3, 7 (mod 8).

Suppose D ∈ {3, 7, 15}.

We have already considered D = 3 and D = 7, so suppose D = 15. Reducing
(2) modulo 3 and 5 gives (k3 ), (

k
5 ) ̸= −1, so we are left to consider k = 4 and k = 6.

Reducing x2 + 15y2 = 4p modulo 8 shows that both x and y are even, so taking
x = 2X, y = 2Y gives X2 + 15Y 2 = p. If k = 6, we may take x = 3X, getting
3X2 + 5y2 = 2p, and reducing modulo 4 gives a contradiction.

5.7. Proof of the Representation Theorem: D ≡ 4 (mod 8).

Suppose D ∈ {4, 12, 28, 60}.

D = 4 has already been considered (Theorem 21); otherwise D = 4D′ with D′ ≡ 3
(mod 4) and D′ idoneal. Suppose p satisfies the necessary congruences of the Rep-
resentation Theorem. These congruences conditions together with the theorem for
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D′ imply that p is of the form x2 +D′y2 = p. Reducing modulo 4 shows that y is
even, so p = x2 +D′(2Y )2 = x2 +DY 2.

5.8. Proof of the Representation Theorem: D ≡ 0 (mod 8).

Suppose D = 8D′ ∈

{8, 16, 40, 48, 72, 88, 120, 168, 232, 240, 280, 312, 408, 520, 760, 840, 1320, 1848}.

Let p be an odd prime satisfying the Congruence Conditions of the Representation
Theorem. By Corollary 10a), there are x, y, k ∈ Z+ with

x2 +Dy2 = kp, 1 ≤ k < 2
√
D.

Step 0: If k = 1, we are done.
Step 1: Reducing x2 + 8D′y2 = kp modulo 8 gives k ≡ 0, 1, 4 (mod 8).
Step 2: Suppose k = 4: if x2 + 8D′y2 = 4p, then we may take x = 2X to get
X2 + 2D′y2 = p. Reducing modulo 8 gives X2 + 2D′y2 ≡ 1 (mod 8). Now ob-
serve that for all the values of D above we have ord2(D

′) ∈ {1, 2}, so if y were
odd X2 ≡ 5, 7 (mod 8), a contradiction. Therefore we may put y = 2Y to get
X2 +DY 2 = p.
Step 3: Suppose that 16 - D and x2 +Dy2 = 16p. Then we may take x = 4X to
get 2X2+D′y2 = 2p. Since D′ is odd, we may take y = 2Y to get X2+2D′y2 = p.
Since p ≡ 1 (mod 4) and 2D′ ≡ 2 (mod 4), y must be even. Putting y = 2Y we
get X2 + 8D′Y2 = X2 +DY2 = p. Further, we cannot have x2 +Dy2 = 32p, since
ord2(x

2 + 8D′y2) is either even or equal to 3 and ord2(32p) = 5.
Step 5: Suppose that 16 | D. Then reducing modulo 16 shows k ̸≡ 8 (mod 16).
Step 6: As usual, we need not consider any values of k which are divisible by any
odd anisotropic primes, and we may make use of Lemma 32 to eliminate certain
values of k. Again, we are left with short lists to eliminate by more explicit analysis.
D = 8: There are no further values of k to consider.
D = 16: There are no further values of k to consider.
D = 40: We are left to consider k = 8, 20. If k = 8, then take x = 4X to get
2X2+5y2 = p, and reduce modulo 5 to get a contradiction. If k = 20, take x = 5X
to get 5X2 + 8y2 = 4p, and reduce modulo 5 to get a contradiction.
D = 48: We are left to consider k = 12. We may take x = 6X to get 3X2+4y2 = p
and then reduce modulo 4 to get a contradiction.
D = 72: We are left to consider k = 8, 9, 12. If k = 8, take x = 4X to get
2X2 + 9y2 = p, and reduce modulo 3 to get a contradiction. If k = 9, take x = 3X
to get X2 + 8y2 = p. We may take y = 3Y , so X2 + 72Y 2 = p. If k = 12, take
x = 6X to get 3X2 + 6y2 = 2p, and reduce modulo 3 to get a contradiction.
D = 88: We are left to consider k = 8. We may take x = 4X to get 2X2+11y2 = p,
and reduce modulo 11 to get a contradiction.
D = 120: We are left to consider k = 8. We may take x = 4X to get 2X2+15y2 = p
and reduce modulo 3 to get a contradiction.
D = 168: We are left to consider k = 8. We may take x = 4X to get 2X2+21y2 = p
and reduce modulo 3 to get a contradiction. If k = 16 we may take x = 4X to get
2X2 + 21y2 = 2p and then y = 2Y to get X2 + 42Y 2 = p. Reducing modulo 4
shows that Y is even, so we may put Y = 2Y and get X2 + 168Y2 = p.
D = 232: We are left to consider k = 8, 16. If k = 8 then we may take x = 4X to
get 2X2 + 29y2 = p and reduce modulo 29 to get a contradiction.
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D = 240: We are left to consider k = 16. We may take x = 4X to get
X2 + 15y2 = p. Reducing modulo 8 shows y is divisible by 4, so we may take
y = 4Y to get X2 + 240Y 2 = p.
D = 280: We are left to consider k = 8. If k = 8 we may take x = 4X to get
2X2 + 35y2 = p and reduce modulo 5 to get a contradiction.
D = 312: We are left to consider k = 8, 12. If k = 8 we may take x = 4X to get
2X2+39y2 = p and reduce modulo 3 to get a contradiction. If k = 12 we may take
x = 6X to get 3X2 + 26y2 = p and reduce modulo 3 to get a contradiction.
D = 408: We are left to consider k = 8. We may take x = 4X to get 2X2+51y2 = p
and reduce modulo 3 to get a contradiction.
D = 520: We are left to consider k = 8, 40. If k = 8 we may take x = 4X to get
2X2+65y2 = p and reduce modulo 5 to get a contradiction. If k = 40 we may take
x = 20X to get 10X2 + 13y2 = p and reduce modulo 5 to get a contradiction.
D = 760: We are left to consider k = 8, 20. If k = 8 we may take x = 4X to get
2X2+95y2 = p and reduce modulo 5 to get a contradiction. If k = 20 we may take
x = 10X to get 5X2 + 38y2 = p and reduce modulo 5 to get a contradiction.
D = 840: We are left to consider k = 8. We may take x = 4X to get 2X2+105y2 =
p and reduce modulo 5 to get a contradiction.
D = 1320: We are left to consider k = 8, 60, 64. If k = 8 we may take x = 4X to
get 2X2+165y2 = p and reduce modulo 5 to get a contradiction. If k = 60 we may
take x = 30X to get 15X2+22y2 = p and reduce modulo 5 to get a contradiction. If
k = 64 we may take x = 22X to get 2X2+165y2 = 23p. Next we may take y = 2Y
to get X2 + 330Y 2 = 22p. Next we may take X = 2X to get 2X 2 + 165Y 2 = 2p.
Next we may take Y = 2Y to get X 2 + 330Y2 = p. Reducing modulo 4 shows Y is
even and thus Y = Y and finally we get X 2 + 1320Y2 = p.
D = 1848: We are left to consider k = 8, 64. If k = 8 we may take x = 4X
to get 2X2 + 231y2 = p and reduce modulo 3 to get a contradiction. If k = 64
we may take x = 22X to get 2X2 + 231y2 = 23p. Next take y = 2Y to get
X2 + 462Y 2 = 22p. Next take X = 2X to get 2X 2 + 231Y 2 = 2p. Next take
Y = 2Y to get X 2 + 462Y2 = p. Reducing modulo 4 shows Y is even and thus
Y = Y and finally we get X 2 + 1848Y2 = p.

This completes the proof of the Representation Theorem.

6. Some representations of squarefree integers

6.1. A squarefree representation theorem.

For some idoneal values of D, we can go beyond Theorem 29 and find all square-
free values of n prime to 2D which are represented by x2 + Dy2. The idea is to
apply Theorem 9 to all the positive definite diagonal forms of discriminant −4D
and exploit the multiplication identities of Proposition 5.

Theorem 33. Let n be a squarefree positive integer prime to 3. Then:
a) n is of the form q1 = x2 + 6y2 iff −6 is a square modulo n and n ≡ 1 (mod 3).
b) n is of the form q2 = 2x2+3y2 iff −6 is a square modulo n and n ≡ −1 (mod 3).

Proof. Step 0: In both cases, the given conditions are easily seen to be necessary:
that −6 needs to be a square modulo n is a consequence of Proposition 4, and the
other conditions come from reducing modulo 3.
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Step 1: By Theorem 27, we know that if n is prime and satisfies (−6
n ) = 1 and

n ≡ 1 (mod 3), then n is of the form x2 + 6y2. In the same way, we now establish
the analogous result for primes represented by q2(x, y). Indeed, since (−6

p ) = 1,

there exist x, y, k ∈ Z, with 1 ≤ k ≤ 4, such that 2x2+3y2 = kn. Assume first that
gcd(k, 3) = 1. Then reduction modulo 3 shows k ≡ 1 (mod 3), so k = 1 or k = 4.
If 2x2 + 3y2 = 4n, then by Lemma 31, both x and y are even, so n is of the form
q2. Finally, if 2x

2+3y2 = 3n, then we may substitute x = 3X to get 6X2+y2 = n,
again a contradiction.
Step 2: Let n = p1 · · · prq1 · · · qs be a product of distinct primes in which each
pi ≡ 1 (mod 3) and each qj ≡ −1 (mod 3). The desired conclusion is equivalent
to the fact that n is of the form q1(x, y) if s is even and of the form q2(x, y) if s is
odd. But indeed, the multiplicative identities of Proposition 5 show that if n1 and
n2 are either both of the form q1 or both of the form q2, then n1n2 is of the form
q1, whereas if n1 is of the form q1 and n2 is of the form q2, then n1n2 is of the form
q2. The result follows. �
Remark 6.1: A more elegant paraphrase of the last part of the argument is: the
mapping χ3 which takes an integer n prime to 3 to its reduction modulo 3 is a qua-
dratic Dirichlet character on Z. By Step 1, and the multiplicative identity, every
squarefree integer prime to 3 is represented by exactly one of q1 and q2, and the
ones which are represented by q1 are precisely those in the kernel of χ3.

More generally:

Theorem 34. Let D = 2ℓ1 · · · ℓr be one of the 12 numbers

6, 10, 22, 30, 42, 70, 102, 130, 190, 210, 330, 462.

Then Thue-Vinogradov will show a squarefree positive integer n prime to D
2 is of

the form x2 +Dy2 iff −D is a square modulo n and ( n
ℓi
) = 1 for all 1 ≤ i ≤ r.

The proof of Theorem 34 proceeds along the lines of Theorem 33, except that when
r > 1 we need an analogue of Proposition 5 giving an identity for the product of
two distinct nonprincipal diagonal forms of discriminant D.

For C | D, put qC = Cx2 + D
C y2. Now we have the following result.

Proposition 35. Let D be a squarefree positive integer, and let A,B ∈ Z+ be
divisors of D. Moreover, put d = gcd(A,B) and a = A

d , b =
B
d .

a) For any integers x1, x2, y1, y2, we have(
Ax2

1 +
D

A
y21

)(
Bx2

2 +
D

B
y22

)
= ab

(
dx1x2 −

D

dab
y1y2

)2

+
D

ab
(ax1y2 + bx2y1)

2
.

b) Thus if we have an integer n of the form qA and an integer n′ of the form qB,
the product nn′ is of the form q AB

gcdA,B2
.

Proof. We have a polynomial identity(
Ax2

1 +
D

A
y21

)(
Bx2

2 +
D

B
y22

)
= AB

(
x1x2 −

D

AB
y1y2

)2

+
D

AB
(Ax1y2 +Bx2y1)

2
.

Substituting A = da, B = db gives us part a). As for part b), it is enough to note
that since D is squarefree, so are A and B, hence gcd(a, d) = gcd(b, d) = gcd(a, b) =
1 are pairwise coprime divisors of D, so D

dab and D
ab are integers. �
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The proof of Theorem 34 using Thue-Vinogradov is quite similar to that of Theorem
30. However, we are concerned that the reader may not wish to see further explicit
calculations along the lines of §5.4− 5.8, so to change things up a bit we will give a
non-elementary proof of Theorem 34. Specifically, we will use some classical genus
theory and facts about idoneal numbers to guarantee that the Thue-Vinogradov
method will succeed without looking explicitly at cases. This line of reasoning has
the following curious benefit: in the (unlikely, but not provably false given current
technology) event that there is a squarefree idoneal number Dbig ≡ 2 (mod 4) with
Dbig > 462, then can be sure that the Thue-Vinogradov method will succeed in
determining which squarefree numbers are of the form x2 +Dbigy

2!

6.2. Further background on quadratic forms.

We will need to assume some background in quadratic forms: namely Minkowski
reduction, Gauss Composition and elementary genus theory. A good reference for
all of these is [C, Ch. 1]. In particular we will make use of:

Theorem 36. ([C, Lemma 2.5]) Let ∆ ≡ 0, 1 (mod 4) be a negative integer. Let
n be an odd integer relatively prime to ∆. Then TFAE:
(i) ∆ is a square modulo n.
(ii) n is primitively represented by some primitive, positive definite binary quadratic
form q(x, y) of discriminant ∆.

Theorem 37. ([C, Thm. 2.8]) Let q be a primitive, positive definite binary qua-
dratic form of discriminant ∆.
a) There exists a unique primitive positive definite binary quadratic form q′(x, y) =
ax2 + bxy + cy2 of discriminant ∆ such that:
(i) q′ is SL2(Z)-equivalent to q,
(ii) |b| ≤ a ≤ c,
(iii) if |b| = a or a = c then b ≥ 0,

(iv) a ≤ |∆|
3 .

A form q′ satisfying (i) through (iv) is called Minkowski reduced. Note that the
principal forms q∆ are Minkowski reduced. More generally, a primitive diagonal
form Ax2 +By2 is Minkowski-reduced iff A < B (or A = B = 1).

6.3. The proof of Theorem 34.

Suppose that D = 2ℓ1 · · · ℓr is a squarefree even idoneal number.

For each pair of positive integers (a, c) with a < c and ac = D, let qa = ax2 + cy2.
Then each qD,a is a primitive, positive definite Minkowski-reduced form of discrim-
inant −4D. This gives 2r pairwise inequivalent forms of discriminant −4D. By
[C, Prop. 3.11], the number of genera of discriminant −4D is precisely 2r. By
our assumption that D is idoneal, each genus has a unique class, and therefore
h(−4D) = 2r and the qD,a’s represent all the classes of forms of discriminant −4D.
Therefore, by Theorem 36, if n is squarefree and prime to D, then −4D is a square
modulo n iff n is represented by some form qD,a, and if so, it is represented by
exactly one such form.

Step 1: For each odd prime ℓ dividing D, consider the quadratic character χℓ : n 7→
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(nℓ ). If qa = ax2+by2 = n, then – as we have seen many times! – reduction modulo ℓ

gives us a quadratic condition on n. Namely, if ℓ | a, then we get (nℓ ) = ( bℓ ), whereas
if ℓ | b we get (nℓ ) = (aℓ ). We call these the generic characters and compile them
into a single map Θ : (Z/DZ)× → {±1}r, n 7→ (χ1(n), . . . , χr(n)). Similarly, for
each reduced representative qa we may define Θ(qa) ∈ {±1}r. Then the fundamen-
tal fact is that for a positive squarefree integer n prime to D such that −4D is a
square modulo n, n is represented by some form in the genus of qa iff Θ(n) = Θ(qa).

In the case of an idoneal D ≡ 2 (mod 4), this recovers all the results that we
have proven by elementary methods! However, our goal here is to use this genus
theory to guarantee that the method of Thue-Vinogradov will succeed. We need a
classical fact about idoneal numbers.

Proposition 38. ([Ka09, Prop. 25]) If D is an idoneal number, then for all odd

primes ℓ <
√
D we have (−D

ℓ ) ̸= 1.

We now begin the proof of Theorem 34. More precisely, we will show that the
method of Thue-Vinogradov recovers the above conclusion: namely, that a square-
free n prime to D and such that −4D is a square mod n is represented precisely by
the form qa such that Θ(qa) = Θ(n).

Step 1: Let p be a prime number which is prime to D, and let a be such that
Θ(qa) = Θ(p). (Thus we know that qa represents p, but the goal is to show that we
can deduce this elementarily from Thue-Vinogradov.) Applying Thue-Vinogradov
to qa and p, we get that there exist k, x, y such that ax2+by2 = kp with 1 ≤ k < a+b.
We may in fact assume that k < D.
Suppose first that k = ℓ is an odd prime which is prime to D. If (−4D

ℓ ) = −1,

then ax2 + by2 = ℓp implies that ordℓ(ℓp) ≥ 2, i.e., that ℓ = p, a contradiction
since ℓ < D < p. Next suppose (−4D

ℓ ) = 1, so that ℓ is represented by some form
of discriminant −4D. But the only primes less than a + b which are represented
by qa = ax2 + by2 are a and or b (if either of these happens to be prime), neither
of which is prime to D. So qa does not represent ℓ, and by idoneality ℓ is then
represented by a quadratic form qa′ in a different genus. By the identity of Propo-
sition 35a), ℓp is then represented by the product genus qa′′ = qaqa′ . If qa′′ = qa,
then q′ lies in the principal genus, which is a contradiction since x2 +Dy2 does not
represent ℓ < a+ b < D. Therefore ℓp is not represented by qa, contradiction.

Next suppose that k = ℓ is prime (possibly 2) which divides D. If ℓ | a, then
the equation ax2 + by2 = ℓp leads to a

ℓx
2 + bℓY 2 = p, giving a representation of p

by the genus q a
ℓ
, a contradiction since we know that p is already represented by qa.

If ℓ | b, then we similarly get q′ = aℓX2 + b
ℓy

2 = a′x2 + b′y2 = p. A little thought
shows that neither of a′, b′ is equal to either of a, b, so q′ is again in a different genus
from qa but still represents p, contradiction.

If k is divisible by 4, then by Lemma 31 we reduce to the case of k
4 instead. The

remaining case is that k is odd and composite and therefore divisible by an odd
prime ℓ <

√
D. But by Proposition 38 we then have that ℓ is an anisotropic prime

for −4D and hence by Theorem 7 we reduce to the case k
ℓ2 . Thus Thue-Vinogradov

will succeed in showing that p is represented by qa.
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Step 2: Suppose n = p1 · · · ps is squarefree, prime to D and such that −4D is
a square mod n. This implies that −4D is a square mod pj for each pj , so that by
Step 1 each pj is represented by the unique form qaj with Θ(qaj ) = Θ(pj). Using
Proposition 35, we see that n is represented by the quadratic form qa corresponding
to the product genus

∏s
j=1 qaj – which, as we have seen, is simply qa where a is the

squarefree part of a1 · · · as. In particular, n is represented by the principal form q1
iff a1 · · · as is a perfect square iff for all 1 ≤ i ≤ r, the generic character χi(n) = 1.
Moreover, genus theory guarantees that the genus characters will give congruence
obstructions to any other squarefree n prime to D being represented by the princi-
pal form. Thus our elementary methods will suffice to determine precisely the set
of squarefree n prime to D represented by q1 (or any other diagonal form qa). This
completes the proof of Theorem 34.
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