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PETE L. CLARK

Here we pursue Cantor’s theory of cardinalities of infinite sets a bit more deeply.
We also begin to take a more sophisticated approach in that we identify which
results depend upon the Axiom of Choice and strive to give proofs which avoid
it when possible. However, we defer a formal discussion of the Axiom of Choice
and its equivalents to a later installment, so the reader who has not encountered it
before can ignore these comments and/or skip ahead to the next installment.

We warn the reader that the main theorem in this installment – Theorem 1 (which
we take the liberty of christening “The Second Fundamental Theorem of Set The-
ory”) – will not be proved until the next installment, in which we give a systematic
discussion of well-ordered sets.

1. The fundamental relation ≤

Let’s look back at what we did in the last section. We introduced a notion of
equivalence on sets – essentially we proposed the project of classifying sets up to
bijection. Looking at finite sets, we found that each equivalence class contained
a representative of the form [n] for a unique natural number n. Thus the set of
equivalence classes of finite sets is N. Then we considered whether all infinite sets
were equivalent to each other, and found that they are not.

If we look back at finite sets (it is remarkable, and perhaps comforting, how much of
the inspiration for some rather recondite-looking set-theoretic constructions comes
from the case of finite sets) we can’t help but notice that N has so much more struc-
ture than just a set. First, it is a semiring: this means that we have operations of
+ and ·, but in general we do not have − or /. Second it has a natural ordering ≤
which is indeed a well-ordering : that is, ≤ is a linear ordering on x in which every
non-empty subset has a least element. (The well-ordering property is easily seen to
be equivalent to the principle of mathematical induction.)

Remarkably, all of these structures generalize fruitfully to equivalence classes of
sets! What does this mean? For a set S, let |S| stand for its equivalence class.
(This construction is commonplace in mathematics but has problematic aspects
in set theory since the collection of sets equivalent with any nonempty set S does
not form a set. Let us run with this notion for the moment, playing an important
mathematician’s trick: rather than worrying about what |S| is, let us see how it
behaves, and then later we can attempt to define it in terms of its behavior.)

Definition: We will say S1 ≤ S2 if there exists an injection ι : S1 ↪→ S2.

Let F be any family (i.e., set!) of sets Sα. Then our ≤ gives a relation on F ;
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what properties does it have? It is of course reflexive and transitive, which means
it is (by definition) a quasi-ordering. On the other hand, it is generally not a par-
tial ordering, because Sα1 ≤ Sα2 and Sα2 ≤ Sα1 does not in general imply that
Sα1 = Sα2 : indeed, suppose have two distinct, but equivalent sets (say, two sets
with three elements apiece). However, given a quasi-ordering we can formally as-
sociate a partial ordering, just by taking the quotient by the equivalence relation
x ≤ y, y ≤ x. However, exactly how the associated partial ordering relates to the
given quasi-ordering is in general unclear.

Therefore we can try to do something less drastic. Namely, let us write |S1| ≤ |S2|
if S1 ≤ S2. We must check that this is well-defined, but no problem: indeed, if
Si ≡ Ti then choosing bijections βi : Si → Ti, we get an injection

β2 ◦ ι ◦ β−1
1 : T1 → T2.

Thus we can pass from the quasi-ordered set (F ,≤) to the quasi-ordered set of
equivalence classes (|F ,≤). Since we removed an obvious obstruction to the quasi-
ordering being a partial ordering, it is natural to wonder whether or not this partial
ordering on equivalence classes is better behaved. If F is a family of finite sets,
then |F| is a subset of N so we have a well-ordering. The following stunning result
asserts that this remains true for infinite sets:

Theorem 1. (Second fundamental theorem of set theory) For any family F of sets,
the relation ≤ descends to |F| and induces a well-ordering.

Remark: This result requires the Axiom of Choice (AC), to be discussed later.

In its full generality, Theorem 1 is best derived in the course of a systematic de-
velopment of the theory of well-ordered sets, and we shall present this theory later
on. However, the following special case can be proved now:

Theorem 2. (Schröder-Bernstein) If M ≤ N and N ≤ M , then M ≡ N .

Proof: Certainly we may assume that M and N are disjoint. Let f : M ↪→ N
and g : N ↪→ M . Consider the following function B on M ∪ N : if x ∈ M ,
B(x) = f(x) ∈ N ; if x ∈ N , B(x) = g(x) ∈ M . Now we consider the B orbits on
M ∪N . Put Bm = B ◦ . . . ◦B (m times). There are four cases:
Case 1: The forward B-orbit of x is finite. Equivalently, for some m, Bm(x) = x.
Then the backwards B-orbit is equal to the B-orbit, so the full B-orbit is finite.
Otherwise the B-orbit is infinite, and we consider the backwards B-orbit.
Case 2: The backwards B-orbit also continues indefinitely, so for all m ∈ Z we have
pairwise disjoint elements Bm(x) ∈ M ∪N .
Case 3: For some m ∈ Z+, B−m(x) is not in the image of f or g.

As these possibilities are exhaustive, we get a partition of M ∪N into three types
of orbits: (i) finite orbits, (ii) {Bm | m ≥ m0}, and (iii) {Bm | m ∈ Z}. We can use
this information to define a bijection from M to N . Namely, f itself is necessarily
a bijection from the Case 1 elements of M to the Case 1 elements of N , and the
same holds for Case 3. f need not surject onto every Case 2 element of N , but the
Case 2 element of M ∪ N have been partitioned into sets isomorphic to Z+, and
pairing up the first element occurring in M with the first element occurring in N ,
and so forth, we have defined a bijection from M to N !
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Remark: In this proof we did not use the Axiom of Choice.
Theorem 1 asserts that |S| is measuring, in a very reasonable sense, the size

of the set S: if two sets are inequivalent, it is because one of them is larger than
the other. This motivates a small change of perspective: we will say that |S| is
the cardinality of the set S. Note well that we have not made any mathematical
change: we have not defined cardinalities in an absolute sense – i.e., we have not
said what sort of object |N| is – but only in a relational sense: i.e., as an invariant
of a set that measures whether a set is bigger or smaller than another set.

1.1. Addition of cardinalities. For two sets S1 and S2, define the disjoint union
S1

⨿
S2 to be S′

1 ∪ S′
2, where S′

i = {(s, 1) | s ∈ Si}. Note that there is an obvious
bijection Si → S′

i; the point of this little artifice is that even if S1 and S2 are not
disjoint, S′

1 and S′
2 will be.1 Now consider the set S1

⨿
S2.

Fact 3. The equivalence class |S1

⨿
S2| depends only on the equivalence classes

|S1| and |S2|.

Proof: All this means is that if we have bijections βi : Si → Ti, then there is a
bijection from S1

⨿
S2 to T1

⨿
T2, which is clear: there is indeed a canonical bijec-

tion, namely β1

⨿
β2: by definition, this maps an element (s, 1) to (β1(s), 1) and

an element (s, 2) to (β2(s), 2).

The upshot is that it makes formal sense to define |S1| + |S2| as |S1

⨿
S2|: our

addition operation on sets descends to equivalence classes. Note that on finite sets
this amounts to

m+ n = |[m]|+ |[n]| = |[m]
⨿

[n]| = |[m+ n]| = m+ n.

Theorem 4. Let S and T be sets, not both finite. Suppose that S ≤ T . Then
|S|+ |T | = |T |.

Remark: By Theorem 1, for any two sets we have either S ≤ T or T ≤ S, so the
result implies that for all infinite sets, |S|+ |T | = max(|S|, |T |). However, the proof
of Theorem 4 itself does not require the Axiom of Choice, which is why we have
stated it this way.

There is a fairly elementary proof of Theorem 4, which however uses Zorn’s Lemma.
At this stage in the development of the theory the reader might like to see such
a proof, so we will present it now (certainly Zorn’s Lemma is known and used in
“mainstream mathematics”). We begin with the following preliminary result which
is of interest in its own right.

Proposition 5. An infinite set S can be expressed as a disjoint union of countable
subsets.

Proof: Consider the partially ordered set each of whose elements is a pairwise
disjoint family of countable subsets of S, and with ≤ being set-theoretic inclusion.
Any chain Fi in this poset has an upper bound: just take the union of all the
elements in the chain: this is certainly a family of countable subsets of S, and if
any element of Fi intersects any element of Fj , then Fmax(i,j) contains both of these

1This in turn raises canonicity issues, which we will return to later.
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elements so is not a pairwise disjoint family, contradiction. By Zorn’s Lemma we
are entitled to a maximal such family F . Then S \

∪
i∈F Si must be finite, so the

remaining elements can be added to any one of the elements of the family.

Proposition 6. Any infinite set A can be written as B
⨿

C, where |A| = |B| = |C|.

Proof: Express A =
∪

i∈F Ai, where each Ai
∼= Z+. So partition Si into Bi ∪ Ci

where Bi and Ci are each countable, and take B =
∪

i∈F Bi, C =
∪

i∈F Ci.

Proof of Theorem 4: Let S and T be sets; by Theorem 1 we may assume |S| ≤ |T |.
Then clearly |S| + |T | ≤ |T | + |T |, but the preceding result avers |T | + |T | = |T |.
So |S|+ |T | ≤ |T |. Clearly |T | ≤ |S|+ |T |, so by the Schröder-Bernstein Theorem
we conclude |S|+ |T | = |T |.

Exercise 1: Suppose that S is infinite and T ⊂ S. Show that S can be expressed
as a disjoint union of subsets of cardinality |T |.

1.2. Subtraction of cardinalities. It turns out that we cannot formally define
a subtraction operation on infinite cardinalities, as one does for finite cardinalities
using set-theoretic subtraction: given sets S1 and S2, to define |S1|− |S2| we would
like to find sets Ti

∼= Si such that T2 ⊂ T1, and then define |S1|−|S2| to be |T1 \T2|.
Of course even for finite sets this only makes literal sense if |S2| ≤ |S1|; in general,
we are led to introduce negative numbers through an entirely formal (or algebraic)
process, which we can recognize as the group completion of a monoid (or the ring
completion of a commutative semiring).

However, here the analogy between infinite and finite breaks down: given S2 ⊂
S1, T2 ⊂ T1 and bijections βi : Si → Ti, we absolutely do not in general have a
bijection S1 \ S2 → T1 \ T2. For instance, take S1 = T1 = Z+ and S2 = 2Z+, the
even numbers. Then |S1 \ S2| = |N|. However, we could take T2 = Z+ and then
T2 \ T1 = ∅. For that matter, given any n ∈ Z+, taking T2 to be Z+ \ [n], we get
T1 \ T2 = [n]. Thus when attempting to define |N| − |N| we find that we get all
conceivable answers, namely all equivalence classes of at most countable sets. This
phenomenon does generalize:

Proposition 7. (Subtraction theorem) For any |S1| ≤ |S2| ≤ |S3|, there exist
bijections β1 : S1 → T1, β3 : S3 → T3 such that T1 ⊂ T3 and |T3 \ T1| = |S2|.

Proof: As long as S1 and S2 are disjoint, we may take T1 = S1, T2 = S2 and
T3 = S1 ∪ S2.

1.3. Multiplication of cardinalities. Let S1 and S2 be sets. Using the Cartesian
product, we can also define a multiplication of cardinalities:

|S1| × |S2| = |S1 × S2|.
We ask the reader to pause for 10 seconds and check that this is well-defined, i.e.,
invariant on equivalence classes.

At this point, we have what appears to be a very rich structure on our cardi-
nalities: suppose that F is a family of sets which is, up to bijection, closed under⨿

and ×. Then the family |F| of cardinalities of these sets has the structure of a
well-ordered semiring.
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Example: Take F to be any collection of finite sets containing, for all n ∈ N, at
least one set with n elements. Then |F| = N and the semiring and (well)-ordering
are the usual ones.

Example: Take F to be a family containing finite sets of all cardinalities together
with N. Then, since N

⨿
N ∼= N and N×N ∼= N, the corresponding family of cardi-

nals |F| is a well-ordered semiring. It contains N as a subring and one other element,
|N|; in other words, as a set of cardinalities it is N∪{N}, a slightly confusing-looking
construction which we will see much more of later on. As a well-ordered set we have
just taken N and added a single element (the element N!) which is is larger than
every other element. It is clear that this gives a well-ordered set; indeed, given
any well-ordered set (S,≤) there is another well-ordered set, say s(S), obtained
by adding an additional element which is strictly larger than every other element
(check and see that this gives a well-ordering). The semiring structure is, however,
not very interesting: every x ∈ N ∪ {N}, x+N = x ·N = N. In particular, the ring
completion of this semiring is the 0 ring. (It suffices to see this on the underlying
commutative monoid. Recall that the group completion of a commutative monoid
M can be represented by pairs (p,m) of elements of M with (p,m) ∼ (p′,m′) iff
there exists some x ∈ M such that x + p +m′ = x + p′ +m. In our case, taking
x = N we see that all elements are equivalent.)

However, like addition, multiplication of infinite cardinalities turns out not to be
very interesting.

Theorem 8. Let T be infinite and S a nonempty subset of T . Then |S|×|T | = |T |.

The same remarks are in order here as for the addition theorem (Theorem 4):
combining with cardinal trichotomy, we conclude that |S| × |T | = max(|S|, |T |) for
any infinite sets. This deduction uses the Axiom of Choice, whereas the theorem as
stated does not. However, it is easier to give a proof using Zorn’s Lemma, which is
what we will do. Moreover, as for the additive case, it is convenient to first establish
the case of S = T . Indeed, assuming that T × T ∼= T , we have

|S| × |T | ≤ |T | × |T | = |T | ≤ |S| × |T |.

So let us prove that for any infinite set T , T × T ∼= T .

Consider the poset consisting of pairs (Si, fi), where Si ⊂ T and fi is a bijection
from Si to Si×Si. Again the order relation is the natural one: (Si, fi) ≤ (Sj , fj) if
Si ⊂ Sj and fj |Si = fi. Now we apply Zorn’s Lemma, and, as is often the case, the
verification that every chain has an upper bound is immediate because we can just
take the union over all elements of the chain. Therefore we get a maximal element
(S, f).

Now, as for the case of the addition theorem, we need not have S = T ; put
S′ = T \ S. What we can say is that |S′| < |S|. Indeed, otherwise we have
|S′| ≥ |S|, so that inside S′ there is a subset S′′ with |S′′| = |S|. But we can
enlarge S × S to (S ∪ S′′)× (S ∪ S′′). The bijection f : S → S × S gives us that

|S′′| = |S| = |S| × |S| = |S′′| × |S′′|.

Thus using the addition theorem, there is a bijection g : S∪S′′ → (S∪S′′)×(S∪S′′)
which can be chosen to extend f : S → S × S; this contradicts the maximality of
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(S, f).
Thus we have that |S′| < |S| as claimed. But then we have |T | = |S ∪ S′| =

max(|S|, |S′|) = |S|, so

|T | × |T | = |S| × |S| = |S| = |T |,

completing the proof.

Exercise 2: Prove the analogue of Proposition 7 for cardinal division.

Exercise 3: Verify that + and · are commutative and associative operations on
cardinalities, and that multiplication distributes over addition. (There are two
ways to do this. One is to use the fact that |S| + |T | = |S| · |T | = max(|S|, |T |)
unless S and T are both finite. On the other hand one can verify these identities
directly in terms of identities on sets.)

1.4. Cardinal exponentiation. For two sets S and T , we define ST to be the
set of all functions f : T → S. Why do we write ST instead of TS? Because
the cardinality of the set of all functions from [m] to [n] is nm: for each of the m
elements of the domain, we must select one of the n elements of the codomain. As
above, this extends immediately to infinite cardinalities:

Definition: |S||T | := |ST | (and again, it is no problem to see that this is well-
defined).

Recall that in the first installment of the notes we proved that

(|X||Y |)|Z| = |X||Y |·|Z|

by means of a canonical bijection between sets.

Exercise 4: Show that for any sets X, Y , Z we have

|X||Y |+|Z| = |X||Y | · |X||Z|.

(|X| × |Y |)|Z| = |X||Z| · |Y ||Z|.

Thus all is well formally with this new operation: it has the same formal algebraic
properties as the usual exponentiation. However, in stark contrast to addition and
multiplication, the first fundamental theorem of set theory (Cantor’s Theorem)
ensures the nontriviality of cardinal exponentiation: for all sets S, 2|S| > |S|.

Cantor’s Theorem guarantees that exponentiation of cardinalities is going to be
more interesting than addition or multiplication: it asserts that for all S, 2|S| > |S|.
As we observed in the first set of notes, |R| = 2|N|. It is traditional to write c for
|R| (c is for continuum).

What might one expect 2|S| to be? The only canonical guess seems to be the
minimalist one: since any collection of cardinalities is well-ordered, for any cardi-
nality κ, there exists a smallest cardinality which is greater than κ, traditionally
called κ+. Thus perhaps we might expect that 2|S| = |S|+ for all infinite S.

If we look at the case of finite sets, this makes us a little nervous, since 2n is very
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much larger than n+ = n+1. On the other hand, our simple formulas for addition
and multiplication of infinite cardinalities do not hold for finite cardinalities either
– in short, we have no real evidence so are simply guessing.

The problem seemingly becomes more concrete when we remember that 2|Z
+| =

|R| =: c. So the above minimalist guess says that any infinite subset of R is either
in bijection with Z+ or with R itself. This guess was made by Cantor, who was
famously unable to prove it, despite much effort: it is now called Cantor’s Contin-
uum Hypothesis (CH). Moreover, the guess that 2S = |S|+ for all infinite sets is
called the Generalized Continuum Hypothesis (GCH).

Will anyone argue if I describe the continuum hypothesis (and its generalization)
as the most vexing problem in all of mathematics? Starting with Cantor himself,
some of the greatest mathematical minds have been brought to bear on this prob-
lem. For instance, in his old age David Hilbert claimed to have proved CH and he
even published his paper in Crelle, but the proof was flawed. Kurt Gödel proved
in 1944 that CH is relatively consistent with the ZFC axioms for set theory – in
other words, assuming that the ZFC axioms are consistent (if not, all statements
in the language can be formally derived from them!), it is not possible to deduce
CH as a formal consequence of these axioms. In 1963, Paul Cohen showed that
the negation of CH is also relatively consistent with ZFC, and for this he received
the Fields Medal. Cohen’s work undoubtedly revolutionized set theory, and his
methods (“forcing”) have since become an essential tool. But where does this leave
the status of the Continuum Hypothesis?

The situation is most typically summarized by saying that Gödel and Cohen showed
the undecidability of CH – i.e., that it is neither true nor false in the same way
that Euclid’s parallel postulate is neither true nor false. However, to accept this as
the end of the story is to accept that what we know about sets and set theory is
exactly what the ZFC axiom scheme tells us, but of course this is a position that
would require (philosophical as well as mathematical) justification – as well as a
position that seems to be severely undermined by the very issue at hand! Thus, a
more honest admission of the status of CH would be: we are not even sure whether
or not the problem is open. From a suitably Platonistic mathematical perspective
– i.e., a belief that what is true in mathematics is different from what we are able
(in practice, or even in principle) to prove – one feels that either there exists some
infinite subset of R which is equivalent to neither Z+ nor R, or there doesn’t, and
the fact that none of the ZFC axioms allow us to decide this simply means that
the ZFC axioms are not really adequate. It is worth noting that this position was
advocated by both Gödel and Cohen.

In recent years this position has begun to shift from a philosophical to a math-
ematical one: the additional axioms that will decide CH one way or another are
no longer hypothetical. The only trouble is that they are themselves very compli-
cated, and “intuitive” mostly to the set theorists that invent them. Remarkably –
considering that the Axiom of Choice and GCH are to some extent cognate (and
indeed GCH implies AC) – the consensus among experts seems to be settling to-
wards rejecting CH in mathematics. Among notable proponents, we mention the
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leading set theorist Hugh Woodin. His and other arguments are vastly beyond the
scope of these notes.

To a certain extent, cardinal exponentation reduces to the problem of computing
the cardinality of 2S . Indeed, one can show the following

Theorem 9. If X has at least 2 elements and Y has at least one element then

max(|X|, 2|Y |) ≤ |X||Y | ≤ max(2|X|, 2|Y |).

We omit the proof for now.

1.5. Note on sources. Most of the material of this installment is due to Cantor,
with the exception of the Schröder-Bernstein theorem (although Cantor was able to
deduce the Second Fundamental Theorem from the fact that every set can be well-
ordered, which we now know to be equivalent to the Axiom of Choice). Our proofs of
Theorems 4 and 8 follow Kaplansky’s Set Theory and Metric Spaces. Gödel’s views
on the Continuum Problem are laid out with his typical (enviable) clarity inWhat Is
Cantor’s Continuum Problem? It is interesting to remark that this paper was first
written before Cohen’s work – although a 1983 reprint in Benacerraf and Putnam’s
Philosophy of Mathematics contains a short appendix acknowledging Cohen – but
the viewpoint that it expresses (anti-formalist, and favoring the negation of CH) is
perhaps more accepted today than it was at the time of its writing.


