
A FULL NULLSTELLENSATZ FOR FINITE ALGEBRAIC SETS

PETE L. CLARK

Abstract. Inspired by Alon’s Combinatorial Nullstellensatz, we give a full

Nullstellensatz for finite algebraic sets. Our approach is self-contained and
elementary: we do not assume familiarity with Nullstellensätze, nor indeed
with any commutative algebra beyond the Chinese Remainder Theorem.

1. Introduction

1.1. The Combinatorial Nullstellensatz and the Polynomial Method.

This note concerns the following celebrated result of N. Alon.

Theorem 1. (Alon’s Combinatorial Nullstellensatz) Let F be an integral domain,
let X1, . . . , Xn ⊂ F be nonempty and finite, and X =

∏n
i=1 Xi. For 1 ≤ i ≤ n, put

(1) φi(ti) =
∏

xi∈Xi

(ti − xi) ∈ F [ti] ⊂ F [t] = F [t1, . . . , tn].

Let f ∈ F [t] be a polynomial which vanishes on all the common zeros of φ1, . . . , φn:
that is, for all x ∈ Fn, if φ1(x) = . . . = φn(x) = 0, then f(x) = 0. Then:
a) There are polynomials h1, . . . , hn ∈ F [t] such that

(2) f(t) =

n∑
i=1

hi(t)φi(t).

b) Moreover the h1, . . . , hn may be chosen so as to satisfy

(3) ∀1 ≤ i ≤ n, deg hi ≤ deg f − degφi.

Using Theorem 1, Alon deduced the following result.

Corollary 2. (Alon’s Polynomial Method) Let F be an integral domain, n ∈ Z+,
a1, . . . , an ∈ N, and let f ∈ F [t] = F [t1, . . . , tn]. We suppose:
(i) deg f ≤ a1 + . . .+ an.
(ii) The coefficient of ta1

1 · · · tan
n in f is nonzero.

Then, for any subsets X1, . . . , Xn of F with #Xi = ai + 1 for 1 ≤ i ≤ n, there is
x = (x1, . . . , xn) ∈ X =

∏n
i=1 Xi such that f(x) ̸= 0.

Alon used Corollary 2 to derive various old and new results in number theory and
combinatorics, starting with Chevalley’s Theorem that a homogeneous polynomial
of degree d in at least d+1 variables over a finite field has a nontrivial zero. The use
of polynomial methods has burgeoned to a remarkable degree in recent years. We
recommend the recent survey [Ta13], which lucidly describes the main techniques
but also captures the sense of awe and excitement at the extent to which these very
simple ideas have cracked open the field of combinatorial number theory and whose
range of future applicability seems almost boundless.
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In [Al99], the term “Combinatorial Nullsetellensatz” is used for both Theorem
1 and Corollary 2. Most later references to the “Combinatorial Nullstellensatz”
mean Corollary 2. More recently attention has focused on the following result.

Theorem 3. ([Sc08, Thm. 3.2], [La10, Thm. 3], [KP12, Thm. 4]) Let F be
an integral domain, and let f ∈ F [t]. Let a1, . . . , an ∈ N be such that deg f ≤
a1 + . . . + an. For each 1 ≤ i ≤ n, let Xi ⊂ F with #Xi = ai + 1, and let
X =

∏n
i=1 Xi. Let ca = ca1,...,an be the coefficient of ta1

1 · · · tan
n in f . Then

(4) ca =
∑

x=(x1,...,xn)∈X

f(x)∏n
i=1

∏
yi∈Xi\{ci}(xi − yi)

.

Theorem 3 implies Corollary 2, and the above papers do a good job of showing that
it really is an improvement. For instance, from Theorem 3 we get:

Corollary 4. (Schauz [Sc08, Cor. 3.4]) Let F be a field, and let f ∈ F [t]. Let
X1, . . . , Xn be nonempty finite subsets of F such that

∑n
i=1(#Xi − 1) > deg f . Let

uX = #{x ∈ X | f(x) ̸= 0}. Then uX ̸= 1.

(So if P ∈ Fq[t1, . . . , tn] has degree d < n, apply Corollary 4 with X1 = . . . = Xn =
Fq and f(t) = 1 − P (t)q−1, and note that f(x) = 1 if P (x) = 0 and f(x) = 0
otherwise. Thus P cannot have precisely one zero, proving Chevalley’s Theorem!)

Thus the lack of interest in Theorem 1 per se seems likely to continue.

1.2. Alon’s Nullstellensatz versus Hilbert’s Nullstellensatz.

In particular the prospect of improving Theorem 1 as a Nullstellensatz has not
been explored, perhaps because the notion of a Nullstellensatz, though seminal in
algebra and geometry, is less familiar to researchers in combinatorics. But it was
certainly familiar to Alon, who began [Al99] by recalling the following result.

Theorem 5. (Hilbert’s Nullstellensatz) Let F be an algebraically closed field, let
g1, . . . , gm ∈ F [t], and let f ∈ F [t] be a polynomial which vanishes on all the
common zeros of g1, . . . , gm. Then there is k ∈ Z+ and h1, . . . , hm ∈ F [t] such that

fk =
m∑
i=1

higi.

Let us compare Theorems 1 and 5. They differ in the following points:
• In Alon’s Nullstellensatz, F can be any field (and in fact any integral domain,
but for our main result we need to work over a field). In Hilbert’s Nullstellensatz,
F must be algebraically closed. Really must: if f is not algebraically closed, then
there is a nonconstant polynomial g(t1) without roots in F ; taking m = 1, g1 = g
and f = 1 we see that the conclusion fails.
• In Alon’s Nullstellensatz, the conclusion is that f itself is a linear combination of
the φi’s with polynomial coefficients, but in Hilbert’s Nullstellensatz we must allow
taking a power of f . Really must: e.g. take k ∈ Z+ m = 1, g1 = tk1 and f = t1.
• Alon’s Nullstellensatz is effective: it gives upper bounds on deg hi. Hilbert’s
Nullstellensatz is not effective. It can be made so: effective versions of Hilbert’s
Nullstellensatz have been given by Brownawell [Br87], Kollár [Ko88] and others,
but their bounds are much more complicated than the ones in Theorem 1.
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• In Alon’s Nullstellensatz the φi’s are extremely restricted. On the other hand, in
Hilbert’s Nullstellensatz the gi’s can be any set of polynomials. Thus Theorem 5 is
a full Nullstellensatz, whereas Theorem 1 is a partial Nullstellensatz.

1.3. The Finitely Restricted Nullstellensatz.

Let F be any field. The main result of this note gives a full Nullstellensatz for
finite algebraic subsets which includes as a special case Theorem 1 for F without
the upper bounds on the degree. We supplement this with another, very simple,
result, which when combined with the main result recovers the degree conditions
of Theorem 1 (and holds over any integral domain F ).

Our main result is more general than Theorem 1 in a further sense: we consider
arbitrary finite subsets of Fn, not just the cylindrical subsets

∏n
i=1 Xi.

We now set up the formalism for a restricted variable Nullstellensatz. The
key observation: in Theorem 1, the φ1, . . . , φn are chosen to have common zero set
X =

∏n
i=1 Xi, so the condition on f ∈ F [t] that for all x ∈ Fn, φ1(x) = . . . =

φn(x) = 0 =⇒ f(x) = 0 is equivalent to: for all x ∈ X, φ1(x) = . . . = φn(x) =
0 =⇒ f(x) = 0. We will replace X by any finite subset of Fn and replace the
special polynomials φ1, . . . , φn by an arbitrary set of polynomials.

For a set Z, let 2Z be the set of all subsets of Z. For a subset J of a ring R,
let ⟨J⟩ denote the ideal of R generated by J , and let radJ = rad⟨J⟩ denote the set
of all f ∈ R such that fk ∈ ⟨J⟩ for some k ∈ Z+. An ideal J is radical if J = radJ .

Let F be a domain, F [t] = F [t1, . . . , tn], and let X ⊂ Fn. For x ∈ X, f ∈ F [t], put

I(x) = {f ∈ F [t] | f(x) = 0},

VX(f) = {x ∈ X | f(x) = 0}.
We extend I and VX to maps on power sets as follows:

I : 2X → 2F [t], A ⊂ X 7→ I(A) =
∩
a∈A

I(a) = {f ∈ F [t] | ∀a ∈ A, f(a) = 0},

VA : 2F [t] → 2X , J ⊂ F [t] 7→ VA(J) =
∩
f∈J

VA(f) = {x ∈ X | ∀f ∈ J, f(a) = 0}.

The maps I and VA are antitone:

A1 ⊂ A2 ⊂ X =⇒ I(A1) ⊃ I(A2),

J1 ⊂ J2 ⊂ F [t] =⇒ VA(J1) ⊃ VA(J2),

and thus their compositions are isotone:

A1 ⊂ A2 ⊂ X =⇒ VX(I(A1)) ⊂ VX(I(A2)),

J1 ⊂ J2 ⊂ F [t] =⇒ I(VX(J1)) ⊂ I(VX(J2)).

We have X = VX(0), so

∀J ⊂ F [t], I(VX(J)) ⊃ I(VX(0)) = I(X).

Lemma 6. For all ideals J1, . . . , Jm of F [t], we have VX(J1 · · ·Jm) =
∪m

i=1 VX(Ji).
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Proof. We do intend to allow m = 0, in which case the identity reads VX(⟨1⟩) = ∅,
which is true. Having established that, we immediately reduce to the case m = 2.
Since J1J2 ⊂ Ji for i = 1, 2, VX(J1J2) ⊃ VX(Ji) for i = 1, 2, thus VX(J1J2) ⊃
VX(J1) ∪ VX(J2). Now let x ∈ X \ (VX(J1) ∪ VX(J2)). For i = 1, 2 there is fi ∈ Ji
with fi(x) ̸= 0. Since F is a domain, f1(x)f2(x) ̸= 0, so x /∈ VX(J1J2). �

If A ⊂ X, then I(A) is an ideal of F [t], and in fact a radical ideal: if f ∈ F [t] and
fk ∈ I(A) for some k ∈ Z+, then for all a ∈ A we have f(x)k = 0, hence – since F
is a domain – f(x) = 0, and thus f ∈ I(A). It follows that

(5) ∀J ⊂ F [t], I(VX(J)) ⊃ rad(J + I(X)) ⊃ radJ + I(X) ⊃ J + I(X).

It is a well known fact (but see § 2.3 for a proof) that for any infinite field F , the only
polynomial which vanishes at every point of Fn is the zero polynomial: I(Fn) =
{0}. This serves to motivate the following restatement of Hilbert’s Nullstellensatz.1

Theorem 7. Let F be an algebraically closed field. For all J ⊂ F [t],

I(VFn(J)) = radJ.

Here is the main result of this note.

Theorem 8. (Finitely Restricted Nullstellensatz) Let F be a field, and let X ⊂ Fn

be a finite subset.
a) For all ideals J of F [t], we have

(6) I(VX(J)) = J + I(X).

In particular, if J ⊃ I(X) then I(VX(J)) = J .
b) Suppose that X =

∏n
i=1 Xi for finite nonempty subsets Xi of F . Define φi(ti) ∈

F [ti] as in (1) above. Then

(7) I(X) = ⟨φ1, . . . , φn⟩.

c) If X =
∏n

i=1 Xi, then

I(VJ(⟨φ1, . . . , φn⟩)) = ⟨φ1, . . . , φn⟩+ I(X) = I(X) + I(X) = I(X).

We will prove parts a) and b) of Theorem 8 in § 2. Theorem 8c) follows imme-
diately. Moreover, part c) is precisely the ineffective part of Alon’s Combinatorial
Nullstellensatz (Theorem 1a)) when F is a field.

We immediately deduce the following result of G. Terjanian [Te66].

Corollary 9. (Finite Field Nullstellensatz) Let Fq be a finite field. Then for all
ideals J of Fq[t] we have

I(VFn
q
(J)) = J + ⟨tq1 − t1, . . . , t

q
n − tn⟩.

Proof. Apply Theorem 8 with F = X1 = . . . = Xn = Fq. �

1The equivalence of the two formulations uses the Hilbert Basis Theorem.
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1.4. Supplement on Cylindrical Reduction.

Proposition 10. (Cylindrical Reduction) Let F be an integral domain. For 1 ≤
i ≤ n, let φi(ti) ∈ F [ti] be monic of degree di. Put Φ = ⟨φ1, . . . , φn⟩ and d =
(d1, . . . , dn). Say f ∈ F [t] is d-reduced if for all 1 ≤ i ≤ n, degti f < di. Then:
a) The set Rd of all d-reduced polynomials is a free F -module of rank d1 · · · dn.
b) For all f ∈ F [t], there are h1, . . . , hn ∈ F [t] such that deg hi ≤ deg f − degφi

and f = f −
∑n

i=1 hiφi is d-reduced.
c) The composite map

R : Rd ↪→ F [t] → F [t]/Φ

is an F -module isomorphism.
d) For all f ∈ F [t], there is a unique f ∈ Rd such that f − f ∈ ⟨φ1, . . . , φn⟩.
e) If f ∈ Φ, then f =

∑n
i=1 hiφi with deg hi ≤ deg f − degφi for all 1 ≤ i ≤ n.

Proof. a) Indeed {ta1
1 · · · tan

n | 0 ≤ ai < di} is a basis for Rd.
b) Our argument directly generalizes an explicit reduction procedure given by
Alon when the φi’s are given by (1). Nevertheless let us give the details.

For any domain T , if a(t1), b(t1) ∈ T [t1] with b(t1) monic, then the usual
long-division algorithm yields unique polynomials q(t1), r(t1) ∈ T [t1] with a(t1) =

q(t1)b(t1) + r(t1) and deg r < deg b. Or: we may write b(t1) = td1
1 − (βd1−1t

d1−1
1 +

. . .+ β0) and obtain r(t1) by repeatedly substituting βd1−1t
d1−1
1 + . . .+ β0 for td1

1

until we obtain a polynomial of degree smaller than d1 = deg b. The latter descrip-
tion makes it easy to see that if T is itself a polynomial ring in other indeterminates
t2, . . . , tn then r1 not only has smaller t1-degree than b(t1) but has total degree at
most that of a1.
Returning to our f ∈ F [t]: we divide f(t) by φ1(t1), then divide the remainder r1
by φ2(t2), and so forth, finally dividing by φn(tn) to get a remainder rn: thus

f =
n∑

i=1

hiφi + rn,

with hi ∈ F [t], and such that for all 1 ≤ i ≤ n, we have

deg hi = deg hiφi − degφi = deg(f − ri)− degφi ≤ deg f − degφi

and
degti rn < degφi = di.

Thus rn = f −
∑n

i=1 hiφi is d-reduced. c) By part b), R is surjective. Since

F [t]/Φ ∼= (F [t1, . . . , tn−1]/⟨φ1, . . . , φn−1⟩) [tn]/⟨φn⟩
∼= F [t1, . . . , tn−1]/⟨φ1, . . . , φn−1⟩ ⊗F F [tn]/⟨φn⟩ ∼= . . .

∼= F [t1]/⟨φ1⟩ ⊗F . . .⊗F F [tn]/⟨φn⟩ ∼= F d1 ⊗F · · · ⊗F F dn ∼= F d1···dn ,

F [t]/⟨φ1, . . . , φn⟩ is a free F -module of rank d1 · · · dn. Thus R is a surjective F -map
of free F -modules of equal, finite rank. Tensoring from F to its fraction field and
applying linear algebra, we see that R is injective and thus an isomorphism.
d) This follows immediately from part c).
e) By part b) there are h1, . . . , hn ∈ F [t] with deg hi ≤ deg fi−degφi for all i such
that f = f −

∑n
i=1 hiφi is d-reduced. Since f ∈ ⟨φ1, . . . , φn⟩, also 0 ∈ Rd is such

that f − 0 ∈ φ1, . . . , φn. Applying part d) we get f = 0 and f =
∑n

i=1 hiφi. �
When φ1, . . . , φn are defined by (1), by (7) we have ⟨φ1, . . . , φn⟩ = I(X); combining
with Proposition 10e), we get Alon’s Combinatorial Nullstellensatz (Theorem 1).
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2. Proof of the Finitely Restricted Nullstellensatz

2.1. The proof of Theorem 8a).

Let F be a field, and let X ⊂ Fn be finite. Let x = (x1, . . . , xn) ∈ X. Let
mx = ⟨t1 − x1, . . . , tn − xn⟩. Then F [t]/mx

∼= F , so mx is maximal. On the other
hand mx ⊂ I(x) ( F [t], so mx = I(x). Moreover VX(mx) = {x}, hence

I(VX(mx)) = I(x) = mx.

Now let A = {xi}ki=1 ⊂ X. Then

I(A) = I(
∪
i

{xi}) =
∩
i

I(xi) =
∩
i

mxi ,

so by the Chinese Remainder Theorem [?, Cor. 2.2],

F [t]/I(A) = F [t]/
∩
i

mxi
∼=

∏
i

F [t]/mxi
∼= F#X .

We denote by FA the set of all functions from A to F ; this is a commutative F -
algebra under pointwise addition and multiplication (and is indeed just the product
of copies of F indexed by X). The evaluation map

EA = F [t] → FA, f ∈ F [t] 7→ (x ∈ A 7→ f(x))

is a homomorphism of F -algebras. Moreover KerEA = I(A), so EA induces a map

ι : F [t]/I(A) ↪→ FA.

Thus ι is an injective F -linear map between F -modules of equal finite dimension,
hence – since F is a field! – ι is an isomorphism. For a ring R, let I(R) be a set of
ideals of R. Since ι is an isomorphism, we have

#I(F [t]/I(X)) = #I(FX) = 2#X .

By restricting VX to ideals containing I(X), we get maps

VX : I(F [t]/I(X)) → 2X ,

I : 2X → I(F [t]/I(X)).

For all A ⊂ X, we have

VX(I(A)) = VX(

k∏
i=1

mxi) =

k∪
i=1

VX(mxi) =

k∪
i=1

{xi} = A.

Since I(F [t]/I(X)) and 2X have the same finite cardinality, it follows that VXand
I are mutually inverse bijections! Thus for any ideal J of F [t], using (5) we get

J + I(X) ⊂ I(VX(J)) ⊂ I(VX(J + I(X))) = J + I(X).

2.2. The proof of Theorem 8b).

Let di = degφi and put Φ = ⟨φ1, . . . , φn⟩. Since φi|X ≡ 0 for all i, Φ ⊂ KerE, so
there is an induced surjective F -algebra homomorphism

ẼX : F [t]/Φ → F [t]/KerEX → FX .

Both F [t]/Φ and FX are F -vector spaces of dimension d1 · · · dn, so Ẽ is an isomor-
phism. It follows that F [t]/Φ → F [t]/KerE is injective, i.e., Φ = KerE = I(X).
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2.3. Supplement on Integral Domains.

Let F be a commutative ring which is not a field. Then the statement of Theorem
8a) is meaningful, but (except in the trivial case X = ∅) false: indeed, let x ∈ X.
Since F [t]/mx

∼= F , mx is not maximal, so let J be an ideal with mx ( J ( F [t].
Then there is f ∈ I such that f(x) ̸= 0, so

I(VX(J)) = I(∅) = F [t] ) J + I(X) = J.

However, Theorem 8b) holds over any integral domain F . Most of the argu-
ment goes through verbatim; the one issue is that we used the surjectivity of
EX : F [t] → FX , and our proof of this in § 2.1 used that an injective F -linear
mapping of F -vector spaces of equal finite dimension is an isomorphism. The anal-
ogous statement for free F -modules of finite rank is false over an integral domain
which is not a field: indeed, let a ∈ F be nonzero and not a unit, and consider the
mapping Fn → Fn given by x 7→ ax.

Nevertheless the evaluation map EX : F [t] → FX is surjective for any integral
domain F , and the method of proof already exists in the literature: we reduce to
the cylindrical case X =

∏n
i=1 Xi and then explicitly write the characteristic func-

tion of each one element subset {x} ⊂ X as a polynomial.

In fact the evaluation map EX : F [t] → FX can be defined for any subset X ⊂ Fn,
and it is natural to ask when it is injective and when it is surjective: indeed the
former question is related to Cylindrical Reduction and thus work of Chevalley and
Alon-Tarsi. The proofs for a general integral domain are a bit more technical, so
we have held them back...until now.

Lemma 11. Let F be an integral domain, and let X be an infinite set. Then FX

is not a countably generated F -module.

Proof. Step 1: For x ∈ R, let Ax = {y ∈ Q | y < x}, and let CQ = {Ax}x∈R.
Then CQ ⊂ 2Q is an uncountable linearly ordered family of nonempty subsets of Q.
Since X is infinite, there is an injection ι : Q ↪→ X; then C = {ι(Ax)}x∈R is an
uncountable linearly ordered family of nonempty subsets of X.

Step 2: For each A ∈ C, let 1A be the characteristic function of A. Then {1A}A∈C
is an F -linearly independent set: let A1, . . . , An ∈ C and α1, . . . , αn ∈ F be such
that α11A1 + . . . + αn1An ≡ 0. We may order the Ai’s such that A1 ⊂ . . . ⊂ An

and thus there is x ∈ An \
∪n−1

i=1 Ai. Evaluating at x gives αn = 0. In a similar
manner we find that αn−1 = . . . = α1 = 0.

Step 3: Let M =
⊕∞

i=1 F . If FX were countably generated as an F -module, there
would be a surjective homomorphism of F -modules Φ : M → FX . Under any ho-
momorphism of F -modules, the preimage of a linearly independent set is a linearly
independent set, so by Step 2, S = Φ−1({1A}A∈C) is an uncountable F -linearly
independent subset of M . Let K be the field of fractions of F . Then {s⊗1 | s ∈ S}
is an uncountable K-linearly independent subset of M⊗F K =

⊕∞
i=1 K, a K-vector

space of countably infinite dimension: contradiction. �
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Proposition 12. The following are equivalent:
(i) EX is surjective.
(ii) X is finite.

Proof. ¬ (ii) =⇒ ¬ (i): If EX : F [t] → FX were surjective, then FX would be a
countably generated F -module, contradicting Lemma 11.
(ii) =⇒ (i): For 1 ≤ i ≤ n, let πi : Fn → F by (x1, . . . , xn) 7→ xi, and let
Xi = πi(X). Since for X ⊂ Y ⊂ Fn the canonical restriction map FY → FX is
surjective, we may prove the result after replacing X by the larger finite subset
X̃ =

∏n
i=1 Xi. For α = (α1, . . . , αn) ∈ X̃, let

(8) δα(t) =

∏n
i=1

∏
xi∈Xi\{αi}(ti − xi)∏n

i=1

∏
xi∈Xi\{αi}(αi − xi)

.

Then, as a function on X̃, δα is the characteristic function of {α}: δα(α) = 1 and

δα(x) = 0 for all x ∈ X̃ \ {α}. Then {δα}α∈X̃ is a basis for F X̃ , so every element

of F X̃ arises by evaluating a polynomial. �

As advertised above, this implies:

Theorem 13. Theorem 8b) holds over any integral domain F .

Proof. Following the argument given in § 2.2, we get that ẼX is a surjective F -
linear map between free F -modules of equal finite rank. Tensoring to the fraction
field and applying linear algebra, we get that ẼX is an isomorphism. �

Proposition 14. The following are equivalent:
(i) EX is injective.
(ii) X is infinite and Zariski-dense in Fn: for all f ∈ F [t], if f(x) = 0 for all
x ∈ X, then f(x) = 0 for all x ∈ Fn.

Proof. b) ¬ (ii) =⇒ ¬ (i): Suppose X is finite. Then FX is a free F -module
of finite rank #X and F [t] is a free F -module of infinite rank, so E cannot be
injective. Next suppose that X is not Zariski dense in Fn, i.e., X ( Fn. Thus
there is y ∈ Fn \ X and f ∈ F [t] such that E(f)|X ≡ 0 and E(f)(y) ̸= 0, hence
0 ̸= f ∈ KerE.
(ii) =⇒ (i): Let f ∈ KerEX = I(X). Since X is Zariski-dense in Fn, f(x) = 0
for all x ∈ Fn. Since X is infinite, so is F , so we may choose Xi ⊂ F such that
degti f < #Xi. Put X =

∏n
i=1 Xi and define φ1(t1), . . . , φn(tn) as in (1). Then f

is (#X1, . . . ,#Xn)-reduced. By Theorem 8b), f ∈ ⟨φ1, . . . , φn⟩. Using Proposition
10d) we conclude f = 0. �

3. Final Remarks

3.1. The Chevalley-Alon-Tarsi Lemma.

Our proof of the Finitely Restricted Nullstellensatz is set up so as to maximally
exploit the following truly basic principle – for a map between two sets of equal
finite cardinality, injectivity, surjectivity and bijectivity are all equivalent – as well
as its analogue in linear algebra: for a linear map between two vector spaces of
equal finite dimension, injectivity, surjectivity and bijectivity are all equivalent.
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These principles guarantee the existence of multiple approaches to the Combi-
natorial Nullstellensatz and related topics. The traditional approach concentrates
on injectivity by first establishing the following simple result.

Lemma 15. (Chevalley-Alon-Tarsi) Let F be a domain, n ∈ Z+, and f(t) ∈ F [t] =
k[t1, . . . , tn]; for 1 ≤ i ≤ n, let di be the ti-degree of f , let Xi be a subset of F with
#Xi > di, and let X =

∏n
i=1 Xi. If f(x) = 0 for all x ∈ X, then f = 0.

However in our approach Lemma 15 comes out last, by combining Proposition 10
with Theorem 8b). We structure things this way because Lemma 15 is particular to
the cylindrical case X =

∏n
i=1 Xi and we want to deal with a general finite subset.

3.2. Multisets.

Among the deluge of recent work on the Combinatorial Nullstellensatz, the ones
which seem closest in spirit to the present note are [KMR11] and [KR12].

In [KMR11] it is shown that Corollary 2 and portions of Proposition 10 can be
appropriately generalized so as to work over any commutative ring F . We have
not pursued that direction here because it seems that we would be leaving behind
all connections with geometry: VA(J) need no longer be a radical ideal, the map
A ⊂ X 7→ VX(I(A)) need not be a Kuratowski closure operator (i.e., need not
induce a topology on X), and there seems little hope of attaining a Nullstellensatz.

More pertinently, [KMR11] and [KR12] also treat nonsquarefree polynomials

φi(ti) =
∏

xi∈Xi

(ti − xi)
mi .

When maxmi > 1, Φ = ⟨φ1, . . . , φn⟩ is no longer a radical ideal; equivalently

F [t]/Φ ∼=
n⊗

i=1

F [t1]/⟨tmi
1 ⟩

is a non-reduced ring. Proposition 10 on Cylindrical Reduction still applies, but Φ
is no longer the ideal of functions vanishing on a finite subset, so the problem is
to usefully interpret the hypothesis f ∈ Φ in this context. The authors solve this
problem very nicely by giving an interpretation in terms of vanishing coefficients
of the Taylor series expansion of f at (x1, . . . , xn). Their approach is especially
appealing and useful from the perspective of combinatorial applications.

It would be interesting to explore simultaneous generalizations of these works and
the present work, e.g. by considering the ideals corresponding to non-cylindrical
multisets, in particular products of not necessarily distinct maximal ideals mx of
points x ∈ Fn. It is also an interesting challenge to fashion a Nullstellensatz
here: the usual Nullstellensatz setup inherently ignores multiplicities, but “Null-
stellensätze with nilpotents” are not absolutely unheard of: e.g. [EH79].

Acknowledgments: My interest in the Combinatorial Nullstellensatz and its
connections to Chevalley’s Theorem was kindled by correspondence with John R.
Schmitt. The main idea for the proof of Lemma 11 is due to Carlo Pagano. I thank
Emil Jeřábek for introducing me to the Finite Field Nullstellensatz.
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