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Abstract

We study three families of Atkin-Lehner quotients of quaternionic Shimura
curves: XD+, XD+

0 (N), and XD+
1 (N), which serve as moduli spaces of abelian

surfaces with potential quaternionic multiplication (PQM) and level N struc-
ture. The arithmetic geometry of these curves is similar to, but even richer
than, that of the classical modular curves. Two important differences are the
existence of a nontrivial obstruction to an abelian surface being defined over its
field of moduli and the lack of cusps, due to which there may fail to be any
points rational over a given field. We study the existence of points on these
curves rational over both local and global fields, and consider applications to
the existence of PQM surfaces over Q.
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Introduction

In this thesis we study local and global points on certain Atkin-Lehner quotients
of quaternionic Shimura curves, with and without level structure: we consider
the curves XD+, XD+

0 (N), XD+
1 (N), where the + indicates a quotient by the

Atkin-Lehner involution wD. It has long been known that, without the pas-
sage to the Atkin-Lehner quotient, none of these curves have R-points, much
less Q-points. On the other hand, work of [Jordan I] and [Rotger II-IV] shows
that these plus quotient Shimura curves are, at least morally, moduli spaces of
abelian surfaces with potentially quaternionic multiplication (PQM), i.e., princi-
pally polarized abelian surfaces A/K which admit QM over the algebraic closure
K. In particular it makes sense to ask about the existence of PQMs A/Q as a
function of the quaternionic discriminant D.

A PQM A/Q is an interesting object: in terms of its `-adic Galois represen-
tations it looks like an elliptic curve without complex multiplication (hence the
terminology “false elliptic curve” coined by Serre for these objects); for example,
it has ordinary reduction on a density one set of primes. On the other hand
it has, like a CM elliptic curve, everywhere potentially good reduction, as well
as an explicitly given (although finite) set of places of guaranteed supersingu-
lar reduction. With a suitable condition on D (that it be “nontwisting”) each
PQM A/Q is of GL2-type, i.e., predicted by the generalized Taniyama-Shimura
conjecture to be modular. In short, a PQM surface is the “next closest thing”
to an elliptic curve in several different senses, so is a natural object to study.

Having begun by emphasizing the analogies between PQM abelian surfaces and
their moduli spaces XD+

• (N) and elliptic curves and their moduli spaces X•(N),
we should now point out that there are some important differences between them
that make the Diophantine geometry of Shimura curves (even) more interesting
than that of the classical modular curves. First and foremost, Shimura curves do
not have cusps. (Indeed, the fact that the moduli space of quaternionic abelian
surfaces does not need to be compactified is equivalent to the potential good
reduction cited above – there are no “generalized” quaternionic surfaces.) This
makes the explicit theory of Shimura curves a serious computational challenge
(e.g., we do not know an algorithm for computing equations of XD). It also
opens the possibility of ruling out the existence of global points by local means,
the prototypical result in this direction being the analysis in [Jordan-Livné I]
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of XD(Qp); they show that there is always a prime p dividing D such that
XD(Qp) = ∅. In our study of the plus quotient curves, we find that as we add
level structure we begin acquiring local obstructions to the existence of rational
points. On the other hand, basic finiteness conjectures concerning endomor-
phism rings of abelian varieties defined over Q imply that the loci of points on
Shimura curves rational over number fields should be much more restricted, so
we expect to find a very large supply of plus quotient Shimura curves violat-
ing the Hasse principle – i.e., having points rational over every completion of a
number field but no points rational over the number field itself.

Here are the main results of this thesis:

• We explicitly determine the set of quaternionic discriminants D such that
there exist infinitely many geometrically nonisomorphic OD-PQM abelian
surfaces A/Q (Main Theorem 1).

• We show that the curve XD+ has points over every completion of Q
(Main Theorem 2).

• We give a simple necessary and sufficient condition for the locus XD+
0 (N)(Qp)

to be empty when p is a prime dividing D (Main Theorem 3).

• We show that for fixed D and imaginary quadratic K there is an absolute
bound on primes N ≡ 1 modulo 4 such that there exists P ∈ XD+

0 (N)(Q)
whose preimage in XD

0 (N) splits over K (Main Theorem 4).

• We show that there are infinitely many Shimura curves of the form XD
0 (N)

which violate the Hasse principle over suitable quadratic fields (Main The-
orem 5).

• We show that rational torsion can be uniformly and effectively bounded
on abelian varieties with potentially good reduction over local fields (Main
Theorem 6).

• We give a short list of possible orders of the rational torsion subgroup of an
abelian surface A/Q with everywhere potentially good reduction (Section
5.2) and a shorter list for PQM surfaces A/Q (Section 5.3).

The organization of the thesis

The study of Shimura curves as arithmetic objects requires background knowl-
edge in a number of different areas (it is fair to describe it as the entire story of
classical modular curves, plus a bit more), but there is no one reference for this
background. I have made a (somewhat quixotic, I’m afraid) attempt to remedy
this with a chapter containing detailed treatment of the following topics: the
Brauer group and quaternion algebras over fields; the integral theory of orders
and ideals in quaternion algebras over local and global fields; Shimura curves
over C via uniformization by cocompact arithmetic Fuchsian groups; Shimura
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curves as coarse moduli spaces for a moduli problem that can be formulated
over C; over R; over Q; over Z[1/ND]; over Z[1/D] and finally over Z. We do
not claim any of the results (with the mild exception of Proposition 82, which
is not used in the remainder of the thesis) as our own. Indeed, although we
have tried to give an independent and coherent presentation of the material,
some portions are essentially copied from the original references (our debt to
[Vignéras], [Jordan I], [Ogg I] and [Buzzard] is especially clear).

It will be apparent soon enough that the length of this introductory chapter
is comparable to that of the entire rest of the thesis, and we urge the reader
who approaches this thesis with some knowledge of Shimura curves to start with
Chapter 1 and refer to the background chapter as needed. Having said this, I
wish this chapter were yet longer and more detailed; there are important topics
missing, not least of which is an account of the result JD

0 (N) ∼Q JD−new
0 (DN),

which for most of the number-theoretic community is the reason Shimura curves
are studied. It was simply not possible, for reasons of both length and authorial
knowledge, to give a reasonable account of this (it would involve a discussion
of the Jacquet-Langlands correspondence between automorphic forms on GL2

and automorphic forms on B×) in the present thesis. It has been suggested by
my thesis adviser that this background material could form part of a “glorious
monograph” on the arithmetic of Shimura curves – suffice it to say that there
is some glory missing at present.

Chapter 1 is also foundational but contains material much more specialized
to the topic at hand: we explore the notion of a potentially quaternionic abelian
surface and explain why we treat the Atkin-Lehner quotients XD+

• (N) as moduli
spaces for such objects. In fact it is not literally true that these curves are coarse
moduli spaces for the moduli problem of principally polarized abelian surfaces
admitting geometric QM; the relationship between the locus of OD-QM abelian
surfaces inside the full moduli space A2 and certain Atkin-Lehner quotients of
XD was investigated in [Jordan I] but completed (and corrected) by Victor Rot-
ger, cf. [Rotger II-IV].

In Chapter 2 we classify those discriminants D such that there are infinitely
many (geometrically distinct) OD-PQM abelian surfaces defined over Q. For
this we need a certain Atkin-Lehner quotient of XD to have infinitely many
rational points, and it follows that a necessary condition on D is that it be
sufficiently small so that these curves have genus zero or one. Using the genus
formulae from Chapter 0 it is a straightforward matter to compute this set of
D. However, there is an additional wrinkle which does not arise in the theory of
elliptic curves: since the moduli space XD+ is coarse, a Q-rational point on this
curve does not correspond canonically to a PQM abelian surface defined over Q.
Moreover (unlike the elliptic modular case) it need not correspond to any PQM
surface A/Q at all; in other words, there is a nontrivial obstruction to a PQM
abelian surface being definable over its field of moduli. The interesting part of
the proof is to show that this obstruction vanishes for infinitely many points on
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the moduli space. The main idea is to show that being sufficiently p-adically
close to a rationally defined CM point is enough to make the obstruction, which
can be computed locally, vanish at p.

In Chapter 3 we study the Shimura curves XD+ and XD+
0 (N) over p-adic

fields. What we are in fact able to do is understand the Galois action on the
supersingular points modulo p. In the case of p a prime of good reduction and
N = 1, we find that that there is always an Fp-rational supersingular point,
hence by Hensel’s lemma XD+(Qp) is nonempty. To tell the truth, this is ex-
actly what happens in the (bad reduction) case of p dividing D as well, since
modulo such a p every point is supersingular. But to get there we need to use
the Cerednik-Drinfeld uniformization, which reduces the study of the special
fibre to a “combinatorial” analysis of a certain finite graph. We also give a
criterion for the nonemptiness of XD

0 (N)(QN ) in the case that N is prime.

In Chapter 4 we study rational points on XD
0 (N) with values in number fields.

Our main result is an adaptation of the methods of Mazur’s [RI] to our con-
text. Morally the proof is easier in our case than the classical one – due to
the absence of cusps, we get the potential good reduction for free – but there
are some additional complications due to the possible existence of points which
cannot be defined over their field of moduli. The end of the proof again exploits
the fact that modulo primes dividing D we necessarily have supersingular re-
duction. We also put together the local analysis from Chapter 3 with another
global nonexistence theorem – which follows immediately from the “largeness”
of the adelic Galois representation on a QM surface – to deduce infinitely many
Hasse principle violations for XD

0 (N) over certain imaginary quadratic fields.
The final section of the chapter contains a technical result on the scarcity of
Q-rationally defined cyclic subgroups of a PQM abelian surface A/Q.

In Chapter 5 we explore possible orders of rational torsion subgroups of PQM
abelian surfaces A/Q. It turns out that we can get reasonable bounds in the
more general context of abelian surfaces A/Q with everywhere potentially good
reduction. Indeed one can even uniformly bound the rational torsion for an
abelian variety defined over a local field in the case of potentially good reduc-
tion. The analysis of cyclic subgroups from Chapter 4 is used to show that the
rational torsion which is prime to D is especially restricted.
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Chapter 0

Background

0.1 Quaternion algebras as central simple alge-

bras

In this section we review a portion of the theory of quaternion algebras which
may be viewed as a special case of the theory of central simple algebras.

0.1.1 Central simple algebras and the Brauer group

Let F be a field. A quaternion algebra B/F is a four-dimensional central simple
algebra (CSA) over F . Recall that a central simple algebra A/F is a finite-
dimensional associative F -algebra with unit in which there are no two-sided
ideals different from 0 and A, and such that the center of A is precisely F = F.1.

As a starting point, recall Wedderburn’s theorem that every central simple
algebra A/F is isomorphic to a matrix algebra over a division algebra. In
this way, to any A ∈ CSA(F ) we associate the corresponding division algebra
DA ∈ CSA(F ). If A, B ∈ CSA(F ), we write A ∼ B if DA

∼= DB and say they
are similar. One knows that if A, B ∈ CSA(F ), then A ⊗ B ∈ CSA(F ), and
if A1 ∼ A2, B1 ∼ B2, then A1 ⊗ B1 ∼ A2 ⊗ B2. It follows that upon passage
to similarity classes, the tensor product induces a composition law on the set
of division algebras central over F . Indeed this is a group law: the identity
element is the class of F itself, and the inverse to [A] is [Aopp] (opposite alge-
bra), via the natural isomorphism A ⊗ Aopp → End(A) = M[A:F ](F ) given by
(a ⊗ b)(c) := acb (Since the left-hand side is a simple algebra, the map is an
injective; by a dimension count it is an isomorphism.) We have just constructed
the Brauer group of F , denoted Br(F ). The first thing to observe about it is:

Proposition 1 The Brauer group of an algebraically closed field is trivial.

Proof: Suppose that F is an algebraically closed field and D/F is a central divi-
sion algebra. For x ∈ D, let P (t) be the minimal polynomial of x· acting on D.
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Since D has no zero divisors, P (t) ∈ F [t] is irreducible. But F is algebraically
closed, so P is linear and x· coincides with multiplication by an element of F .

Base change and splitting fields: Since every element of the Brauer group of F is
represented by a unique division algebra, one might wonder why we bother with
the generality of CSA’s at all. One reason is that a CSA is a more robust notion
than a division algebra: it is faithfully preserved under basechange. Namely, if
E/F is a field extension and A ∈ CSA(F ), then A ⊗F E ∈ CSA(E) [Pierce,
Prop. 12.4b]; and conversely, if A/F is any algebra such that A⊗F E ∈ CSA(E)
then A ∈ CSA(F ). This is not the case for division algebras, since we lose them
by tensoring up to any algebraically closed field. This motivates the notion
of a splitting field : if A ∈ CSA(F ), a splitting field for A is a field extension
E/F such that A ⊗ E ∼= Mn(E). For a given extension E/F , the classes of
elements of CSA(F ) split by E form a subgroup of Br(F ) which we denote
Br(E/F ); notice that by our proposition, if F is an algebraic closure of F , then
Br(F ) = Br(F/F ). To see that this is a fruitful concept, notice that the fact
that any A ∈ CSA(F ) has a splitting field implies that dimF A is a perfect
square: dimF A = dimF A⊗F = dimF Mn(F ) = n2. If A ∈ CSA(F ), we define
the index Ind(A) of A to be

√
dimF DA.

The study of splitting fields of a division algebra D is closely related to the
study of subfields of D. A field E, F ≤ E ≤ D is maximal if it is not properly
contained in any other subfield of D.

Theorem 2 A field extension E/F such that [E : F ] = Ind(D) splits D if and
only if E can be embedded in D as an F -subalgebra.

See [Pierce], Chapter 13.

Proposition 3 A subfield F ≤ E ≤ D is maximal (among commutative sub-
fields of D) if and only if [E : F ] = Ind(D).

Proposition 4 If F ≤ E ≤ D is maximal among separable field extensions of
F , E is then a maximal subfield of D.

One can also find the proofs of the last two propositions in any introductory
text on associative algebras (e.g. [Pierce]). On the other hand, one finds in
[Grothendieck] a different and more thematic approach: the idea is to define an
analogous notion to maximal subfield which is stable under base extension and
in so doing reduce to the study of matrix algebras. Let us sketch this briefly:
if A ∈ CSA(F ), we consider instead of subfields the étale subalgebras L ≤ A
(recall that an étale algebra over a field is just a finite product of separable field
extensions.) In this context the key result is

Theorem 5 Let A ∈ CSA(k) be of rank r2. Let L be a subalgebra of A. The
following are equivalent:
a) L is étale of rank r.
b) L is étale and equal to its own centralizer in A.
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c) L is a maximal étale subalgebra of A.
d) There exists an isomorphism φ : A ⊗ k → Mr(k) whose restriction to L ⊗ k
has image equal to the diagonal matrices in Mr(k).

That d) implies a) implies b) implies c) is easy. The key is to show that a
maximal étale subalgebra is self-centralizing, and this in turn quickly reduces
to showing that if A/k is a central simple algebra which is not just k, then it
contains a nontrivial étale k-algebra. But here we can do something slick: if k
is finite, we will see later that the Brauer group of k is trivial, so the result that
we want is obvious. So assuming that k is infinite, consider the reduced charac-
teristic polynomial of a variable element x of A. Then, for x in a Zariski-open
subset of A viewed as an affine space over k (i.e., away from the discriminant
hypersurface), this polynomial will have distinct roots; hence for a sufficiently
general element x, k[x] gives a maximal étale subalgebra.

Taking the Galois closure of any separable splitting field, we immediately obtain
the

Corollary 6 Every A ∈ CSA(F ) is split by a finite Galois extension E/F , so
that

Br(F ) = lim
E/F

Br(E/F ).

Remark: We do not claim that D contains E as a subfield – nor could we. More
on this later.

Taken together, these results could suggest to the reader who is familiar with
Galois cohomology but new to the Brauer group that there ought to be a coho-
mological interpretation of Br(F ). For this we recall:

Principle 7 (First principle of Galois descent): If X/F is an object over a
field F , the collection of twisted forms
T (X/F ) := {objects X ′/F such that X ′/F ∼= X/F}
is isomorphic, as pointed set, to the cohomology set H1(GF , Aut(X/F )).

For information on this principle – especially for a list of what kinds of “objects”
for which it is valid – see [CL] and [CG]. By the results we have collected about
splitting fields, it follows that the twisted forms of Mn(F )/F are precisely the
n2-dimensional central simple algebras over F , so:

Corollary 8 There is a natural bijection of pointed sets

{n2 − dim A ∈ CSA(F )} −→ H1(GF , Aut(Mn(F ))}.

One knows the automorphism group of a central simple algebra:

Theorem 9 (Noether-Skolem) Let A ∈ CSA(F ), B a simple F -algebra. Any
two F -algebra homomorphisms B ↪→ A are conjugate by an element of A×.
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From this we deduce immediately Aut(Mn(F )) = PGLn(F ). Now, applying
nonabelian Galois cohomology to the short exact sequence

1 −→ Gm −→ GLn −→ PGLn −→ 1

and recalling H1(F, GLn) = 0, we deduce a map ∆n : H1(F, PGLn) ↪→ H2(F, Gm).
Let E/F be a finite Galois extension, and denote by An(E/F ) the set of central
simple algebras A/F such that A ⊗ E ∼= Mn(E) and A(E/F ) the set of all
classes of CSA’s split by E. Composing ∆n with our first-principle bijection
we get an injective map δn : An(E/F ) → H2(GE/F , E×). From [CL] we find
the following

Lemma 10 If n = [E : F ], δn : An(E/F ) → H2(GE/F , E×) is surjective.

Finally, we conclude

Proposition 11 : The induced map δ : Br(E/F ) → H2(GE/F , E×) is a bijec-
tion of pointed sets. Hence also δ : Br(F ) → H2(GF , Gm) is an isomorphism
of pointed sets.

Thus we have an interpretation of Br(F ) in terms of Galois cohomology.

Define the cohomological index of a class η ∈ H2(GF , Gm) to be the greatest
common divisor of all the degrees of splitting fields for η (i.e., of field extensions
E/F , not necessarily Galois, such that ResGF

GE
(η) = 0.

Proposition 12 The cohomogical index of a class η coincides with the index
of the division algebra D associated to η.

Proof: Let i :=
√

dimF D be the index of D. By Proposition 3, D possesses a
subfield F ≤ E ≤ D with [E : F ] = i and which splits D. It follows that the
cohomological index divides i. For the converse, let E/F be a splitting field for
D such that [E : F ] = k; by Lemma 10, there exists a CSA A/F of dimension
k2 such that A ∼ D. But this implies that A ∼= Mn(D), so that k = ni and i
divides k.

In view of Proposition 11, we may unambiguously refer to the index of a Brauer
group element, and this invariant may be interpreted both in terms of division
algebras and by means of Galois cohomology.

0.1.2 Severi-Brauer varieties

One advantage of this Galois-descent method of identifying Br(F ) with H2(GF , Gm)
is that it provides a bijection from n2-dimensional central simple algebras over F
to the set of twisted forms of any object X/F such that Aut(X/F ) = PGLn. As
a key example, Aut(Pn/F ) = PGLn+1(F ); it follows that H1(E/F, PGLn+1(E))
classifies algebraic varieties that are E/F -twisted forms of Pn

F : by definition,
these are Severi-Brauer varieties.
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The case n = 2 is already interesting: it gives a bijection of pointed sets
{smooth genus zero curves over F} −→ {quaternion algebras over F}
– thus in order to classify conics over a nonalgebraically closed field we need to
understand the Brauer group of the field. We will revisit Severi-Brauer conics
from a more explicit point of view later in this section.

0.1.3 Crossed product algebras

The preceding identification of Br(F ) with H2(F, Gm) used H1(F, PGLn) as
an intermediary, a situation which we just exploited in order to make a connec-
tion with Severi-Brauer varieties. On the other hand, there is a more classical
approach linking these first two objects directly: in this we will be able to in
particular say that they are isomorphic as abelian groups (in fact, one can also
see this via the nonabelian cohomology route; see [CL]). What we need is the
notion of a crossed product algebra, which historically was a major motivation
for Galois cohomology.

Let E/F be a finite Galois extension with [E : F ] = n, and let A/F be an
n2- dimensional CSA containing E as a (necessarily maximal) subfield. From
this data we shall construct a cocycle Φ ∈ Z2(E/F, E×), as follows: by Noether-
Skolem, each σ ∈ GE/F can be represented as conjugation by some uσ ∈ A×:
for all e ∈ E, eσ = u−1

σ euσ. One can easily check that {uσ | σ ∈ GE/F } gives
an E-basis for A. Moreover, setting Φ(σ, τ) := (uστ )−1uσuτ ∈ E×, we find
that Φ satisfies the cocycle condition. Finally, we may take u1 = 1 and then
Φ(σ, 1) = Φ(1, σ) = 1 (σ ∈ GE/F ) – such a Φ is said to be normalized.

Conversely, given the data of a Galois extension E/F of degree n and a co-
cycle Φ ∈ Z2(GE/F , E×), we can construct a CSA A as follows: take

A :=
⊕

σ∈G

uσE

as E-vector space, where the uσ are formal symbols. Define a product µ :
A × A → A via

µ(
∑

σ∈G

uσcσ,
∑

τ∈G

uτdτ ) :=
∑

σ,τ

uστΦ(σ, τ)cτ
σdτ .

Proposition 13 The algebra A constructed above is central simple over F , with
maximal subfield E. Moreover the set uσ represents the Galois action on E as
in the first construction, and u−1

στ uσuτ = Φ(σ, τ).

This algebra A = (E, GE/F , Φ) is called the crossed product algebra of E and
G relative to Φ. We have the

Theorem 14 If E/F is a finite Galois extension, then the mapping [Φ] 7→
[(E, GE/F , Φ)] gives a group isomorphism H2(GE/F , E×) → Br(E/F ).
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Remark: The preceding construction may seem to be the end of the story, but
closer inspection reveals a subtlety: given a Galois extension E/F , it is the
case that cohomologous cocycles Φ, Ψ ∈ Z2 yield isomorphic crossed product
algebras, not merely similar ones. Thus, given an element η ∈ Br(F ) and a
Galois splitting field E/F , the theorem constructs a unique representative of η
(fair enough: E must be a maximal subfield, which determines the dimension of
A). The question is: given η, can we always choose E such that the associated
crossed product algebra is a division algebra? A moment’s thought shows this
to be equivalent to the question we raised earlier: does every division algebra
D/F of index i have a Galois splitting field E/F of degree i? The answer is
no; [Amitsur] constructed counterxamples. It remains an important unsolved
problem to characterize which division algebras are crossed product algebras
(on the other hand, we will see that division algebras over local and global fields
are well-behaved enough so that this phenomenon does not arise).

0.1.4 The period-index problem (an advertisement)

We have seen that the index of a Brauer group element is an invariant which
measures the size of the associated division algebra. Another measure of the size
of η ∈ Br(F ) is simply its order in the Brauer group – we choose to call this its
period (it is the period of the sequence [D], [D⊗D], [D⊗3], . . ..) It is not hard to
see that the period divides the index – so that in particular Br(F ) is a torsion
abelian group – and that the period and the index of a class share the same prime
factors. In this level of generality, there is no more to say: given integers a|b
with the same prime divisors, there exists a field F and a division algebra D/F
with period a and index b: indeed, one can take F to be a rational function field
C(t1, . . . , tn) (the choice of n depends upon the discrepancy between the period
and the index). We note in passing that this is just one example of a period-
index problem in arithmetic geometry: if A/F is any commutative algebraic
group, then it is interesting to ask about the relations between the period and
the index (defined cohomologically as above) of a cocycle η ∈ Hk(F, A). For a
discussion of these ideas I heartily recommend the paper [Clark].

0.1.5 Finally, quaternion algebras

As we have said, a quaternion algebra B/F is a four-dimensional central simple
algebra. We naturally distinguish between two kinds of quaternion algebras
over F : the matrix algebra M2(F ), which we call split, representing the trivial
element of Br(F ), and a division algebra of index 2, nonsplit. Notice that
quaternion algebras are characterized among Brauer group elements by having a
quadratic splitting field (it follows that a nonsplit quaternion algebra has period
two in the Brauer group, but the converse need not be true). The existence of a
quadratic splitting field allows us to study quaternion algebras more explicitly
than general CSA’s.

Proposition 15 Let F be a field whose characteristic is not 2. Let a, b ∈ F×.
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Then the F -algebra (a,b
F ) generated by elements i, j and subject to the relations

i2 = a, j2 = b, ij = −ji is a quaternion algebra over F .

Proof: It wouldn’t be too painful to prove this from scratch, but let’s try to do
something a little more insightful: I claim that (a,b

F )⊗F (
√

a) ∼= M2(F (
√

a)). If

so, (a,b
F ) is a twisted form of M2(F ), i.e., a quaternion algebra. Indeed, consider

matrices

I =

[ √
a 0

0 −√
a

]
, J =

[
0 b
1 0

]
;

they satisfy I2 = a, J2 = b, IJ = −IJ , so that they generate a subalgebra of
M2(F (

√
a)) isomorphic to (a,b

F ) ⊗ F (
√

a). But indeed I, I2, J, IJ are F (
√

a)-
linearly independent matrices, so they generate the entire matrix algebra. Since
the condition of being a quaternion algebra is faithfully preserved under base
change, we’re done.

Proposition 16 When char(F ) 6= 2, every quaternion algebra B/F is of the
form (a,b

F ) for suitable a, b ∈ F×.

Proof: Choose a maximal subfield E of B, so that E/F is a quadratic extension
(notice that such a subfield is given as the subalgebra generated by any nonscalar
element of B). We may find i ∈ E such that i2 ∈ F×, say i2 = a. By Noether-
Skolem, the unique nontrivial automoprhism σ of E/F is represented as conju-
gation by some uσ ∈ B× : (e ∈ E), eσ = u−1

σ euσ. Since σ2(e) = u−2
σ eu2

σ = e,
u2

σ ∈ ZB(E) = E. Clearly uσ /∈ E, so F ⊆ F [u2
σ] ∩ E ⊆ F [uσ] ∩ E = F .

Therefore u2
σ ∈ F , say u2

σ = b. By construction u−1
σ iuσ = σ(i) = −i, so we’re

done.

Remark: In characteristic 2, something similar can be done but with a slightly
more complicated set of defining relations. We will not meet quaternion alge-
bras over fields of positive characteristic in this thesis, so we refer the reader to
[Vignéras].

Reduced trace, reduced norm, main involution: Let B/F be a CSA of dimension
n2. If B = Mn(F ), we have familiar maps t : MN(F ) → F , det : MN(F ) → F .
For general B, by tensoring up to a splitting field (say F ), we get B ↪→ B⊗F ∼=
Mn(F ), and via this embedding we can define maps t : B → F , n : B → F
called the reduced trace and the reduced norm (coming from the determinant)
respectively. Moreover, these maps land in F : indeed, for σ ∈ GF , twisting
by σ gives another representation rσ : B ↪→ B ⊗σ F ∼= Mn(F ) such that e.g.
nσ = nσ. On the other hand, Mn(F ) has a unique n-dimensional representa-
tion up to isomorphism, so the twisted representation is conjugate to the original
representation, whence n = nσ = nσ. Similarly for the trace (and indeed, for
the entire characteristic polynomial).

Returning to the case of quaternion algebras, we also define the main invo-
lution b 7→ b = t(b)− b. If E/F is a quadratic subfield of B, then one can check
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easily that the main involution stabilizes E and induces the unique nontrivial
automorphism of E/F .

We can make all of this explicit: let B = (a,b
F ). Then an arbitrary element

of B may be written as u = x.1 + y.i + z.j + w.ij, where x, y, z, w ∈ F . Via the
splitting representation exhibited in Proposition 14 above, we find t(u) = 2x,
n(u) = x2 − ay2 − bz2 + abw2, and u = x.1 − y.i − z.j − w.ij.

Observe that the norm is a quadratic form in the coefficients x, y, z, w. Now,
being a quaternion algebra, B is either a division algebra or M2(F ), and it will
be the latter if and only if it has nonzero nilpotent elements, i.e., if and only if
there exists 0 6= u ∈ B such that t(u) = n(u) = 0. We get then that B is split
if and only if the conic ay2 + bz2 − abw2 = 0 has a nontrivial zero. Touching up
the form of the equation a bit, we get:

Proposition 17 A quaternion algebra B = (a,b
F ) (char(F) 6= 2) is split if and

only if the conic
C/F : aX2 + bY 2 − Z2 = 0

is F -isomorphic to P 1.

We have in fact rediscovered Sever-Brauer conics in an explicit form:

Proposition 18 The correspondence (a,b
F ) 7→ C/F : aX2 + bY 2 −Z2 = 0 gives

the bijection between quaternion algebras over F and Severi-Brauer conics –
i.e., smooth genus zero curves.

Proof: Since the conic is constructed in terms of intrinsic properties of the
quaternion algebra (the elements of norm zero on the trace zero subspace), it
is clear that the mapping is well-defined at the level of quaternion algebras.
Since any conic can be put in the exhibited form, the mapping is surjective.
It remains to be seen that the conic determines the quaternion algebra up to
isomorphism, i.e., that a quaternion algebra can be recovered from the norm
form on its trace zero subspace. For this, note that 〈h, k〉 := tr(hk) is the
associated bilinear form. Restricted to the trace zero subspace (say B0 of B) it
is given simply by 〈h, k〉 = −(hk + kh). It follows from this that two elements
of B0 anticommute if and only if they are orthogonal for the bilinear form. Now
let f : (B0, 〈〉) → (B′

0, 〈〉) be an isometry of quadratic spaces, where B = (a,b
F ).

Then i, j ∈ B0 and −2f(i)2 = 〈f(i), f(i)〉 = 〈i, i〉 = −2i2 = −2a, so that
f(i)2 = a; similarly, f(j)2 = b. Also i, j anticommute, so they are orthogonal, so
f(i), f(j) are orthogonal, so they anticommute. It follows that B′ ∼= (a,b

F ) ∼= B.

0.1.6 Brauer group of a local or global field

Br(R): Indeed H2(R, Gm) = H2(Z/2Z, C×) = Ĥ0(Z, 2Z, C×) = R×/NC×

R× (C×) =
Z/2Z. The nontrival element is therefore a division quaternion algebra, and it
is none other than Hamilton’s quaternions H := (−1,−1

R ).
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Now let F be a non-Archimedean local field, i.e., a field complete with respect
to a discrete valuation and with finite residue field. The computation of Br(F )
is one of the main steps in local class field theory; we content ourselves to recall
the main results in a form which make the division algebras involved explicit.
Write Fn/F for the unique degree n unramified extension of F , and let π be a
uniformizer of F .

Returning momentarily to the case of an arbitrary field F , let E/F be a cyclic
Galois extension of degree n; write GE/F = 〈σ〉, and let A ∈ CSA(F ) contain E
as a maximal subfield. Recall that we exploited the Noether-Skolem theorem to
build a cocycle in Z2(GE/F , Gm) representing A. Our assumption that GE/F

is cyclic allows us to put the cocycle in an especially nice form: choose u ∈ A×

such that σ(e) = u−1eu. Then for 1 ≤ j < n, we have σj(e) = u−jeuj, i.e.,
we get a cyclic E-basis {1, u, . . . , un−1} for A. Now un ∈ ZA(E) = E; since
A =

⊕
0≤j<n ujE, we get un ∈ ZA(A) = F . Put a = un. The corresponding

cocycle Φ is just Φ(σi, σj) = 1 if i + j < n, and a if i + j ≥ n. We abbreviate
(E, σ, a) := (E, GE/F , Φ). We say that A is a cyclic algebra, and we may equally
well view it as Eσ[u]/(un−a) with the understanding that E acts σ-semilinearly:
eui = uiσi(e).

Coming back to our local field F , the most important fact is that every ele-
ment of Br(F ) is split by an unramified extension [CL]; this implies that every
element of Br(F ) is represented by a cyclic algebra. We can exhibit an obvious
family of cyclic algebras: Bk/n := (Fn, σn, πk), where σn is the Frobenius of
Fn/F . Now we have the

Theorem 19

a) The map Q/Z → Br(F ), k
n + Z 7→ [Bk/n], is an isomorphism of groups.

b) Let (k, n) = 1. Then the index of Bk/n is n. In particular the period and
index coincide, and Bk/n/F , being an n2-dimensional CSA of index n, is a di-
vision algebra.

In fact, the second statement follows from the first, since n = period(Bk/n)

divides Ind(Bk/n) ≤ √
dimF Bk/n = n. In particular, every division algebra

over a local field is a crossed product algebra. Note also that since the period
equals the index, quaternion algebras over F correspond to Br(F )[2] = 1/2Z/Z,
so that there exists a unique nonsplit quaternion algebra over any local field.
There is just one more thing to know about quaternion algebras over local fields:

Proposition 20 Let B/F be a quaternion algebra and E/F any quadratic field
extension. Then E splits B.

Proof: Looking at the above construction of the unique division quaternion alge-
bra B 1

2
/F , we see that it is certainly split by the unramified quadratic extension

F2/F . Otherwise E/F is ramified and we can choose the uniformizer π to be
the square of an element ρ of E, in which case the algebra Eσ[u]/(u2 − π) has
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u − ρ as a zero-divisor.

Global fields: Let F be a global field and ΣF its set of places (including
Archimedean places, if any). Let D/F be a division algebra. For each v ∈ ΣF ,
the basechange D 7→ Dv := D ⊗F Fv gives us a map Br(F ) → Br(Fv). Now
we can state another big

Theorem 21

a) We have an exact sequence 0 → Br(F ) → ⊕
v∈ΣF

Br(Fv)
Σ→ Q/Z → 0.

Here, since each Br(Fv) is either 0, 1/2Z/Z or Q/Z, there is a natural map Σ
to Q/Z, “adding up the invariants.”
b) For any A ∈ CSA(F ), A is a cyclic algebra (in particular a crossed product
algebra), and the period equals the index.

We remark that the first part is a cornerstone of global class field theory and
the proof can be found in many places. For b), see [Pierce, Chapter 18].

Again we find that quaternion algebras over F correspond to 2-torsion elements
in the Brauer group. Taking F = Q, we like to view Br(Q)[2] as the subspace
of the F2- vector space on the set of of prime numbers together with ∞ given
by formal sums with an even number of nonzero entries. The place ∞ plays a
distinguished role in the theory (as we shall see in the next chapter): to prepare
for this we say a quaternion algebra over Q is indefinite if it is split at ∞ and
definite if it is ramified at ∞, i.e., B ⊗ R ∼= H . (To see why this terminology is
used, consider the associated quadratic space (B0, 〈〉).) The discriminant of B
is by definition the product over the finite ramified primes (we will see later that
it is a discriminant in the sense of geometry of lattices). For the remainder of
the thesis we shall reserve the letter D to denote the discriminant of a rational
quaternion algebra. Clearly there exists a unique rational quaternion algebra
with any given squarefree discriminant D, which will be indefinite or definite
according to whether D has an even or odd number of prime factors.

Finally, we record a simple but indispensable criterion for a quaternion alge-
bra over a global field to be split by a quadratic field extension:

Proposition 22 (Hasse’s criterion) Let B/F be a quaternion algebra over a
global field. Let K/F be a quadratic field extension. Then K embeds in B as
F -algebra if and only if for all v ∈ ΣF , Kv = K ⊗F Fv embeds in Bv.

Proof: Certainly the existence of a global embedding K ↪→ B implies, by ten-
soring up to Fv, the existence of all the local embeddings. Conversely, assume
that for all v ∈ ΣF , the quadratic Fv-algebra Kv embeds in Bv. We must show
that K is a splitting field for B, or equivalently, that for all w ∈ ΣK , [B⊗F Kw]
= 0. There are two cases to consider: if w/v is split, then Kv

∼= Fv ⊕ Fv has
nontrivial idmpotents, so the assumption that it can be embedded in Bv implies
that Bv is a matrix algebra, i.e., Bv was already split, and a fortiori B ⊗ Kw
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must be as well. If w/v is inert or ramified, then Kw/Fv is a quadratic extension
of local fields, so by Proposition 19, B ⊗F Kw = Bv ⊗Fv

Kw is split.

When F = Q, this simplifies to:

Corollary 23 Let B/Q be a rational quaternion algebra, and let K/Q be a
quadratic field. If K is real and B is definite, K does not embed in B. Otherwise,
K embeds in B if and only if for every prime p dividing the discriminant of B,
p is nonsplit in K.

0.2 Orders and ideals in quaternion algebras

In this section we summarize the basic theory of orders ideals in a quaternion
algebra (we concentrate on the case where F is a local or global field). The
most important results, namely class number formulas and formulas counting
the number of embeddings of a quadratic order, are due to Eichler. The canon-
ical modern presentation of this material is [Vignéras].

0.2.1 Basic theory of orders and ideals

Let H/K be a quaternion algebra, and let R be a Dedekind ring with quo-
tient field K, considered fixed for the following discussion (imagine R = OK

when K is local/global). Viewing H as K-vector space, we have the notion of
a (complete) R-lattice L ≤ H , i.e., a finitely generated R-submodule such that
L⊗RK = H . An element x ∈ H is said to be integral (with respect to R) if R[x]
is a finitely generated R-module (i.e., the same definition as in the commutative
case). It is not hard to see that an equivalent characterization of integrality is
t(x), n(x) ∈ R (use the reduced characteristic polynomial).

What is different from the commutative case, and in some sense makes the
non-commutative theory of orders and ideals correspondingly more involved, is
that the set of integral elements of H need not form a ring: indeed in the algebra
M2(Q), the two elements

A =

[
1
2 −3
1
4

1
2

]
, B =

[
0 1

5
5 0

]

are both integral, but neither A + B nor AB is integral.

An ideal of H is just an R-sublattice (analogous to a fractional ideal in the
commutative case). An order O ≤ H is an ideal which is a subring. Equiva-
lently, O is a ring of integral elements generating H over K. A maximal order is
indeed an order which is not properly contained in any other order. An Eichler
order is the intersection of two maximal orders. I claim that any integral element
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x ∈ H lies in a maximal order. Indeed, we may assume that x is not in R (oth-
erwise it lies in every maximal order), so that K(x) = L is a quadratic extension
in which R[x] = O′ is an R-order in the commutative sense. So x = a +

√
c,

with a, c ∈ R, and clearly the same quadratic R-order is generated by
√

c, so it
is enough to construct a maximal order containing x :=

√
c. Now let y be an

integral Noether-Skolem element: y−1xy = x (the choice of such a y is unique
up to a scalar from K, and of course some multiple of any given element is inte-
gral). From the theory of bases of quaternion algebras recalled in the previous
section, we see that R submodule generated by x and y is R + Rx + Ry + Rxy;
in particular it is finitely generated, so we have constructed an R-order. It need
not be maximal, so we must also show that every order is contained in a maxi-
mal order. One can see this by applying Zorn’s Lemma to a chain of orders: the
union is a subring consisting of integral elements, hence gives an upper bound
for the chain. However, it seems inelegant to apply appeal to Zorn’s lemma in
such a “finite” situation, so a little later we will give an alternate proof of the
existence of maximal orders using the discriminant.

If I ≤ H is an ideal, we define the associated left and right orders: Ol(I) :=
{h ∈ H | hI ⊆ I},Or(I) := {h ∈ H | Ih ⊆ I}. We say an ideal is integral
if it is contained in its left and right orders (i.e., if II ⊆ I) – this clarifies the
terminology, since an integral ideal really is a left Ol(I)-ideal and a right Or(I)-
ideal. We also say an ideal is two-sided if Ol(I) = Or(I). An ideal is principal
if I = Olh = h′Od. If I, J are ideals, their product IJ (defined in the expected
way as the collection of finite sums of i.j) is an ideal. Since we have a Dedekind
ring, we should be able to invert ideals: define I−1 := {h ∈ H | IhI ⊆ I}. We
have by definition II−1 ⊆ Ol(I), I−1I ⊆ Or(I), with equality if I is principal.
Indeed, we even have equality if I is locally principal ; since this is the case for
all ideals when K is a local or global field (as we’ll see), for our purposes we will
always have equality. Moreover, we also have Ol(IJ) = Ol(I),Or(IJ) = Or(J)
for locally principal ideals, so similarly we may make use of these identities in
cases of interest.

Ideal classes: We say two ideals I, J are equivalent on the right (resp. on
the left) if I = Jh, (resp. I = hJ) for some h ∈ H . If O is an order, we
define the set Picl(O) of left-ideal classes of O: this is the set of ideals with
right order O modulo equivalence on the left. (Note that we have to do it this
way: modifying an ideal on the left does not change its right order.) We may
similarly define Picr(O) of right-classes of left O-ideals. Indeed we can make
do with either one of these objects, since the map I → I−1 induces a bijection
Picl(O) → Picr(O). Let O, O′ be two orders with the property that there
exists an ideal I such that O = Ol(I), O′ = Or(I); we say O, O′ are linked.
Note that any two maximal orders are linked: just take I = O.O′.

Lemma 24 Linked orders have the same number of (left or right) ideal classes.

Proof: We define a map from the set of left O-ideals to the set of right O′-ideals
by J 7→ J−1I. The map P 7→ IP−1 provides an inverse. Moreover, the map
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preserves ideal classes, since Jh 7→ (Jh)−1I = h−1J−1I.

In view of this lemma, we may define the class number of H/K to be the
number of (either left or right) ideal classes of any maximal order.

Order types: We say two orders are of the same type if one can be conjugated
to the other by an element of H . We have the following technical result:

Lemma 25 The following are equivalent:

a) Two orders O, O′ are of the same type.

b) There exists a principal ideal I linking O and O′.

Let us define the type number of the class of all orders linked to a given order
to be the number of types of ideals in this class. The type number of H/K is
defined to be the number of types of maximal orders. The previous lemma im-
mediately gives that the type number is less than or equal to the class number.
One of the main results we are going for here is the computation of the type
number and the class number for quaternion algebras over local and global fields.

The discriminant: Happily, the theory of the discriminants works just as in
the commutative case: indeed, let I be an ideal of H . We define n(I) to
be the fractional ideal of R generated by the reduced norms of the elements
of I. Now the different of an order O is the inverse dual of O for the trace
form: D(O) = (O?)−1, where O? := {x ∈ H | t(xO) ⊆ R}. We define the
discriminant ∆(O) as the norm of the different ideal. We have as in the com-
mutative case the useful fact that if O is a free R-module with basis vi, then
∆(O)2 = R(det(t(vivj)), as well as the fact that ∆ can be computed locally on
R.

Proposition 26 Let O ≤ O be two orders. Then ∆(O′) ⊆ ∆(O), with equality
if and only if O′ = O.

This proposition gives a “more geometric” proof that every order is contained
in a maximal order: R being a Dedekind ring, is Noetherian!

As examples, consider the order M2(R) ≤ M2(K). We find that the discriminant
ideal is R itself, which implies that M2(R) is a maximal order. Now take K = Q
and H = (−1,−1

Q ). The order associated to the integral basis is O := Z[1, i, j, ij]:
we find that its discriminant is 4Z, which is not a maximal ideal of Z. Indeed
O is not a maximal order: it is contained in O′ := Z[1, i, j, 1+i+j+ij

2 ] (and one
should check that this is actually an order) of discriminant 2Z. Notice that 2 is
the discriminant of this definite rational quaternion algebra in the Brauer group
sense of the previous section. We will see that indeed the discriminant of any
maximal order of a quaternion algebra over Q is its Brauer group discriminant.

Optimally embedded quadratic orders: In some sense, a quaternion algebra over
a field K is a bunch of quadratic extensions glued together in a non-commutative
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way. Earlier, we have seen the importance of quadratic subfields (= quadratic
splitting fields) of a quaternion algebra H/K. A large part of the integral the-
ory of quaternion algebras concerns the relation of orders O of the quaternion
algebra to orders S of a quadratic splitting field L for H/K. Let L/K be a
quadratic extension splitting H , so that L embeds into H as K-algebra. There
will be many such embeddings: by the Noether-Skolem theorem, any two will be
conjugate by an element of H×; since L is a maximal commutative subalgebra
of H , by orbit-stabilizer considerations we see that the set of K-embeddings of
L into H is B×/L×. But now fix an order O and let ι : L ↪→ H be an em-
bedding. We have the notion of the associated optimally embedded quadratic
order, namely S := ι−1(O ∩ ι(L)). In other words, S is an order of L, and
the embedding ι has the property that it carries S into O and does so for no
larger order of L. Let N = N(O) ≤ B×/K× be the subgroup of automorphisms
preserving O (i.e., the normalizer of O). It is immediate that the condition of
an embedding ι : L ↪→ H being S-optimal is stable under N . Notice that it
may not be clear a priori what this group N is, but certainly it contains O× as
a subgroup. In general, if G ≤ N , we write vG(S,O) for the number of G-orbits
of optimal embeddings S ↪→ O (possibly infinite, in this level of generality); we
write v(S) when N = O× for some O that is understood to be fixed. When
K is a global field, we will see that v(S) is indeed finite, and give a product
formula involving terms from the local places and a “global contribution” – the
class number of S.

0.2.2 Local fields

In this subsection K shall always be a non-Archimedean local field, and all or-
ders and ideals are taken with respect to R := OK . We write π for an arbitrary,
but fixed, uniformizer of K.

Split case: we give ourselves V/K a two-dimensional vector space.

Proposition 27

a) The maximal orders of End(V ) are the rings End(L), where L is a complete
R-lattice of V .

b) The ideals of these maximal orders are Hom(L, M), L, M complete lattices
of V .

Theorem 28

a) The maximal orders of M2(K) form a single type: all conjugate to M2(R).

b) The two-sided ideals of M2(R) form a cyclic group generated by the prime
ideal P = M2(R)π.
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c) The integral left M2(R) ideals are the distinct ideals M2(R)

[
πn r
0 πm

]
,

where n, m are non-negative integers and r runs through a set of coset represen-
tatives of R/πmR in R.

Definition: Let O = End(L), O′ = End(M) be two maximal orders of End(V ).
If x, y ∈ K×, notice that End(Lx) = O, End(My) = O′, i.e., the maximal order
depends only on the lattice up to homothety. Therefore, by after rescaling, the
theory of elementary divisors furnishes us with a basis (f1, f2) of L such that
(πaf1, π

bf2) is a basis for M . The integer |b − a| is visibly independent of the
scaling. We define the distance between two maximal orders O,O′ to be this
quantity |b − a|. As an example, the distance between M2(R) and the order[

R π−nR
πnR R

]
is n. We define an Eichler order of (local) level n to be an

order obtained by intersecting two maximal orders of distance n. We have the
following

Lemma 29 Let O ≤ M2(K) be an order. The following are equivalent:

a) There exists a unique pair of maximal orders O1,O2 such that O = O1 ∩O2.

b) O is an Eichler order.

c) There exists a unique nonnegative integer n such that O is conjugate to

On :=

[
R R

πnR R

]
.

In summary, for H/K the split quaternion algebra over a local field: there exist
infinitely many maximal orders but they are all conjugate; the class number is
one; and there is a unique type of Eichler order of any given level (in fact Eich-
ler orders of distinct levels are not even linked, so this is the strongest possible
statement along these lines.

Remark: We note in passing that the maximal orders of a split quaternion
algebra are in bijection to the homogeneous space GL2(K)/Stab(M2(OK)) =
GL2(K)/K×GL2(OK) = PGL2(K)/PGL2(OK). Taking this as the vertex set
of a graph and decreeing two vertices to be adjacent if they have distance 1, we
recover the Bruhat-Tits tree associated to PGL2(K).

Definition (Eichler symbol): Let L/K be a separable quadratic field exten-
sion, π a uniformizer of K. The Eichler symbol (S

π ) is defined as follows: if S

is not the maximal order of L, then (S
π ) := 1. Otherwise, it coincides with the

Artin symbol (L
π ) – i.e., is −1 if the extension is unramified (inert!) and 0 if the

extension is ramified.

Theorem 30 (Optimal embedding theorem, split local case) Let K be a local
field, L/K be an étale quadratic algebra (i.e., a separable field extension or
K⊕K), S an order of L, and O ≤ M2(K) a maximal order. Then v(S,O) = 1.
If O′ is instead a level π-Eichler order, then v(S,O) = 1+ (S

π ): in particular, S
can be embedded in O′ unless S is the maximal order and L/K is unramified.
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The reader is invited to consult [Vignéras, pp. 44-47] for a proof of this theorem.

Nonsplit case: Now let H/K be the (unique, up to isomorphism) division
quaternion algebra over the local field K. The theory of valuations extends
to this non-commutative setting to give very nice results, namely: define a
map v : H× → Z by v(x) := v(n(x)) for all x ∈ H×, v(0) := ∞. Obviously
v gives a group homomorphism with the property that v′|K = 2v; moreover
it is surjective (v(

√
π) = 1), and one easily checks that it has the property

that v(x + y) ≥ inf(v(x), v(y)), i.e., it gives a valuation on H . In particu-
lar, the set OK of elements whose valuation is nonnegative is a subring of H .
Moreover, since the valuation restricted to the quadratic field generated by any
given noncentral element coincides with the natural (prolonged) valuation of
this quadratic extension of local fields, every element of the valuation ring is
integral in our sense. Conversely every element even with norm in OK lies in
the valuation ring; it follows that OK is the ring of all integral elements, i.e., it
is the unique maximal order. Every integral ideal of OK is therefore twosided.
Indeed, OK has a unique maximal ideal P , namely the elements of positive val-
uation, and the complete set of ideals is {P i}i≥1. In particular the class number
is one.

Theorem 31 (Optimal embedding theorem, nonsplit local case) Let K be a local
field, L/K an étale quadratic algebra, H/K the (unique) division quaternion
algebra, O ≤ H the maximal order. If S ≤ L is a maximal order, v(S,O) =
1 − (L

π ). If S is not maximal, v(S,O) = 0.

Proof: Clearly we may assume L is a field, otherwise it does not embed in the
nonsplit quaternion algebra H , and conversely, we saw in Section 1.1 that any
quadratic local extension L does embed in H . So let ι : LH be an embedding. If
S is the maximal order, then clearly ι embeds it inside H as a subring of integral
elements, therefore it is contained in the unique maximal order O. Since S is
maximal, this embedding is automatically optimal; this shows v(S,O) ≥ 1. This
argument simultaneously shows that if S is not maximal, no embedding into O
is optimal. Now, if u is any uniformizer of O (i.e., an element of valuation 1)
we have H×/K× = O×/K× ∪ O×u/K×, so that v(S,O) is either 1 or 2. In
general, it is easy to see that if S = R[u], vG(S,O) is equal to the number of
G-conjugacy classes in H of the element u. It follows that v(S,O) = 1 if and
only if there exists an element u ∈ L with w(u) = v(n(u)) = 1, i.e., if and only
if L/K is ramified.

0.2.3 Global fields

Now H/K is a quaternion algebra over a number field and all orders and ideals
are with respect to R := OK . We are going to explain, briefly, how the theory
of adelic points on the algebraic group G := H×, leads to the theorems on class
numbers, type numbers, and embedding numbers. We are going to assume as
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given the results recalled on Br(K)[2] in Section 1.1 (to see how they could be
proven using these adelic methods, consult [Vignéras, Ch. III].

Theorem 32 (Norm theorem) Let KH be the set of elements of K which are
non-negative at every ramified real place of H. Then KH = n(H). In particular,
if H is totally indefinite (= split at every real place of K), n(H) = K.

Proof: [Vignéras, p. 80].

Theorem 33 (Vignéras’ “fundamental theorem”) Let v be an infinite place of
K. Then there exists a compact subset C ⊂ H such that H×

KH×
v C is dense in

H.

Proof: [Vignéras, pp. 62-63].

Theorem 34 (Strong approximation for H1) Let H1/Q be the group of norm 1
quaternions. Let S be a set of places of K containing at least one Archimedean
place. Write H1

S = Πv∈SH1
v . Then if H1

S is not compact, H1
KH1

S is dense in
H1

A.

Proof: [Vignéras, p. 81].

Let us say that H/K is not totally definite (ntd) if there exists a real place
of K at which H is split (en [Vignéras], c’est le Condition Eichler). We find at
this point a parting of the ways: the answers to our questions about class num-
bers and type numbers depend very much on whether H/K is totally definite
or not. Notice that in the strong approximation theorem, if H if ntd we can
take S to be a split real place, H1

v is compact if and only if Hv is nonsplit.

Local properties of orders and ideals: fix X a complete lattice in H . Recall
that there exists a bijection between the set of all complete lattices in H and
sets of data {Yv}, where for each NA place v of K, Yv is a lattice in Hv and
Hv = Xv for almost every v. Indeed, we just send a lattice Y to its family of lo-
cal lattices Yv. In other words, a lattice is determined by all of its localizations,
and we can get from any lattice to any other lattice by modifying finitely many
localizations. We thus have the notion of a local property of ideals, i.e., one
that holds for Y if and only if it holds for all Yv. Examples of local properties of
ideals and orders in H : being an order, being a maximal order, being an Eichler
order, being an integral ideal, being a two-sided ideal. Let us remark that we
can define the level of an Eichler order locally, to be the integral R-ideal which
at each place v is given by the ideal Pk

v , where Ov is of level πk
v .

Discriminants: It is easy to see that if I is an ideal of H , then n(Iv) = n(I)v,
and if O ≤ H is an order, δ(Ov) = δ(O)v, i.e., norms and discriminants can be
computed locally. Whence immediately the important:

Proposition 35 An order O is maximal if and only if its discriminant is equal
to the discriminant of H in the sense of the Brauer group – the product over all
the finite ramified places of H.
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For example, the order Z[1, i, j, 1
2 (1 + i + j + ij)] in (−1,−1

Q ) had discriminant
2Z, so must indeed be a maximal order. More generally, one can use this
proposition to write down a level N -Eichler order in a quaternion algebra over
Q of arbitrary discriminant D (an exercise which we do not find a need for here).

Adelization: We find that the sets of orders and ideals are interested in can
be represented as adelic (possibly double) coset spaces: let O be a level N -
Eichler order in H/K. Then:

left O-ideals correspond to O×
A\H×

A ;
two-sided O-ideals correspond to O×

A\N(OA);
level N -Eichler orders correspond to N(OA)\H×

A ;
Picr(O) corresponds to O×

A\H×
A /H×

K ;
types of level N -Eichler orders correspond to H×

K\H×
A /N(OA).

In analogy to the commutative case, it thus becomes plausible that these sets
will be finite and related to the class number of K (i.e., to the cardinality of
O×

K(A)\KA/K×). Here is a result which is of the highest importance for us:

Theorem 36 For a maximal order O in H/K, we have N(O)/K×O× ∼= (Z/2Z)r,
where r is the number of ramified primes of H.

Proof: Indeed N(O) is the set of x ∈ H such that x ∈ N(Ov) for all NA v.
Since N(M2(Ov)) = K×

v GL2(Ov), we find no contribution from the split places.
On the other hand, if v is a ramified place, the uniqueness of the maximal order
implies N(Ov) = H×, so N(Ov)/K×

v O×
v = H×

v /K×
v O×

v
∼= Z/2Z.

Remark: A similar result could be worked out for Eichler orders – again N(O)/K×O×

will be an elementary 2-group.

Theorem 37 Let O ≤ H be an order in H. Then Picl(O) is finite. It follows
that the number of types of Eichler orders of any given level is finite.

Proof: This is indeed immediate from the “fundamental theorem”: we are look-
ing at the double coset space O×

A\H×
A /H×

K . Fixing any infinite place v, we have
O×

A\H×
A = O×

A\H×
KH×

v C, for some compact C. Since v is infinite, we have
H×

v ⊂ O×
A and we see that our discrete quotient is the image of a compact set.

Eichler’s theorem: We assume now that H/K is not totally definite.

Definition: Let PH be the subgroup of Frac(K) of principal ideals generated by
an element of KH , i.e., which are positive at all the real ramified places of H .
Let hH be the cardinality of Frac(K)/PH – i.e., hH lies somewhere between the
class number and the narrow class number of K and coincides with the former
when H is totally indefinite.

Theorem 38 (Eichler) Let O be an Eichler order of the ntd quaternion algebra
H/K. The reduced norm map induces a bijection n : Picr(O) → Frac(K)/PH .
In particular, the class number of H is hH .
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Corollary 39 The class number of an indefinite rational quaternion algebra is
1. Therefore, it is moreover the case that all maximal orders in an indefinite
rational quaternion algebra are conjugate.

Proof of Eichler’s theorem: The reduced norm induces a map

O×
A\H×

A /HK → R×
A\K×

A/KH

For the surjectivity, observe that unless v is an infinite ramified place, n(H×
v ) =

K×
v , and otherwise K×

v ⊂ R×
A . For the injectivity, H1

A ⊂ O×
AH×

K by strong
approximation.

Remarks: We do not need it here, but Vignéras proves an interesting relation
between the type number and the class number for an ntd H/K. Indeed, let O
be an Eichler order of level N , and write h := Picr(O), t for the type number
of O and h2 for the number of classes of two-sided O-ideals. Then h = th2, and
h2 is equal to the order of the subgroup of Frac(K)/PH generated by: squares
of ideals of R, prime ideals ramifying in H and prime ideals dividing the level
to an odd power. We deduce:

Corollary 40 If hH is odd, there is a unique conjugacy class of Eichler order
of any given level.

The relevance of this corollary is that the general optimal embedding formulas
for vG(S,O) are rather unwieldy. In fact in the remainder of the thesis we meet
only quaternion algebras over Q (class number one!), but we aspire to give the
general set-up in a form which makes possible the generalization to other totally
real fields. It turns out that when there is a unique type of Eichler order we get
nicer embedding formulas, so this seems like a fair compromise.

Theorem 41 (Optimal embedding theorem, global ntd case) Let H/K be an
ntd quaternion algebra over a number field K, and assume there exists a unique
conjugacy class of Eichler order of level N ; let O be a representative of this
class. Then v(S,O) = h(S)Πvp(Sp,Op), the product extending over all NA
places; here h(S) is the class number of the quadratic order S.

Proof: [Vignéras, pp. 92-94].

Corollary 42 Let O be an Eichler order of squarefree level N in a quaternion
algebra of discriminant D. Then

v(S,O) = h(S)
∏

p|D
(1 − (

S

p
))

∏

q|N
(1 + (

S

p
)).

0.3 Quaternionic Shimura varieties over C

Let F be a totally real number field, B/F a quaternion algebra, O ≤ B an Eich-
ler order of squarefree level N . Let r = [F : Q]. We may order the real places
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of F ∞1, . . .∞r such that B ⊗∞i
R ∼= M2(R) for 1 ≤ i ≤ g and B ⊗∞i

R ∼= H
for g + 1 ≤ i ≤ r. We say that B/F is of type (g, r − g). If g = r it is totally
indefinite; if g = 0 it is totally definite.

Compiling all the real embeddings at the split places, we get a map φ : B →∏g
i=1 M2(R). Write O+ for the group of units of O of totally positive reduced

norm and O1 ≤ O+ the group of units of reduced norm 1. By restriction, we
get maps

ϕ : O+ ↪→
g∏

i=1

GL+
2 (R),

ϕ : O1 ↪→
g∏

i=1

SL2(R)

.

Proposition 43

a) φ(O1) is a discrete subgroup of SL2(R)g of finite covolume.

b) If H/F is nonsplit, O1 ≤ SL2(R)g is cocompact, and SO := O1\SL2(R)g

has the natural structure of a projective C-variety.

c) If g = r, we have the double coset interpretation

O1\SL2(R)g ∼= B×\B×(A)/K∞Ô×

where K∞ = Cg ⊂ M2(R)g.

Comments: Parts a) and b) are classical in a very strong sense (special cases
were known to Fricke and Poincaré). A nice, rather elementary presentation of
these results (when g = 1) from the perspective of arithmetic Fuchsian groups
can be found in [Katok]. For the general case see [Vignéras, p.104] – the proof
given there uses the notion of strong approximation for the group B×. We
remark that the same methods yield a more general compactness result for the
C-points of a Shimura variety associated to a reductive algebraic group G/Q
(and certain additional data):

Proposition 44 Let G/Q be a reductive group, and let SG be any associated
Shimura variety. Then SG(C) is compact if and only if the derived subgroup
[G, G] is anisotropic over Q.

Once we have discussed the moduli interpretation, c) is easily to see directly
– it is the sort of double-coset construction that is ubiquitous in the theory of

Shimura varieties. The adelic perspective allows us a generalization: if K ≤ Ô×

is a compact open subgroup, we put

SK := B×\B×(A)/K∞K,

a quaternionic Shimura variety with level-K-structure.

30



There is already a certain redundancy in the objects we have introduced: start-
ing with a maximal order, we can recover the Shimura curve associated to a

level N Eichler order by taking K = ̂Γ0(N ). We will find both perspectives
useful: the notion Γ0(N )-level structure seems more familiar and leads directly
to the moduli problem we want to study, but on the other hand we can exploit
the theory of Eichler orders developed in the preceding section to study Shimura
curves with no level structure and Γ0(N )-level structure at the same time. In
essence, the fact that we can develop the entire theory equally well at the level
of an Eichler order highlights the special role played by Γ0(N )-level structure –
evidence for this turns up in each of the next three sections.

Remark: As a C-manifold, SO depends a priori on the choice of Eichler or-
der, or more precisely on its type. Recall (Corollary 40) that when the narrow
class number of F is odd (so certainly when F = Q) there is a unique type
of Eichler order of a given level, so in fact this ambiguity will not arise in the
sequel. On the other hand, working with real quadratic F of class number di-
visible by a sufficiently large power of 2, [Vignéras] exploits this dependency on
the type to exhibit arbitrary large families of Shimura curves S/F which, as
Riemann surfaces, are cospectral but pairwise non-isometric.

0.3.1 Genus formulae for Shimura curves

From now on, we assume that B/F is a nonsplit quaternion algebra of type
(1, g − 1), so that SO is a compact Riemann surface (soon enough we will as-
sume F = Q).

Let Γ ≤ SL2(R) be a Fuchsian group of the first kind. Recall the general
formula for the genus of (the compactified curve) XΓ := Γ\H:

2 − 2g(XΓ) = − 1

2π
V ol(Γ\H) +

∑

q≥1

eq
q − 1

q
+ e∞

where V ol denotes volume with respect to the standard invariant metric dxdy
y2

and eq indicates the number of elliptic points of order q and e∞ the number
of cusps. Notice that we need only compute the volume for one Γ in each
commensurability class, since if Γ′ ≤ Γ, V ol(Γ′\H) = V ol(Γ′\H)[Γ : Γ′]. So let
O be a maximal order; we record the

Proposition 45

V ol(O1\H) =
1

π
ζF (2)δ

3
2

F (4π2)1−[F :Q]Πp|DN(p − 1),

where ζF is the Dedekind zeta function, δF = δF/Q is the absolute discriminant
of F , and D is the discriminant of the quaternion algebra. When F = Q, this
simplifies to

1

2π
V ol(O1\H) =

1

6

∏

p|D
(p − 1).
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Notice that elliptic points correspond to roots of unity in B; since there could
be lots of these for a quaternion algebra over an arbitrary totally real field, now
is a good time to take F = Q – finding genus formulae for more general Shimura
curves is a subject unto itself (cf. [Sadykov] and [JLV].)

For the remainder of this thesis, B will denote a nonsplit indefinite rational
quaternion algebra of discriminant D, and O will denote an Eichler order of
(squarefree) level N . We write XD

0 (N) for the Shimura curve SO; we abbrevi-
ate XD := XD

0 (1). Notice that in this case we can only have elliptic points of
order 2 and 3 – indeed every nonreal root of unity ζ ∈ B lies in an imaginary
quadratic field. More precisely, elliptic points of order 2 correspond to classes
(modulo O×) of optimal embeddings Z[

√
−1] ↪→ O, whereas elliptic points of

order 3 correspond to classes of optimal embeddings Z[ζ3] ↪→ O. One of the
fruits of our labors in Section 2 was formulae for these class numbers, so we get:

Proposition 46 (Genus formula for XD)

g(XD) = 1 +
1

12

∏

p|D
(p − 1) − 1

4

∏

p|D
(1 − (

−1

p
)) − 1

3

∏

p|D
(1 − (

−3

p
))

Using the fact that if O is a maximal order containing a squarefree level N -
Eichler order ON , we have [O1 : O1

N ] = Πq|N (q + 1) and adjusting the class
number formulas for embeddings into ON , we get:

Proposition 47 (Genus formula for XD
0 (N))

g(XD
0 (N)) =

1+
1

12
Πp|D(p−1)Πq|N (q+1)−1

4
Πp|D(1−(

−1

p
))Πq|N (1+(

−1

q
))−1

3
Πp|D(1−(

−3

p
))Πq|N (1+(

−3

q
))

The Atkin-Lehner group: If X = Γ\H is a compact Riemann surface uni-
formized by a Fuchsian group, NGL+

2
(R)(Γ)/Γ acts as automorphisms on X : if

[α] ∈ NΓ/Γ, α : z 7→ αz, α(γz) = γ′αz, so that α acts on Γ\H. If we take
Γ = O1, where O is a level N Eichler order of B, then from Section 2 we
know NO×/O× ∼= (Z/2Z)r+s, where r = #{p such that p|D} and s = #{q
such that q|N}. For a|DN , write γa for any representative, which is given by
any element of reduced norm a. We call any such element an Atkin-Lehner
element. Also, write wa : XD

0 (N) → XD
0 (N) for the corresponding Shimura

curve automorphism, called an Atkin-Lehner involution. In fact, for the most
part we will be interested only in the γd for d|D; accordingly we write W for
the subgroup generated by the γd for d|D and call it the Atkin-Lehner group.
(The terminology comes from the fact that when D = 1 the γs for s|N are the
classical Atkin-Lehner involutions that occur in the theory of elliptic modular
curves, newforms and functional equations.) We shall see that the non-classical
Atkin-Lehner involutions play an even greater role than one would expect from
the classical case: indeed, throughout this thesis we shall be studying not the
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Shimura curves XD
0 (N) themselves, but certain Atkin-Lehner quotient curves.

Remark: We say wD is the main Atkin-Lehner involution, and write XD+
0 (N) :=

XD
0 (N)/wD. As an introduction to what makes wD so special, notice that by

Hasse’s criterion, Q(
√
−D) splits B, so that we may take for our γD an element

such that γ2
D + D = 0.

We want a genus formula for XD+
0 (N) and indeed for XD

0 (N)/WH for any
WH ≤ W . By Riemann-Hurwitz, this is equivalent to a formula for the number
of fixed points ed := #Fix(wd). Such fixed-point formulae have been pro-
vided in several of the important papers written on the arithmetic geometry of
Shimura curves circa 1980 – unfortunately, many of these published formulae
are incorrect (a good check is to see that every Atkin-Lehner involution on a
genus zero Shimura curve has precisely two fixed points!) Luckily for us, there is
a quite careful treatment of this matter found in [Ogg I]; he proves the following

Proposition 48 The number of fixed points of a nontrivial Atkin-Lehner invo-
lution wm on XD

0 (N) is given as a sum

em =
∑

S

h(S)
∏

vp(S,O) =
∑

S

h(S)
∏

p|D
(1 − (

S

p
))

∏

p|N
(1 + (

S

p
))

where we sum over certain imaginary quadratic orders S:
• if m = 2, we sum over S = Z[

√
−1], Z[

√
−2];

• if m > 2 and m ≡ 1, 2 (4), we have only S = Z[
√
−d];

• if m ≡ −1 (4), we sum over Z[ 1+
√
−d

2 ], Z[
√
−d].

Proof: More precisely, we show that the wm-fixed point locus is naturally in
bijection with the union over sets of representatives for each of the inequiva-
lent optimal embeddings of the quadratic orders given in the statement of the
theorem. To be sure, that the locus of points P on the Shimura curve with rep-
resentative z ∈ H whose stabilizer µ in O generates a given imaginary quadratic
order R corresponds to the set of inequivalent optimal embeddings of that order
R into O was – to put it mildly! – well-known to Shimura and can be found in
many other sources. The point is to compute which quadratic orders intervene.

Recall that we may take as an Atkin-Lehner element any µ ∈ O of reduced
norm m, and that any of these elements generates the two-sided ideal I(m) =
µO = Oµ. Suppose that P ∈ XD

0 (N)(C) is a wm-fixed point, and take a repre-
sentative z for P in the upper halfplane. By definition of a wm-fixed point, we
have µz = γz, for some norm one element γ ∈ O×. Since we could equally well
have chosen γµ as our Atkin-Lehner element, we may assume µz = z; also, be
replacing µ 7→ −µ if necessary, we may assume tr(µ) ≥ 0. Observe that Q(µ) is

an imaginary quadratic field – indeed, representing µ by a matrix

[
a b
c d

]
we

have the equation cz2 + (d − a)z − b = 0. Since z lies in the upper halfplane,
we have (d − a) < 4bc, which is equivalent to the inequality tr(µ) < 4 det(µ).
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Consider now the image µ′ of µ under the canonical involution. It is equally
well a generator of the ideal I(m) and moreover satisfies µ + µ′ = tr(µ) ∈ Q,
so we find that µ′ = εµ for some ε ∈ O× ∩ Q(µ). Usually ε = −1 so that µ is
a “pure quaternion”: µ2 + m = 0; more precisely this occurs unless the ring of
integers of Q(µ) has nontrivial units. This can happen exactly when m = 2, so
that µ = 1 + i (and ε = i) or when m = 3, so that µ = 1 − ζ3 (so that ε = ζ3).

Take now R to be the imaginary quadratic order 4Q(µ)∩O. Clearly R contains
Z[µ]; we claim that if this containment is proper then necessarily m ≡ 3 mod 4
and then R = Z[(1+µ)/2]. Indeed, assume that µ2 = −m, and put α = a+bµ

2 ∈
O. Then a = tr(α) and hence lies in Z, while −bm = tr(αµ) ∈ tr(I(m)) ⊂ mZ,

so that b also lies in Z. Since n(α) = a2+mb2

4 ∈ Z, we get that if m ≡ 3 mod 4
a ≡ b mod 2, and otherwise a, b are both even, establishing the claim.

Thus we have seen that the imaginary quadratic orders generated by the O-
stabilizers are exactly as in the statement of the proposition; conversely, the
argument shows that given such an element there is a wm-fixed point. Clearly
inequivalently embedded quadratic orders give rise to distinct fixed points, but
what about equivalent embeddings? Consider an embedding equivalent to µ,
so given by γµγ−1 for γ ∈ O×. If γ has norm 1, then γµγ−1 fixes γ(z), which
represents the same point P on the Shimura curve. Suppose then that γ has
norm −1; then (considering complex conjugation with respect to the canonical
R-structure – see the next section), we get γµγ−1 fixes γ(z). If P happens to
be a real point – i.e., if P = P , then (without loss of generality) γz = z, and z
hence also z is fixed by γµγ−1 , so that γµγ−1 = µ′ (not µ, because otherwise γ
would be a unit in R hence have norm 1). Conversely, suppose µ′ = γµγ−1 for
some γ ∈ O×, necessarily of norm −1. As above we get γ(z) = z, or P = P . In
summary, we get that P = P if and only if µ ∼ µ′, which establishes that the
fixed points correspond to equivalence classes of optimally embedded quadratic
orders. Applying Eichler’s embedding theorem, we are done.

As a corollary of the proof we deduce that the fixed points of wd are all special
points (soon to be called CM points, when we introduce the modular interpre-
tation). Let us provisionally call a point z ∈ H lying over P on a Shimura curve
K-special for some (unique) imaginary quadratic field K if Stab(z)∩B× = K×.
Notice that the designation special is justified by the fact that the K-special
points form a countable set; indeed, given a fixed order S of K, S-special points
correspond to classes of optimal embeddings S ↪→ O, which we know from Sec-
tion 0.2 is a finite set. Notice also that different d|D give rise to points which
are Kd-special for different fields Kd, so that the fixed-point sets of the various
nontrivial wd’s are pairwise disjoint. This enables us to write down a genus
formula.

Proposition 49 Let HG ∼= (Z/2Z)r be a group of Atkin-Lehner involutions of

34



cardinality 2s. Then

g(XD
0 (N)/H) = 1 + 2−s(g(XD

0 (N) − 1) − 2−s−1
∑

wd∈H−1

#Fix(wd)

Corollary 50 The genus of XD
0 (N)/H goes to infinity in the sense that for

any fixed number G, there exist only finitely many values of D, N, H such that
g(XD

0 (N)/H) ≤ G.

Proof: We may without loss of generality take N = 1, H = G since any Shimura
curve has a finite map to one of these Shimura curves, hence the genera of the
general curves will be at least as large as those of this particular form. Looking
at the genus formula for XD, we see that g(XD) ∼ 1

12D (as D approaches
infinity through squarefree values). Using the facts that the class number of

Q(
√
−d) = O(

√
d) and that D/2r � D

2
3 (say), the result follows easily.

0.3.2 The moduli interpretation

We will now explain how Shimura curves like XD and XD
0 (N) are coarse moduli

varieties for certain moduli problems (in the category of C-schemes, for now).
We begin with the N = 1 case. Recall we fixed O ≤ B a maximal order. We
need to introduce a piece of auxiliary data, namely a choice of µ ∈ O such that
µ2 = −D. Associated to this µ we have an involution b? := µ−1bµ, where we
reserve b 7→ b for the canonical involution. One checks easily that ? is a positive
involution.

Consider now the following moduli problem: triples (A, ι, P ), where A/C is an
abelian surface, ι : O ↪→ End(A) is a ring homomorphism, and P is a principal
polarization on A. The homomorphism O ↪→ End(A) is called a QM structure.
We require ι and P to be compatible in the following sense: the (Rosati) invo-
lution induced by P on End(A) must stabilize B ≤ End0(A) = End(A) ⊗ Q
and induce the involution ? on O. An isomorphism φ : (A, ι, P ) → (A′, ι′, P ′)
is an isomorphism of underlying abelian varieties φ : A → A′ preserving the
polarization: φ?(P ′) = P and which respects the two QM structures: ι′ = φ ◦ ι.

We remark that it is well-known that the Rosati involution on a polarized
abelian variety is positive for the trace form [Mumford II], which explains why
we have made sure to choose our auxiliary data so as to make the involution
positive. Philosophically speaking, the fact that the canonical involution on an
indefinite rational quaternion algebra is never positive (due to the existence of
real quadratic splitting fields) – compare with the positivity of the canonical
involution on a definite quaternion algebra – forces us to make a noncanonical
choice and thus complicates the entire picture in a way that will become fully
clear in Chapter 1.

To connect this moduli problem with our Shimura curves, we construct a uni-
formization map H → {(A, ι, P )/C}/ ∼=:
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z 7→ (Az , ιz, Pz), where Az = C2/O
[
z
1

]
; here we view

B ↪→ B ⊗ R = M2(R) ↪→ B ⊗ C = M2(C).

The complex torus Az has an evident O-action; moreover, it is projective via
the Riemann form

Ez : O
[
z

1

]
×O

[
z

1

]
→ Q, Ez(x

[
z

1

]
, y

[
z

1

]
) := tr(µxy).

The data of the QM-structure and the principal polarization are not indepen-
dent; indeed

Proposition 51 (Milne) Given (B,O, µ) as above and ι : O ↪→ End(A), there
exists a unique principal polarization P on A such that (A, ι, P ) is a compatible
QM surface.

A comment on polarized abelian varieties with many endomorphisms: this
proposition is a little curious, since one of the most important technical ideas
in the theory of moduli of abelian varieties is that it is more natural to study
a polarized abelian variety than a naked abelian variety. Thus it may seem
strange that given a QM structure the polarization comes for free. What we
are seeing is the advantage of studying abelian varieties with sufficiently many
endomorphisms: say a simple abelian variety over C of dimension d has suffi-
ciently many endomorphisms (SM) if End0(A) contains a number field K/Q of
degree d, and a general abelian variety is SM if it is isogenous to a power of a
simple SM variety. Indeed, make the same definitions for an arbitrary complex
torus. A generic complex torus of dimension d > 1 does not admit a polarization
(and hence is not a projective variety) but any SM complex torus is polarizable:
as in the QM case there will be a canonical Riemann form constructed from
K ≤ End0(A). Abelian varieties with SM play an especially large role in 21st
century arithmetic geometry, since the condition of SM is necessary for modu-
larity.

Dichotomy of simple versus CM: Recall that by definition the endomorphism
algebra of a QM abelian surface contains at least the quaternion algebra B, so
that its dimension is at least 4. It is easy to see that this is the maximal possible
dimension for a simple abelian surface defined over a field of characteristic 0 (or
equivalently by the Lefschetz principle, over the complex numbers). Indeed,
let A/C be an abelian surface such that D = End0(A) is a division algebra.
Writing A = C2/Λ, D acts on Λ ⊗ Q (the “rational” rational representation);
every module over a division algebra is free, hence has a D-dimension d: but
4 = dimQ Λ ⊗ Q = d[D : Q], so that [D : Q] ≤ 4. On the other hand, con-
sider a nonsimple abelian surface A ∼ E1 × E2. If E1 is not isogenous to E2,
we find End0(A) = End(E1) × End(E2), which (being a nonsimple algebra of
dimension at most 4) obviously does not contain B. So if A is a nonsimple QM
surface, A ∼ E2 and End0(A) ∼= M2(End0(E)). If End0(E) = Q, then it does
not contain our nonsplit quaternion algebra B. We have therefore shown:
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Proposition 52 Let (A, ι, P )/C be a QM abelian surface. Then either A is
simple, in which case End0(A) = B, or A ∼ E2, where E/C is an elliptic curve
with CM by a field K which splits B.

In the latter case we refer to the corresponding point (A, ι, P ) on the Shimura
curve as a CM point. It is easy to see that that corresponds to the notion of a
K-special point in our earlier terminology. In particular, the CM points on XD

form a countable subset, so that the generic QM surface is simple. Indeed, when
we study QM surfaces as arithmetic-geometric objects, it is the simple ones that
are of true interest, since the CM points are just repackaged CM elliptic curves.
On the other hand, the skillful exploitation of “degenerate” objects in a moduli
space is one of the classic tricks of the trade, and the reader should not be
surprised that CM points will play an important role – all the more so since in
our cocompact setting we have no truly degenerate objects (cusps) to work with.

XD
0 (N) as a moduli space: Here we have our choice of moduli interpretations:

Proposition 53 XD
0 (N)/C is the coarse moduli space for each of the following

moduli problems:

M1: isomorphism classes of triples (A, ι, P ) as above, but with
ι : ON ↪→ End(A), ON a level N Eichler order.

M2: isomorphism classes of quadruples (A, ι, P, QN ) where the first three com-
ponents are as for XD, and QN ≤ A[N ] is a subgroup of order N2, isomorphic
as abelian group to Z/N ⊕ Z/N and cyclic as O-module: there exists P ∈ QN

such that OP = QN .

M3: isomorphisms classes of maps φ : A1 → A2, where φ is a QM-equivariant
isogeny of the QM-surfaces (A1, ι1), (A2, ι2), whose kernel is a cyclic O-module
of order N2.

Proof: That XD
0 (N) is the coarse moduli space for M1 is established by the

same analytic construction as in the XD case. Moreover, it is immediate to
see that M2 and M3 are the same moduli problem: take QN = Ker(φ). To
see the equivalence of M1 and M2, given an O-QM abelian surface and a sub-
group QN ≤ A[N ] as in M2, let O′ := {x ∈ O | xQN ≤ QN}. We must
check that O′ is a level N Eichler order. Indeed O′ is precisely the subor-
der of O consisting of elements which give well-defined endomorphisms of A2,
so φ induces a map O′ → O2 = End(A2) and hence an automorphism of B.
By Noether-Skolem, this automorphism is given as conjugation by some α, so
O′ = O1 ∩αO1α

−1, hence it is an Eichler order. As for its level, we used earlier
that [O1 : O1

N ] = Πp|N (p + 1), whereas it is clear from the defining property of
O′ that its norm 1 units have the same index in the norm 1 units of O (exactly
as in the elliptic modular case). This completes the proof.

Remark: Writing a level N Eichler order as the intersection of two maximal
orders ON = O1 ∩ O2 gives by M1 two forgetful functors (degeneracy maps!)
q1, q2 : XD

0 (N) → XD. The equivalence of M1 and M2 implies that q1 = wN q2,
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where wN is the “main classical” Atkin-Lehner involution .

Modular interpretation of the wd: Now that we can view our Shimura curves
as moduli spaces, it is natural to ask for an interpretation of the wd in terms
of automorphisms of our moduli problem. This was done in [Jordan I]; we
reproduce the work here. Choosing an Atkin-Lehner element αd, we have
αd : (Az , ιz, Pz) 7→ (Aαdz, ιαdz, Pαdz). Now notice

f : Aαdz = C2/O
[
αdz

1

]
∼= C2/Oαd

[
z

1

]
= C2/αdO

[
z

1

]
α−1

d→ C2/O
[
z

1

]
,

so we find that αd does not change the underlying abelian surface. On the
other hand, f ◦ ιαdz(m) = ιz(α

−1
d mαd) ◦ f , that is ιαdz = α?

dι, where for any
α ∈ NO, α?ι twists the QM structure: ι(b) 7→ ι(α−1bα). We also check that
α?Ez = Ez(αx

[
z
1

]
, αy

[
z
1

]
) is the induced polarization. To summarize:

Proposition 54 ([Jordan I]) The Atkin-Lehner involutions wd act on the mod-
uli problem (A, ι, P ) by preserving A, by twisting ι 7→ α?

dι and by carrying
Ez(x, y) 7→ Ez(αx, αy).

Shimura curves with level U structure: Finally, recall that from the perspec-
tive of Shimura varieties, any adelic level structure gives rise to a Shimura
curve. That is, let U be a compact open subgroup of B×(Af ). Then XD(U) =
B×\B×(A)/C×U is a C-manifold which is the coarse moduli space for (A, ι, P, u),
where A, ι, P are as usual and u is a U -orbit of isomorphisms TA → Ô where
TA is the full Tate module of A and Ô is the profinite completion of O. As
examples, we take:

U := ̂Γ0(N) := {(xp) | xp
∼=

[
a b
0 d

]
(mod p) for p|N}

:= ̂Γ1(N) := {(xp) | xp
∼=

[
1 b
0 1

]
(mod p) for p|N}

:= Γ̂(N) := {(xp) | xp
∼=

[
1 0
0 1

]
(mod p) for p|N}

We see that, as long as N is prime to D, the notion of level N -structure is
group-theoretically the same as in the elliptic modular case. By Proposition 53,
the first of these curves is XD

0 (N).

0.4 The canonical R-model

In this section we define an R-model for all our Shimura curves and discuss the
real locus X(R).

Recall that if X/L is a variety defined over a field L such that L/K is a
finite Galois extension, then a K-model of X is a variety X0/K such that
X0 ×K L ∼= X/L. One specifies a K-model via descent data: that is, for each
σ ∈ GL/K we give an automorphism fσ : X → Xσ = X ×σ L such that
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fστ = σ(fτ ) ◦ fσ. In the special case that L/K = C/R, the descent data is
specified by a single map f : X → X with the property that f = f−1; such an
f is said to be an antiholomorphic involution.

Now let X/C = Γ\H be any compact Riemann surface uniformized by a
Fuchsian group. We can supply an antiholomorphic involution by giving a
subgroup Γ̃ such that Γ̃ ≤ GL2(R) but not in GL+

2 (R) and Γ ≤ Γ̃, [Γ̃ : Γ] = 2.
In other words, Γ̃ = 〈Γ, γ̃〉, where det(γ̃) < 0 and γ̃2 ∈ Γ. We claim that Γ̃
defines a real model of X/C. Indeed, define f : H → H by f(z) := γ̃z; in other
words, we have an antiholomorphic map g : H → H via g(z) := γ̃z. Obviously
Γ is normal in Γ̃, so γ̃Γz = γ̃Γz = Γγ̃z, and g descends to a map on X which is
plainly an antiholomorphic involution.

The group Γ̃ for XD
0 (N): since XD

0 (N)/C = O1
N\H and n : O×

N → ±1, it

is very natural to take Γ̃ := O×
N to give a model XD

0 (N)/R. Notice that this
choice is compatible with the (full) Atkin-Lehner group NON/O×

N , so that all
the wd are defined over R.

X(R): The real locus of any Shimura curve is a compact 1-manifold, i.e., is
a direct sum of circles. The only topological invariant therefore is the number
of (analytic!) connected components #Φ. The first and most important result
in this direction is due to Shimura:

Theorem 55 (Shimura) XD
0 (N)(R) = ∅.

Proof: Without loss of generality we may take N = 1, since the natural map
XD

0 (N) → XD would produce real points on XD given any on XD
0 (N). Let

γ̃ ∈ O× − O1 be our antiholomorphic involution; a real point corresponds

to a fixed point of γ̃. Say γ̃ =

[
a b
c d

]
; we must consider z = az+b

cz+d , or

c|z|2 +b = az−dz. This has a solution for z ∈ H if and only if a = −d, in which
case γ̃2 is a homothety by a2 + bc. It follows that α := γ̃

a2+bc is an element of

B× such that α2 = 1. Since B is a division algebra, α = ±1, which gives a

contradiction since n(α) = n(γ̃)
(a2+bc)2 < 0.

To gain some additional insight into this result, compare with the following

Proposition 56

a) There is no (E, ι)/R, where E/R is an elliptic curve and ι : K ↪→ End0
R(E)

is an R-rational CM-structure.

b) There is no (A, ι)/R, where A/R is an abelian surface and ι : B ↪→ End0
R(A)

is an R-rational QM-structure.

Proof: We prove b); a similar argument works for a). Write V := H1(A(C), Q)
(singular homology!), so V/Q is a four-dimensional vector space. The R-structure
on A gives rise to an antiholomorphic involution c on A(C); let W := V c=1; it is
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a two-dimensional Q-vector space corresponding to the embedding T0(A(R)) ↪→
T0(A(C)). Then, if ι is defined over R, we have ι : B ↪→ EndQ(W ) ∼= M2(Q),
contradicting the fact that B is nonsplit.

Remark: To be sure, Proposition 56 is weaker than Shimura’s theorem: since
our moduli space is only coarse, it is possible that there could be R-points on
XD

0 (N) not induced by any structure (A, ι, P, QN )/R. We will explore this iss-
sue in detail later.

On the other hand, Atkin-Lehner quotients of XD
0 (N) may well have real points.

Indeed the problem of the real locus of XD
0 (N)/H was studied in [Ogg I]; he

obtains the following

Theorem 57 ([Ogg I]) Let 1 6= m|DN . Let v(m) =
∑

S h(S)
∏

vp(S,ON ), S
ranging over the set of orders of Q(

√
m) containing Z[

√
m]. Then the number

#Φ of analytic components of XD
0 (N)/wm(R) is v(m)/2, unless: v(m) > 0,√

−1 ∈ ON , DN = 2t for odd t, m = t or 2t, and x2 −my2 = ±2 is solvable in
integers x, y, in which case

#Φ =
v(m) + 2r+s−2

2
,

where r = #{p|D}, s = #{q|N}.

We extract the case of interest to us in the sequel:

Corollary 58 XD+
0 (N)(R) is nonempty if and only if for all p dividing N ,

(D
p ) = 0 or 1.

0.5 The canonical Q-model and Shimura reci-

procity

Finally in this section we introduce the basic arithmetic-geometric objects we
wish to study: namely we define Q-models for our quaternionic Shimura curves.
There are two approaches to this: by extending the moduli problem to Q-
schemes, and by studying fields of moduli of CM points. The latter method
was the one employed by Shimura in his seminal study of what are now called
Shimura varieties. On the other hand, from a modern perspective the moduli
method is a bit more familiar, so we shall give it first. In this way, Shimura’s
study of the CM points becomes an important theorem about the Shimura
curves over Q. Still, knowing that the structure of the CM locus characterizes
the Q-model is an instance of an important philosophy: that the arithmetic of
a Shimura variety is controlled by the arithmetic of its special points.

Proposition 59 There is a Q-model for XD
0 (N) which is characterized as the

coarse moduli scheme associated to the following moduli problem in the category
of Q-schemes: S/Q 7→ {(A, ι, P, QN )/S}/ ∼=, where A/S is a two-dimensional
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abelian scheme, ι : O → EndS(A) is an O-QM structure, P/S is a compatible
principal polarization (with respect to a choice of auxiliary data µ ∈ O, µ2+D =
0), and QN ≤S A[N ] is an fppf-locally cyclic O-module whose geometric fibres
are of type Z/NZ ⊕ Z/NZ.

We defer our discussion of the proof until the next section, in which we extend
the moduli problem (verbatim) to Z[ 1

ND ]-schemes.

Remarks: It is easy to see that the Atkin-Lehner involutions wm, m|DN have
a moduli interpretation as in Section 3 – in particular the wd preserve the un-
deryling abelian variety and twist the quaternionic action, whereas the wn are
as in the classical case – hence they give automorphisms of XD

0 (N)/Q.
There is also an adelic formulation: for U ≤ Ô× a compact open subgroup,
we have the curve XU/Q which parameterizes level U -structures on the adelic
Tate module of a QM-abelian surface (scheme). If n : U → Ẑ× is surjec-
tive, then XU/Q is geometrically irreducible. In the general case, the finite
group Ẑ×/n(U) corresponds by class field theory to a finite abelian extension
K/Q, and abelian extension gives the field of definition of a single connected
component of XU (i.e., exactly as in the elliptic modular case). In particular,
XD

1 (N)/Q is irreducible, whereas XD(N) has each connected component de-
fined over Q(ζN ), which explains why we do not consider the case of full level
N -structure in the sequel.

Shimura reciprocity at the CM points: As alluded to above, we can explic-
itly compute the fields generated by the coordinates of CM points on Shimura
curves. The fundamental result is:

Theorem 60 (Shimura reciprocity law) Let ϕ : H → XD be the natural map.
Let K be an imaginary quadratic field that splits B, and let z ∈ H be a point
such that ϕ(z) has CM by the maximal order RK of K.

a) We have ϕ(z)K = K1, the Hilbert classfield of K.

b) The action of GK1/K = Pic(RK) on ϕ(z) ∈ CM(RK) is given by: σ(ϕ(z)) =
ϕ(α−1z), where z corresponds to the embedding q : K → B and if σ = (a, K1/K),
then q(a)O = αO for α ∈ O with n(α) > 0.

In [Jordan I] this is pushed further: he studies the action of W × GK1/K on
CM(RK), where W is the Atkin-Lehner group.

Proposition 61 ([Jordan I]) Let d|D and z ∈ H represent a point on XD

having RK-CM.

a) If d is the norm of an ideal a of K, wd(ϕ(z)) = σ(ϕ(z)), where σ =
(a, K1/K).

b) Otherwise wd(ϕ(z)) 6= σ(ϕ(z)) for any σ ∈ GK1/K .

Proposition 62 ([Jordan I]) Let W ′(K) ≤ W be the subgroup of the Atkin-
Lehner group generated by {wp|p|D and p is inert in K}. Then W ′(K)×GK1/K

acts simply transitively on the RK-CM locus.
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Proposition 63 ([Jordan I]) Let G = G(K1/K); let π : W ′(K)×G → W ′(K)×
G/G2 be the natural map. Let τ denote complex conjugation. For any fixed
z ∈ CM(RK), there is a unique element wd ×σ such that τ(z) = wdσ(z). Then
the class of wd × σ in W ′(K) × G/G2 is independent of the choice of z, so τ
corresponds to a well-defined element of W ′(K)×G/G2. It is given as follows:

[τ ] = π(wd, (a, K1/K)), where B ∼= (−s,dN(a)
Q ).

Corollary 64 Let d′(K) be the product over those primes dividing D which are
inert in K. Then [τ ] = π(wd′(K) × (a, K1/K)) ∈ W ′(K) × G/G2.

Using these results, we can explicitly give all rational CM points on a degree
two Atkin-Lehner quotient XD/wd. Indeed:

Proposition 65

a) If x ∈ XD/wd(Q) is a rational RK-CM point, the class number of RK is 1
or 2.

b) Class number one case: every class number one RK-CM point x ∈ XD(K) be-
comes rational on a unique degree 2 Atkin-Lehner quotient, namely on XD/wd′(K).
In particular, if D is prime to the discriminant of K, x induces a rational point
on XD+.

c) Class number two case: let x ∈ XD(K1) be an RK-CM point, where K is
a class number two field. If D does not divide the discriminant of K, then x
does not become rational on any twofold Atkin-Lehner quotient. Conversely, if
D divides the discriminant of K then x ∈ XD/wd(Q) unless:
d ≡ 3(4), D = d, and K = Q(

√
−D); or

d ≡ 1(4), D = d, K = Q(
√

D) or d = D/2, K = Q(
√

−D
2 ); or

d ≡ 2(4), d > 2; D = d, K = Q(
√
−D).

Notice that in all there are only finitely many rational CM points on twofold
Atkin-Lehner quotients arising from class number two CM fields.

0.6 Fields of moduli and fields of definition

Let A/K be a structure defined over the algebraic closure of a field K. We
define the field of moduli L of A to be the field cut out be the subgroup
H := {σ ∈ GK |A ×σ K ∼= A}. In case we have a (coarse or fine) moduli
space X/K for a set of structures, we can also characterize the field of moduli
of an A ∈ X(K) as the field of definition of the point A on X (i.e., as the field
extension of K generated by the coordinates of A in any local affine model of
X , or equivalently as the residue field of the local ring of the closed subscheme
defined by A). Contrast this with the notion of a field of definition: we say L/K
is a field of definition for A/K if there exists an L-model for A.

Let us discuss how the two notions are related: it is immediate that the field of
moduli is contained in every field of definition. The field of moduli is unique;
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there are many fields of definition. The most pleasant state of affairs would be
if A could be defined over its field of moduli – in particular there would then be
a unique minimal field of definition. Whether or not a variety of a certain type
can be defined over its field of moduli can be an interesting question. Here are
some examples of results in this direction:

Theorem 66

a) Any elliptic curve can be defined over its field of moduli.

b) (Shimura) More generally, the generic odd-dimensional principally polarized
abelian variety can be defined over its field of moduli.

c) (Shimura) No generic even-dimensional principally polarized abelian variety
can be defined over its field of moduli.

d) (Mestre) If C/K is a genus 2 curve with field of moduli K whose only non-
trivial automorphism is the hyperelliptic involution, then C can be defined over
K if and only if a certain obstruction in Br(K)[2] vanishes.

e) (Cardona-Quer) If C/K is a genus 2 curve with larger automorphism group,
then it can be defined over its field of moduli.

f) (Jordan) Let (A, ι, P )/K be a QM-surface with field of moduli K. Then
(A, ι, P ) can be defined over a field L if and only if L is a splitting field for B.

g) (Shimura) Any CM abelian variety can be defined over its field of moduli.

Jordan’s result will be fundamental for our study of Shimura curves and will be
elaborated upon in Chapter 2. Notice that, like Mestre’s, it is also obstruction-
theoretic in nature: the obstruction to a QM surface being defined over a field
L containing the field of moduli is the element [B] ∈ Br(L). The necessity is
rather clear: if (A, ι, P )/L, then the action B ↪→ End0

L(A) gives rise by Ω1
A/L to

a map B ↪→ M2(L), so L splits B. The sufficiency is accomplished by a Galois
descent argument, for which see [Jordan II].

0.7 The integral canonical model I: good reduc-
tion

In this section we give canonical models over Z for our Shimura curves, by
providing moduli problems in the category of Z-schemes. In particular, we
study the curve XD

0 (N)/Z; it turns out that the canonical model of this curve
is smooth over Z[ 1

DN ], and we analyze the situation of QM abelian surfaces
modulo a good prime p in this section. When p divides N then – recalling
our convention that N be squarefree – the curve XD

0 (N) has semistable bad
reduction of a kind completely analogous to the reduction of X0(N) at N –
we call this kind of reduction Deligne-Rapoport reduction and study it in the
following section. When finally p|D, we find a phenomenon without an elliptic
modular analogue: again the curve has semistable bad reduction, but in this
case the special fibre of XD

0 (N) is a reducible curve, each component of which
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has geometric genus 0. We call this type of reduction Cerednik-Drinfeld reduc-
tion and will have (much) more to say about it in the last section of this chapter.

The moduli problem for XD
0 (N) over Z: It is almost the same as the mod-

uli problem over Q (and indeed would be verbatim over Z[ 1
D ]): to a scheme

S we associate the set of isomorphism classes of structures (A, ι, P, QN ) where
A/S is an abelian scheme of relative dimension 2, ι : OD → EndS(A) is a
quaternionic structure, P is the induced polarization, QN ≤ A[N ] is a subgroup
scheme which is, fppf locally on S, cyclic as OD-module and isomorphic as a
constant group scheme to Z/NZ ⊕Z/NZ, and: the quaternionic structure sat-
isfies the additional condition that for all m ∈ OD, the trace of ι(m) acting on
the Lie algebra of A coincides with t(m) (reduced trace). It is immediate to
check that this holds in characteristic 0, so this is indeed an extension of our
earlier moduli problem.

Remark: In much of the literature (e.g. [Milne]) one sees the moduli prob-
lem given in terms of weak polarizations (two polarizations P, P ′ give the same
weak polarization if there exist positive integers m, n such that mP = nP ′).
Milne’s proof of the uniqueness of the polarization compatible with the QM
structure actually establishes the uniqueness of the weak polarization. But
then work of Jordan (generalized by [Rotger II-IV]) shows that by a correct
choice of the auxiliary data µ we can get the polarization to be principal. This
is done by constructing Riemann forms, i.e., is a priori valid only in character-
istic 0. However, we can argue for the existence of a principal polarization in
positive characteristic: it is really a matter of XD, not XD

0 (N) so we have only
good primes and Cerednik-Drinfeld primes (p|D). For a good prime the mod p
Shimura curve is smooth, hence is the reduction of some characteristic 0 point,
and the principal polarization comes down to us from characteristic 0. Even
for a Cerednik-Drinfeld prime there are only finitely many nonsmooth points
at which the existence of a principal polarization is in doubt; thus we have a
rational map from a curve into the space of principally polarized semi-abelian
surfaces, a complete variety. But a semi-abelian QM surface is abelian. It fol-
lows that the map extends to these finitely many exceptional points and gives
principal polarizations there as well.

But we are getting a little ahead of ourselves. The (coarse) representability
of the moduli problem is actually a major

Theorem 67 (Drinfeld) There exists a coarse moduli scheme XD
0 (N)/Z at-

tached to the above moduli problem. Moreover the scheme XD
0 (N)/Z is flat,

projective, integral, of relative dimension 1, and its restriction to Z[ 1
ND ] is

smooth.

This is not at all an easy theorem, and we do not discuss the proof here. Notice
that the situation is fundamentally more difficult than in the elliptic modular
case: one can define XD

0 (N)/Q by relatively elementary means (e.g. via the
“generic” elliptic curve over Q(t); see [Rohrlich]), and one knows an integral
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model for X1/Z, namely A1/Z. Thus we can at least define an integral model
for X0(N) by taking the normalization of X1 in X0(N)/Q. One still has to
check that this is the right object (but it is). In our case, however, we have
a “two-dimensional modular tower” of curves, and there is never an A1 at the
bottom. We will in construct the integral model for XD

0 (N) in Section 1.X, but
we do not show that it is actually the coarse moduli scheme – in fact, we do
not use this fact anywhere in the thesis; the existence of a Zp-regular model is
enough.

QM surfaces over Fp: So let A/Fp be a QM abelian surface, where p does
not divide D. We shall see that this is a rather different sort of object than a
QM surface in characteristic 0.

The p-divisible group: let A be the associated p-divisible group, i.e., lim A[pn],
and let D(A) be its associated Dieudonné module, a free rank 4 module over
W (Fp) = Zp∞ endowed with semilinear actions of F and V . Notice that
OD ⊗ W (Fp) ∼= M2(Zp∞) acts on D, so that by choosing nontrivial idempo-
tents e1 + e2 = 1 we get a splitting D = D1 ⊕ D2 into isomorphic Zp∞ [F, V ]-
submodules. Comparing this splitting with the known list of possible slope
sequences for the p-divisble group of an abelian surface – namely
{0, 0, 1, 1}, {0, 1/2, 1/2, 1}, {1/2, 1/2, 1/2, 1/2}, we find that only the first and
the third are possible: that is, A/Fp is either ordinary – equivalently, its p-rank
is equal to its dimension –or supersingular – equivalently, it is isogenous to a
product of supersingular elliptic curves (from the short list of formal isogeny
types we have just exhibited, it is equivalent in dimension 2 to require p-rank
0, but already in dimension 3 we have (1/3,1/3,1/3,2/3,2/3,2/3) and this is no
longer the case).

Recall that for any nonsupersingular formal isogeny type, there exist (geomet-
rically) simple abelian varieties of that isogeny type. However, an ordinary QM
surface over Fp is in fact isogenous to the square of an elliptic curve. The rea-
son for this is the substantially different theory of endomorphism algebras of
abelian varieties in positive characteristic: BD is not an acceptable choice for
the full endomorphism algebra of an abelian surface over a finite field; however,
it is large enough to be incompatible with any division endomorphism algebra.
The formal proof of this requires the Honda-Tate theory of isogeny classes of
abelian varieties over finite fields. See the Appendix for a self-contained account
of Honda-Tate theory with applications to the problem at hand. In particular,
we conclude:

Proposition 68 Let A/Fp be a QM surface. Then A is isogenous to the
square of an elliptic curve E. Accordingly, the full endomorphism algebra M :=
End0(A) is in the ordinary case M2(K), where K/Q is a CM quadratic field
and in the supersingular case M2(Bp,∞), where Bp,∞ is the quaternion algebra
over Q ramified precisely at ∞ and p.

Corollary 69 Let H := EndB(M) be the commutant of BD in the full en-
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domorphism algebra M of A. In the ordinary case H = K, whereas in the
supersingular case H ∼= B∞,pD is the quaternion algebra over Q ramified at ∞,
p and at the primes dividing D.

Proof: Indeed, since B ↪→ M = M2(End0(E)) is an embedding of a CSA over
Q into a simple Q-algebra, we have B ⊗Q H is isomorphic to the centralizer of
Q in M , i.e., to M itself. In the ordinary case, this tells us that the dimension
of H is 2, and since certainly K = Z(M) centralizes B, we must have H = K.
In the supersingular case, we get that the dimension of H is 4 and moreover the
equality [BD] + [H ] = [Bp,∞] in Br(Q)[2], whence the result.

Isogeny classes in XD(U)(Fp), especially the supersingular class: The analy-
sis of points mod p on quaternionic Shimura varieties has been carried much
further, en route to computing the local factor of the Hasse-Weil zeta func-
tion at p. Indeed, it is no more difficult (and more natural) to work with a
general adelic level U structure, assumed maximal at p: U = UpUp, where
Up = G(Zp) ∼= GL2(Zp) – here G = O×

D viewed as a group over Z. The set
XD(U)(Fp) parameterizes isomorphism classes of structures (A, ι, φ) as in Sec-
tion 3. A key step in its determination is the forgetful map (A, ι, φ) → (A, ι)⊗Q,
where (A, ι)⊗Q denotes the class of all QM surfaces which are B-equivariantly
isogenous to (A, ι). The fibres of this map are called the isogeny classes (and
are Frobenius and Hecke stable); the problem is reduced to determining how
many fibres there are and then what is the structure of each fibre. This is all
explained very carefully in [Milne] (see also [VFL] for a treatment of the case of
higher-dimensional totally indefinite quaternionic Shimura varieties; the results
are morally the same but the details are significantly more onerous); we content
ourselves here with a summary of Milne’s results:

Theorem 70 The set Jp of B-isogeny classes is given as follows: for each
quadratic imaginary field K which splits B and in which p splits there is a
corresponding isogeny class; moreover there is a unique supersingular isogeny
class.

Let us at least remark that the field K corresponds to the endomorphism alge-
bra of the ordinary elliptic curve E such that A ∼ E2; both splitting conditions
are rather obviously necessary (the former since B ↪→ M2(K) and the latter is
Honda-Tate theory for an ordinary elliptic curve; cf. the Appendix). Also, it is
true by definition that all supersingular abelian surfaces are isogenous, but it is
not so obvious that they are B-isogenous; this is part of the proof.

Let (A, ι, φ) ∈ XD(U)(Fp). Let D′A := DA ⊗ Q be its rational Dieudonné
module. Write X for the set of “suitable lattices” in D′A, namely for the set
of Zp∞ [F, V ]-submodules which are Zp∞ -free of rank 4 and OB-stable. A very
useful expression for its isogeny class Z(A, ι, φ) is given by the following

Theorem 71 The isogeny class of (A, ι, φ) can be given as a double-coset space:

Z(A, ι, φ) ∼= H(Q)\G(Ap
f ) × X/Up
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Moreover Frobenius acts on the isogeny class by sending M ∈ X to FM .

We are especially interested in the supersingular class: one finds that X ∼=
G(Qp)/G(Zp), where G = EndOB

(D′A)× is the unit group of the OB-equivariant
endomorphisms of the Dieudonné module. This is the local version of the cal-
culation performed in the last corollary, so in the supersingular case we get
B̂×

p /Ô×
p
∼= Z – the nonzero elements of the unique division quaternion algebra

over Qp modulo units in the maximal order.

Let us specialize these results to the cases of Γ0(N)-level structure, i.e., we
can take for our U the profinite completion of the units in a level N Eichler
order ON .

Proposition 72 Each point in the supersingular locus XD
0 (N)(Fp)

ss is defined
over Fp2 .

Proof: Recall that the square of the unique prime P of Ôp is the ideal generated
by p, so F 2 acts as multiplication by p. Writing the supersingular point as

(g, x) ∈ G(A
)
f × X , since p ∈ H(Q) we have (g, px) ∼ (p−1g, x); but because

of our choice of level structure, p−1 lies in Up – one checks this componentwise
using the descrption of Eichler orders in quaternion algebras over local fields
given in Section 0.2. This completes the proof.

Corollary 73

a) The supersingular locus on XD(Fp) is isomorphic to the “Brandt set” Picl(O),
where O is a fixed maximal order in the definite rational quaternion algebra of
discriminant pD.

b) The supersingular locus on XD
0 (N)(Fp) is isomorphic to the “Brandt set”

Picl(O′), where O′ is a fixed N -Eichler order in the definite rational quaternion
algebra of discriminant pD.

Proof: We must emphasize the “interchange of indices” that is taking place:
we are going from one 2-torsion Brauer group element, BD, to another Brauer
group element differing by [p] + [∞]. But notice that G(Ap

f ) does not depend
on p or ∞. This remark, together with the computation of X above and the
“global-adelic dictionary” from Section 1.2, give the result.

Remark: In fact it would have been acceptable to take D = 1 throughout
this section (subject to the proviso that our moduli spaces would no longer be
projective due the presence of cusps) and we would reacquire familiar results,
in particular the isomorphism of the Brandt set of ideals for a maximal (resp.
N -Eichler) order in the definite quaternion algebra Bp,∞ with the set of su-
persingular elliptic curves mod p (resp. supersingular Γ0(N)-structured elliptic
curves); we will find a use for this correspondence as well later on.
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0.8 The integral canonical model II: Cerednik-
Drinfeld reduction

Let B/Q be an indefinite rational quaternion algebra, U ≤ B×(Af ) a compact
open subgroup of the finite adelic points which is maximal at a fixed ramified
prime p of B. The p-adic uniformization theory developed by Cerednik and
refined by Drinfeld furnishes us with a model XU/Zp of the associated Shimura
curve. The goal of these notes is to give an overview with some details of this
theory, and especially, in the case of a “connected” Shimura curve and a quater-
nion algebra of discriminant pq, to express the data of the special fibre in terms
of supersingular elliptic curves.

We do not offer any indication of a proof of the main theorem (i.e., we shall
not mention moduli of p-divisible groups). For this we refer the reader to the
excellent treatment given in [Boutot-Carayol].

0.8.1 Preparation for Mumford curves

In the early 1970s, [Mumford I] did fundamental work on uniformization of cer-
tain curves over complete local rings; his theory is motivated simultaneously
by Tate’s analytic construction of semistable elliptic curves over complete rings
and by older work of Schottky on uniformization of curves over the complex
numbers by means of Schottky groups. By way of introduction, let us say a few
words about each of these theories: Schottky starts from a discrete subgroup Γ
of PGL2(C) acting discontinuously at at least one point of P 1(C) and which as
a group is free on n generators. He shows that the set of points Ω ⊂ P 1(C) on
which Γ acts discontinuously is connected and open, and the quotient Ω/Γ is a
compact Riemann surface of genus g. Now, working say over Qp, Tate’s elliptic
curve is of the form Eq = Q×

p /qZ , where q ∈ Q×
p is some integral element. Then

j(Eq) = 1
q + 744 + . . . is nonintegral, so that Tate’s elliptic curve has bad –

indeed split multiplicative – reduction. Recall also that it is not quite true that
any elliptic curve over Qp with multiplicative bad reduction (i.e., nonintegral
j-invariant) is isomorphic to a Tate curve over the ground field – rather, every
semistable elliptic curve over a local field is isomorphic to a twist of a Tate
curve.
To see the relation between Tate curves and Schottky curves, observe that[

1 0
0 qn

]
embeds qZ as a discrete subgroup of GL2(Qp), and the only points

in P 1(Qp) at which this group acts discontinuously are the two fixed points
0,∞. To follow Schottky then, we take Ω = P 1(Qp)−{0,∞} = Q×

p and indeed

Ω/Γ = Q×
p /qZ gives us our Tate curve – notice that since 1 is at the same time

the genus of the quotient curve and the rank of the free group qZ , the analogy
to the classical case is very strong. Mumford’s work generalizes Tate curves to
the higher genus case, in a way which we will now explain.
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A p-adic upper halfplane: Let ∆ be the Bruhat-Tits tree of PGL2(Qp), whose
vertices parameterize homothety classes of Zp- lattices M ⊂ Q2

p; recall that two
classes [M1], [M2] are defined to be adjacent if there exist representative lattices
with bases related as follows: M1 = {a, b}, M2 = {a, pb}. This gives a tree in
which each vertex has degree p + 1. On the other hand, consider the category
Z of integral Zp-schemes Z/Zp endowed with an isomorphism P 1(Qp)

∼−→ Zη

(where we denote by η the generic fibre of a Zp-scheme). Now each vertex of the
Bruhat-Tits tree M ∈ ∆ naturally gives rise to such a scheme P (M), namely
P (M) := Proj(Sym(M∨)). To spell this out a bit, if M = aZp ⊕ bZp ⊂ Q2

p,
let X, Y : M → Zp via X(a) = 1, X(b) = 0, Y (a) = 0, Y (b) = 1, then
P (M) = Proj(Zp[X, Y ]), and the isomorphism we take on the generic fibre is
the evident one given by tensoring the graded algebra to Qp. In fact, this con-
struction gives an embedding of ∆ onto the subcategory of Z given by schemes
which are abstractly isomorphic to P 1(Zp) – it is worth noting that the evident
change of variables on X, Y given by a matrix in PGL2(Qp) acts transitively
(by abstract isomorphisms!) on this subcategory of schemes, but it is only the
matrices in PGL2(Zp) which are compatible with the choice of isomorphism
on the generic fibres. We can give the entire category Z a partial ordering by
decreeing Z1 > Z2 if and only if there exists a Zp-morphism ϕ : Z1 → Z2 whose
restriction to the generic fibre is the identity on P 1(Qp) (to be interpreted with
respect to the given isomorphisms of the generic fibres with P 1). Then any two
elements Z1, Z2 of our category have a least upper bound, called their join: by
construction we have a canonical isomorphism ϕ from the generic fibre of Z1 to
the generic fibre of Z2 we take J(Z1, Z2) to be the closure in Z1 ×Zp

Z2 of the
graph of ϕ – it has all the desired properties.

Example: If M1, M2 represent vertices of ∆ whose distance in the tree is n,
then J(P 1[M1], P

1[M2]) is given by the closure of the equation Y0X1 − pnX0Y1

in Proj(Zp[XiYj ]); notice that its special fibre is a nodal curve, and the singu-
larity is analytically isomorphic to Zp[[T1, T2]]/(T1T2 − pn).

Proposition 74 Let {Z1, . . . , Zn} ⊂ Z be any finite subset. Then the join (i.e.,
lub) of these elements, J(Z1, . . . , Zn) exists in Z; it is normal, proper and flat
over Zp, and generically isomorphic to P 1/Qp.

Proof: We construct the join as in the case of two elements, namely as the
closure in the fibre product of the graphs of the generic isomorphisms between
all the factors.
If C/Zp is a proper, flat, normal curve, we say it is Fp-split degenerate if its
special fibre is a reduced irreducible curve every component of which has geo-
metric genus zero, and every singularity is nodal and occurs at an Fp-rational
point. The special fibre of such a curve such a special fibre is essentially a com-
binatorial rather than a geometric object (there are no moduli!), and as such
can be completely described via combinatorial means: the dual graph to such a
curve is the finite graph whose vertex set is the set of irreducible components,
and the edge set is the set of singular points. Now we can enunciate the
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Proposition 75 For any M1, . . . , Mn ∈ ∆, the join J(P 1[M1], . . . , P
1[Mn])

has Fp-split degenerate special fibre, whose dual graph is a finite tree ∆′ on the
vertex set M1, . . . , Mn.

Indeed, more is true:

Proposition 76 The join J({P 1[Mi]|i ∈ ∆}) exists in Z. Its closed fibre has
dual graph ∆ (so is not of finite-type!).

Proof: Fix a vertex M ∈ ∆, and write ∆ =
⋃

n≥0 ∆n, where ∆n is the union
over all the paths in ∆ with origin M and length at most n + 1. By construc-
tion of the join we have a morphism P 1[∆n+1] → P 1[∆n], and it is not hard
to see that this birational morphism blows down the locus corresponding to the
vertices of ∆n+1 \ ∆n. Let Un ⊂ P 1[∆n] be the complement of the finite set
of (singular) points corresponding to the edges of ∆n+1 − ∆n. Observe that
the morphism P 1[∆n+1] → P 1[∆n] becomes an isomorphism on the preimage
of Un. Therefore we get open immersions U0 ↪→ U1 ↪→ . . ., and we can glue to
get the desired scheme.

We denote by P the Zp-formal scheme obtained by completing P 1[∆] along
the special fibre. It will be our p-adic upper halfplane.

Remark: As the terminology suggests, the p-adic upper halfplane plays as ba-
sic a role in p-adic geometry as the usual upper half plane plays in complex
geometry – it is a (non-algebraic!) analytic object which gives rise to many
algebraic objects by an analytic construction (uniformization). A difference
between complex analytic spaces and p-adic analytic spaces is that there is a
universally agreed upon definition for the former, whereas there are at least three
different frameworks for the latter: formal schemes up to admissible blowups,
rigid analytic spaces a là Tate, and Berkovich analytic spaces. The p-adic upper
halfplane exists in each of these categories and it is morally – but not exactly
– the same as the object we have defined here. E.g., a Zp-formal scheme gives
rise to the structure of a rigid analytic space (Raynaud’s “generic fibre” con-
struction), but one generally understands the rigid p-adic upper half plane to
have generic fibre P 1(Cp) \ P 1(Qp); equivalently, it is obtained from our p-adic
upper halfplane by removing all the Fp-rational points from the special fibres
of the basic objects P 1(M).

Observe that, by construction, PGL2(Qp) acts on P .

0.8.2 Cocompact Schottky groups

Let Γ ≤ PGL2(Qp) be a finitely generated discrete subgroup such that Γ\PGL2(Qp)
is compact. Consider the quotient map Γ\PGL2(Qp) → Γ\∆; the image is at
once compact and discrete, i.e., finite. By similar reasoning, it turns out that
for any edge e of the Bruhat-Tits tree, the edge-stabilizer Γe < Γ is finite. For
any edge e of the finite graph Γ\∆, we define its length l(e) to be the cardinality
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of its stablizer. We call this data of a graph together with a “length function”
on its edges an l-graph.

The Mumford curve Γ\P : We are now going to fulfill our first goal, namely
to our discrete cocompact subgroup Γ < PGL2(Qp) we shall associate a curve
XΓ/Zp, a Mumford curve. To start, one knows that every discrete subgroup
Γ ≤ PGL2(Qp) is virtually torsionfree: there exists a finite index torison-free
normal subgroup Γ1 ≤ Γ; moreover one can show that such a Γ1 acts freely
on ∆ (Ihara’s theorem) and consequently is a free group. One says that Γ1

is a p-adic Schottky group. We can find another finite index normal subgroup
Γ2 ≤ Γ1 with the property that no γ in Γ2 maps any vertex in ∆ to an adjacent
vertex – indeed, this amounts to choosing a finite Galois covering space of the
finite graph Γ1\∆ which unwraps all the loops of Γ1\∆. Working now with Γ2,
we see that the special fibre of P can be covered by open affines Ui such that
γUi ∩Ui = ∅ for any nonidentity element γ of Γ2. Take now the induced formal
open affines of P (complete preimages), which we continue to denote by Ui;
these cover P , and for any pair of indices i, j, there is at most one γ ∈ Γ2 such
that γUi ∩ Uj is nonempty. Thus we can glue to construct the quotient Γ2\P .
This quotient is a projective formal scheme, so it is algebraic, i.e., it is uniquely
the completion along the closed fibre of a proper, normal, Zp-flat curve XΓ2

.
But now the quotient of this projective scheme by the finite group Γ/Γ2 can
certainly be taken; as a result, we have realized Γ\P as an Fp-split, degenerate,
semistable curve over Zp.

Having completed the basic construction, we pause for some remarks:

First, it should be clear that everything we have done so far would be valid
with Qp replaced by any locally compact non-Archimedean field K. (We have
chosen to formulate the construction in terms of Qp for the sake of specificity
and also to point out a key point on the sort of curves which can arise as Mum-
ford curves; this is coming up in the next section). Indeed Mumford’s work is
significantly more general: he works even with an arbitrary integral complete
local ring A (not necessarily a DVR). Later authors seem not to have carried on
this much generality, but the intermediate situation of the valuation ring of a
complete, local field K with infinite residue field (e.g. Cp) is important. In this
case, the Bruhat-Tits tree ∆ is no longer locally finite, so one cannot hope to
mod out by a discrete subgroup and get a finite graph. The solution here, as in
the important case when the discrete group Γ is not cocompact, is to work with
a subtree ∆Γ associated to Γ, so that the quotient Γ\∆Γ is once again finite.
For the construction of this tree see e.g. [Schmecta].

0.8.3 Base extension and admissible curves

The theory of Mumford curves we have developed in the cocompact case is not
enough to encompass the p-adic uniformization of modular curves. We know
this already, e.g. we recalled above that if E/Qp is an elliptic curve with multi-

51



plicative bad reduction, then E has a p-adic uniformization over Qp if and only
if the multiplicative reduction is split [Silverman]. In general, what we can say
is that a semistable elliptic curve E/Qp is a twisted form of a Tate curve.

Nonexample: Consider X0(p)/Zp. It is well-known that the special fibre is
a “double helix” (see the next section, where the analogous phenomenon is
explored in the Shimura curve case): it has two irreducible components, each
isomporphic to X(1), which intersect along the supersingular locus – however,
one knows that the supersingular points are all defined over Fp2 , but they are
in general not all defined over the prime subfield. That is, the special fibre of
X0(p)/Zp is degenerate but not Fp-split, hence is not a Mumford curve. But
neither is it a Z∞

p /Zp-twisted form of a Mumford curve; indeed, for sufficiently
large p, Aut(X0(p)) is generated by the Atkin-Lehner involution wp, so that
there is a unique twisted form corresponding to the cocycle η : F 7→ wp, and
this curve is not a Mumford curve either – its special fibre is irreducible over
Fp. (Compare with page 118 of [Schmecta], which seems to be in error on this
point.) Thus the behavior of classical modular curves at primes dividing the
level is to be contrasted with the behavior of the curves exhibited in the remain-
der of this section.

Thus the useful notion for us is that of a twisted Mumford curve, the data for
which is a Mumford curve XΓ/Zp and a twist α ∈ H1(G(Q∞

p /Qp), Aut(XΓ/Z∞
p )).

Remark: Compare with [Jordan-Livné I], who work with the notion of an ad-
missible curve, which comes down to a potential Mumford curve. This is the
suitable class of curves whose special fibres can be described by the combinato-
rial data of an `-graph; see Chapter 4. Notice that X0(p)/Zp is admissible.

Drinfeld’s twisting: Drinfeld systematized this twsting process as follows: intro-
duce the formal scheme P∞ := P ×Zp

Z∞
p viewed as a formal scheme over Zp(!)

Whereas P/Zp carries a natural action of PGL2(Qp), we can equip P∞ with an
action of GL2(Qp): namely α ∈ GL2(Qp) acts on (x, u) as ([α]x, Frob−vp(detα)u).
This gets used as follows: let now Γ ≤ GL2(Qp) be a discrete cocompact sub-
group containing a positive power of the scalar matrix p. The quotient Γ\P∞

can then be algebraicized and gives a twisted Mumford curve over Zp. Indeed,
say that αn = pn.1 ∈ Γ and n is minimal such that this occurs. Then αn acts
trivially on the first factor of P∞ and as “translation by 2n” on the second
factor, so that Γ\P∞ = Γ\(P×Z2n

p ). This last object is a finite-type Zp-formal
scheme with a possibly disconnected special fibre. Twisting will now come from
nonscalar elements of Γ whose determinant has valuation indivisible by 2n.

0.8.4 At last, the Cerednik-Drinfeld uniformization

We now return to the case of Shimura curves. Let O ≤ B be an Eichler order
in an indefinite rational quaternion algebra of discriminant D; let p be a prime
dividing D, and write G for the unit group of the the definite quaternion algebra
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of discriminant D/p. Motivated by our study of the supersingular isogeny class
in the good reduction case (recall that all points are supersingular in charac-
teristic p dividing D), let U be an adelic level structure which as maximal at p,
and recall the isomorphism

G(Ap
f )

∼→ G(Ap
f )

already exploited in the proof of Corollary 73, and consider the p-adic space

ZU := U\G(Af )/G(Q).

Notice that via a choice of isomorphism GL2(Qp) = G(Qp), we have a natural
action of GL2(Qp) on ZU . Now we have the main result of this section:

Theorem 77 (Cerednik-Drinfeld) Let XD(U)/Zp be the canonical integral model
of the Shimura curve with level U structure. Then we have a canonical isomor-
phism of Zp-formal schemes

XD(U)/Zp
∼= GL2(Qp)\(P∞ × ZU ).

Remark: We have not given such close attention to the moduli problem over Zp.
Since the right hand side is an algebraic formal scheme, it is acceptable for our
purposes to take it as the definition of the canonical Zp-model, and the merit
of the Cerednik-Drinfeld theorem for us is the following

Corollary 78 The Shimura curve XD(U)/Qp has a canonical integral model
whose special fibre is a twisted Mumford curve.

Proof: We need to explain the appearance of twisted Mumford curves. Indeed,
by the theory of algebraic groups, one knows that GL2(Qp) has only finitely
many orbits on our space ZU (think of the quotient space as a zero-dimensional
Shimura variety), and certainly each orbit contains an element xi whose compo-
nent at p is 1. One gets (again in analogy to Shimura varieties in characteristic
zero) that the stablizer Γi of such an element is discrete and cocompact in
GL2(Qp) and accordingly contains a suitable power of the scalar matrix p. Let
Γ′

i be the image in PGL2(Qp) of the subgroup of Γi of elements of unit deter-
minant. Then Γ′

i is a Schottky group and the Zp-formal scheme in the corollary
is isomorphic to a finite disjoint union of schemes of the form

Γ′
i\(P ⊗Zp

Z2ni

p ).

When U is small enough so that the complex curve XD(U) is connected, so is
the special fibre, and we have (i = 1 and) a twisted Mumford curve.

Finally, in case U = Γ0(N) we record the following more explicit results which
are needed in Chapter 4.

Let B = BD be an indefinite rational quaternion algebra, and let p be a prime di-
viding the discriminant D. Write B for the quaternion algebra obtained from B
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by interchanging the local invariants p and [∞] (so that B is the definite quater-
nion algebra of discriminant D/p). Let O ≤ B be a level N Eichler order. We de-

fine subgroups Γ̃0, Γ̃+ of GL2(Qp) as follows: Γ̃0 := (O⊗Z[1/p])×, and Γ̃+ is the

subgroup of Γ̃0 consisting of elements of whose determinant has even valuation;
notice that W = {1, wp} is a set of coset representatives for Γ̃0 in Γ̃+, where wp is

any element of O of norm p. Also write Γ0 := Γ̃0/Z[1/p]×, Γ+ := Γ̃+/Z[1/p]×.
The Cerednik-Drinfeld theorem then reads as follows in our case:

XD
0 (N)/Zp = Γ̃0\P∞ =

Γ0\P ×Zp
Z2

p =

W\(Γ+\(P ×Zp
Z2

p)),

so that XD
0 (N)/Zp is a Z2

p/Zp-twisted form of the Mumford curve Γ+\P under
the twist

Frob 7→ wp.

It is this fact which leads to a description of the special fibre which will be useful
to us in Chapter 4.

0.9 The Integral Canonical Model III: Deligne-

Rapoport reduction

In this section we discuss the reduction of one of our Shimura curves XD
0 (N), XD

1 (N)
at a prime dividing N . More precisely we consider the moduli problems of QM
surfaces A/S equipped with a level N structure, where S is a Z[1/D]-scheme.
This turns out to be significantly easier than the situation considered in the
last section, since the theory of moduli of QM surfaces “away from character-
istic dividing D” and with level structure prime to D is highly analogous to
the analogous moduli problems in the elliptic modular case (i.e., with D = 1).
That is, the special fibre at a prime p dividing N of XD

• (N) has the same qual-
itative description of the special fibre at a prime dividing N of X•(N), which
is fortunate because the theory of arithmetic moduli of elliptic curves is very
well-developed ([Deligne-Rapoport], [Katz-Mazur]). In fact it is easier because
we do not need to worry about the modular interpretation of the cusps: every
“generalized QM surface” is a QM surface.

0.9.1 Buzzard’s work on “false elliptic curves”

In this section D is fixed and all schemes S are over Z[1/D]. The key fact that
drives the analogy between QM-surfaces and elliptic curves “away from D” is
the (already seen) fact that OD ⊗ Zl

∼= M2(Zl). Because of this, if N is prime
to D, we have OD ⊗ Z/NZ ∼= M2(Z/NZ). We fix a compatible system of such
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isomorphisms for all N prime to D and allow ourselves to pass between the left
and right hand sides as equality without further comment. A naive full level N
structure on a QM surface A/S is an isomorphism

α : (OD ⊗ Z/NZ)S = M2(Z/NZ)
∼→ A[N ]

which is compatible with the left-action of OD. The associated moduli problem,
which takes A/S to the set of full level N -structures, is relatively representable
by an étale (right) (OD ⊗ Z/NZ)×-torsor on S. If now H is a subgroup of
(OD ⊗Z/NZ)× = GL2(Z/NZ), we get an associated moduli problem by taking
A/S to the H-orbits of full level N structures; this problem is likewise rep-
resented by an étale S-scheme, namely (GL2(Z/NZ)/H)S , just the same as
for elliptic modular curves. In particular, one has notions of naive Γ0(N) and
Γ1(N)-structures, and the following analogous result to the elliptic modular
case:

Theorem 79 ([Buzzard]) Let N ≥ 4. Then the moduli problem of naive Γ1(N)-
structures on OD-QM abelian surfaces is representable in the category of Z[1/ND]-
schemes by a smooth projective curve XD

1 (N)/Z[1/DN ]. For all N , the moduli
problem of naive Γ0(N)-structures is coarsely represented by a smooth projective
curve XD

0 (N)/Z[1/DN ].

Sketch proof: This is quite formal – one knows that a solution to the moduli
problem exsits as a stack; rigidity of Γ1(N)-level structures with N ≥ 4 then
implies that the stack is associated to an algebraic space. But the morphism
XD

1 (N) → Z[1/DN ] is smooth, proper and 1-dimensional over a regular base,
so it is a scheme [Knutson]. There is no problem deducing the result for Γ0(N),
since we have only to take a quotient by a suitable finite group.

The reason that these structures are said to be naive is that they are empty
unless N is invertible on S. One defines non-naive Γ0(N), Γ1(N)-structures
over Z[1/D]-schemes using the notion of cyclicity as in [Katz-Mazur]. For this,
we can exploit the isotypicality of the N -torsion of QM surfaces: if G ≤S A[N ]
is an OD-stable subgroup scheme, then G must split under the action of OD ⊗
Z/NZ = M2(Z/NZ). More precisely, let e be the standard idempotent matrix[

1 0
0 0

]
; then G = eG ⊕ (1 − e)G. Then a Γ0(N)-level structure is given by

a rank N2 OD-stable subgroup scheme G of A[N ] such that the rank N sub-
group scheme eG has, fppf-locally on the base, a generator (cf. Chapter 1 of
[Katz-Mazur]). Equivalently, we can give a Γ0(N)-structure by a QM-isogeny
A → A′/S (so that the kernel is an OD-stable subgroupscheme) of degree N2.
Similarly, a Γ1(N)-level structure is the data of a Γ0(N)-level structure together
with a choice of generator.

Theorem 80 (Buzzard) The moduli problem of Γ1(N) structures on QM sur-
faces over Z[1/D]-schemes extends the above naive moduli problem. When
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N ≥ 4, XD
1 (N)/Z[1/D] exists a fine moduli space. For all N , XD

• (N)/Z[1/D]
exists as a coarse moduli space.

Sketch proof: For the extension part of the theorem, we must check that over
Z[1/DN ]-schemes we have isomorphic functors, namely if we have A/S/Z[1/DN ]
we must show that the naive Γ•(N) structures are functorially in bijection with
the non-naive Γ•(N)-structures. Both are étale sheaves on S, so (by passing
to a surjective étale cover) we may assume that A[N ] ∼= ((Z/NZ)4)S . If α is
a naive Γ•(N)-structure then choose β a naive full level N -structure lifting α.
The bijection is obtained via the applying β to an appropriate subgroup: in the

Γ0(N)-case it is

[
0 0
0 ∗

]
; in the Γ1(N)-case it is

[
0 0
0 1

]
.

Why does XD
• (N) exist as a coarse moduli scheme at all? It is convenient to

impose an additional rigidifying level structure U of level MU prime to DN , so
that by the previous theorem XD(U)/Z[1/MU ] exists as a fine moduli scheme.
If we can show that the composite moduli problem (Γ•(N), U) admits a so-
lution as a fine moduli scheme over Z[1/MUD], then by standard stuff we’ll
get XD

• (N)/Z[1/D]. But observe that the moduli problem Γ•(N) is relatively
representable – this is true for Γ0(N) because it is a closed subscheme of a Grass-
mannian, and true for Γ1(N) by ([Katz-Mazur], Proposition 1.9.1). And one
knows that the composite of a relatively representable moduli problem and a rep-
resentable moduli problem is representable (Proposition 4.3.4 of [Katz-Mazur]).

Remark: Of course the same argument – with some additional attention at
the cusps – also works in the D = 1 case.

Theorem 81 (Buzzard+Katz-Mazur)
a) The scheme XD

• (N)/Z[1/D] is connected, proper and smooth away from the
supersingular points in characteristics dividing N .
b) The modular forgetful map

c : XD
• (N) → XD

is finite flat.
c) The special fibre of XD

0 (pr) in characteristic p has the following more precise
description: it has as irreducible components a + 1 nonsingular curves, each
(non-canonically) isomorphic to XD, intersecting at the supersingular points.
When a = 1 the intersection is transverse (the local ring at a supersingular
point of the total space is analytically isomorphic to Zp[x, y]/(xy− pn) for some
n ≤ 3).
d) The special fibre of XD

1 (pr) in characteristic p has the following more pre-
cise description: it has as irreducible components a + 1 curves; index them as
C0, . . . , Ca. All but one of these curves is nonreduced: indeed Ci has multi-
plicity φ(pi) and its underlying abstract curve is (non-canonically) isomorphic
to the level pn−i-Igusa curve. The components intersect transversally at the
supersingular points.
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Remark: We will review Igusa level structures in the course of the proof.

Remark: We have not given a completely precise description of the singular
fibres, since we have not explained which supersingular points to glue to which.
In general, a supersingular point on one component is glued to a suitable F k-
conjugate of the corresponding Frobenius point on another component. In the
case of XD

0 (p) we just glue P 7→ FP ; the recipe in the general case does not
concern us here.

Proof: The properness follows immediately from the potentially good reduc-
tion of QM surfaces together with the fact that if A/R is a QM surface over a
discrete valuation ring R then a level N -structure on the generic fibre extends
uniquely to a level N structure on A/R (since A/R is the Néron model of its
generic fibre). Since the morphism is proper, the finitness can be checked on
geometric fibres, i.e., we need only show that if A/k is a QM surface over an
algebraically closed field, then there are only finitely many Γ•(N) structures on
A/k. When the characteristic does not divide N , there are the same number of
Γ•(N) structures as in characteristic 0. When the characteristic p divides N ,
assume for simplicity that N = pr (we can certainly reduce to this case). We
have A[pr] ∼= G × G, and we want to give a rank pr-cyclic subgroup scheme of
G. In the ordinary case, G ∼= Z/prZ ⊗ µpr , and there are r + 1 such subgroup
schemes – factor pr = papb and take an étale group scheme of rank pa and a
multiplicative group scheme of rank pr−a. In the supersingular case, G ∼= αp2r ,
and the only rank pr subgroup scheme is αpr . This shows the finiteness of
Γ0(N)-structures. In the Γ1(N) case it is similarly clear that there are only
finitely many generators in each case.

The next step is to check all the assertions of the theorem except those that can
be checked locally at each supersingular point: namely we want to see that the
ordinary locus is smooth and that it has the precise description given in parts
c) and d) of the theorem. For the remainder of the proof we assume N = pr.

Consider first the Γ0(p
r) case. For 0 ≤ i ≤ r, let Ai be the functor from

Z[1/D]-schemes to sets sending S to the set of QM surfaces equipped with an
OD-invariant subgroup scheme G which is étale-locally isomorphic to (Z/piZ ×
µpr−i)2. The limiting cases Ar,A0 classify “fully étale” and “fully multiplica-
tive” subgroup schemes, respectively. We claim that each of the Ai’s are nat-
urally isomorphic as functors. Indeed, we can go from A0 7→ A1 7→ . . .Ar by
at each stage taking (A, G) 7→ (A/G′, A[pr]/G′), where G′ ≤ G is the unique
subgroup scheme locally isomorphic to (Z/pZ)2. Now A0 is representable (a
special case of the Hilbert scheme), so all the Ai’s are. We can check smooth-
ness fibrewise, the only questionable fibre being p. But in characteristic p, an Ai

is isomorphic as a functor to the functor coarsely represented by (XD)ord – that
is to say, the forgetful map which takes a pair (A/S, Gi), A/S/Fp an ordinary
QM surface and Gi ≤ A[pr] a cyclic subgroup scheme of type i to A/S is an
isomorphism, since each ordinary QM surface has a unique cyclic structure of a
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given type. This concludes the description of the ordinary locus of the special
fibre of XD

0 (N).

In the Γ1(p
r)-case the proof is similar; one considers the modified functors

Bi from Z[1/D]-schemes to sets which takes S to isomorphism classes of QM
surfaces A/S equipped with a generator of the cyclic structure corresponding
to Bi(S). However, in contrast to the previous case, the various Bi’s are not
isomorphic to each other because a finite multiplicative group scheme of any
rank has a unique generator while a finite étale group scheme of rank pa has
φ(pa)-generators. What we find instead is that the functor Bi is isomorphic
to the ordinary subfunctor of the moduli problem of pa-Igusa level structure,
which we now describe.

Definition: A level pa-Igusa structure on a QM surface A/S/Fp is given by
a generator of e(kerV a), where e is our standard idempotent matrix and V a :
Apa → A is the a-fold Verschiebung. Note well that one of the characteriza-
tions of the ordinary/supersingular dichotomy for QM surfaces (and equally for
elliptic curves) in characteristic p is that A is ordinary if and only if the kernel
of (any ⇐⇒ all) V a is an étale subgroup scheme of A[pa].

Basic properties of pa-Igusa curves: that the moduli problem is relatively rep-
resentable and flat follows immediately from the “Main Theorem on Cyclic
Groups” ([Katz-Mazur], Theorem 6.6.1). To see that the ordinary locus is
smooth is easy: indeed XD(Ig(pa)) → XD it is an étale (Z/paZ)×-torsor.
In more concrete language, the natural map

ϕ : XD(Ig(pa)) → XD

is flat and unramified of degree φ(pa) away from the supersingular points. It
is also smooth at the supersingular points – this is one of the local statements
whose proof we deal with a little later. In any event, what we have recalled al-
ready about Igusa curves is enough to see that the ordinary locus of the special
fibre of XD

1 (pr) is smooth but reducible with components as described in the
proof of the theorem.

Definition: Fix a prime number p. A level pN -Igusa structure on a QM-surface
A/S – where S is now an Fp-scheme – is given by a generator of e kerV N , where

V N : ApN → A is the N -fold Verschiebung.

Let us summarize where we are in the proof: we have seen that the struc-
ture of the special fibre of XD

• (pr) is as we’ve claimed except possibly at the
supersingular points, where we still must check the following: that the map
XD

• (pr) → XD is flat at the supersingular points, that over each supersingular
point of XD we see all r + 1 components intersecting transversally, and finally,
for the Γ1 case, that the pa-Igusa curve is indeed smooth over each supersingular
point of XD. All of these statements can be checked on the completed local rings
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of the curves involved. Because of this, their truth can be deduced directly from
the truth of the corresponding statements for the D = 1 case, as we now explain.

We need some deformation theory: let E/Fl be a supersingular elliptic curve
and A/Fl be a supersingular QM surface. Let W be the ring of Witt vec-
tors of Fl, let E/W [[T ]] be the universal formal deformation of E (to Artin
local Fl-algebras) and let A/W [[T ]] be the universal formal deformation of
A. By ([Buzzard], Corollary 4.6(ii)), we have an OD-module isomorphism
A[p∞] ∼= E[p∞]2 (this follows almost immediately from the Serre-Tate theorem).
Now let x ∈ XD(U, Ig(pN )(Fp) be a supersingular point, with corresponding
QM surface A/Fp and similarly y ∈ X(U, Ig(pN ))(Fp)) a supersingular point
with corresponding elliptic curve E/Fp – here U is a rigidifying level struc-
ture of level MU prime to DN . Let Sx be the spectrum of the completed
local ring of XD(U, Ig(pN )) at x and Sy the spectrum of the completed lo-
cal ring of X(U, Ig(pN )) at y. Then Sx is the scheme relatively representing
(U, Ig(pN ))-structures on the universal deformation A, and Sy is the scheme
relatively representing the same structures on the universal deformation E. So
Sx is isomorphic to Sy.

That’s the trick: the theories of moduli of Shimura curves and moduli of el-
liptic modular curves in characteristic p not dividing D and with level structure
away from D are more than “analogous”: there are canonical (given our choices
at the beginning of this section) isomorphisms between the completed local
rings of the one and the other. These isomorphisms allow us to “cheat” by
transporting what are in some cases rather hard-earned theorems from the el-
liptic modular case to our Shimura context. In particular, the D = 1 analogues
of all our local statements at the supersingular points are proved in wonderful
detail in [Katz-Mazur], so they hold true for us. This completes the proof of
the theorem.

0.9.2 A genus formula for rigidified Igusa-Shimura curves

As a further application of this “cheating,” we will compute the genus of the
rigidified Igusa curve XN/Fp := XD(Ig(pN ), Γ1(L)) – here L ≥ 4. The point
is that for covers of degree divisible by p in characteristic p, we must apply
Riemann-Hurwitz carefully: the degree of the ramification divisor at a point
can equal or exceed the degree of the cover (wild ramification), so knowing that
the forgetful map

ϕ : XN → XD(Γ1(L))

has degree φ(pN ) and is étale on the ordinary locus and totally ramified at each
supersingular point is, when N > 1, not enough to tell us the genus. But we can
cheat: the ramification will be the same as in the elliptic modular case, making
the formula easy to compute. Here are the details: Riemann-Hurwitz reads

2gD
N − 2 = φ(pN )(2gD

0 − 2) +
∑

P∈ss

deg RP
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where gD
N , gD

0 are the genera of XN , XD
1 (L) respectively, and RP is the ramifi-

cation divisor at a supersingular point P ∈ XN , i.e.,

RP = length(ΩXN /XD
1

(N))P P.

This quantity can be computed with respect to the completed local rings, which
allows for a key observation: the degree of the ramification divisor over any
supersingular point is equal to the degree of the ramification divisor at a super-
singular point for the classical covering IN (Γ1(L)) → X1(L). Indeed, if x̃ 7→ x
are supersingular points on the map ϕ in the Shimura case, and if ỹ 7→ y are
supersingular points of the classical D = 1 Igusa covering, then denoting e.g.
Sx̃ for the spectrum of the completed local ring at x, then the last parargraph
of Section 0.9.1 leads to a commutative diagram

[ccc]Sx̃e, t∼sSỹsSxe, t∼Sy

and we conclude that the ramification divisor at x̃/x has the same degree as
the ramification divisor of ỹ/y. Notice that it also follows from this discussion
that the degree of this ramification divisor does not depend upon the choice of
supersingular point, either in our Shimura case or in the elliptic modular case;
denoting this common degree by R and the number of supersingular points on
XN (which is the same as the number of supersingular points on X0 = XD

1 (L))
as SD, we get

2gD
N − 2 = φ(pN )(2gD

0 − 2) + RSD.

As for the common degree R, its value is implicit in the formulas given in
[Katz-Mazur], since we have:

2gN − 2 = φ(pN )(2g0 − 2) + RS

pNφ(pN ) deg(ω) = 2gN − 2 + φ(pN )c(Γ1(L))

2 deg(ω) = 2g0 − 2 + c(Γ1(L))

where now gN , g0 are the genera of the classical curves IN (Γ1(L)) and X1(L);
the quantities c(Γ1(L)), deg(ω) – defined in [Katz-Mazur] – cancel out, and we
get

R = pN−1(pN − 2).

So
2gD

N − 2 = φ(pN )(2gD
0 − 2) + pN−1(pN − 2)SD.

On the other hand, from [Diamond-Taylor] we have

2SD = (p − 1)(2gD
0 − 2)

Substituting this in we get

Proposition 82 Let D, L, p be pairwise coprime with L ≤ 4, and let

XN := XD(Ig(pN ), Γ1(L))/Fp.

Write gN for the genus of XN and SD for the number of (geometric) supersin-
gular points on XD

1 (L). Then we have

2gD
N − 2 = pN−1(pN − 1)SD.
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Chapter 1

Moduli spaces of potentially
QM surfaces

1.1 PQM surfaces

We maintain the notation of Chapter 0; especially D > 1 is the discriminant of
a nonsplit indefinite rational quaternion algebra. Recall from Section 1.5 that
XD has no real points; a fortiori it has no rational points. It would seem to
follow that the existence question for QM surfaces A/Q is settled in the nega-
tive – and of course, this is true, in the sense we have defined QM surfaces in
Chapter 1. However, this is not necessarily the sense that is the most natural or
interesting! Indeed, a moduli point in XD(K) comes from a structure (A, ι, P )
where A/K is an abelian surface, ι : OD → EndK(A): that is, it is part of
the moduli problem that all the QM endomorphisms be defined over the field
K. In the same section, we showed that an abelian surface never has a subring
of endomorphisms isomorphic to OD defined over the real numbers. We also
recalled an analogous fact about CM elliptic curves: there does not exist a pair
(E, ι)/R where E/R is an elliptic curve and ι : OK ↪→ EndR(E) a subalgebra
isomorphic to the maximal order in a CM quadratic field (the proof works for
arbitrary orders). Clearly if we were to interpret this statement as telling us
that there do not exist CM elliptic curves over Q, we would be missing out on
very interesting geometric objects: of course there do exist elliptic curves E/Q
with OK-CM (when K has class number 1) defined over a larger field (in fact,
over K). Since CM elliptic curves much predate the formalism of moduli spaces,
it did not happen that elliptic curves E/Q with “potential CM”’ were excluded
from study. Yet, to a large extent, this is what has happened for QM abelian
surfaces.

So, we propose that our basic object of study should be a principally polar-
ized abelian surface (A, P ) over a field K which admits an OD-QM structure
over the separable algebraic closure K: there exists ι : OD → EndK(A). We call

61



this data a potentially quaternionic multiplication (PQM) surface A/K. The
point is that there may well exist OD-PQM surfaces A/Q – indeed, the square
of a CM elliptic curve E/Q will give such an example for all BD split by the CM
field K. More interesting then are geometrically simple PQM surfaces A/Q –
an early example (possibly the first) of such a surface was given by Koike using
modular forms. It turns out that the existence of such objects as a function of
D, far from being ruled out a priori, is a deep question, explored (but by no
means settled) in Chapter 2 of this thesis.

1.2 The OD-locus: travaux de Victor Rotger

Having defined PQM surfaces, we may ask: how are they related to Shimura
curves? To make the question more precise, we can define LD ⊂ A2/Q to be
the locus of principally polarized abelian surfaces admitting geometric OD-QM.
It is classical that LD is a closed, one-dimensional subvariety of A2, loosely
called a Shimura curve in the literature, but this is not quite correct. As we
are about to explain, it is in fact never the case that LD

∼=Q XD; moreover LD

will in general have several irreducible components. The precise relationship
between LD and XD has been determined very recently by Victor Rotger. The
key notion we need is that of a modular forgetful map. Indeed, recall that in
order to interpret XD as the moduli space for triples (A, ι, P ), we chose a piece
of auxiliary data µ ∈ OD, µ2 + D = 0. The choice of µ enabled us to define
a positive involution on BD and thus gave a notion of compatiblity between ι
and P . Given µ, there exists a unique principal polarization compatible with
the QM structure. Therefore, dependent on µ, forgetting the QM structure:
(A, ι, P ) 7→ (A, P ) induces a morphism Fµ : XD → A2, a forgetful modular
map.

To describe Rotger’s results we need some terminology. First, we call the pair
(OD, µ) a principally polarized (maximal) order of BD. Secondly, a nonzero
element χ ∈ OD ∩ NB×(OD) is called a twist of (OD, µ) if χ is a pure quater-
nion (i.e., t(χ) = 0, or equivalently χ2 = −n(χ)) and µχ = −χµ. Notice that

then BD
∼= (−D,−n(χ)

Q ). We say that (OD, µ) is twisting if it admits a twist
by some χ, and that BD itself is twisting if some principally polarized order is
twisting. It is immediate that BD is twisting if and only if BD

∼= (−D,m
Q ) for

some positive integer m|D. We also say that D admits a twist by m in this case.

Remark: D admits a twist by m if and only if D admits a twist by D/m
(at every place v of Q, we have (−D, m)v(−D, D/m)v = (−D, D)v = 0), and
we will soon see that these twists are essentially the same. In general (if D is
divisible by more than two primes), D can admit essentially different twists:
e.g. if {p1, . . . , p2n} is an even cardinality set of primes such that for distinct
i, j, ( pi

pj
) = −1, D = p1 · · · p2n admits twists by each pi. Now, associated to

(OD, µ) we define a subgroup of Atkin-Lehner involutions Hµ as follows: Hµ

is generated by the main Atkin-Lehner involution wD and all wm such that
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(OD, µ) admits a twist by a character χ of norm −m. Now we have:

Theorem 83 ([Rotger II-IV])

a) If (OD, µ) is nontwisting, Hµ = 〈wD〉. If it is twisting, it admits an essen-
tially unique twist: Hµ = 〈wD, wm〉.
b) The forgetful maps Fµ are finite morphisms. More precisely, Fµ factors
through XD/Hµ and then gives a closed embedding

Fµ : XD/Hµ ↪→ A2.

c) The OD locus LD is obtained as the union of the images of the Fµ ranging
over the finite set of OD-conjugacy classes of elements µ, µ2 + D = 0.

Let us now discuss some implications. First consider the simpler case where
the entire quaternion algebra B is nontwisting. Then for each µ we find Fµ :
XD+ ↪→ A. Even in this favorable case it is not literally true that XD+ is the
coarse moduli space for PQM abelian surfaces, since we will in general need
several µ’s to cover LD. Otherwise put, distinct points in A may correspond to
the same point in XD+: indeed, reflecting that the choice of µ is required only
to define the polarization in the triple (A, ι, P ), it follows that the ambiguity is
precisely that we may have multiple W -orbits of principal polarizations on the
same abelian surface (in this regard, it is useful to mention another theorem
of [Rotger II-IV] which gives the Néron-Severi group of complex QM surface
A as a certain group of pure quaternions of B; with this identification, the
Atkin-Lehner group acts on the set of principal polarizations; elements in the
same orbit correspond to the W -orbit of a point on the Shimura curve XD+).
In particular, it is true (but not very useful) that the more drastic forgetful
map F : (A, ι, P ) 7→ A is surjective onto the set of principally polarizable PQM
abelian surfaces. Nevertheless, in the nontwisting case, XD+ is “as good as” a
coarse moduli space for PQM surfaces:

Corollary 84 Assume D is a nontwisting discriminant. Then if XD+(K) is
empty (resp. consists only of CM points), then there does not exist a PQM
abelian surface A/K (resp. a geometrically simple PQM surface A/K).

This is immediate. Moreover, we can use Jordan’s theorem to say more precisely
what kind of a point on XD+(K) will correspond to (at least one) PQM surface
A/K; we take up this problem (along with the case of level structure) in the
next section.

If on the other hand D is a twisting discriminant, then in general LD will
have some irreducible components isomorphic to XD+ and others isomorphic
to XD/Hµ, a further two-fold involutory quotient (and in general there will
be more than one such µ, corresponding to the number of essentially different
twists m of D; at least in the case D = pq we don’t have to worry about this).
Since the second situation dominates the first, we conclude:
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Corollary 85 Assume D is a twisting discriminant and let {mi} be the set of
essentially different divisors of D such that (−D,mi

Q ) ∼= BD. Then if for all i,

XD/〈wD, wmi
〉(K) is empty (resp. contains only CM points), there does not

exist a PQM surface A/K (resp. a geometrically simple PQM surface A/K).

In fact our work on Shimura curves centers around XD+, XD+
0 (N), XD+

1 (N).
When D is nontwisting, this is appropriate for studying PQM surfaces, as just
seen. In case D is twisting, our nonexistence results on XD+

0 (N)(K) do not
therefore preclude the existence of a PQM surface A/K, but only of such a sur-
face whose QM becomes defined over a quadratic extension of K (rather than a
biquadratic extension). Either way, let us call a QM surface A/K correspond-
ing to a K-rational point on XD+(K) a PQM surface of plus type, and a PQM
surface which is not of plus type of (2,2)-type. The terminology is, hopefully,
explained by the following

Corollary 86 Let A/F be a PQM abelian surface over a number field F . If A
is of plus type, there exists a unique minimal extension K/F , at most quadratic,
such that A/K admits a QM structure compatible with its polarization. More-
over, if F is real, K/F is necessarily nontrivial. If A/F is a PQM surface of
(2, 2)-type, there exists a unique minimal extension K/F , at most biquadratic,
over which A admits a compatible QM structure, necessarily nontrivial if F is
real.

Proof: Indeed, by the Shimura curve geometry we have just surveyed, we know
that a PQM A/F induces a point on an Atkin-Lehner quotient of degree 2 or
4. Taking the preimage we get a K-divisor on XD of degree 2 or 4; the Ga-
lois group of the splitting field of this divisor is naturally a subgroup of the
group Hµ of involutions. The only point which is not immediate is to see that
one of these preimage points on XD, which corresponds to a QM surface with
field of moduli contained in K, can actually be defined over K. For this: let
BD ≤ End0

C(A) be the QM subalgebra (this is well-defined, because a point
on XD/H corresponds to a QM-structure up to twisting by Atkin-Lehner el-
ements, but the image of the QM-structure is invariant). BD is stable under
Galois, so there exists a unique minimal extension L/F cut out by the action
of Galois on BD. Let M1, M2/K be two distinct quadratic extensions splitting
BD. By Jordan’s theorem, M1, M2 are acceptable fields of definition for A as
QM-surface, so K ≤ L ≤ Mi for i = 1, 2 and we conclude K = L.

In fact there are good reasons to prefer PQMs of plus type. The following
proposition, together with the generalized Taniyama-Shimura conjecture (al-
ready proved by [Ellenberg] in some special cases relevant to us), implies that
A/Q a plus-type PQM surface is modular, i.e., isogenous to a Q-factor of J1(N).

Proposition 87 Let A/Q be a simple BD-PQM surface of plus type. Then
End0

Q(A) is a quadratic field.

Proof: By the preceding corollary, A admits the structure of a compatible QM
surface over an imaginary quadratic extension L/Q. We thus have EndQ(A) =
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EndL(A) = B. The (analytic) representation of B on the complex cotangent
space of A is faithful and Galois equivariant: viewing Q ↪→ C, the field of defini-
tion of any endomorphism of A is the same as the field of definition of its matrix
coefficients in the analytic representation. So in particular we have B ↪→ M2(L),
and what we are trying to show is that some non-central endomorphism of B
is defined over Q. That is, what we must show is that M2(Q) ∩ B ⊂ M2(L) is
strictly larger than Q. This is easily seen as follows: view M2(Q), B, and M2(L)
as linear spaces over Q of dimensions 4,4 and 8. Notice that B and M2(Q) both
lie in the subvariety V of M2(L) given by matrices whose trace and determinant
lie in Q. This V is a smooth, 6-dimensional Q-subvariety of M2(L) containing
the origin, so checking tangent spaces at the origin reveals that the intersection
of the two linear spaces B and M2(Q) must have dimension at least 2.

Remark: [Rotger II-IV] actually shows more: that if A/Q is a nontwisting OB-
PQM surface, then End0

Q(A) is an imaginary quadratic field.

1.3 Technical lemmas on moduli of PQM abelian
surfaces with level structure

In this section – the technical core of the thesis – we intepret XD+, XD+
0 (N)

and XD+
1 (N) in terms of moduli of plus type OD-PQM surfaces with additional

level structure. We also prove results about moduli points on these curves, i.e.,
we give the criterion for a point on XD+

0 (N)(K) to be induced from a structure
defined over K (rather than merely having field of moduli contained in K). As
a starting point, recall from the last section that XD+ is the moduli space for
OD-PQM abelian surfaces of plus type.

Proposition 88 The curve XD+
0 (N) is the moduli space for structures (A, P, QN ),

where QN is an OD-stable submodule of A[N ], cylic as OD-submodule and iso-
morphic to Z/NZ ⊕ Z/NZ as abelian group.

Proof: In other words, the claim we are making is precisely that the data is
the same as for XD

0 (N) except we have forgotten the QM structure. In fact
this is essentially immediate from the moduli interpretations of XD

0 (N) and of
the main Atkin-Lehner involution wD. However, for later use we want to give
an interpretation of the 2-1 map (A, ι, P, QN ) 7→ (A, P, QN ) in terms of the N -
torsion. Namely, since (N, D) = 1, OD acts as endomorphisms on A[N ] through
OD⊗Z/NZ ∼= M2(Z/NZ). Indeed, by choice of an idempotent e ∈ OD⊗Z/NZ
we may decompose QN = C1 ⊕ C2, where C1 = eA[N ], C2 = (1 − e)A[N ], an
instance of Morita equivalence; each Ci is a cyclic group of order N . Thus, with
the QM defined, the data of QN is equivalent to the data of C1 = eQN (this
moduli interpretation of XD

0 (N) can be found in the literature). But we can take

wD =

[
0 −D
1 0

]
and check that w−1

D ewD = (1− e), so that the Atkin-Lehner

involution carries C1 to C2. It follows that, being in a state of twofold ambiguity
as to the QM structure as we are on XD+

0 (N), we cannot define the subgroup

65



C1 by itself but only the pair {C1, C2}, and from this the full submodule C1⊕C2.

In the case of XD+
1 (N) our moduli interpretation requires no justification:

Proposition 89 The curve XD+
1 (N) is the moduli space for structures (A, P, x1, x2),

where 〈xi〉 = Qi and wD(x1) = x2.

We will now study when points P ∈ X(K) are induced by a structure defined
over K. Our point of departure is Jordan’s theorem: let L be a field containing
the field of moduli of (A, ι, P ) as QM surface. Then this structure can be defined
over L if and only if L splits BD. Now fix P ∈ XD+(K). Let L be the splitting
field of divisorial preimage of P in XD, so as we have seen, L/K is either trivial
or quadratic.

Proposition 90 The point P ∈ XD+(K) is a moduli point, i.e., is induced by
a PQM-abelian surface defined over K if and only if L splits B.

Proof: Since we saw in the last section that if A can be defined over K as PQM-
surface, (A, ι) can be defined over L as QM-surface, so by Jordan’s theorem the
necessity is clear. As for the sufficiency, the hypothesis together with Jordan’s
theorem implies that A can be defined over L as QM surface. We want to show
that, as polarized abelian surface, the base field can be descended to K. But
indeed the group H = 〈wD〉 provides descent data for L/K: wD(A) = σ(A) ∼= A
as polarized abelian surface.

Theorem 91 Let U ≤ GL2(Z/NZ) be an arbitrary subgroup. Let XD(U) be
the corresponding Shimura curve (with level U structure). Let (A, ι, P, φ)/Q be
a U -structured OD-QM surface with field of moduli contained in L. Then this
structure can be defined over L if and only if L splits BD.

Remark: This statement is the Shimura curve analogue of the famous “surjec-
tivity” of the moduli problem of elliptic curves with level U structure: i.e., any
point P ∈ X1(U)(L) is induced by at least one U -structured elliptic curve E/L;
we are indeed about to copy the proof of [Deligne-Rapoport].

Proof: Let us abbreviate (A, U) for our U -structured QM-surface. If there exists
(A, U)/L, then all such are given by the cohomology set H1(GL, Aut((A, U)/L))
– indeed, since the QM-automorphism group of a QM-abelian surface is always
abelian (even isomorphic to µ2, µ4, or µ6, and necessarily to µ2 if it is non-
split) – this is a cohomology group. Moreover, the obstruction to the existence
of an L-structure lies in H2(GL, µn) for n = 2, 4, 6. Write µm = Aut(A).
There is a natural map H2(GL, µn) → H2(GL, µm) which is induced by the
inclusion µn = Aut(A, U) ↪→ µm = Aut(A). By Jordan’s theorem the ob-
struction vanishes when mapped to H2(GL, µm). We finish with the observa-
tion that H2(GL, µn) → H2(GL, µm) is injective! (Indeed, take cohomology
of 1 → µn → µm → µm/n → 1; it is enough to show H1(µm) → H1(µm/n) is

surjective; but by Hilbert 90 we are looking at the map L×/L×m → L×/L×m/n,
i.e., a quotient map.)
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If P is a K-valued point on any plus-quotient Shimura curve (with level struc-
ture), let P ′ be its image in XD(K). The canonical field of P is by definition
the splitting field of the degree 2 divisor which is the preimage of P ′ in XD –
its compositum with K is an at most quadratic extension.

Corollary 92 Let P ∈ XD+
0 (N)(K) be a point with field of moduli contained

in K. Then it is induced by some structure (A, P, QN )/K if and only if the field
M = LK splits BD, where L is the canonical field of P .

Proof: This is immediate by the theorem and our earlier analysis of the moduli
problem XD+

0 (N): indeed we have just seen that (A, ι, P, QN ) can be defined
over M . Decompose QN = C1 ⊕C2, where Ci = eiQN . We know that the main
involution wD interchanges C1 and C2, hence the nontrivial automorphism σ of
GL/K does this as well. We thus find that σ preserves QN .

Remark: Let A/Q be a PQM of plus type. Then the proof of the corollary
rules out the existence of a certain type of cyclic order N subgoup defined over
Q (namely, the one that generates an OD-module of rank N2). It is easy to
give bounds on N in terms of D for the existence of the other type of order
N subgroup defined over Q, whence we can get an (effective) bound on cyclic
order N subgroups. We carry out this argument in detail in Section 4.5.
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Chapter 2

Shimura curves with
infinitely many rational
points

2.1 Introduction

We are interested in studying the locus XD/H/Q of rational points on Atkin-
Lehner quotients of Shimura curves with no level structure. Proposition 65
supplies rational CM points on many of these curves. Nevertheless, the con-
gruence conditions necessary for the existence of rational CM points are not
satisfied on an infinite (positive density) family of Shimura curves, leaving open
the possibility that XD/H(Q) = ∅ for these curves. With the respect to the
quotient by the main Atkin-Lehner involution, we make the following

Conjecture 93 For all sufficiently large D, XD+(Q) consists entirely of CM
points. In particular, XD+(Q) = ∅ for infinitely many D.

One obstacle to an easy proof is provided by our Main Theorem 2, which tells
us that XD+(AQ) is nonempty – there are no local obstructions.

An immediate consequence of the conjecture would therefore be:

Conjecture 94 There exist infinitely many discriminants D such that XD+/Q
violates the Hasse principle: it has points at every completion of Q but no Q-
points.

This latter conjecture is in turn related to a much more general conjecture about
abelian varieties:

Conjecture 95 (Finiteness conjecture for endomorphism algebras) For any
positive integer d, there exist only finitely many isomorphism classes of semi-
simple algebras arising as endomorphism algebras of principally polarized abelian
varieties A/Q of dimension d.
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Remarks: a)There some plausible variants of this conjecture: we may conjecture
a finiteness result for abelian varieties defined over any fixed number field K
instead of Q, or even uniformly over number fields of bounded degree. We could
also drop the requirement that the abelian varieties be principally polarizable
(although it would, a priori, change the list: at the end of this section we give
examples of QM surfaces which can be defined over Q as abelian surface but
not as principally polarized abelian surface).

b) In any of its forms, this finiteness conjecture is very far from being resolved.
Notice that it is true for d = 1 (i.e., for elliptic curves) due to the fact that
the endomorphism algebra of E/C is either Q or a CM field of class number
one, of which we know there are precisely 9. When d = 2, we have a similar
classification of the possible CM endomorphism algebras, but already the QM
case presents problems: it is Conjecture 93. Aside from Q, the other possible
division algebra arising as the endomorphism algebra of an abelian surface in
characteristic zero is a real quadratic field, and we are “reduced” to the problem
of studying rational points on Hilbert modular surfaces. The higher dimensional
versions of this conjecture lead us to the consideration of Q-points on various
other families of higher-dimensional Shimura varieties of PEL-type.

A result of the form XD+(Q) = ∅ would have very interesting consequences
both in terms of properties of the curve XD+/Q itself and for the moduli prob-
lem it is (coarsely) associated to. Unfortunately, such a result does not appear
in this thesis. The best we can offer at the moment is two insights into why such
a theorem should be hard to prove: first the existence of rational CM points in
a positive density situation means that it will not be the case that XD+(Q) = ∅
for all sufficiently large D, so any argument must take this into account. Sec-
ond, by Jacquet-Langlands-Faltings-Ribet, J(XD+) = J0(D)new,wD=1, which
according to the conjecture of Birch and Swinnerton-Dyer will yield no nontriv-
ial quotient of rank zero, i.e., there can be no analogue of the winding quotient
in this context.

Instead, we ask an easier question: for which discriminants D is it the case that
there exist infinitely many A/Q (up to geometric isomorphism) with EndQ(A) a
maximal order in BD? It is here that we need to make use of the work of Rotger
recalled in Section 2.2: assume more precisely that we are looking for discrimi-
nants D such that there exist infinitely many geometrically distinct structures
(A, P )/Q of principally polarized OD-PQM surfaces. Then such an (A, P ) in-
duces a Q-point on some Atkin-Lehner quotient XD/wd or XD/〈wd, wm〉 where
m gives a twist of BD. We can now state the main result of this chapter:

Main Theorem 1 The list of discriminants such that there exist infinitely
many principally polarized A/Q (up to geometric isomorphism) with EndQ(A) =
OBD

is as follows:

a) when g(XD+) = 0 :
D = 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 62, 69, 74, 86, 87, 94, 95, 111, 119, 134, 146, 159, 194, 206
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b) when g(XD+) = 1 :
D = 58, 58, 65, 77, 82, 106, 118, 122, 129, 143, 166, 210, 215, 314, 330, 390, 510, 546

c) when D is twisting and g(XD+) ≥ 2 but g(XD/HR) = 0 :
D = 85, 115, 202, 570, 690, 770

d) when D is twisting and g(XD+) ≥ 2 but g(XD/HR) = 1 :
D = 91, 123, 185, 214, 218, 235, 262, 278, 298, 326, 335, 346, 362, 458

We remark that there could exist further discriminants D such that there are
infinitely many abelian surfaces A/Q with End0

Q
(A) = BD – provided End(A)

is not a maximal order or A/Q does not admit a principal polarization over
Q. Indeed, a slight modification of the methods of the theorem yield further
discriminants D such that there exist infinitely many abelian surfaces A/Q with
End(A) a maximal order in BD but are not PQM’s for the technical reason
that they do not admit principal polarizations over Q. This is made possible by
the phenomenon (first studied in [Rotger II-IV], but already visible in Jordan’s
thesis) that a QM abelian surface over C can have more than one principal
polarization.

2.2 The proof of Main Theorem 1

By work of Victor Rotger described in Chapter 1, every principally polarized
abelian surface with geometric O-QM lies in the image of a forgetful modu-
lar map ϕµ : XD → A2, and the degree of ϕµ onto its image is either 2 or
4, according to whether the principally polarized order (O, µ is nontwisting or
twisting: either way, XD/HR ↪→ A2. Say A/Q is a ppas lying in the image of
ϕµ. Let K be the splitting field of the divisorial preimage of (A, P ) in XD, so
K/Q is an abelian extension, either of degree 2 or of degree 4 and type (2, 2)
(in the nontwisting case it must be the former). We call K the canonical field
of (A, P ) ∈ A2; when A is simple it may equivalently be characterized as the
field cut out by the Galois action on End0

Q
(A).

So it is enough to determine which curves XD/HR/Q have infinitely many
Q-points. By Faltings’ celebrated theorem, we need only consider curves of
genus 0 or 1.

Proposition 96 The list of curves XD/HR of genus 0 or 1 is precisely as in
the statement of Main Theorem 1.

Proof: From Chapter 0 we have both a genus formula for an arbitrary Atkin-
Lehner quotient of XD and a guarantee that there are only finitely many curves
whose genus is bounded. Using the fact that #HR ≤ 4, it is trivial to make
Corollary 50 effective and compute the entire list.
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Proposition 97 Each of the curves in the list of the previous proposition has
infinitely many Q-points.

Proof: First, by means of Proposition 65 we find at least one rational CM point
on each XD+ (when XD+ → XD/HR has degree 2, this gives a fortiori a ra-
tional CM point on XD/HR). In case XD/HR has genus zero, the existence of
a rational point implies XD/HR

∼=Q P 1,1 and there is no more to say. Assume
now that g(XD/HR) = 1. From Chapter 1, we recall that J(XD) ∼Q J0(D)new ,
so J(XD+) ∼ J0(D)new,+, and J(XD/HR) is isogenous to the appropriate Q-
factor of J0(D)new,+. Also, the fact that we have a Q-point allows us to iden-
tify the genus one curve XD/HR with its Jacobian J(XD/HR); since having
infinitely many rational points is a Q-isogeny invariant of elliptic curves, it is
enough to show that every Q-factor of J0(D)new,+ has infinitely many rational
points. By the classical Atkin-Lehner theory of signs of functional equations,
this implies that XD/HR has odd analytic rank, so the infinitude is predicted
by the conjecture of Birch and Swinnerton-Dyer. Of course we need not assume
BSD: we can look in Cremona’s tables and verify that for our list of D, every
elliptic curve with conductor D and wD-eigenvalue 1 really does have positive
rank, completing the proof of the proposition.

The rest of the proof: We have seen that whenever XD/HR has genus 0 or
1, #XD/HR(Q) is infinite. However, because of field of moduli versus field of
definition issues, this does not in itself tell us that there exist infinitely many
OB-QM surfaces A/Q. Indeed, let (A, P ) ∈ A2 be a point with field of moduli
Q lying in the OB-QM locus and more specifically in the image of ϕµ. We
saw in Chapter 1 that (A, P ) is a moduli point – i.e., is induced by an abelian
surface A/Q – if and only if the canonical field K splits B. So it remains to be
seen is that, among the infinitely many Q-points living on XD/HR, there exists
an infinite subset of points all of whose canonical fields split B. It may sound
as if we would need to look at the equations defining the map XD → XD/HR

in order to check this, and this would be bad news: computing the equations
of over 100 Shimura curves would be many (many)hours of hard toil. The key
is to exploit the fact that we have at least one moduli point on each curve –
the rational CM point we found above – and show that all points which are
“sufficiently close” to the CM point will also be moduli points. We again give
separate attention to the cases of genus 0 and genus 1.

Genus 0 case: Consider the map XD → XD/HR
∼= P 1, and fix P0 ∈ P 1 a

rational CM point. Fix any p|D. Let Kp(P0) be the canonical field for P0 over
the base Qp, i.e., the extension of Qp cut out by the coordinates of the preim-
ages of P0 in XD/Qp. By Krasner’s Lemma, if P ∈ P 1/Qp is sufficiently close
to P0, Kp(P0) = Kp(P ). By weak approximation for Q, there exist infinitely
many points Pn ∈ P 1/Q which are simultaneously p-adically close to P0 for all
p dividing D such that K(Pn) has the same p-adic completions at all p|D as
K(P0). By the Hasse Principle in the Brauer group of Q, the K(Pn)’s are all

1This follows from our discussion of Severi-Brauer conics in Chapter 0.
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splitting fields for B.

Genus 1 case: We can implement the same idea of simultaneous p-adic ap-
proximation in a slightly different way. Let us assume that the canonical field
K/Q is biquadratic; the proof is exactly the same (but slightly easier) in the
plus quotient case. Fix a rational CM point P0 ∈ XD/HR(Q); we may thus
view E/Q := (XD/HR, P0) as an elliptic curve, which by Jacquet-Langlands-
Faltings, has semistable bad reduction at all primes p|D. Fix such a p, and
recall the exact sequence

0 → Ens(Qp) → E(Qp) → Φ → 0,

where Φ is the finite abelian group corresponding to the component group of
the special fibre of the Néron model at p [Silverman]. The subgroup Ap :=
Ens(Qp) ∩ E(Q) of Q-points with the same reduction as P0 is thus of finite
index in E(Q). Let A = ∩p|D,podd Ap; it is clearly an infinite subgroup of E(Q).
I claim that every P in A is a moduli point.

Proof of the claim: By assumption, the extension of function fields Q(XD)/Q(E)
is biquadratic; let Li = Q(E)(

√
fi)(1 ≤ i ≤ 3) be the three intermediate

quadratic fields. We need an innocuous lemma (whose proof we omit) on the
splitting of quaternion algebras in (2, . . . , 2)-extensions:

Lemma 98 Let B = BD/Q be a nonsplit indefinite rational quaternion algebra,
and let K/Q be a (2, . . . , 2)-extension (i.e., a compositum of quadratic fields).
Then K splits B if and only if for every odd p|D, there exists a quadratic subfield
Q ≤ L ≤ K such that p is nonsplit in L.

Now, let P ∈ A, so that P has the same mod p reduction as P0. By the lemma,
we must show that for each odd p|D, then for at least one of the three quadratic
subfields Li of K, p is nonsplit in Li, i.e., the Legendre symbol (Li

p ) 6= 1.

Because K(P0) splits B, there exists an i such that p is nonsplit in Li(P0) =

Q(
√

fi(P0)), so (Li(P0)
p ) = (fi(P0

p ) 6= 1. But by definition of the subgroup

A, fi(P ) ≡ fi(P0) modulo p and since p is odd, the Legendre symbol depends
only on the mod p reduction of the numerator (a “tameness” property). Thus

(Li(P )
p ) = (fi(P )

p ) = (fi(P0)
p ) = (Li(P0)

p ) 6= 1. It follows that there exist infinitely
many moduli points on E, completing the proof.

2.3 A result on QM surfaces without Q-rational
principal polarizations

Heretofore in this chapter we have studied low-genus quotients of Shimura curves
by the subgroup HR of Atkin-Lehner involutions; as we saw, this was the appro-
priate subgroup to study principally polarized abelian surfaces. On the other
hand, the methods of Section 2 would apply equally well to those Shimura curves
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such that the full Atkin-Lehner quotient XD/G has genus 0 or 1. We have the
following variant of Proposition 90:

Proposition 99 Let P ∈ XD/G(Q), and let K be the field cut out by the
divisorial preimage of P in XD. Then if K splits B, P is a moduli point, i.e.,
is induced by a structure (A, G.P )/Q, where A/Q is an abelian surface and
G.P/Q is the G-orbit of a principal polarization.

The proof is the same as for Proposition 90, i.e., by Galois descent. As in Section
3.2 we may establish the result:

Proposition 100 The curve XD/G/Q has infinitely many Q-points if and only
if its genus is zero or one (and in each case there is a rational CM point). Such
curves are finite in number by Corollary 50. The list of D includes those D
from Main Theorem 1 and in addition the following D:
genus zero: 93, 161, 178, 183, 237, 462, 714, 798, 858, 870, 910, 930, 966, 1110,
1122, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1410, 1590, 1722
1770, 1794, 1914, 1938, 1974, 2010, 2130.

genus one: 141, 142, 155, 158, 201, 203, 209, 219, 226, 254, 274, 309,
327, 381, 446, 1155, 1330, 1430, 1482, 1518, 1554, 1610, 1785, 1806, 1830, 2046
2090, 2170, 2190, 2210, 2226, 2262, 2370, 2415, 2442, 2478, 2490, 2670, 2706, 2838, 2910
3030, 3090

Consider now the additional discriminants listed in Proposition 8. For any one
of these D, the arguments of Section 3.2 generalize to produce infinitely many
Q-rational moduli points. We know that for such a D not included in the list of
Main Theorem 1, there are only finitely many principally polarized A/Q with
OBD

-QM. On the other hand, we know from Chapter 0 that any abelian surface
A/C with OB-QM is principally polarizable. We conclude:

Theorem 101 For each D listed in Proposition 100, there exist infinitely many
OBD

-abelian surfaces A/Q which are geometrically principally polarizable but do
not admit principal polarizations over Q.

Such an abelian surface A/Q corresponds to a Galois orbit of genus 2 curves
C/K, where K/Q is a (2, . . . , 2)-extension whose Galois group is naturally a
quotient of G; the curves C cannot be defined over Q, but their common Jaco-
bian A = J(C) can be. It would be interesting (although probably difficult) to
compute a particular example.
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Chapter 3

Local points on Shimura
curves

In this chapter we study local points on the curves XD+ and XD+
0 (N); recall

that, as always, N is squarefree and prime to D. Keeping in mind Ogg’s results
on the R-points on these curves from Section 1.4, we are left to studying the
Qp-valued points for various primes p. We will show the following results:

Main Theorem 2 For all primes p, XD+(Qp) is nonempty.

Main Theorem 3

a) Assume D = pq is a product of two primes and that N is a prime number.
Then Xpq+

0 (N)(Qp) is nonempty if and only if N is a norm from Q(
√−q).

b) For fixed (arbitrary) D and sufficiently large prime N , XD+
0 (N)(QN ) is

nonempty.

Remarks: That XD+(Qp) is nonempty for all p dividing N was also proved by
Andrew Ogg [Ogg II] and by Srinath Baba [Baba] (see also [Jordan-Livné III]).
The proof given here is a little different in that it exploits a modular interpre-
tation (due to Ribet) of the edges as well as the vertices of the finite graph
dual to the special fibre. It is interesting to note that Ogg, Baba, and the
author all prove more general results reducing to our Main Theorem 2: Baba
determines when any Atkin-Lehner quotient XD/wd has Qp rational points for
p dividing D (and applies his result to the oddness of the Jacobian in the sense
of [Poonen-Stoll]), whereas Ogg shows that XD

0 (N)/wDN (Qp) is nonempty for
all p dividing N .

In the present form, the proofs in Section 4 have one foot in the theory of
enhanced CM and supersingular elliptic curves and one foot in the theory of
Brandt-module categories. A more systematic use of the latter would lead to
stronger results: Main Theorem 3 should remain valid for arbitrary D and
squarefree N prime to D, as well as Ogg’s generalization of Main Theorem

74



2. To be honest, I feel that arguments involving canonical lifting of super-
singular elliptic curves are more appealing than arguments involving traces of
Eichler-Brandt matrices. I am hopeful that the general situation can be made
“geometric” by using the definite analogue of Shimura curves due to Gross and
Roberts (see e.g. [Bertolini-Darmon]), and with any luck the final form of the
results of this chapter will be couched in this language.

The organization of this chapter is as follows: in Section 1 we recall a technical
(but extremely useful) result on the number of fixed points of an Atkin-Lehner
involution on a Brandt-module category which can be found (albeit in somewhat
disguised form) in [Vignéras]. In Section 2 we show that XD+(Qp) is nonempty
for all p prime to D. In Section 3 we show that XD+

0 (N)(QN ) is nonempty
for fixed D and sufficiently large N . And in Section 4 we discuss the locus
XD+

0 (N)(Qp) at primes p dividing N ; the proof uses the Cerednik-Drinfeld re-
viewed in Chapter 0.

Finally, we should point out that we do not offer a result on the non/emptiness
of the locus XD+

0 (N)(Qp) for primes p not dividing DN – these are precisely
the primes of good reduction! Such a result could be put to good use in the
context of the Hasse principle violations of the next chapter, so any ideas in this
direction would be especially warmly received.

3.1 The fixed point formula

Let B/Q be a definite rational quaternion algebra of discriminant Dp. Choose,
as usual, a squarefree positive integer N prime to Dp, and fix O ≤ B a level
N Eichler order. Consider the Brandt set Picr(O) of (right) classes of (left)
O-ideals; this is a finite set, and the free abelian group M := Z[Picr(O)] is
called the Brandt module. In a highly appropriate way it is a module over the
Hecke algebra T ,1 but for our purposes here we are concerned only with the
action of the Atkin-Lehner group on M . For this, observe that for any ring
R, the automorphism group of R acts on Picr(R) by “transport of structure.”
In the present case, this comes down to saying that a representative γm of an
element of the Atkin-Lehner group acts on the Brandt set by conjugating the
O-module structure map: ι 7→ γ−1

m ◦ ι ◦ γm.

Clearly the automorphism induced by wm on Picr(O) is involutory; at sev-
eral points in this chapter we will find ourselves in need of a formula for the
number of fixed points (and especially, the criterion for when there are fixed
points at all). We have the following result from [Vignéras, p. 152]:

Proposition 102 (The fixed-point formula)
a) The “main” Atkin-Lehner involution wpDN always has fixed points.

1It is precisely Brandt module computations which are at the heart of MAGMA’s modular

forms package, so we have them – as well as David Kohel and William Stein – to thank for

the ease and depth of modular forms calculations available to us in the present day.
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b) An arbitrary Atkin-Lehner involution wm has fixed points if and only if every
prime dividing the discriminant pD is nonsplit in Q(

√−m) and every prime
dividing the level N is noninert in Q(

√−m).

c) When N = 1 the number of fixed points of the main Atkin-Lehner involution
wpD is

h′(−D) + h′(−4D)

2
,

where h′(m) is to be interpreted as the class number of the quadratic order of
discriminant m if such exists (i.e., if m is 0 or 1 mod 4) and 0 otherwise.

Remark: Recall that when D = 1 the Brandt set is isomorphic (as Hecke mod-
ule) to the category of supersingular elliptic curves in characteristic p in such a
way that Frobenius corresponds to wp, so when N = 1 we recover the classical
formula for the number of supersingular elliptic curves defined over Fp and for
general N we get a formula for the number of “enhanced supersingular elliptic
curves” defined over Fp.

Remark: Comparing this result with Proposition 48 suggests that there should
be a unified geometric proof.

3.2 Local points on XD+ at good primes

Recall from Chapter 0 that indeed XD (a fortiori XD+) is smooth at all primes
p not dividing D. Thus, by Hensel’s Lemma, it will be enough to show the
existence of an Fp-valued point. We claim that in fact there will be an Fp-
valued supersingular point. But this claim follows almost immediately from our
identification of the supersingular isogeny class in Section 0.7 and the fixed point
formula of the previous section: we have XD(Fp2 )ss = XD(Fp)

ss in bijection
with the Brandt set Picr(O); from this we deduce XD+(Fp2 )ss is in bijection
with the wD-orbits of Picr(O), and then that XD+(Fp)

ss corresponds to those
wD-orbits stable under wp, i.e., to ideals I such that wp{I, wDI} = {I, wDI}.
But by the fixed point formula, there exists at least one ideal I such that I =
wpDI = wpwDI, so that wp{I, wDI} = {wDI, I}, completing the proof.

3.3 Local points on XD+
0 (N) at Deligne-Rapoport

primes

We exploit the description of XD
0 (N)/FN as being two copies of the smooth

curve XD/FN intersecting transversely along the supersingular points. By
Hensel’s Lemma, it is enough to show that there is an ordinary point
P ∈ XD(FN ) − XD(FN )ss. But by the fixed point formula of Section 1, we have
good control over the number of supersingular points: for fixed D, #XD(FN )ss =
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O(
√

N). On the other hand, letting g be the genus of XD, by Weil we have
|#XD(FN ) − (N + 1)| ≤ 2g

√
N . So, obviously, for fixed D and sufficiently

large N there exist ordinary FN -valued points on XD. These lift to give QN -
points, and we’re done. Note well that we’ve worked with XD instead of XD+,
obtaining a stronger result that is an ingredient in our Main Theorem 5.

3.4 Local points at Cerednik-Drinfeld primes

3.4.1 Preliminaries

Notation: When our choice of level structure is clear from the context, we
will allow ourselves to write X for either of: Xpq(1), Xpq

0 (N),X(p) for either of:
Xpq(1)/wp, X

pq
0 (N)/wp, and X(pq) for either of:

Xpq(1)/wpq, X
pq
0 (N)/wpq. Finally, we write Zp∞ for W (Fp) (i.e., for the integer

ring of the completion of the maximal unramified extension of Qp).

First we need to recall some of [Jordan-Livné I]: work of Cerednik-Drinfeld
gives us canonical Zp-models for all of our curves, such that the special fibres
are admissible curves in the sense of Jordan-Livné: they are (reduced) semi-
stable curves /Fp, every irreducible component of which has geometric genus
0. To such a curve we can associate a finite graph, its dual graph, as follows:
the vertex set of the graph corresponds to the irreducible components of the
curve, and edges e : v1 → v2 correspond to intersection points of the compo-
nents corresponding to v1, v2. Recall also that these curves are not Mumford
curves; rather thery are twists of Mumford curves under Frobp 7→wp. That is,
a component (respectively, a singular point) is defined over Fp if and only if it
is fixed under the action of wp. We will use:

Proposition 103 (Hensel’s Lemma): Let X/K be a projective curve over a
field K which is complete with respect to a non-Archimedean valuation. Let
X/OK be any regular model for X. Then X(K) is non-empty if and only if
X (OK/mOK) has a smooth point.

The canonical models X/Zp need not be regular. Indeed, let P ∈ X/Zp∞

be a point lying on the closed fiber whose reduction into X (Fp) is singu-
lar. Then there is an analytic neighborhood of P in X/Z∞

p isomorphic to
Zp∞ [[X, Y ]]/(XY − pa). It is not hard to check that this local ring is regular
if and only if a = 1. In general, the integer a is associated to the edge e and
called its length. Thus, we have in all the structure of a “finite `-graph,” i.e., a
finite graph to which each unoriented edge is associated a positive integer. To
perform the regularization of the arithmetic surface X , we repeatedly blowup
at the points on the special fibre corresponding to edges e with length > 1.
In terms of `-graphs, this corresponds to replacing the single edge of length
m with m edges of length 1. Thus, from the data of an `-graph we can con-
struct the special fibre of a regular model for X/K (and indeed, we could go on
to construct the minimal model, if we needed it; see [Jordan-Livné I] for details.)
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Now we consider the problem of examining the `-graph G to determine whether
X(Qp) is empty. A smooth Fp-point on the special fibre of the regularized sur-
face comes from one of the following:
a) a wp-fixed vertex v of G, or
b) an edge e of even length, which is flipped by wp – i.e., such that

wp : v → w 7→ w → v.

(The length must be even so that the wp-Frobenius action fixes the middle
vertex in the chain created by blowing up the single edge e.) In fact, our first
step is that we need not worry about b) in our situation. Let us agree for now
that G, G(p), G(pq) stand for the dual graphs of the special fibres of the curves
Xpq(1), Xpq(1)/wp, X

pq(1)/wpq respectively.

Proposition 104 There is no two-sided even length edge e of G(pq) which is
flipped by wp.

For the proof, we need:

Lemma 105 The sets l(G(p)), l(G), l(G(pq)) of lengths of the dual graphs are
all the same. Moreover, when counted with multiplicity, the multisets of lengths
of oriented eges of G(p) and G(pq) coincide.

Proof of the lemma: The graph G admits a natural bipartition coming from
the bipartition of the Bruhat-Tits tree ∆ given by considering vertices of even
and odd distance from any given vertex. From e.g. [Kurihara], one knows that
wp interchanges the two subsets of the bipartition (and in particular acts freely
on the vertices and oriented edges of G) and wq preserves each subset of the
bipartition, so clearly wpq again interchanges the two subsets and acts freely
on vertices and oriented edges. From this we see that the at-most-(2-1) maps
G → G(p), G → G(pq) are precisely 2-1 on the sets of oriented edges of G. Since
an equivalent characterization of the length of an edge G is the cardinality of the
stablizer of that edge inside the discrete subgroup of GL2(Qp) associated to the
curve [Jordan-Livné I], this lack of ramification immediately implies the lemma.

Proof of the proposition: From [Kurihara], we see that the only edges of even
length in G(p) are those of length 2, and moreover the number of such ori-
ented edges is either 0,1 or 2. In case there is only one such oriented edge,
it must be one-sided. Its lift to G is therefore an edge e : v → w such that
wp(e) = e : w → v. Since all the Atkin-Lehner involutions preserve the length-
structure of the graphs, we must have wq{v, w} = {v, w}; since moreover v
and w are adjacent vertices and wq preserves the bipartition, we must have
wq(v) = v and wq(w) = w. Thus wpq(e) = e as well, so that in Gpq the unique
edge of length 2 is again one-sided. But according to the recipe for computing
the special fibre of an admissible curve from its dual graph, one-sided edges are
removed [Kurihara], [Jordan-Livné I], showing the proposition in this case. In
case there are two oriented edges of length 2 in G(p) and they are both one-sided,
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the above argument again shows that the corresponding pair of length 2 edges in
G(pq) are one-sided. In the remaining case, we can consult [Kurihara] to see that
there will be a unique vertex admitting edges of length 2, so the two geometric
edges of length 2 are the two orientations of a loop at that distinguished vertex.
Choosing an orientation, this edge lifts to two geometric edges in G, e1 : v → w
and e2 : w → v such that wp(e1) = e2. As above, we find that wq(v) = v and
wq(w) = w , so that the unique length 2 edge of G(pq) is again a loop at a single
vertex; this edge can be represented in the quotient graph as a pair {e1, e2},
and evidently wp({e1, e2}) = {e2, e1} = {e1, e2}, so the edge is fixed by wp and
not flipped by it.

In fact it is not the proposition itself that we need in this section (it points
in the direction of the emptiness of the Qp-points, not the non-emptiness), but
rather its analogue in the case of level structure:

Corollary 106 There are no one-sided edges of even length in the dual graphs
G(Xpq

0 (N)/wpq) which are flipped by wp.

In order to prove the corollary we must recall work of [Cerednik-Drinfeld], made
explicit in our context by [Ribet] that interprets our graphs in terms of struc-
tures on supersingular elliptic curves. It is convenient to work adelically: let
U ≤ B×(Af ) be a compact open subgroup which is maximal at p and q. Fol-

lowing [Ribet], we introduce the p-adic space XU := Πl 6=p Ul\B̂
×

/B
×

, where
B/Q is the quaternion algebra obtained by “interchanging the invariants at p

and ∞,” i.e., B is definite of discriminant q. Notice that the spaces B̂
×

and B̂×

differ only at their p-components; thus, the prime-to-p part of U is an acceptable

prime-to-p-level structure for the zero-dimensional Shimura variety B
×

. Now
we have two key observations:

Proposition 107 (Ribet, (4.3))
a) GL2(Zp)\XΓ0(N) is canonically isomorphic to the vertex set of G(Xpq

0 (N)/wp).
Moreover the vertex set of G(Xpq

0 (N)) is canonically given as the disjoint union
of two copies of GL2(Zp)\XΓ0(N).
b) The edge set of G(Xpq

• (N)) is canonically isomorphic to Γ0(p)\XΓ0(N). More-
over, the attaching map for the graph is as folows: to an element e ∈ Γ0(p)\XΓ0(N),
we associate its initial vertex e(0) via the natural projection

π1 : Γ0(p)\XΓ0(N) −→ (GL2(Zp)\XΓ0(N))
1,

and its terminal vertex via π2 ◦ (m−1x), where

π2 : Γ0(p)\XΓ0(N) −→ (GL2(Zp)\XΓ0(N))
2

is the same map as before but formally landing in the second copy, and m ∈ B̂
×

is an idèle which is everywhere locally trivial except at p, and such that

mp =

[
1 0
0 p

]
.
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Proposition 108

a) GL2(Zp)\XΓ0(N) is in bijection with the set of supersingular elliptic curves

with Γ0(N)-structure, i.e., with X0(N)(Fq)
ss.

b) Γ0(p)\XΓ0(N) is in bijection with the set of supersingular elliptic curves with
Γ0(p) + Γ0(N)-structure.
c) Under these correspondences, wq on the dual graph of Xpq

0 (N)/wp corresponds
to the q-power Frobenius morphism Frobq on X•(N)(Fq)

ss. In particular, the
set of wq-fixed vertices corresponds to the locus X0(N)(Fq)

ss.

Proof: a),b) are standard adelic double coset constructions of the sort we re-
called in Section 0.5 For c), see [Ribet].

Proof of the corollary: Let ẽ ∈ G(Xpq
0 (N)/wpq) be a two-sided edge of even

length that is flipped by wp, and let e ∈ G(Xpq
0 /wpq) be the image of ẽ un-

der the quotient map. I claim that the quotient map π : G(Xpq
0 (N)/wpq) →

G(Xpq/wpq) preserves the orientation of edges; equivalently, G(Xpq
0 (N)) →

G(Xpq) is orientation-preserving. Indeed, the initial vertex of the edge ˜̃e =
(E, CN ) is evidently just (E, CN ), so that the initial vertex of the image of ˜̃e in
G(Xpq) is unambiguously E (and indeed there are no loops in these bipartite
graphs, so this analysis suffices). Now, it is clear that since wp flips ẽ, it must
either flip or fix the image vertex e. Suppose first that it does both, i.e., that e
is one-sided. Then, because π is orientation-preserving, ẽ must be one-sided as
well, contrary to our assumption. Otherwise, the orientation-preserving nature
of π implies that since ẽ gets flipped upstairs, e is a two-sided edge of even
length that gets flipped downstairs, contradicting Proposition 104.

3.4.2 The proof of Main Theorem 2

In this subsection, we work with no level structure, and we write G, G(p), G(pq)

for the three dual graphs in question. Because of Proposition 98, we must
show that X(p)(Fp) is nonempty. First observe that a wp-fixed vertex of G(pq)

can be viewed as a pair {v, wpqv} such that wp{v, wpqv} = {v, wpqv}, i.e.,
{wpv, wqv} = {v, wpqv}. So either v = wpv or v = wqv. The former is im-
possible, since wp has no fixed points on the vertex set of G; hence v = wqv.
That is, fixed points of wp on G(pq) correspond to pairs of fixed points of wq on
G. Similarly, under the quotient map G → G(p), each pair of wq-fixed points
gets mapped to a single wq-fixed point of G(p), which by Proposition 108c),
corresponds to an element of X(1)(Fq)

ss, i.e., to a supersingular elliptic curve
defined over the prime subfield Fq. It is well-known that this set is non-empty;
e.g., by Honda-Tate theory the Weil q-number

√−q provides us with at least
one such element. (This is a special case of the fixed point formula of Section 1.)
We see that there are certainly components of X(pq)(Fp) which are defined over
Fp. The only way that such a component could not yield a smooth Fp-point is
if the component had the maximum number of singular points, namely p + 1,
and if all of these singularities were themselves defined over Fp. Since singular
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points on the special fibre correspond to edges in the dual graph, it will be
enough to show the following

Claim: For any wq-fixed vertex v of G(p) such that p +1 edges emanate from v,
the wq-action on this set of edges is nontrivial.
Sufficiency of the claim: if e is an edge of a wq-fixed vertex, then wq(e(1)) = e(1)
if and only if the terminal vertex of the associated vertex in G(pq) is wq-fixed.

Proof of the claim: Because of Propositions 107 and 108, we can rephrase in
terms of supersingular elliptic curves: namely, it is enough to show that if E/Fq

is a supersingular elliptic curve, it is not the case that the Galois (=Frobenius)-
action on the set of order p-subgroups of E is trivial. First assume that q > 3,
so the characteristic polynomial of Frobenius must be X2 + q, and the trace of
Frobenius acting on E[p] is zero, hence the matrix is nonscalar and accordingly
moves some one-dimensional Fp-subspace, establishing the claim in this case.
Now assume that q is 2 or 3, so the characteristic polynomial of Frobenius, if
not X2 + q, is x2 ± qX + q, whose rational canonical form as an endomorphism

of Tp(E) is

[
0 −q
1 ±q

]
, so that the action on E[p] is again non-scalar. This

completes the proof of the claim, and hence of Main Theorem 2.

3.4.3 The proof of Main Theorem 3

Having done all the necessary analysis in the preceding section, we can imme-
diately reduce to the realm of Γ0(N)-structures on supersingular elliptic curves
over Fq. Indeed, using the discussion at the beginning of Section 3.3 and using
Corollary 105, a sufficient condition for Xpq

0 (N)/wpq(Qp) to be empty is for the
action of wp on the dual graph G(Xpq

0 (N)/wpq) to have no fixed points. By the
same argument used at the end of the proof of Theorem 1, if v is a wq-fixed
vertex of G(p), then either the cardinality of the star of v is less than p + 1
or the action of wq on the set of edges emanating from v will be nontrivial,
implying that at least one of the p + 1 Fp-rational points on the rational curve
corresponding to v is smooth, whence we have established:

Proposition 109 Xpq
0 (N)/wpq(Qp) is empty if and only if the action of wq on

G(p) is fixed point-free.

But now we are done, since the proposition implies that Xpq+
0 (Qp) is nonempty

if and only if the Atkin-Lehner involution wq has a fixed point on the Brandt
set associated to an Eichler order of level N in the definite quaternion algebra of
discriminant q. That is, we have reduced to the fixed point formula of Section
1, which completes the proof of the theorem.

Nevertheless, it is more “educational” to work with supersingular elliptic curves,
and we indicate how most (no doubt all, with a bit more technique) of the the-
orem can be proved in this way. First, we can equally well state the proposition
in terms of supersingular elliptic curves, getting:
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Proposition 110 Xpq
0 (N)/wpq(Qp) is empty if and only if there is no pair

(E, C)/Fq, E/Fq a supersingular elliptic curve, C ≤ E a cyclic order N (hence
étale) subgroup scheme of E defined over Fq.

Proof of the theorem: Assume first that q ≡ 1 modulo 4, so in particular
q > 3. Suppose there exists a pair (E, C)/Fq as in the proposition. Since
q > 3, the characteristic polynomial of Frobenius is necessarily X2 + q, so
EndFq

(E) = Z[
√−q], and this is the maximal order in the CM quadratic field

Q[
√−q]. By Deuring’s lifting lemma, there exists Ẽ/Qq an elliptic curve with

CM by Z[
√−q] and (Ẽ,

√−q) reduces to (E, Frobq) modulo q. Moreover, using

the isomorphism of prime-to-q- adic Tate modules T 6q(Ẽ) → T 6q(E), we can lift
C to a subgroup C̃ ≤ Ẽ. Since this isomorphism respects the CM-structures,
we get moreover that C̃ is stable under End(Ẽ) = Z[

√−q]. This implies that
Z[

√−q] acts on the quotient Ẽ/C̃; since this is the maximal order, it must be
that Ẽ/C̃ has precisely Z[

√−q]-CM. By the theory of complex multiplication,
there exist integral ideals a, b of Z[

√−q] so that over C the isogeny Ẽ → Ẽ/C̃
may be realized as C/a → C/ab−1. The degree of this isogeny is on the one
hand N and on the other hand the norm of b, which is what we wanted to show.

Now assume q ≡ −1 modulo 4. Again the ring generated by the Frobenius
map inside End0(E) is Z[

√−q], and by Deuring we can lift to get a pair (Ẽ, C̃),
where Ẽ has precisely Z[

√−q]-CM and C̃ is stable under this ring. So again
Ẽ/C̃ has at least Z[

√−q]-CM, but since this is no longer the maximal order, a
priori it could have more CM. We thus distinguish two cases: in the first case,
the quotient Ẽ/C̃ has precisely Z[

√−q]-CM, so running through the above ar-
gument we get that N is the norm of an ideal in the ring Z[

√−q]. Pushing this
ideal forward to the full ring of integers, we get that either N or 2N is a norm
from Q(

√−q). In the second case, Ẽ/C̃ has CM by the full ring of integers. We

can write Ẽ = C/a and define a new elliptic curve F = C/aZ[ 1+
√−q
2 ], the “im-

provement” of Ẽ to an elliptic curve with maximal CM. Obviously the quotient

map φ : E → F is a degree 2 isogeny; the composite F
φ̂→ Ẽ → Ẽ/C̃ is then an

isogeny between elliptic curves with CM by the maximal order, showing that
2N is a norm from Q(

√−q).

We now prove the converse in case q ≡ 1 modulo 4. Namely, we must show
that if N is a norm from Q(

√−q), there exists a pair (E, C)/Fq, where E is
a supersingular elliptic curve and C ≤Fq

E[N ] is an order N cyclic subgroup.
Indeed the argument is very similar to the above: starting with a supersingular
elliptic curve over Fq, we may lift (E, Frob) to an elliptic curve E/Qq and an
endomorphism generating Z[

√−q]. By our hypothesis on q, this is the maximal
order, so this is the full endomorphism ring of E. Moreover, our assumption
that N is a norm from Q(

√−q) implies that there exists an endomorphism η
of E of degree N . Let C be the kernel of η. Observe that η (hence C) can be
defined over Qq[

√−q] – a totally ramified extension of Qq, so that the reduction
of C can be defined over Fq, qed.
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Chapter 4

Global points on Shimura
curves

In this chapter we consider the locus XD
0 (N)(L), where L is a number field.

Observe that, by the results of the last chapter, depending on D, N and L
XD+

0 (N) need not have points rational even over a completion of L. But, if
we believe in Conjecture 93 from Chapter 3 bounding the non-CM rational
points on XD+, we must believe that there will be correspondingly few points
on Shimura curves XD+

0 (N) over number fields. Indeed we make the following

Conjecture 111 (Boundedness Conjecture) For any number field L there are
numbers N(L), D(L) such that N ≥ N(L), D ≥ D(L) implies that XD

0 (N)(L)
is empty.

The conjecture is best known when D = 1; for D = 1, L = Q and N prime, we
get the celebrated theorem of Mazur [RI] on the boundedness of prime degrees
for rational isogenies of elliptic curves over Q. In that same paper the result
was shown for (D = 1 and) imaginary quadratic fields K in which N is inert;
to my knowledge the case in which N splits in K remains open.

In this chapter we explore the case of fixed D > 1. We adapt some of the
methods of [RI] to our QM situation. Notice that since XD(R) = ∅ the con-
jecture holds trivially for all number fields with a real place. We are really
interested in XD+

0 (N)(Q) but this turns out to be awkward to study directly.
Instead we work in the following context: let F be a number field with a real
place, and assume there exists P ∈ XD+(F ). (Recall from Chapter 2 that when
the genus of XD+ is zero or one, XD+(Q) is infinite; this is the most interesting
case for us.) Then the compositum of F and the splitting field of the divisor-
ial preimage {P, wD(P )} of P in XD generates a totally imaginary quadratic
extension field K/F , the canonical field of P . We will investigate the locus of
points XD

0 (N)(K) such whose image in XD+
0 (N) becomes F -rational.
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Definition: Say a number N is F -amenable if

• N is prime and prime to D.
•N ≡ 1 modulo 4.
•N remains prime in the number field F .

When F = Q an amenable N is just a prime number which is 1 mod 4.

Main Theorem 4 For fixed D and fixed K/F a totally imaginary extension
of a number field with a real place, there is an absolute bound on F -amenable
N such that there exists P ∈ XD+

0 (N) with canonical field K.

Remark: As mentioned above, the theorem is most interesting when XD+ has
genus zero or one. For when the genus is at least two, it follows by Faltings’
theorem that XD(L) is a finite set, and to prove the boundedness conjecture it
is enough to show that for any particular QM surface A/L there is an absolute
bound on N such that A admits an L-rational QM N -isogeny. But this is known
to be true due to the “largeness” of the adelic Galois representation on a QM
surface, a Serre-type theorem due to [Ohta] (and independently proved by the
author); for the statement, see Theorem 117 in Section 4.5.

Perhaps it will be helpful to give a few words about the strategy of the proof
before plunging in. It is unabashedly based on [RI] – we assume the reader has
a good familiarity with (and ready access to) this paper. The proof is much
easier on the geometric side, as a key point of Mazur’s argument is to show that
having a rational N -isogeny for even moderately large N forces the elliptic curve
to have potentially good reduction; the argument uses the Eisenstein ideal and
the cuspidal geometry of modular curves. But Shimura curves have precisely
no cuspidal geometry, and accordingly (as we have already seen) their potential
good reduction is automatic. Thus we can skip to the analysis of the isogeny
character, and we warn the reader that at this point our proof becomes more
involved, due to the more slippery nature of the moduli problems at hand.

4.1 Preparation for Main Theorem 4: the Shimura
Covering of XD+

1 (N) → XD+
0 (N)

The object of this section is to prove the following result, an analogue of [Mazur,
Corollary 2.3]:

Theorem 112 The morphism of arithmetic surfaces XD
1 (N) → XD

0 (N)/SpecZ[ 1
N ]

admits a factorization XD
1 (N)

t→ XD
2 (N)

n→ XD
0 (N)/SpecZ[ 1

N ], where the sec-
ond map is finite étale and cyclic. The index t divides 6; precisely t = m2m3,
where m2 = 2 if Q(

√
−1) splits BD and (−1

N ) = 1; otherwise m2 = 1; m3 = 3

if Q(
√
−3) splits BD and (−3

N ) = 1; otherwise m3 = 3. Finally, all of the above

statements remain true for XD+
1 (N) → XD+

0 (N).
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Before giving the proof, we recall the general theory of Shimura coverings as
presented by [Ling-Oesterlé]. So: let f : Y → X be a degree n morphism of
algebraic curves over C (though any field of characteristic zero would work just
as well, and give a Galois-equivariant theory). We define Σ(f) as the kernel of
f∗ : Pic0X → Pic0Y . It is a finite subgroup of J(X) = Pic0X – indeed, since
f∗ ◦ f∗ = [n], visibly Σ(f) is contained in J(X)[n]; Σ(f) is called the Shimura
subgroup. We can also define a finite abelian group associated to f as follows:
let g : Z → X be the maximal abelian unramified covering through which f
factors; let A be its Galois group. The finite abelian groups Σ(f) and A are
canonically in duality. Indeed, the theory of line bundles on abelian varieties
(Appell-Humbert theorem) together with the identification of H1(X, Z) as the
lattice of covering transformations of the universal cover of J(x) furnishes us
with a canonical isomorphism

J(X)
∼→ Hom(H1(X, Z), S1)

On the other hand, a monodromy argument gives us that A is the maximal
abelian quotient of π1(X) to which π1(Y ) maps to zero, i.e., A is isomorphic to
the cokernel of f∗ : H1(Y, Z) → H1(X, Z). We get a commutative diagram

[Hom(Γ, S1)]J(Y )es, lf∗Hom(H1(Y, Z), S1)s, rf∨
∗ J(X)eHom(H1(X, Z), S1)

which exhibits the duality.

The case of modular curves: now let Γ ≤ GL+
2 (R) be a Fuchsian group of

the first kind, i.e., such that XΓ = Γ\H has the structure of a complex al-
gebraic curve. Choosing any basepoint τ ∈ H, we get a canonical surjection
Φ : Γ → π1(XΓ, τ) as follows: for γ ∈ Γ, let c be a path in H carrying τ to γτ ;
let Φ(τ) be the homotopy class of this loop in XΓ. One knows that the kernel of
Φ is generated by the elliptic and the parabolic points of Γ. Passing to homol-
ogy eliminates the dependence on the basepoint, and we get Γ → H1(XΓ, Z).
Dualizing and composing with the above isomorphism, we get

Ψ : J(x) ↪→ Hom(Γ, S1)

the image of Ψ consists of homomorphisms whose kernel contains all the elliptic
and parabolic elements of Γ. Now let Γ′ ≤ Γ be a finite index normal subgroup.
We have an induced map w : XΓ′ → XΓ and w∗ : J(XΓ) → J(XΓ′). It is easy
to see that the following diagram commutes:

[Hom(Γ, S1)]J(XΓ)es, lw∗Hom(Γ, S1)s, ri∨J(XΓ′)eHom(Γ′, S1)

Let Σ = Σ(w) be the associated Shimura subgroup. Since Γ/Γ′ is the Galois
group of the function field extension, we wish to identify Σ as being dual to a
certain quotient of Γ/Γ′. Using the last diagram and the above image condition,
we get:

Proposition 113 (Shimura coverings of modular curves): With Γ′ ≤ Γ as
above, we have Σ = Hom(Γ/N, S1), where N is the normal subgroup generated
by Γ′ and by all the elliptic and parabolic elements of Γ.
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The case of Shimura curves: Take Γ = ΓD
0 (N), Γ′ = ΓD

1 (N); then Γ/Γ′ ∼=
(Z/NZ)×. Notice that there are no parabolic elements. Moreover, by the basic
theory of Shimura curves, we find that the elliptic elements can have orders only
1,2,3 in ΓD

0 (N)/+/ − 1 (notice that −1 is an elliptic element of ΓD
0 (N) accord-

ing to our setup). A straightforward analysis of when these elliptic points arise
now gives the “generic fibre” part of the first part of our theorem.

To complete the proof of the theorem in the XD
1 (N) → XD

0 (N) case, we must
look in positive characteristic l not equal to N . First note that (Z/N/Z)×/+/ − 1
acts as automorphisms of XD

1 (N) over SpecZ. It will be enough to show that the
covering XD

2 (N) → XD
0 (N)/Fl remains unramified. When l does not divide D,

all of curves remain smooth in characteristic l. The Riemann-Hurwitz formula
implies that any degree d morphism of smooth curves Y → X is unramified if
and only if 1 − g(Y ) = d(1 − g(X)). Since we are unramified in characteristic
zero and none of these invariants change in good residue characteristic, we are
equally well unramified in characteristic l. (A direct analysis of the ramification
of XD

1 (N) → XD
0 (N)/Fl in terms of the points of XD

0 (N) with automorphism
group larger than {+/− 1} would also succeed.) In characteristic l dividing D,
the curves are split degenerate: every irreducible component has normalization
P 1; such a curve is specified by its dual graph. From [Kurihara], if C/Z∞

p is an
admissible curve of generic genus g, then

1 − g = #V (C̃/Fp) − #E(C̃/Fp)

where the tilde indicates an unpleasant feature of the theory: when the action
on the Bruhat-Tits tree identifies an oriented edge with its inverse, the quotient
graph has a one-sided edge; these edges do not contribute to the Euler charac-
teristic. One way to ensure that this phenomenon does not occur is to choose
a uniformizing discrete subgroup which is sufficiently small so as to preserve
the natural bipartition of the vertex set of the Bruhat-Tits tree into vertices
of mutually even/odd distance. From e.g. [Kurihara], we know that the graph
of XD(1) enjoys this property, hence has no one-sided edges; a fortiori neither
does XD

0 (N), XD
1 (N). Notice then that #V −#E is the Euler characteristic of

the dual graph. Now, letting d = N−1
2 be the degree of XD

1 (N) → XD
0 (N), we

have 1−g(XD
1 (N)) = d(1−g(XD

0 (N)) from characteristic zero, hence the Euler
characteristic of the covering graph is the degree of the covering times the Euler
characteristic of the quotient graph, which implies we have an unramified mor-
phism of finite graphs, so the morphism of degenerate curves is unramified. This
completes the proof of the theorem for the Shimura cover of XD

1 (N) → XD
0 (N).

Lemma 114 The involution wD acts trivially on the Shimura subgroup Σ of
XD

1 (N) → XD
0 (N).

Proof: Via the diagram

[Hom(Γ, S1)]JD
0 (N)es, lw∗Hom(ΓD

0 (N), S1)s, ri∨J(X ′)eHom(ΓD
1 (N), S1)

this comes down to the evident fact that the modular involution wD acts triv-
ially on ΓD

0 (N) modulo ΓD
1 (N).
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Applying the lemma to the diagram

[XD
2 (N) + +]JD

0 (N)e, t/wDs, lw∗JD+
0 (N)s, rw∗JD

1 (N)e, t/wDJD+
1 (N)

we get that modding out by wD induces a bijection on Shimura subgroups.
Therefore, over C the Shimura cover of XD+

1 (N) → XD+
0 (N) is precisely

XD
2 (N)/wD → XD+

0 (N), and the groups involved are naturally isomorphic.
Finally we must verify the same conclusion in positive characteristic l not di-
viding N . As above, we get this formally when l does not divide D. When l
divides D, consider the commutative diagram of degenerate curves:

[Hom(Γ, S1)]XD
2 (N)esXD

0 (N)sXD+
2 (N)eXD+

0 (N)

Now the two horizontal maps are obtained by modding out by images of the
same finite subgroup. Since the top horizontal map does not reverse edges,
neither does the bottom horizontal map. This completes the proof.

4.2 Preparation for Main Theorem 4: Galois

representations arising from Γ0(N)- structures

Let P ∈ XD+
0 (N)(F ) be a rational point, with associated canonical field K.

The basic dichotomy that we shall be wrestling with throughout the proof of
the main theorem comes from the fact that P need not be induced by a PQM
structure definable over F (recall that this occurs precisely when K splits B)
but we want our theorem to apply to these “non-modular” points as well. Many
of our arguments work more naturally in the modular case, and at several points
we will give the argument first in this case and then discuss what modifications
are necessary in the non-modular case.

So, suppose we are in the modular case – so K splits B – and choose a structure
(A, ι, CN )/K which induces P ∈ XD

0 (N)(K). Associated to the cyclic subgroup
CN we have an isogeny character

rK : GK → (Z/NZ)×.

From the work of Section 1.3 we know that since we started with an F -valued
point P , we have a canonical structure (A, QN )/F , where QN is O-submodule
generated by CN . Since QN

∼= Z/NZ ⊕ Z/NZ, we have a two-dimensional
Galois representation

rF : GF → GL2(Z/NZ)

with (at most) dihedral image with the property that the above isogeny charac-
ter is the (diagonal) restriction of rF . The fact that the isogeny character “comes
from F” in this way gives us key information: by the definition of amenability,
N is inert in F , so there are at most two places of K over N . Suppose that
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there are exactly two places. Label them v1, v2, write I1, I2 for the respective
inertia groups with respect to these two places, and write e1, e2 for the orders
of the images of rK |I1 and rK |I2 respectively. Then the fact that the represen-
tation comes from F tells us that e1 = e2; in particular, if the representation is
unramified at either place, it is everywhere unramified over N .

Suppose now we are in the nonmodular case – i.e., K does not split B, so
our geometric point (A, ι, CN ) corresponding to P cannot be defined over K.
Nevertheless it can be defined over many quadratic extensions of K, as follows:
let M/F be any quadratic extension such that the compositum KM splits B
(there are infinitely many). Then there is a KM -structure on (A, ι, CN ) and an
M -structure on (A, QN ). Accordingly, we have an isogeny character

rKM : GKM → (Z/NZ)×

coming from a Galois representation

rM : GM → GL2(Z/NZ).

The character rKM is “almost independent of the choice of M” in the following
sense:

Lemma 115 Suppose that for some (splitting) choice of M1/F , the character
rKM1

is unramified at all places of KM1 lying above N . Then for any other
(splitting) choice of M2/F , the character r24

KM2
is unramified at all places of

KM2 lying above N .

Proof: Form the compositum W = KM1M2; since (A1, ι1, C1)/W, (A2, ι2, C2)/W
induce the same point P in moduli space, it follows as in the elliptic curve case
that r12

1 |W = r12
2 |W (because the group of automorphisms of a QM abelian sur-

face is also cyclic of order dividing 12). So by our hypothesis on r1 we have that
r12
2 |W is unramified at every place of W over N . Suppose that v is a place of

KM2 such that r2|Iv
is nontrivial. Choosing a place w of W over v we know

that r2|Iw
has order dividing 12. Since Ww/(KM2)v is at most a quadratic

extension, this shows that r2|Iw
has order dividing 24, which was to be shown.

Notation: If K is a number field, we write h(K) for the class number of K.

4.3 Beginning of the proof of Main Theorem 4

Let P ∈ XD+
0 (N)(F ) and assume first that P is a modular point induced by

some structure (A, QN )/F with associated isogeny character rK . We may as-
sume that N > 3 and that N is sufficiently large so that it is unramified in K.
Let Kvi

be the completions of K over N (so i = 1 or 2). As in [RI, Lemma 5.2],
we get a factorization of rK into α · χk, where χ is the mod N cyclotomic char-
acter and αi is unramified at Kvi

. We claim that (when i = 2) this factorization
is independent of i, namely that αi = αj , ki = kj . This is immediate from the
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considerations of the previous section: consider the character rχ−k1 ; its restric-
tion to I1 is trivial, so its restriction to I2 is also trivial, i.e., χk2−k1 is trivial.
Since N is unramified in K, we conclude k1 = k2 and thus α1 = α2. In view of
this claim, we allow ourserves to write KN for either one of the Kvi

and α for αi.

A theorem of [Jordan II]) asserts that A acquires good reduction over a to-
tally ramified extension K ′/KN of degree 4 or 6, so that A[N ]/OK′ is a finite
flat group scheme over a Henselian base whose absolute ramification index is 4
or 6. So [Raynaud, Corollaire 3.4.4] applies to the subgroup CN exactly as in
[RI, Proposition 5.1], and we get the conclusion that the values of k modulo
m := N−1

2 are restricted to

k ≡ 0, 1,
1

3
,
2

3
mod m.

Note that we cannot have k ≡ 1/2 since we have assumed that N−1
2 is even.

Claim: The order of α is bounded independent of N .
Proof: Consider the Shimura covering

XD
1 (N)

t→ XD
2 (N)

n→ XD
0 (N);

recall that t divides 6 and XD
2 (N)

n→ XD
0 (N) is finite étale over SpecZ[ 1

N ].
Therefore, a direct modification of the twisting argument given in [RI][Lemma
5.3] shows that α72 is everywhere unramified, so α72h(K) is trivial. For the
convenience of the reader we reproduce the argument here: there is a cyclic
field extension K ′/K of order dividing nt whose ramification index at any
place v of K over p 6= N is divisible by t and hence by 6; also there is a K ′-
rational point P ′ ∈ XD

1 (N)(K ′) projecting down to P ∈ XD
0 (N)(K). Because

XD
1 (N) is a fine moduli space, P ′ corresponds to a unique Γ1(N)-structured

QM surface (A′, ι′, x′ ∈ C′
1); since the induced Γ0(N)-structured QM surface

(A′, ι′, < x′ >) has the same modulus as (A, ι, C1), they differ by an element
of H1(GK′ , Aut(A)). As we recalled in the previous section, the automorphism
group of a QM surface (a fortiori of a Γ0(N)-structured QM surface) is cyclic
of order dividing 12; it follows that the 12th power of the isogeny character of
(A, ι, C1) equals the 12th power of the isogeny character of (A′, ι′, < x′ >) so
is trivial. This shows that r72

K is unramified away from N , so that indeed it is

everywhere unramified and r
72h(K)
K is trivial.

Let us now consider the case when P is not a modular point. We will need
to exploit the lemma of the previous section as follows: choose MN/F to be a
quadratic field extension such that KMN splits B and N remains prime in MN .
Then, arguing as in the first paragraph of this section, we can write rKMN

=
αχk where α is everywhere unramified over N .

Also by the same argument as in the modular case, it is true that the order
of α is bounded by 72h(KMN), but this visibly depends on N . To get around
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this we use the considerations of the previous section: put M1 := MN and take
as M2 some fixed choice of a splitting field. Once we observe that the lemma
of the previous section is valid (with the identical proof) under ri 7→ χ−kri,
we deduce that α12

2 is unramified everywhere over N , hence (using the Shimura
covering as above) α12·72

2 = α864
2 is everywhere unramified. Hence the order of

α := α2 is bounded by C = C(K, D) := 864h(KM2), independent of N . (The
864 is clearly too large – we have shown complete “defensive indifference” in
giving away powers of 6 – but we don’t trouble ourselves to improve it here.)

4.4 End of the proof of Main Theorem 4

To achieve a unified presentation between the modular and nonmodular cases,
in the former we put M2 := Q, so that in both cases we are given a structure
(A, ι, CN )/KM2 with a corresponding factorization of the isogeny character into
χk · α, where α has order bounded independent of N . Now let p be a prime
dividing D and P a prime of KM0 lying over p. We have potential good re-
duction, so after making a totally ramified base extension we realize A as an
abelian surface over the finite field k := OKM2

/P .

Claim: Since p divides D, A/k is supersingular.

Proof: Writing V for the étale part of the p-adic Tate module tensored up
to Qp, we have that V is a representation space for B ⊗ Qp, which since p is
a ramified prime, is a division quaternion algebra. But since V has dimension
at most 2 as a Qp-vector space and a division algebra admits no nontrivial
representation of degree less than 4, we conclude that V = 0, which in dimen-
sion 2 is enough to ensure that A ∼ E2, where E is a supersingular elliptic curve.

From the general theory of QM surfaces we know that the isogeny is k-rational.
In this way we identify the Gk-module structure on QN as being the direct sum
of two identical copies of a cyclic order N subgroup CN ≤k E[N ]. Then, for
any base extension of k of cardinality q we have

βP(σq)q
k + βP(σq)

−1q1−k ≡ a(Fq) modN

where βP is the unramified P-adic part of the character, and a(Fq) is the trace
of a supersingular elliptic curve. We take a residue extension of cardinality q2

where q is sufficiently large so that both of the following hold:
• βP is trivial on the q2-Frobenius
• the Fq2 - rational endomorphism algebra of the associatd elliptic curve has
stabilized and hence has Frobenius polynomial (X − q)(X − q).
Indeed we can attain the first via taking the 864h(KM2)th power of k and
the second by taking the 12th power, so it is clear that the necessary power is
independent of N . We get

q2k + q2−2k ≡ 2q modN
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Since k is not 1
2 , it is clear that this congruence is only a congruence and not

an equality – hence it will be satisfied for only finitely many values of N . This
completes the proof of the theorem.

4.5 A family of Shimura curves violating the
Hasse principle (Main Theorem 5)

In this section we use the local analysis of the previous chapter, together with
a “largeness” result on the Galois representation originally due to [Ohta] (and
proved independently by the author) to deduce the following

Main Theorem 5 Assume D is sufficiently large so that the genus of XD+ is
at least 2. Then, for all sufficiently large primes l (with respect to D), there
exist infinitely many imaginary quadratic fields K such that XD

0 (l)/K violates
the Hasse principle.

Beginning of the proof: The hypothesis g(XD+) ≥ 2 ensures that the Shimura
curve XD has only finitely many quadratic points. This is a theorem of [Rotger I,
Theorem 9]. Just to say a few words about it: the proof in turn relies on a pretty
theorem of Abramovich and Harris that asserts that there are only two ways
C/K a curve of genus at least 2 defined over a number field can have infinitely
many quadratic points: either
i) there exists a degree 2 ϕ/K : C → P 1 or
ii) there exists a degree 2 ϕ/K : C → E, where E/K is an elliptic curve of
positive Mordell-Weil rank.
In particular, such curves must be K-rationally hyperelliptic or bielliptic. The
hyperelliptic Shimura curves XD were computed by [Michon]; Rotger deter-
mines the bielliptic ones (using methods very close in spirit to those of this
thesis, namely a combination of CM points and Cerednik-Drinfeld uniformiza-
tion). Notice on the other hand that it is very easy to see that the set of D for
which XD is either Q-hyperelliptic or Q-bielliptic can be effectively bounded:
one uses the fact that modulo an auxiliary prime of good reduction l, the super-
singular locus provides a large enough supply of quadratic points to establish
the following

Proposition 116 Fix a positive integer d and a non-negative integer g. Then
the set Dd,g of QM discriminants D such that the Shimura curve XD admits a
finite Q-morphism of degree d to a curve of genus g is finite and can be effectively
bounded.

Next we need to recall the theorem on largeness of Galois representations. Let
A/K be a QM surface defined over a number field. Then the action of Galois
commutes with the quaternionic action, so if ρl : GK → Aut(Vl(A)) is the asso-
ciated `-adic Galois representation, necessarily its image ρl(GK) is contained in
the group of units of the commuting algebra of BD⊗Ql in Aut(Vl(A)) – i.e., the
unit group of (BD ⊗Ql)

opp. If we restrict attention to l not dividing D, then as
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we well know by now, BD ⊗Ql
∼= M2(Ql), so the Galois representation lands in

a group isomorphic to GL2(Ql), and in the compact subgroup GL2(Zl). When
l divides D, we ρl(GK) lands inside a group isomorphic to the unit group O×

H

of the unique maximal order of the quaternion algebra BD ⊗ Ql.

We can formally consolidate these two cases as follows: let B/Z := (O×
D)opp

viewed as a constant group scheme. Then compiling the various `-adic Galois
representations gives a homomorphism

ρẐ : GK → B(Ẑ),

the adelic Galois representation.

Theorem 117 ([Ohta])
The image of the adelic Galois representation is open in B(Ẑ).

In particular, for every sufficiently large prime l prime to D, the image of GK in
the automorphism group of A[l] is isomorphic to GL2(Z/lZ). Note that, as in
the classical case, the existence of a K-rational Γ0(l)-structure on A/K implies
that the image of GK is contained in a Borel subgroup of GL2(Z/lZ), so that
we conclude:

Corollary 118 Let A/K be a QM surface defined over a number field, and let
P be the corresponding K-rational point of XD. Let πl : XD

0 (l) → XD be the
canonical map. Then, for all sufficiently large l, all the GK orbits on π∗

l (P ) are
nontrivial.

Corollary 119 When the genus of XD+ is at least 2, then for any number field
K there is an absolute bound on primes l such that XD+

0 (l)(K) 6= ∅.

Proof: By Faltings’ theorem, XD+(K) will be a finite set of points {P1, . . . , Pn}.
One can choose a (possibly much larger) number field L such that L is a field
of definition for each of the Pi’s; apply the previous corollary with L in place of
K.

Remark: This explains why our Main Theorem 4 is only new when the genus
of XD+ is 0 or 1.

Proof of the theorem: suppose that the genus of XD+ is at least 2, and con-
sider the curve XD

0 (l). Since XD has only finitely many quadratic points, it
follows from Ohta’s theorem that for sufficiently large l XD

0 (l) has no quadratic
points. We will show that for our fixed D and all sufficiently large l there exist
infinitely many imaginary quadratic fields K such that XD

0 (l)/K violates the
Hasse principle; it suffices to choose K such that the curve has points over every
completion of K.

Since K is imaginary quadratic, XD
0 (l) certainly has points over the Archimedean

place. Let v be a place of K dividing D. If v is inert in K, then Kv/Qp is an
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unramified quadratic extension, so that XD
0 (l)/Kv is an (untwisted) Mumford

curve – in particular the Frobenius action on the components of the special fi-
bre is trivial, so each component is isomorphic to P1/Fp2 . Referring now to the
dual graph, the degree of the corresponding vertex is a priori less than or equal
to p + 1, certainly there exists a point on P1/Fp2 which is not an intersection
point, and by Hensel’s Lemma this implies that XD

0 (l)(Kv) is nonempty. Con-
sider now XD

0 (l)/Ql; in Section 4.2 we saw precisely that for fixed D XD
0 (l)(Ql)

is nonempty for all sufficiently large l; a fortiori by assuming that l >> 0 we get
XD

0 (l)(Kv) 6= for all v dividing l. Finally, consider a place v of K which does not
divide Dl, so that XD

0 (l)/Kv has good reduction. But now notice that if Kv/Qp

is a proper (quadratic) extension, then XD
0 (l)(Kv) is non-empty, because the

entire special fibre is smooth and the supersingular points are always defined
over Fp2 . On the other hand, by the Riemann hypothesis for curves over finite
fields, certainly XD

0 (l)(Qp) is nonempty for all sufficiently large primes p not
dividing DL. Therefore, if we take l sufficiently large to ensure i) the nonexis-
tence of quadratic points on XD

0 (l) and ii) the existence of Ql-rational points
on XD

0 (l) and take K to be any of the (infinitely many) imaginary quadratic
fields which are inert at the primes dividing D and at the finitely many good
primes p such that XD

0 (l)(Qp) is empty, then XD
0 (l)/K has points everywhere

locally but not globally, which was to be shown.

4.6 Bounds on cyclic torsion for PQM surfaces

So far in this chapter we have considered quaternionic Γ0(N)-structures (A, QN ),
so that QN ≤ A[N ] is a subgroup which is cyclic as OD-module and isomorphic
as abelian group to C1 ⊕C2 = Z/NZ ⊕Z/NZ. Over a field of definition for the
QM, this data is equivalent to the data of a direct summand C1 = e1QN . As we
observed in Corollary 87, assuming that (A, QN ) is defined over a real number
field K, the canonical field generates a proper quadratic extension M = LK/K
and the Atkin-Lehner wD acts as on A[N ] as the nontrivial element of GM/K –
in particular, it interchanges C1 and C2. In this section we exploit the restric-
tions this fact places on the possible rationally defined order N cyclic subgroups
C ≤K A[N ].

Proposition 120 Let A/Q be an OD-PQM abelian surface of plus type, and
let N be prime and prime to D, and let K be the canonical field (cf. Chapter
2). Suppose that there exists an order N (cyclic) subgroup C ≤Q A[N ]. Then
the Galois group GK acts on A[N ] by scalar matrices.

Proof: Let C ≤Q A[N ] be as in the statement of the theorem. We work now
with the basechange of (A, C) to the canonical field K, over which the QM
is defined. Let M be the OD-submodule generated by C. The upshot of the
discussion preceding the statement of the theorem is that M cannot have rank
2 as a Z/NZ-module. We claim that, as a matter of elementary algebra, M
is therefore forced to have rank 4, namely M = A[N ]. Assuming this for the
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moment, the result follows immediately: if C′ ≤ A[N ] is any other cyclic sub-
group, then there exists α ∈ OD such that C′ = αC. Since GK stabilizes C and
OD commutes with GK , it follows that GK stabilizes every cyclic subgroup of
A[N ].

Proof of the claim: The action of OD on A[N ] can be viewed as an action
of OD ⊗ FN

∼= M2(FN ) on a four-dimensional FN -vector space V = A[N ].
Therefore any M2(FN )-submodule W ≤ V decomposes into isomorphic sub-
spaces W = W1 ⊕W2 = e1W ⊕ (1− e1)W . So any nonzero M2(FN )-submodule
has even FN -dimension, qed.

Remark: This proposition – simple as it is – serves to reinforce that the quater-
nionic Γ0(N)-structure QN is the interesting object in our situation. On the
other hand, it is natural to be interested in the structure of the rational tor-
sion subgroup of a PQM abelian surface A/Q. Since the existence of a rational
point P of order N on A implies the existence of a rational cyclic structure
〈P 〉, one expects that the structure of the rational torsion prime to D on a QM
surface should be very restricted. This leads us to the considerations of the final
chapter.
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Chapter 5

Strong bounds on rational
torsion for certain abelian
varieties

5.1 Strong boundendess of rational torsion over

local fields (Main Theorem 6)

Let K be a field. We say that torsion is strongly bounded for abelian vari-
eties of dimension d over K if for all finite field extensions L/K and all d-
dimensional abelian varieties A/L, there exists an N = N(d, [L : K]) such that
#A(L)[tors] ≤ N . It would be equivalent to require the order of any individual
torsion point on A(L) to be bounded dependent only on d and [L : K]. (We
would say that torsion is (merely) bounded if the N above were allowed to de-
pend on L itself and not just its degree over K.)

For example, torsion is strongly bounded in every dimension d for abelian va-
rieties over a finite field K = Fq, since if L/K is a field extension of degree n
then the Weil conjectures imply #A(Fqn) ≤ (1 + qn/2)2d.

A celebrated theorem of [Merel] asserts that torsion is strongly bounded when
d = 1 and K = Q. It is natural to conjecture that torsion is strongly bounded
for abelian varieties A/Q in every dimension d, but this seems much beyond
present reach.

The torsion is not bounded for elliptic curves over Qp: the point p has ex-
act order n on the Tate curve Epn = Gm/〈pn〉. However there is a subclass
of abelian varieties over a non-Archimedean local field – containing the quater-
nionic surfaces – for which the torsion is strongly bounded. The goal of this
section is to prove the following Let K be a non-Archimedean local field with
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residue cardinality q and absolute ramification index e. Assume that p > e− 1.
Then the torsion is strongly (and effectively) bounded for d-dimensional abelian
varieties A/K with potentially good reduction.
Proof of the theorem: we treat separately the cases of a point of order prime
to p and of p-power order. For the former we can easily reduce to the above
remark about finite fields:

Proposition 121 Let A/K be a d-dimensional abelian variety with potentially
good reduction over a non-Archimedean local field K of residue characteristic
q. Then the order of the prime-to-q-torsion subgroup of A(K) is bounded by
(1 +

√
q)2d).

Proof: According to [Serre-Tate], we can find a finite totally ramified extension
L/K such that A/L has good reduction. We recall the argument: letting Γ :=
GKunr , we have the familiar short exact sequence

1 → Γ → GK → Ẑ → 1,

and since Ẑ is projective, the sequence splits, allowing us to (noncanonically)

choose a subgroup Z of GK complementary to Γ. Letting M := K
Z
, we get that

M/K is a totally ramified extension, and using the fact that formation of the
Néron model commutes with étale base change, it must be that A/M has good
reduction; by definition of potentially good reduction, some finite subextension
L of M will do. But now the prime-to-q torsion of A(K) is contained in the
prime-to-q torsion of A(L), which is isomorphic to the prime-to-q torsion of the
good reduction A(Fq). As mentioned above, the Weil bound on the order of
A(k) is (1 +

√
q)2d.

Next we must bound the p-power torsion. Recall the low ramification hypothe-
sis: p > e−1. It follows that if P ∈ A(K)[tors] is a point of order N = pk, then
the scheme-theoretic closure of 〈P 〉 in the Néron model A/OK is still the con-
stant group scheme Z/NZ, and we get an N -torsion point in the Néron special
fibre. Switching notation slightly, we have the exact sequence

1 → A0 → A → Φ → 1

where A0 is the connected component, an extension of an α-dimensional abelian
variety by a β-dimensional connected linear group (α + 2β = d) and Φ/Fq is
the component group. For a finite commutative group G, write ep(G) for the
largest integer i such that there exists an element of order pi in G. We have

k = logp N ≤ ep(#A0(Fq)) + ep(#Φ(Fq)).

Recall that U/Fq is a commutative unipotent groupscheme of dimension at most
d, U(Fq) is a pd-torsion group (this follows from the fact that all such U are
products of Witt vector schemes). On the other hand, the full order of an
at most d-dimensional abelian variety over Fq is explicitly bounded as in the
proposition, we only have to worry about the exponent of the Néron component
group. So we are finished by the following
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Theorem 122 ([McCallum]) Let A be an abelian variety over a non-Archimedean
local field K with potentially good reduction. Let ε be the exponent of Φ(k),
and let λ be the additive dimension of A0. Factor n = pe1

1 pe2

2 . . . per
r , and let

L(n) = p2 − 1 if n = 2p2, p2 odd and L(n) =
∑r

i=1 pei−1(pi − 1) otherwise.
Write ε = paε′, with (ε′, p) = 1. Then max{L(ε′), L(pa)} ≤ 2λ.

Remark: We conjecture that if K is any non-Archimedean local field then for
every d torsion is strongly bounded among abelian varieties A/K of toric rank
zero. As the proof of the theorem makes clear, in the low ramification case, all
that needs to be shown is the uniform boundedness of the p-part of the exponent
of the component group.

5.2 Bounds on rational torsion for abelian vari-
eties with everywhere potentially good re-

duction over number fields

Let A/K be an abelian variety over a number field K with everywhere poten-
tially good reduction. By the main theorem of the previous section, for any
finite place v of K such that p(v) − 1 > e(v), A(Kv)[tors] can be uniformly
bounded – so of course the torsion is uniformly bounded over K! In this section
we roll up our sleeves and actually exhibit a relatively short list containing all
the possible orders of the groups of rational torsion for an abelian surface A/Q
with everywhere potentially good reduction. Let us be clear that from a theoret-
ical perspective there is nothing new here – indeed, one can find in the literature
the (easy) proof that torsion is strongly bounded among abelian varieties over
number fields with everywhere good reduction. However, the published bounds
are vertiginously large; in contrast the bounds that we obtain are small enough
so that one is actually tempted to find examples to show that the list is complete.

The first and quickest thing to say is that one can simply apply Proposition
112 to two different completions (that is, we can bypass the nontrivial part of
the theorem of the previous section); we get

Corollary 123 (Explicit strong boundedness over number fields) Let A/K be a
d-dimensional abelian variety over a degree n = [K : Q] number field. Assume
that A has potentially good reduction at places v2,v3 of K over 2 and 3. Then

#A(K)[tors] ≤ [(1 + 2n/2)2d][(1 + 3n/2)2d].

Remarks: Assume K = Q. When d = 1 the bound obtained on the rational
torsion is 35 and when d = 2 we get a bound of 1815.

But we have lost a lot of information by multiplying the prime-to-2 torsion
by the prime-to-3-torsion. To overcome this, we first record that #A(F2) ≤ 33
and #A(F3) ≤ 55. The first inequality already tells us that the largest possible
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prime dividing the order of the rational torsion group is 31; working prime-by-
prime, the largest possible prime-powers dividing the torsion subgroup could
be:

25, 33, 52, 7, 11, 13, 19, 23, 29, 31,

and we can already assemble a relatively small list of possible orders: they will
be of the form 2a · y, where 0 ≤ a ≤ 5 and y lies in the set

Sodd = {1, 3, 5, 7, 32, 11, 13, 3 · 5, 17, 19, 3 · 7, 23, 52, 33, 29, 31, 3 · 11}.

But there is a further improvement to make: once d > 1, the Weil bound is
not the last word on the possible orders of the Mordell-Weil groups of abelian
varieties over Fp. Rather we can use Honda-Tate theory to give complete lists
of #A(Fp) for various small p. Indeed one can explicitly parameterize the Fp-
rational isogeny classes of abelian surfaces by the Galois conjugacy classes of
Frobenius roots, and the lattter by means of Weil numbers (for all this see the
Appendix). Notice also that if A1 ∼Fp

A2, then #A1(Fp) = #A2(Fp) – indeed
the number of rational points of an abelian variety over a finite field is computed
as the determinant of F −1 acting on any `-adic Tate module (choose an l prime
to the degree of the isogeny). So a little honest toil yields the following useful
information:

#A(F2) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 25}.

#A(F3) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25

28, 29, 30, 34, 35, 36, 42, 49}.
#A(F5) ∈ {4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28

29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 58, 59,

60, 61, 62, 63, 64, 70, 71, 72, 79, 80, 81, 90, 100}.
A couple of comments: Up to Fp-rational isogeny there are three essentially
different kinds of abelian surfaces over Fp. The first is a product of two el-
liptic curves; since it is known (Hasse-Deuring-Waterhouse) that for elliptic
curves E/Fp, any order in between p + 1 − 2

√
p and p + 1 + 2

√
p can be at-

tained as #E(Fp), it is easy to write down such orders. There is one Fp-simple
abelian surface with a real quadratic Weil number – namely

√
p – which has

(1 −√
p)2(1 +

√
p)2 = (p − 1)2 points on it and the weird (unstable) endomor-

phism algebra B∞1,∞2
/Q(

√
p) (Case 2 in our classification of Weil numbers).

The remaining abelian surfaces are Fp-simple and their rational endomorphism
algebra, a quartic CM field, is generated by Frobenius. These quartic Weil num-
bers are computed via their associated real quadratic β = π + p/π.

Taking into account these three lists, we can reduce the possible orders to

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 30, 36}
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This is a pretty short list! Notice that since one knows that there exist elliptic
curves E/Q with potentially good reduction (aka integral j-invariant) and tor-
sion of orders 1 through 6, it follows that we can produce Q-split examples of
many of the elements of the list. The orders which do not arise in this way are

Snonsplit ⊂ {7, 11, 13, 14, 19, 22}

We have checked that all of these orders do indeed arise over all finite fields of
cardinality < 100 – in short, none of our methods can rule out their existence,
and we may as well be optimistic and conjecture that they do arise.

A last-minute remark: I spoke recently (the end of April, 2003) on this ma-
terial in the number theory seminar at Harvard. When I put up the above
list, Barry Mazur and Noam Elkies each immediately observed that J1(13)/Q
is an abelian surface with everywhere potentially good reduction (as follows by
combining the theorem of [Katz-Mazur] that J1(p)/J0(p) has potentially good
reduction at p with the fact that X0(13) has genus zero) and a rational torsion
point of order 19. Indeed J1(13) is an example of a potentially quaternionic
surface with D = 1 – i.e., its geometric endomorphism algebra is M2(Q) and
the splitting takes place over the (real) degree six extension Q(ζ13 + ζ−1

13 ). It
would be interesting to look for similar examples.

5.3 Bounds on the order of a torsion point on a

PQM surface

If A/Q is a PQM surface, it has everywhere potentially good reduction, so the
results of the previous section apply to give bounds on the possible order of the
rational torsion subgroup. Of course, since we have acquired a thesis worth of
information about PQM surfaces we should expect to be able to say more in
this case! Indeed we have the following

Proposition 124 Let A/Q be an OD-PQM surface (not necessarily of plus
type). Then the possible orders for A[Q][tors] lie in the following set:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 24, 25, 36}.

Proof: To be sure, what remains to be done after the work of the previous sec-
tion is to show that the orders 11, 13, 15, 19, 22, 30 cannot arise. Now, we know
that the QM becomes defined over at worst a (2, 2)-extension. But the only
(2, . . . , 2)-extension of a finite field is a 2-extension, so whether A/Q is of plus
type or not, the QM still becomes defined over at worst Fp2 . By Honda-Tate
theory (see Appendix) we know there exists an elliptic curve E/Fp2 such that
A ∼F

p2
E2. As in the previous section it follows that #A(Fp2 ) = #E(Fp2)2. It

follows that if N is a squarefree odd number dividing the order of the rational
torsion, then N less than or equal to the maximum possible order of an elliptic
curve over F22 , namely 9. This allows us to eliminate everything in our list.
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If we ask instead about the possible orders of a given torsion point and restrict
to N prime to the quaternionic discriminant D (so that there is a connection
with XD

1 (N)) we can further reduce the list, as follows:

Proposition 125 Let A/Q be an OD-PQM abelian surface of plus type. Then:
a) If 2 does not divide D there is no 8-torsion point in A(Q).
b) If 3 does not divide D there is no 9-torsion point in A(Q).
c) If 5 does not divide D there is no 5-torsion point in A(Q).
d) If 7 does not divide D there is no 11-torsion point in A(Q).

Proof: Let N be prime to the quaternionic discriminant D. Let P ∈ A[N ](Q)
be a Q-rational point of order N on our plus-type PQM surface A/Q. Let
CN := 〈P 〉 be the corresponding cyclic group. By Proposition 120, there exists
an imaginary quadratic field K such that GK acts on A[N ] by scalar matri-
ces; but GK acts trivially on P , and it follows that GK acts trivially on A[N ].
Assume N = pr is a prime-power; we know that the determinant of the repre-
sentation of GK on A[N ] is the square of the mod N cyclotomic character, so
that N is such that χ2

N |GK = 1. The field cut out by χ2
N is Q[ζN + ζ−1

N ] which
is totally real; hence, if were a proper extension of Q it would be disjoint from
K. Therefore the putative trivialization can occur only when N = 1, 2, 3, 4 or
6.

On the other hand, if p divides D then A/Fp necessarily has supersingular
reduction, and we get a smaller list of Mordell-Weil groups to check. One does
not get quite as much mileage out of this as one might suppose, but we get the
following additional

Proposition 126 Let A/Q be an OD-PQM abelian surface of plus type. If 3
divides D then there is no rational torsion point of order 7. If 5 divides D there
is no rational torsion point of order 14.

Proof: If 3 divides the QM discriminant, A/F3 is necessarily supersingular.
The possible Mordell-Weil groups for a supersingular elliptic curve E/F9 are
Z/4, Z/10, Z/13 and Z/4 ⊕ Z/4. Thus we can cross off 7 and 14 from the
list. If 5 divides the QM discriminant, A/F5 is necessarily supersingular, and
the possible Mordell-Weil groups for a supersingular elliptic curve E/F25 are
Z/6 ⊕ Z/6, Z/31, Z/21, Z/4 ⊕ Z/4 and Z/31. Thus we can cross 14 from the
list.

5.4 Applications to XD
1 (N), XD+

1 (N)

Proposition 127 Let K/Qp be a p-adic field with residue field Fq and absolute
ramification index e, and assume that p > e − 1. Then for sufficiently large N
(depending only on q) we have XD

1 (N)(K) is empty. If we restrict to N prime
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to p the same statement is true without restriction on the absolute ramification
index.

Proof: If N ≥ 4, XD
1 (N)/K is a fine moduli space for QM abelian surfaces

together with a K-rational (QM) point of order N . Thus the result follows
immediately from Main Theorem 6.

Remark: Of course the same result holds for XD+
1 (N) (for N prime to the

residue characteristic) since a K-rational point on XD+
1 (N) comes from an L-

rational point on XD
1 (N) for some quadratic extension L/K.

To summarize, the Shimura curves XD
1 (N) give a family of curves as remarkably

resistant to having rational points (even!) over local fields as any family I have
ever seen. In the remainder of this section we show that the family XD

1 (N)/Fq

where N is prime and (q, DN) = 1 is “within a factor of 4 of being optimally
pointless,” in a certain sense that we are about to make precise:

Let C/K be a (smooth irreducible projective) genus g curve over a field K.
Define its pseudoindex s(C/K) to be the least degree of a field extension L/K
over which C acquires an L-rational point. This quantity is to be compared to
the period p(C/K) and the index i(C/K) which are respectively the minimal
positive degree of a K-rational divisor class and of a K-rational divisor (in these
latter two cases, it would be equivalent to take the gcd instead of the minimum).
Notice that we could recast the definition of the pseudoindex in terms of the
least positive degree of an effective K-rational divisor on C, which hopefully
explains the “pseudo” (a neologism due to the author). One has

p(C/K) | i(C/K) ≤ s(C/K) ≤ 2g − 2,

where the last inequality – only valid for g ≥ 2 – comes by applying Riemann-
Roch to the canonical class. The period/index/pseudoindex problem is to un-
derstand how these quantities relate to each other in terms of the field K. When
g = 1 the index and the pseudoindex coincide and this is nothing else than the
period-index problem in the Weil-Chatelet H1(K, E) of an elliptic curve E/K.
When g > 1 it is still far from understood (e.g., one does not know a neces-
sary and sufficient condition for a hyperelliptic curve over Qp to have index
1!) and the relationship between the index and the pseudoindex seems almost
completely unexplored. The problem is still of some interest in the case of finite
fields; we have the following

Proposition 128 Let C/Fq be a curve of genus g over a finite field. Then
i(C) = 1 and s(C) − 1 ≤ 2 logq(g) + logq(4).

Proof: By the Weil conjectures, any variety V/Fq will have points over Fqd

for all sufficiently large d. In particular if d is large enough it has points over
Fqd and Fqd+1 , hence it has Fq-rational divisors D1, D2 of degrees d and d + 1.
Since (d, d + 1) = 1 there exist integers m, n (not both positive!) such that
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D = mD1 + nD2 is an Fq-rational divisor of degree 1, showing i(V/Fq) = 1.
Let d = s(C)− 1, so that C/Fqd is a genus g curve without any rational points.

By the Weil bound we have qd ≤ 2gqd/2 or d ≤ logq(4g2).

Proposition 129 Let q be a prime power and N a prime number prime to qD.
Then the (smooth) Shimura curve XD

1 (N)/Fq has pseudoindex 1/2 logq(g) −
O(1).

Proof: The genus of XD
1 (N) is O(N2), and taking N ≥ 4 to get a fine mod-

uli space, we know that XD
1 (N)(Fqn) 6= ∅ implies the existence of an order

N2 subgroup in the Mordell-Weil group of an abelian surface A/Fqn , so that
N2 ≤ (1 + qn/2)4 or logq(N) ≤ n + O(1). Since there exists a constant C′ such
that N ≥ C′√g, we get n ≥ logq(g) − O(1) as claimed.

Remark: Improvements of this proposition are discussed in [Clark-Elkies].
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Appendix: Explicit
Honda-Tate theory for
abelian surfaces

This appendix was written two years before the rest of the thesis1 – that is, much
earlier in the author’s graduate career. We give a quite down-to-earth treat-
ment of the Honda-Tate theory of the “isogeny category” of abelian varieties
over finite fields with an eye towards ready computability of the endomorphism
algebra of a principally polarized abelian surface arising as the Jacobian of a
hyperelliptic curve. Assuming that one has the Hasse-Weil zeta function (which
we compute in a completely naive way, i.e., by directly counting Fq- and F 2

q -
rational points), the Honda-Tate theory immediately gives us the Fq-rational
endomorphism algebra. But it is at least as desirable to have the geometric
endomorphism algebra, i.e., End0

Fq
(A) (actually, it is nice to have both; com-

puting these algebras for various mod p reductions of an abelian surface A/Q
is a reasonably good technique for getting at the endomorphim algebra of A it-
self, the computation of which is an open problem; see [Poonen]). For this, it is
enough to compute the Fqn -rational endomorphism algebra for some sufficiently
large n; the main point of the appendix is to give a reasonable “universal” value
of n. An explicit, nearly optimal value of n was found by David Savitt at the
author’s request circa spring 2000. I thank him again lo these many years later.

Weil numbers

Let q = pa, p a prime number. A Weil q-number is an algebraic integer π such
that for every Archimedean place | | of Q(π), |π| =

√
q. Let A be an abelian

variety defined over the finite field k = Fq. It is known [Milne] that the roots
of PA(T ), the characteristic polynomial of Frobenius /Fq, are Weil q-numbers.
Let Ek be the algebra of endomorphisms of A which are defined over k ; write
A ∼k B if A and B are isogenous over k. Honda-Tate theory consists of the
following assertions (and their proofs!):

1We ignore the paradoxical issues arising from this clause!
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a) A ∼k B if and only if PA(T ) = PB(T ); in particular, A ∼k B1 × B2 if
and only if PA(T ) = PB1

(T )PB2
(T ).

b) Assume A is k-simple, i.e., A is not k-isogenous to a nontrivial product. Then
(easily) Ek is a division algebra and the minimum polynomial of Frobenius /k
is irreducible, so PA(T ) is a power of an irreducible polynomial. Thus any two
roots of PA(T ) are Galois conjugates. Let π be any root. Then A 7→ π gives an
equivalence of categories, from the category of k-simple abelian varieties up to
k-isogeny to the category of Weil q-numbers up to Galois conjugacy.
c) The center of Ek is Q(π). Writing f = [Q(π) : Q], e2 = [Ek : Q(π)], we have
that PA(T ) = P1(T )e, where P1(T ) is an irreducible polynomial. Moreover, the
local invariants of the Q(π)-central division algebra Ek are given as follows:
i∞ = 1/2 at every real Archimedean place (if any) of Q(π)
iP = 0 for every prime ideal P of Q(π) not lying over p
For P/p, iP = fPordPπ

a , where fP is the inertial degree at P and ordP is the
normalized valuation at P . Finally, 2 dimA = ef.

In this section we carry out a classification of Weil numbers as far as we need
to classify abelian surfaces defined over a finite field up to isogeny. In Section 2
we consider the question of stability of Weil numbers. In Section 3 we see how
the (very classical) theory of endormorphism algebras of elliptic curves over a
finite field follows easily from our analysis, and finally in Section 4 we classify
the endomorphism algebras that can occur for an abelian surface.

Stability of Weil numbers: For most applications one is interested in the Fp-
endomorphism algebra (sometimes called the “geometric” endomorphism al-
gebra for emphasis); the k-rational endomorphism algebra is a means to this
end. Certainly given any A/Fq, EndFp

A = EndFqn A for sufficiently large n.

Upon extending the base field Fq 7→ Fqn we take Frobenius to its nth power and
hence π 7→ πn and Q(π) 7→ Q(πn). Thus, knowing the k-rational endomorphism
algebra gives enough information to compute the geometric endomorphism al-
gebra. Upon extending the base, the following phenomena can occur: the rank
of Ek can increase (but not decrease, clearly), the rank of the center can de-
crease (but not increase, curiously), and A may become nonsimple. Let us write
E = EndFp

A. If Ek 6= E we call Ek unstable. We call the process of making

sure that k is sufficiently large to ensure equality stabilization. For computa-
tional purposes it is key to know explicitly a base extension large enough to
ensure stability. We take up this issue in Section 2.

Classification of Weil numbers: We begin with the following useful observa-
tion: since fPordPπ is integral, the central simple algebra Ek is unramified at
P if and only if a/fPordP . Thus we have equivalent conditions: Ek is commu-
tative if and only if e = 1 if and only if a/fPordP for all P and Q(π) is totally
imaginary. In particular, when A is defined over Fp (i.e., a = 1), then when
Q(π) is totally imaginary, the Fp-rational endomorphism algebra of A is always
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commutative.

First, consider the case of a Weil q-number π such that Q(π) has a real em-
bedding. Then under Q(π) ↪→ R, π2 = |π|2 = q, i.e., π = +/ −√

q.
Case 1: Q(π) = Q. Then q = pa with a even. We have a unique real
Archimedean place ∞ at which i∞ = 1/2. On the other hand, since the sum of
the local invariants is 0 (modZ) and all the invariants away from p vanish, we
must have ip = 1/2. Then e, being the lcm of the denominators of all the local
invariants, is 2, so f = 1, so the unique k-simple abelian variety A associated
to π has dimension 1 and Ek = Bp,∞/Q, the quaternion algebra over Q rami-
fied at precisely p and ∞. That is, A is a supersingular elliptic curve with all
endormorphisms defined. Note well that we have just shown that this situation
does not occur over any odd-degree extension of Fp.
Case 2: Q(π) = Q(

√
p), so π =

√
q, q = pa with a odd. There are two real

Archimedean places ∞1,∞2 at which i∞1
= i∞2

= 1/2. As p ramifies in Q(π),

there is a unique prime P over p with iP = fPordPπ
a =

ordP

√
q

a = 1/2aordPp
a =

1 ≡ 0(Z). Therefore e = 2 and f = 2 so dimA = 2, i.e., the associated k-simple
A is an abelian surface with Ek

∼= B∞1,∞2
/Q(

√
p). But Ek is unstable: q 7→ q2

takes us back to Case 1; over the extended field, PA(T ) = (T − pa)2, so by
the Honda-Tate theory above, A is geometrically isogenous to the square of a
supersingular elliptic curve.

Thus it remains to consider Weil numbers π with Q(π) a totally imaginary field.
In this case, it turns out that Q(π) is a CM-field. Indeed, put β = π + q/π. Fix
any embedding Q(π) ↪→ C and write x for the complex conjugate of x. We then
have ππ = q, so β = π+π is totally real. Moreover the equation π2−βπ+q = 0
exhibits Q(π) as a quadratic extension of Q(β). (Conversely, if β is a totally
real algebraic integer with |β| ≤ 2

√
q in every embedding, then we can define

π by π2 − βπ + q = 0 and then π is a Weil q-number. This is often useful in
the construction of Weil numbers; see [Waterhouse].) In particular, unless π is
rational, Q(π) has even degree.

Let us try to classify Weil numbers π such that Q(π) is an imaginary quadratic
field and see what happens.

Case 1: p is inert in Q(π). There are no real Archimedean places. More-

over, ip =
fpordpπ

a =
2ordpπ

a . Now, since ππ = q, we have ordp(π) = ordp(π) =
ordp(π), so ordp(π) = 1/2ordp(q) = a/2. We conclude ip is integral, so e = 1 and
dimA = ef/2 = 1, so A is an elliptic curve with Ek = Q(π) = K an imaginary
quadratic field. However, we claim that π is unstable, so that the elliptic curve
A is supersingular. Indeed, ordp(π

2/q) = 0, and since ordl(π
2/q) = 0 for all l

not equal to p, π2/q is a unit in the ring of integers of the imaginary quadratic
field K, and hence a root of unity, which shows that some power of π is rational.

Case 2: p ramifies in Q(π). Let P be the unique prime over p; by an argu-
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ment as above we have ordP(π) = 1/2ordP(q) = 1/2aordP(p) = a, so iP is
integral and e = 1. A is again an elliptic curve with Ek = Q(π) an imaginary
quadratic field. Again π is unstable, by the same argument as above, and A is
supersingular.

Case 3: p splits in Q(π). Let p1,p2 be the two primes lying over p. In this case
fp

1
= fp

2
= 1 and ordp

1
(π) is not uniquely determined: if x = ordp

1
(π), ππ =

pa implies ordp
2
(π) + ordp

2
(π) = a. Using p1 = p2, ordp

2
(π) = ordp

1

(π) =

ordp
1
(π) = x, so ordp

2
(π) = a − x and this is consistent: ip

1
+ ip

2
is inte-

gral. Write D(x
a ) for the reduced denominator of x

a , we have e = 1
D( x

a
) . Then

dimA = e and Ek is the central simple algebra over the quadratic imaginary
field K = Q(π) which has index e ramified only at p with invariant x/a. Since
π2/q is a root of unity if and only if its valuations at the two primes p1 and p2

are equal, we see by the same considerations as in Cases 1 and 2 above that π
is stable if and only if x = ordp

1
(π) 6= a

2 . To get an idea of what can happen
in this case, assume for example that p1 and p2 are principal ideals, so that we
know there is an element π corresponding to any choice of x; then, as q → ∞
the Weil numbers considered here correspond to k-simple abelian varieties of
arbitrarily large dimension. We will call this the split case, and such a π a split
quadratic Weil number.

Stabilization of Weil numbers

The Stabilization Problem: Let π be a Weil q-number with [Q(π) : Q] = 2n.
Recall that π is stable if Q(πk) = Q(π) for all positive integers k, and that N is
a stabilizer of π if πN is a stable Weil qN -number. For computational prurposes
it is convenient, given n, to have an N that stabilizes every degree 2n Weil
number. This is always possible, as the following simple argument shows.

Proposition 130 There is a (readily computable) function N = N(n), not
depending on q, such that N(n) stabilizes every degree 2n Weil q-number.

Proof: We first consider the inherently easier case n = 1. If π is a quadratic
Weil number, it is unstable if and only if some power of π is rational if and
only if some power of π2/q is rational. But π2/q has absolute value 1, so π is
unstable if and only if π2/q = ζk, a kth root of unity. Visibly ζk is at most
quadratic, so k ∈ {1, 2, 3, 4, 6} and ζ6

k is rational, so π12 is rational. We can
thus take N(1) = 12.
Now assume n > 1. Let N be any positive integer. Then Q(πN ) is a proper
subfield of Q(π) if and only if πN has fewer than 2n distinct Galois conjugates.
Assuming this is so, since π certainly has 2n Galois conjugates and the Galois
conjugates of πN are the Nth powers of the Galois conjugates of π, there must
exist two distinct Galois conjugates π′ 6= π such that π′N = πN . Then π = ζkπ′,
where ζk is a kth root of unity for some k dividing N . Moreover ζk ∈ Q(π, π′).
Since n > 1 the latter field has degree 2nl ≤ 2n(2n − 2) = b(n), since l is an
even number less than 2n. Therefore k is such that φ(k) ≤ b(n). Let N0 be the
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least common multiple of all such k. Then πN = π′N implies πN0 = π′N0 , so
N0 is a stabilizer for π independent of q. ♦

Let us examine the bound given by Proposition 1. When n = 1, what we
have shown is equivalent to: if A/Fq is an elliptic curve with Frobenius root
π, A is (geometrically!) supersingular if and only if π4 or π6 is rational. Con-
versely, π = 1+i is a Weil 2-number which does not become rational until raised

to the fourth power, and π = 3+
√
−3

2 is a Weil 3-number becoming rational only
when raised to the sixth power. This shows that N(1) = 12 is sharp. (On the
other hand, if we allow N to depend on q we can get sharper bounds, e.g. it
will follow from the work of Section 3 that if q = p > 3 we can take N(1, p) = 2.
See [Waterhouse] for a comprehensive discussion of this and other fine points
concerning endomorphisms of elliptic curves.)
When n = 2, b(n) = 8, and the bound given by Proposition 1 is
lcm{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 30} = 5040, which is already a
bit far from the truth. In our own computations with Weil numbers of abelian
surfaces we have used the bound N(2) = 120, so we explain how this improve-
ment can be derived using an auxiliary result which is interesting in its own
right.
Let π be a 2n-dimensional Weil number for n > 1 and let L be the Galois
closure of Q(π) viewed as a subfield of C. Label the Galois conjugates of π as
(π1 = π), π2, . . . , π2n such that for 1 ≤ k ≤ n, π2k+2 = π2k+1 = q

π2k+1
. We

observe that a Galois automorphism σ ∈ G = Gal(L/Q) is uniquely specified
by its action on π1, π3, . . . , π2n−1 and indeed induces a permutation on the n
element set of C-conjugate pairs {{π1, π2}, . . . , {π2n−1, π2n}}. The set of all
such permutations of the Galois conjugates forms an order 2nn! subgroup D of
the full permutation group in which our Galois group G is constrained to lie,
so we deduce in particular that #G / 2nn!. We say that the Weil number π is
maximal if we have equality, i.e., G = D.

Proposition 131 Maximal Weil numbers are stable.

Proof: Let H := Gal(L/Q(π)), so H is the subgroup of D = Gal(L/Q) consist-
ing of elements which fix π1 (and hence also π2). If π is unstable, then for some
N , πN generates a proper subfield of Q(π) and thus gives rise to a subgroup J ,
H ⊂ J ⊆ D. We claim that J contains the permutation (12) (where we have
identified i with πi). Indeed, since J properly contains H , J has a permutation
σ : 1 → a, a > 1. If a = 2, then since H contains every element of D fixing
1 and 2, σ(12) ∈ J , so (12) ∈ J . If a > 2, then the two-cycle τ = (aa) ∈ H ,
and σ−1τσ is again an element of J taking 1 → 2. We conclude that J contains
〈(12), H〉. But L〈(12),H〉 is the totally real subfield Q(π1 +π2) of Q(π). Thus πN

is a totally real Weil number and π2N is rational. Arguing as in the first part of
the proof of Proposition 1, we have π ∈ Q(

√
q, ζ2N ), hence Q(π) is a subfield of

the cyclotomic field Q(ζ4pN ). Thus Q(π)/Q is itself a Galois extension, so the
degree of the Galois closure is 2n, not 2nn!. This contradiction implies that π
is stable. ♦
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Putting together Propositions 1 and 2, we can get a better uniformizer for quar-
tic Weil numbers π: with notation as in Proposition 1, consider the extension
Q(π, π′)/Q; it has degree 4 or 8. But if it has degree 8 = 222!, π is a maximal,
hence stable, Weil number. So if π is unstable we must have [Q(π, π′) : Q] = 4,
and as in the proof of Proposition 1, we can then take N to be the least common
multiple of all k such that φ(k) ≤ 4, which is lcm{1, 2, 3, 4, 5, 6, 8, 10, 12} = 120.
On the other hand, by taking Weil p2-numbers of the form pζk, with k = 3, 5, 8
we see that a stabilizer N for quartic Weil numbers must be at least 3.5.4 = 60,
so N = 120 is sharp to within a factor of 2.

Acknowledgement: The proof of Proposition 1 and the statement and proof
of Proposition 2 were generously supplied by David Savitt upon the request of
the author.

Applications to Elliptic Curves

The main goal of these notes is to apply the theory of the preceding sections to
study abelian surfaces. To do this it is indispensable to have the corresponding
theory for elliptic curves over finite fields, so we develop them here for com-
pleteness. Most of the results we obtain are very well-known and obtainable by
more direct methods; nevertheless it is instructive to see how easily they can be
derived from the Honda-Tate theory.
So let A/k be an elliptic curve. A is certainly simple, so Honda-Tate implies that
A is determined up to k-isogeny by its frobenius root π. In this case, the charac-
teristic polynomial of frobenius is PA(T ) = T 2−a1T +q. If N1 = #A(Fq), then
using the 2×2- matrix identity trace(φ) = 1+det(φ)−det(1−φ) and the equali-
ties det(φ) = deg(φ) = q, det(1−φ) = deg(1−φ) =#ker(1-φ) = #A(Fq) =: N1,
we get a1 = q + 1 − N1.
Using the classification of quadratic Weil numbers in Section 1 together with
the constraint ef = 2 dimA = 2, we conclude immediately that Ek is either
an imaginary quadratic field or the quaternion algebra Bp,∞/Q. In the latter
case A is certainly supersingular, but the former is inconclusive as π may be
unstable. Nevertheless, we have that A is supersingular if and only if its stable
endomorphism algebra has center Q, and we conclude that any two supersin-
gular elliptic curves become isogenous after a suitable base extension, so up to
geometric isogeny there is a unique supersingular elliptic curve in every charac-
teristic p. Next note that a1 is playing the role of the totally real β of Section
1. This yields the inequality |a1| ≤ 2

√
q, i.e., the Weil bound for the number of

points on an elliptic curve over Fq. Let us now consider an elliptic curve A/Fp

and assume p is not 2 or 3 (the “especially nasty” primes for elliptic curves). We
claim that in this case A is supersingular if and only if a1 = 0. The sufficiency
of a1 = 0 is obvious, so assume that A is supersingular. We have seen that nev-
ertheless the Fp-rational endomorphism algebra will be an imaginary quadratic
field K of discriminant 4ε(a2

1 − 4p), ε ∈ {0, 1}. We claim that p ramifies in K.
Indeed, we see from Section 1 that the inert case requires q to be an even power
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of p, whereas we have q = p. On the other hand, if p splits in K then it is
impossible for K to inject into the quaternion algebra Bp,∞ (tensor with Qp to
see a nontrivial product injecting into a division algebra). This establishes our
claim. So p, which is not 2, divides the discriminant 4ε(a2

1 − 4p) and hence also
a1. So if a1 6= 0, p ≤ |a1| ≤ 2

√
p forces p ≤ 4, contradiction.

Applications to abelian surfaces

Let A/k be an abelian surface. We use the preceding sections to classify A up
to isogeny and in particular to compute the possible endomorphism algebras.
Let P (T ) be the characteristic polynomial of Frobenius; it has degree 4. We
consider the various possibilities for its factorization.
Case 1: P (T ) is irreducible. Then any root π is a quartic Weil number, giving
f = 4 and e = 2 dim A

f = 1. In this case A is k-simple and Ek is a quartic CM
field.
Case 2: P (T ) = P1(T )P2(T ) distinct irreducible quadratics. Then their respec-
tive roots π1, π2 are quadratic Weil numbers corresponding to non-k-isogenous
elliptic curves A1 and A2, so Ek = K1 × K2 the product of two imaginary
quadratic fields. We note a technicality: K1 and K2 could be the same field,
but not stably so: by the Deuring Lifting Theorem, lift A1, A2 to CM elliptic
curves in characteristic zero. Then by the classical theory of CM, after a base
extension, the lifted curves will become rationally isogenous, and we can reduce
the isogeny to get an isogeny from A1 to A2 in characteristic p.
Case 3: P (T ) = P1(T )2, with P1(T ) an irreducible quadratic with real roots.
This is exactly Case 2 of the analysis of real Weil numbers from Section 1; we
conclude that A is k-simple with Ek = B∞1,∞2

/Q(
√

p). This case is inherently
unstable.
Case 4: P (T ) = P1(T )2 with P1(T ) an irreducivble quadratic with imaginary
roots. Let π be the associated Weil number and put K = Q(π) an imaginary
quadratic field. Then, either:
4a) π is a Weil number associated to an elliptic curve A1. As we have seen, this
occurs if and only if p is nonsplit in Q(π) or p is split and one of ip1, ip2 is zero
and the other is a. Then A ∼k A2

1, and Ek = M2(K) Or
4b) π is an exceptional quadratic Weil number associated to A, a k-simple
abelian surface, and Ek = Bp

1
,p

2
/K.

Case 5: P (T ) = P1(T )2P2(T ) with P1(T ) linear and P2(T ) irreducible quadratic.
Then A ∼k A1 ×A2 with A1, A2 elliptic curves, and Ek = Bp,∞/Q×K with K
an imaginary quadratic field.
Case 6: P (T ) = P1(T )4. Then A ∼k A2

1, A1 a necessarily supersingular elliptic
curve, and Ek = M2(Bp,∞).
Ruling out the unstable cases, we deduce the following result.

Theorem 132 Let A/k be an abelian surface. Then E = EndFp
(A) is one of

the following:
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a) L, a quartic CM field.
b) Bp

1
,p

2
/K, an 8-dimensional division algebra with center an imaginary quadratic

field.
c) K1 × K2 a product of distinct imaginary quadratic fields.
d) M2(K), K an imaginary quadratic field.
e) Bp,∞ × K, K an imaginary quadratic field.
f) M2(Bp,∞).
In the first two cases A is simple; otherwise it is isogenous to a product of two
elliptic curves.
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nions, Lecture Notes in Mathematics, 800, Springer,
1980.

[Waterhouse] W. Waterhouse, Abelian varieties over finite fields, Ann.
Sci. Ecole Norm. Sup. (4) 2 (1969), 521-560.

114


