
INTRODUCTION TO SEMIGROUPS AND MONOIDS

PETE L. CLARK

We give here some basic definitions and very basic results concerning semigroups
and monoids. Aside from the mathematical maturity necessary to follow the some-
what Bourbakistic expository style, our presentation makes very few demands on
the reader. It would, for instance, be possible (we do not claim it is advisable) for
the reader to learn the definition of a group as a certain nice kind of monoid.

To be frank, most of the material we include here is not inherently fascinating.
On the other hand, it is also quite easy, and knowing it is often helpful and at
times indispensable in the study of modern mathematics. Indeed these notes were
originally written to provide background material for some of our other expositions,
especially [Commutative Algebra] and [Quadratic Forms].

I had the good fortune to be taught this material at the very beginning of my
algebraic training, in an undergraduate algebra course given by Prof. Arunas Li-
ulevicius at the University of Chicago in the fall of 1995. Since then I have come to
realize how unusual it is to receive an explicit treatment of this simple and useful
material at any level. I know many working mathematicians who let loose a smirk
or giggle when they hear the word “monoid”. What’s so funny?

1. Introduction

1.1. Absolute Basics.

A semigroup M is a nonempty1 set equipped with a binary operation ·, which
is required (only!) to be associative.

An element e of a semigroup M is said to be an identity if for all x ∈ M ,
ex = xe = x.

Proposition 1. A semigroup can have at most one identity.

Proof: If e and e′ are both identities, then e = e · e′ = e′.

Definition: A monoid is a semigroup with an identity element. By Proposition 1,
the identity element is unique, and we shall generally denote it by 1.

A semigroup M is commutative if x · y = y · x for all x, y ∈ M .

Some basic examples: The integers, the rational numbers, the real numbers and
the complex numbers are all commutative monoids under addition. But these all
have additional structure, so are not ideal examples.

1Many authors would allow the empty semigroup. It is clear what we are missing out on by

excluding the empty set as a semigroup (precisely one thing: nothing), so it is nothing to get
worked up about either way.
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The subset {0} of any of these guys is a semigroup, called trivial. The binary
operation is that which is inherited from Z; alternately, observe that a one element
set {x} has a unique binary operation: x · x = guess what?.

The structure (N,+) of natural numbers (i.e., non-negative integers) forms a
commutative monoid under addition. The structure (Z+, ·) of positive integers
forms a commutative monoid under multiplication.

For an example of a semigroup which is not a monoid, take the integers greater
than or equal to 17. In fact a subset S ⊂ N such that (i) N \ S is finite and (ii)
S + S ⊂ S is called a numerical semigroup. Take a moment and find some
more examples of numerical semigroups. This is already a very interesting class of
examples!

Let S be a nonempty set and 0 an element of S. We can define a semigroup by
decreeing x · y = 0 for all x, y ∈ S. Such a semigroup is called null.

For a noncommutative example, consider the collection of all binary strings:
an element is a finite ordered sequence of 0’s and 1’s. The binary operation is
just concatenation: e.g. 1011 · 001001 = 1011001001. Is there an identity? The
answer is yes if(f) we allow the “empty string.” We could of course do a similar
construction starting with an arbitrary set S of symbols instead of {0, 1}. If we
took instead S = {1} then we have identities like 111 · 111111 = 11111111, which
we might as well abbreviate to 3 + 5 = 8. In other words, in this case we get back
the natural numbers under addition (or the positive integers under addition if you
take out the empty string.) The monoid of all finite strings of elements (including
the empty string) from a set S is called the free monoid on S. At the moment,
all we wanted to do was give an interesting example. We will return to it later.

Here is a stranger example. For any nonempty set S we can define two semi-
groups L(S) and R(S) on S. For L(S), the binary operation is x · y = x, and for
R(S) the operation is x · y = y. As long as S has more than one element, L(S) and
R(S) are noncommutative semigroups without identity.

More generally, if S is any semigroup, one can define the opposite semigroup
Sop by x • y := y · x. For instance, L(S) and R(S) are opposite semigroups.

If M and N are semigroups, then a map f : M → N is a semi-homomorphism
of semigroups if f(m1 ·m2) = f(m1) · f(m2) for all m1, m2 ∈ M .

A semi-homomorphism f : M → N is a homomorphism if every identity of
M gets mapped to an identity of N . In other words, if M has no identity, every
semi-homomorphism is a homomorphism, whereas if M has an identity, we are re-
quiring that N has an identity and that f(1) = 1.

The distinction between semi-homomorphisms and homomorphisms may not be
standard,2 but it seems useful: it warns us away from considering maps with
f(1) ̸= 1, which seems to simplify things without missing out on much.

Exercise 1.1:
a) Exhibit a semi-homomorphism of semigroups which is not a homomorphism.
b) Show that any surjective semi-homomorphism of monoids is a homomorphism.

2That is to say, I made it up, but, like many things in mathematics which are made up by one
person for some reasonable purpose, it may well be that others have done the same.
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c) Show that a semi-homomorphism (resp. a homomorphism) of semi-groups is an
isomorphism iff it is bijective.

Exercise 1.2:
a) Show that two null semigroups are isomorphic iff they have the same cardinality.
b) Let S be a set with |S| > 1. Show that L(S) and R(S) are not isomorphic.

A subsemigroup S of a semigroup M is a nonempty subset of M such that
S · S ⊂ S, i.e., such that x, y ∈ S implies xy ∈ S. A submonoid N of a monoid
M is a subsemigroup N which contains the identity 1 of M .

Exercise 1.3: Exhibit a monoid M and a subsemigroup N such that N is a monoid,
but N is not a submonoid of M .

In other words, this terminology partially goes against our previous convention: if
S is a subsemigroup of T , the inclusion map might only be a semi-homomorphism.
But the alternatives (e.g. semisubsemigroup) seem worse.

1.2. Adjunction of identities and absorbing elements.

Let M ⊂ N be a numerical semigroup. It is a monoid iff it contains 0. But if
it doesn’t contain 0, it is easy to see that {0} ∪M is a submonoid of N. Similarly,
starting with the semigroup of nonempty binary strings, we can get a monoid by
simply adjoining an empty string e. Notice that in either case, the identity was
just some added symbol e which satisfies e · e = e and e ·m = m · e = m for each
element m. Indeed:

Proposition 2. Let M be a semigroup, and e be a formal symbol – all that matters
is that e is not an element of M – and put Me := M

⨿
{e}. If we extend the binary

operation on M to Me by putting e · e = e, e ·m = m · e = m for all m ∈ M , then
Me is a monoid with identity element e.

Exercise 1.4: Prove Proposition 2.

Warning: Proposition 2 can be applied even when M already has an identity el-
ement 1, giving a monoid Me in which the old identity element 1 is no longer an
identity, since 1 · e = 1 ̸= e. (Note that if M is a monoid, the canonical map
M ↪→ Me is a semi-homomorphism which is not a homomorphism.) Thus if we
wish to add an identity element if, and only if, there is not one already present, we
need a new notation for this: we define M1 to be M if M has an identity and Me

if it does not. Denote by ι the obvious embedding M ↪→ M1.

Proposition 3. Let f : M → N be a homomorphism and suppose that N is a
monoid. Then there exists a unique monoid homomorphism F : M1 → N such that
f = F ◦ ι.

Proof: If M = M1 the statement is vacuous, and if M1 = M
⨿
{1}, the unique

extension is the one which sends 1 7→ 1.

We note that this shows that M 7→ M1 is a monoidal completion functor in
the sense of universal algebra: i.e., it is the left-adjoint to the forgetful functor
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from the category of monoids (with monoid homomorphisms) to semigroups (with
homomorphisms). We also note that this would not be true if we allowed semi-
homomorphisms.

An absorbing element in a semigroup M is an element x ∈ M such that for
all y ∈ M , xy = yx = x. We say that a semigroup is a nulloid if it has an
absorbing element.

Proposition 4. A semigroup has at most one absorbing element.

Exercise 1.5: Prove Proposition 4.

For example, the monoid (Z, ·) of integers under multiplication is a nulloid: it
has absorbing element 0. More generally if (R,+, ·) is an associative algebra, then
(R, ·) is a nulloid, in which the additive identity 0 is the absorbing element. For
this reason, one generally denotes an absorbing element in a semigroup as 0.

At this point, it should come as no surprise that given any semigroup M , one
can adjoin a formal symbol a (anything which is not in M works fine) to get a
semigroup structure on Ma := M

⨿
{a} in which a is an absorbing element.

Exercise 1.6: Prove it.

Exercise 1.7: Define a nullary map f : M → N to be a semi-homomorphism
of semigroups such that any absorbing element of M gets mapped to an absorbing
element of N . Define M0 in an analogous way to M1 and show that ι : M ↪→ M0 is
universal for nullary maps from a semigroup to a nulloid. In other words, M 7→ M0

is a nulloidal completion.

Exercise 1.8: Let M be a semigroup. Show that M is commutative ⇐⇒ Me

is commutative ⇐⇒ Ma is commutative.

The constructions M 7→ Me and M 7→ Ma are compatible in the following sense:

Proposition 5. Let M be a semigroup.
a) If 1 is an identity of M , then 1 is an identity of Ma.
b) If 0 is an absorbing element of M , then 0 is an absorbing element of Me.

Exercise 1.9: Prove Proposition 5.

By iterating these two adjunctions, we get some further examples of finite semi-
groups. In particular:

Let E(1) be a one-element monoid. For n ∈ Z+, recursively define E(n+1) = E(n)e.
Evidently E(n) is a commutative monoid of order n.

Proposition 6. The monoid E(n) is isomorphic to the set [1, n] of positive integers
from 1 to n with a · b := max(a, b). The element n is absorbing and the element 1
is an identity.

Exercise 1.10: Prove Proposition 6.

Exercise 1.11: Let A(1) = E(1). For n ∈ Z+, recursively define A(n+ 1) = A(n)a.
Give a description of A(n) similar to that of Proposition 6.
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1.3. Semigroups of order two.

Let n be a positive integer and M be a set with n elements. Let us investigate
the various nonisomorphic semigroup structures on M for (very) small n.

Clearly if n = 1 there is a unique semigroup structure: if M = {x} then x ·x = x.
We call any semigroup of cardinality one trivial: obviously there is exactly one triv-
ial semigroup, up to (unique!) isomorphism. Note that in a trivial semigroup the
unique element is both an identity and absorbing. It is easy to see that conversely,
any semigroup possessing both a 0 and a 1 with 0 = 1 is trivial.

Suppose n = 2 and writeM = {x, y}. Suppose first thatM has an identity, which
(up to relabelling) we may assume is x. Then we must have x2 = x, xy = yx = y,
so the only thing in doubt is y · y = y2. We could of course have y2 = x – this gives
us the (unique, up to unique isomorphism) group of order 2. The other possibility
is y2 = y. To see that this works, note that it is in fact {y}e, i.e., obtained by
adjoining an identity to the trivial monoid whose element is called y. This makes
us realize that there is also the semigroup {y}a, but since y is an identity in {y},
by Proposition 5 y is also an identity in {y}a, so up to isomorphism we get nothing
new. We have two null semigroups, which are isomorphic. One also has the left
semigroup L({x, y} defined, as above by x · x = x · y = x, y · x = y · y = y and
similarly the right semigroup R({x, y}). These two semigroups are not isomorphic
to either of the two previous commutative semigroups, and they are not isomorphic
to each other.

We claim there are no other nonisomorphic semigroups on {x, y}. We may as-
sume there is neither and identity nor an absorbing element and, WLOG, that
xy = x.
Case 1a) Suppose yx = x and y2 = y. Then y is an identity so we are back to the
previous examples.
Case 1b) Suppose yx = x and y2 = x. If x2 = x then x is absorbing. If x2 = y
then x(xy) = x2 = y whereas (xx)y = y2 = x and the product is not associative.
Case 2a) Suppose yx = y and x2 = x. If y2 = y we have the left semigroup. If
y2 = x then (yx)y = x whereas y(xy) = y.
Case 2b) Suppose yx = y and x2 = y. Then (xy)x = y whereas x(yx) = x.

So altogether there are 5 isomorphism classes of semigroups of order 2.

Let S(n) be the number of isomorphism classes of semigroups of order n. It is
known that S(3) = 24, S(4) = 188, S(5) = 1915, S(6) = 28634, S(7) = 1627672.

1.4. Direct sums and direct products.

Let M and N be two semigroups. Then the Cartesian product M × N becomes
a semigroup in an obvious way: (m1, n1) · (m2, n2) := (m1 · m2, n1 · n2). If M
and N are monoids with identity elements eM and eN , then M × N is a monoid,
with identity element (eM , eN ). Exactly the same discussion holds for any finite
set M1, . . . ,MN of semigroups: we can form the direct sum M =

⊕n
i=1 Mi, i.e.,

the Cartesian product of sets with componentwise operations; if all the Mi’s are
monoids, so is M . If we instead have an infinite family {Mi}i∈I of semigroups
indexed by a set I, we can define a semigroup structure on the Cartesian product∏

i∈I Mi in the obvious way, and if each Mi is a monoid with identity ei, then the
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product semigroup is a monoid with identity (ei)i∈I . If each Mi is a monoid, we
can also define the direct sum

⊕
i∈I Mi, which is the subset of the direct product∏

i∈I Mi consisting of all I-tuples (mi ∈ Mi)i∈I such that mi = ei for all but finitely
many i. Then we have that

⊕
i∈I Mi is a submonoid of the direct product monoid∏

i∈I Mi.

Theorem 7. The monoid (Z+, ·) of positive integers under multiplication is canon-
ically isomorphic to the direct sum of a countably infinite number of copies of the
monoid (N,+) of natural numbers under addition.

Exercise 1.12: Prove Theorem 6. Hint: let P be the set of all prime numbers: this is
a countably infinite set! Show that the Fundamental Theorem of Arithmetic gives
an isomorphism (Z+, ·) ∼→

⊕
p∈P(N,+).

2. Relations with groups

An element x in a monoid M is said to be invertible (or a unit) if there exists
y ∈ M such that xy = yx = 1. The usual tricks show that for a given x there can
exist at most one such element y: indeed, if xy = yx = xy′ = y′x = 1, then

y′ = y′ · 1 = y′(xy) = y′xy = (y′x)y = 1 · y = y.

Therefore we may speak unambiguously of the inverse of an element x and denote
it by x−1.

Exercise 2.1: Give an example of a monoid M and an element x such that there
exists y in M with xy = 1 but yx ̸= 1.

Obviously the identity is its own inverse. To be sure, no other element of M
needs to have an inverse! For instance, it is clear that in (N,+) no positive integer
has an additive inverse.

A group is a monoid M in which each element has an inverse.3

Exercise 2.2: a) Show that a monoid M is a group iff: for each x ∈ M , the
maps

x• : M → M, y 7→ xy, •x : M → M, y 7→ yx

are both bijections.
b) A nontrivial group has no absorbing element.
c) For any monoid M , neither Me nor Ma is a group.

Exercise 2.3: Show that any group G is isomorphic to its opposite group Mop.

The subclass of groups is in many ways simpler and better behaved than the class
of all monoids. In this section we explore the following theme: suppose M is a
monoid which is not a group: what can we do about it?

3Formally speaking, we do not assume any prior knowledge about groups, but informally
speaking we do. This would be a somewhat strange way to meet groups for the first time first

time, although it was in fact done this way in my first (undergraduate!) abstract algebra course,
taught by Arunas Liulevicius.
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The first observation is that for any monoid M , the subset M× of all invertible
elements is a submonoid of M in which every element is invertible: i.e., M× is a
group. Evidently M× is the unique largest submonoid of M which is a group. We
call M× the unit group of M .

Unfortunately, as above, for some of the most basic monoids it happens that the
unit group is trivial, i.e., M× = {1}. This is the case for (N,+) and indeed for the
monoid F (S) of strings on any set S.

Another idea is to embed a given semigroup M into a group G. This is not al-
ways possible: e.g. if M has an absorbing element 0 and an element x ̸= 0, then
0 · x = 0, which in a group would imply x = 0, contradicting te injectivity of 0•.

Let us introduce new terminology for these injectivity properties: a semigroup
M is said to be left-cancellative if for all x ∈ M , x• is injective, i.e., xy = xz
implies y = z. Similarly one says M is right-cancellative if x, y, z ∈ M, xy = zy
implies x = z, and M is cancellative if it is both left- and right-cancellative.

Example: Let S be a set with more than one element. The left semigroup L(S) on
S is right-cancellative but not left-cancellative. The right semigroup R(S) on S is
left-cancellative but not cancellative.

Proposition 8. Let M be a finite monoid which is either left-cancellative or right-
cancellative. Then M is a group.

Proof: Let m ∈ M . Suppose first that M is left-cancellative. Consider the set mi of
positive powers of M ; since M is finite, there must exist i < j such that mi = mj .
Write j = i+ k, so

mi · 1 = mi = mj = mimk.

Thus by left-cancellation, we have 1 = mk, so that mk−1m = m, and mk−1 is
an inverse for m. Since also mj = mi+k = mk+i = mkmi, the same argument
works assuming right-cancellativity. Alternately, the right-cancellative case can be
deduced from the left-cancellative case as follows: if M is right-cancellative, Mop

is left-cancellative, so it is a group, so by Exercise 2.2 M ∼= Mop, so M is a group.

Theorem 9. Let M be a commutative cancellative semigroup. There exists a cer-
tain (canonically defined) commutative group G(M) and an injective homomor-
phism of semigroups ι : M → G(M).

Proof: Let M be a commutative cancellative semigroup, written additively, i.e.,
x+ y instead of xy. The idea is to suitably adapt the construction of the integers
from the natural numbers. One way to do this is as follows: let M̃ = M ×M , i.e.,
the Cartesian product of M with itself, with the usual semigroup structure. We
wish to interpret a pair (x, y) as x− y; considering this construction in the special
case M = (N,+), it is clear that we are not yet done: e.g. −1 is represented by
(0, 1) but also by (1, 2) and indeed by (n, n + 1) for any n ∈ N. So we want to
define some equivalence relation on these pairs; to figure out which one, suppose
(x1, y1) = (x2, y2); we interpret this as x1−y1 = x2−y2, and this can be acceptably
rewritten as x1 + y2 = x2 + y1. Therefore we define (x1, x2) ∼ (y1, y2) to mean
x1 + y2 = x2 + y1.
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Let us check that this is in fact an equivalence relation – in fact this is the only
place in the proof where we need to use the cancellation property. Indeed, the
reflexivity and symmetry of ∼ are obvious; as for transitivity: suppose (x1, y1) ∼
(x1, y2) ∼ (x3, y3). Then x1 + y2 = x2 + y1 and x2 + y3 = x3 + y2. Adding these
equations we get x1 + x2 + y2 + y3 = x2 + x3 + y1 + y2. Now by assumption we
can cancel x2 + y2 to get x1 + y3 = x3 + y1, i.e., (x1, y1) ∼ (x3, y3). Let us put

G(M) := M̃/ ∼, and denote the equivalence classes by [(x, y)]. We wish to define

[(x1, y1)] + [(x2, y2)] = [(x1 + x2, y1 + y2)],

but we must check that this is well-defined: if instead we chose (x′
1, y

′
1) ∼ (x1, y1)

and (x′
2, y

′
2) ∼ (x2, y2), then (x′

1, y
′
1) + (x′

2, y
′
2) = (x′

1 + x′
2, y

′
1 + y′2), and since

x1+x2+ y′1+ y′2 = (x1+ y′2)+ (x2+ y′1) = (x′
2+ y1)+ (x′

1+ y2) = x′
1+x′

2+ y1+ y2,

(x1 + x2, y1 + y2) ∼ (x′
1 + x′

2, y
′
1 + y′2). For any x ∈ M ,

[(x, x)] + [(y, z)] = [(x+ y, x+ z)] = [(y, z)],

so [(x, x)] is an identity element. Similarly, since [(x, y)]+ [(y, x)] = [(x+ y, x+ y)],
[(y, x)] is the inverse of [(x, y)]. And associativity follows simply upon expanding
out both sides. Thus we have a commutative group G(M).

Finally, define G : M → G(M) by G(x) := [(x+ x, x)].

Exercise 2.4: Show that ι is an injective homomorphism of semigroups.

Since the construction of G(M) involves passage to the quotient, given a well-
understood semigroup M , it may not be completely obvious “which” abelian group
G(M) is. As we said, the basic example is M = (N,+) and it is only reasonable
that G(M) ∼= Z. What happens if M ⊂ N is a numerical semigroup? What if
M ∼=

⊕
i∈I N? The following result helps out in this regard.

Proposition 10. Let M be a commutative cancellative semigroup, and suppose
that f : M ↪→ H is an embedding into any abelian group. If M does not have an
identity, we assume that 0 is not in the image of ι. Then G(M) is isomorphic to
the subgroup of H generated by ι(M).

Proof: The mapping M̃ = M ×M → H given by (x, y) 7→ f(x) − f(y) has as its
image the subgroup generated by f(M). Moreover, since if [(x1, y1)] = [(x2, y2)],
then x1 + y2 = x2 + y1, f(x1) + f(y2) = f(x2) + f(y1), so

f((x1, y1)) = f(x1)− f(y1) = f(x2)− f(y2) = f((x2, y2)),

so f factors through to a map on the quotient G(M) of M̃), which is easily seen to
give an isomorphism onto the subgroup generated by f .

As an application, we apply this to a numerical semigroup M ⊂ N and get G(M) =
Z. We can apply it to

⊕
i∈I N by embedding it in

⊕
i∈I Z and observing that the

subgroup generated by the image of
⊕

i∈I N is all of
⊕

i∈I Z. In other words, the
Proposition asserts that G(M) is the minimal group in which M can be embed-
ded.

Remark: Examples of cancellative noncommutative semigroups which cannot be
embedded in groups were constructed by Malc’ev in 1936. We do not attempt to
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go into them here.

From Proposition XX it is only a small step to show that G : M → G(M) is
universal for homomorphisms from a cancellative commutative semigroup into a
group. In other words, given any homomorphism of semigroups f : M → H where
H is a group, there exists a unique group homomorphism F : G(M) → H such
that f = F ◦ G. Indeed, the only possible map would be induced by the map
F : (x, y) 7→ x − y from M̃ = M × M → H, and an easy computation as above
shows that F descends to give a well-defined homomorphism on G(M).

This remark allows us to wonder: suppose M is a commutative semigroup which is
not cancellative. Then there is no embedding from M into a group, but is there still
a group G(M) and a homomorphism G : M → G(M) into a group G(M) which is
universal, i.e., for every homomorphism f : M → H into a group H, there exists
a unique group homomorphism F : G(M) → H such that f = F ◦G?

The answer is yes. In fact the proof of Theorem XX goes through if we strengthen
the definition of∼ to: (x1, y1) ∼ (x2, y2) iff there exists z ∈ M such that z+x1+y2 =
z+x2+y1. We ask the reader to verify this and therefore prove the following result:

Theorem 11. Let M be a commutative semigroup, written additively. Define
G(M) = M × M/ ∼, where (x1, y1) ∼ (x2, y2) iff there exists z ∈ M such that
x1 + y2 + z = x2 + y1 + z.
a) coordinatewise addition on M×M descends to a well-defined operation on G(M)
which makes it into an abelian group.
b) The map x 7→ [(x + x, x)] defines a homomorphism G : M → G(M), which is
injective iff M is cancellative.
c) The pair (G(M), G) is universal for homomorphisms from a commutative monoid
to a commutative group.

The functor G : M 7→ G(M) is called group completion.

Exercise 2.5: Suppose that M is a commutative semigroup with an absorbing ele-
ment. Show that its group completion G(M) is the trivial group.

A semialgebra is a triple (S,+, ·) consisting of a set S endowed with two bi-
nary operations called + and ·, such that (S,+) is a commutative semigroup with
identity element called 0, (S, ·) is a semigroup, 0 is an absorbing element for (S, ·),
and for all x, y, z ∈ S, x · (y + z) = x · y + x · z, (x + y) · z = c · z + y · z. If (S, ·)
has an identity – which will be denoted by 1 – we say S is a semiring.

For example, the natural numbers form a semiring under the usual operations of
addition and multiplication, as do the positive integers.

Proposition 12. Suppose that (S,+, ·) is a semialgebra.
a) The binary operation

(x1, x2) · (y1, y2) := (x1x2 + y1y2, x1y2 + y1x2)

on S̃ = S × S descends to G(S).
b) The triple (G(S),+, ·) is an algebra. If (S, ·) has an identity element 1, then
[(1, 0)] is an identity element for (G(S), ·), giving it the structure of a ring.
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Exercise 2.6: Prove it.

Advanced Example: Let R be a ring. Let K̃(R) := (M(R),+) be the commutative
monoid whose underlying set consists of isomorphism classes of finitely generated
projective left R-modules, and with M + N = M

⊕
N . Then the Grothendieck

group of this monoid is denoted K0(R), the K-group of R. If R is commutative,

then K̃(R) becomes a semiring under M · N := M ⊗R R: the unit element is the
R-module R. In this case K0(R) becomes a commutative ring. Its group of units is
the set of isomorphism classes of rank 1 projective modules, thePicard group of R.

Let X be a “space”, which here means that we have a notion of what vector
bundles on X are. (There may well be more than one such notion – e.g. real and
complex vector bundles on a real manifold. If so, we fix one such notion for the
purposes of this problem.) Then we can define K̃(X) to be the semiring whose
underlying set consists of isomorphism classes of vector bundles on V on X, with
V +W := V ⊕W and V ·W := V ⊗W . Then K0(X) denotes the Grothendieck

group of K̃(X), with its induced structure of a commutative ring. Its group ouf
units is denoted by Pic(X) and is identified with the group of isomorphism classes of
line bundles. (This recovers the case of commutative rings by taking X = SpecR.)

2.1. Partial inversion.

Given a commutative semigroup M , one often wishes to work in a semigroup in
which some but not necessarily all of the elements of M have inverses. It is not
difficult to generalize the above constructions to handle this.

First, let us give a precise formulation of the problem via a universal mapping
property. If M is a semigroup, let S be a subsemigroup. What we want is a
semigroup M [S−1] which comes equipped with a homomorphism ι : M → M [S−1]
which is universal for all homomorphisms f : M → N where N is a monoid and
f(S) ⊂ N×: that is, there exists a unique homomorphism F : M [S−1] → N such
that f = F ◦ ι.

In the case that M is cancellative, it is easy to see that the semigroup we are
looking for is just the subsemigroup of G(M) generated by the sets of inverses of
elements of S. In this case the map ι : M → M [S−1] is injective. In the general case

we need only modify the construction by replacing M̃ = M ×M by MS := M × S
and define the equivalence relation to be (m1, s1) ∼ (m2, s2) iff there exists m ∈ M
such that m+m1 + s2 = m+m2 + s1.

Exercise 2.7: Show that the addition operation is well-defined on MS/ ∼ and
gives it the structure of a commutative monoid M [S−1], in which each element of
S is invertible. Show that there is a natural homomorphism M → M [S−1] which
is universal for mappings f : M → N , where N is a monoid and f(S) ⊂ N×.

Exercise 2.8: Can you find necessary and sufficient conditions on M and S such
that M [S−1] is nontrivial?

Exercise 2.9: Suppose that R is a commutative ring. A subsemigroup S ⊂ (M, ·) is
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called a multiplicative subset of S. Show that the operation (r1, s1)+(r2, s2) :=
(r1s2+ s2r1, s1s2) on MS = S×R descends to the quotient R[S−1] and gives it the
structure of a commutative ring.
b) Formulate a universal property for the ring homomorphism R 7→ R[S−1].
c) Notice that if 0 ∈ S, then R[S−1] = 0. Find a necessary and sufficient condition
for this to hold.
d) One says that R is an integral domain if (R \ {0}, ·) is cancellative. Deduce
from the general theory that in this case, F (R) := R[(R \{0})−1] is a field, and the
map R → F (R) is universal for injective maps from R into a field. F (R) is said to
be the field of fractions of R.

3. Ideals and congruences

Most of this section remains to be written.

In elementary number theory one learns about congruences modulo n, in particu-
lar that the usual operations of addition and multiplication on Z are well-defined
modulo n, leading to a finite ring Z/nZ. Later on in abstract algebra one learns to
reexpress this: we say that Z/nZ is the quotient ring modulo the ideal (nZ).

However, in the context of semigroups, congruences and ideals are related but
distinct concepts.

Let M be a semigroup. A nonempty subset S of M is a left ideal (resp. right
ideal) if for all s ∈ S, m ∈ M,ms ∈ S (resp. sm ∈ S). An ideal is a subset which
is both a left and a right ideal.

Example: In the semigroup of positive integers under addition, for any positive
integer N0, the subset of all positive integers greater than or equal to N0 is an ideal.

Let M be a semigroup. An equivalence relation ∼ on M is said to be compatible
with the semigroup structure if x1 ∼ x2, y1 ∼ y2 implies x1y1 ∼ x2y2.

Compatibility is a necessary and sufficient condition for the semigroup operation
to be well-defined on the quotient M/ ∼: in other words, we would like to define
[x1][y1] := [x1y1], but for this to make sense we need, for all x2 ∼ x1, y2 ∼ y1,
[x1y1] = [x2y2], i.e., x1y1 ∼ x2y2. Therefore a compatible equivalence relation gives
rise to a quotient semigroup M/ ∼ such that the “canonical map” x 7→ [x] is a
homomorphism of semigroups.

We have already seen examples of this: if M is a cancellative semigroup, the rela-
tion (x1, y1) ∼ (x2, y2) iff x1 + y2 = x2 + y1 on M ⊕M is a compatible equivalence
relation; the group G(M) is precisely the quotient by this relation.

4. Free semigroups

This section has not yet been written.


