
REVIEW NOTES FOR EMAT 233

PETE L. CLARK

These notes are meant to help you study for the final exam. Some notation ex-
plained: we sometimes write f(x, y, z) ≡ 0, which should be read, “f of x, y,
z is identically equal to zero,” i.e., equal to zero on its entire domain. Also we
use the notation

∫ xM

xm
f(x)dx, meaning that the integral extends over the interval

xm ≤ x ≤ xM : the small “m” stands for minimum and the large “M” stands for
maximum.

1. Vectors

Let v = (v1, v2, v3), w = (w1, w2, w3) be vectors in space.

The norm of v is ||v|| =
√

v2
1 + v2

2 + v2
3 .

For nonzero v, a unit vector in the direction of v, denoted v̂, is v̂ = v
||v|| .

The dot product (or inner product, scalar product):

v ·w := v1w1 + v2w2 + v3w3.

The dot product formula:

v ·w = ||v||||w|| cos θ,

where θ is the angle between v and w. It follows that v ·w = 0 ⇐⇒ v ⊥ w.

Cross product (or vector product)

v ×w =

∣∣∣∣∣∣
î ĵ k̂
v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
Cross product formula: the magnitude of the cross product is

||v ×w|| = ||v||||w|| sin θ;

this is also the area of the parallelogram spanned by v and w. Moreover

(v ×w) · v = (v ×w) ·w = 0.

Thus, if v and w do not lie along a single line, v×w is perpendicular to the plane
spanned by v and w. Finally, its orientation is given by the right hand rule.

Projection formula: projw v = ( v·w
w·w )w.

Equations of planes: The equation of the plane passing through P0 = (x0, y0, z0)
with normal vector n = (a, b, c) is

n · ((x, y, z)− P0) = a(x− x0) + b(y − y0) + c(z − z0) = 0.
1
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Note that this is of the form ax + by + cz + C, where C = ax0 + by0 + cz0. In
general, planes of the form

ax + by + cz = C1, ax + by + cz = C2

both have normal vector n, so are parallel.

Comments: You must always remember that v ·w is a scalar (a number!), whereas
v ×w is a vector in space. Writing things like

(WRONG!) “v ·w = (v1w1, v2w2, v3w3)′′

arouses great consternation in mathematics instructors. Subconsciously we think
that if you cannot get this right then you don’t understand any of the material in
the course. Thus you should be especially careful to avoid making this mistake.
(There are few other equally serious mistakes that will be pointed out later.)

The dot product could be defined for vectors with any number of components
in the same way, but the cross product is pecular to R3.1

2. Parameterized curves

The expression r(t) = (x(t), y(t), z(t)) gives a parameterized curve in R3; as a
special case, taking z(t) ≡ 0 we get curves in the plane. Parameterized curves
come with a domain – i.e., are defined for some time interval, usually of the form
tm ≤ t ≤ tM or −∞ < t < ∞.

Important examples:

1) Parametric equations of the line passing through two points P and Q. Put
v = PQ = Q− P , the vector from P to Q. Then

r(t) = P + tv = (1− t)P + tQ.

If P = (x1, y1, z1), Q = (x2, y2, z2), then

r(t) = (x1 + (x2 − x1)t, y2 + (y2 − y1)t, z2 + (z2 − z1)t).

Note that r(0) = P, r(1) = Q; in particular, restricting to 0 ≤ t ≤ 1 parameterizes
the directed line segment from P to Q.

2) The circle (in the plane) centered at (x0, y0) with radius r. The defining equation
is (x− x0)2 + (y − y0)2 = r2; the parametric equations are

r(t) = (x0 + r cos t, y0 + r sin t);

you should check that x and y do satisfy the defining equation. For 0 ≤ t ≤ 2π the
circle gets traversed once counterclockwise.

3) The ellipse (in the plane) centered at (x0, y0) with semiaxes a and b, i.e., with
defining equation (x−x0)

2

a2 + (y−y0)
2

b2 = 1. Then

r(t) = (x0 + a cos t, y0 + b sin t)

1Actually, there is a generalized cross product in Rn for all n ≥ 2, however its input is n − 1
vectors, and n− 1 = 2 implies n = 3.
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for 0 ≤ t ≤ 2π traverses the ellipse once counterclockwise.

4) A circular helix centered on the z-axis:

r(t) = (r cos t, r sin t, kt)

for some constant k.

Calculus of parameterized curves:
Velocity v(t) r′(t) = (x′(t), y′(t), z′(t)).

Speed v(t) = ||v(t)|| =
√

(dx/dt)2 + (dy/dt)2 + (dz/dt)2.

Unit tangent vector T(t) = v(t)/v(t).

Acceleration a(t) = v′(t) = r′′(t) = (x′′(t), y′′(t), z′′(t)).

Arcelngth from tm to tM : s =
∫ tM

tm
v(t)dt.

Tangential component of acceleration (as a vector): aT = projv(t) a(t). As a scalar
take aT · T .

Normal component of acceleration (as a vector): a− aT .

Curvature: ||r′(t)×r′′(t)||
||r′(t)||3

3. Diffferential Calculus on Surfaces

In this course we worked with two kinds of surfaces in three-dimensional space:

1) surfaces given as the graph of a function z = f(x, y).
2) implicitly defined by an equation, or level surfaces F (x, y, z) = C.

Examples: By considering level curves, you should be able to figure out the rough
shape of surfaces of the form

z = ±ax2 ± by2 ± C

or
z2 = ±ax2 ± by2 ± C

Especially, x2 + y2 + z2 = R2 is a sphere of radius R, and x2

a2 + y2

b2 + z2

c2 = 1 is an
ellipsoid with semiaxes a, b, c.

For any function f(x, y), can regard y as a constant and differentiate with respect
to x, which we write as ∂f

∂x . Similarly by holding x constant and differentiating
with respect to y we have ∂f

∂y .

Chain rule: d
dt (f(x(t), y(t)) = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt .

Directional derivatives: let û be a unit vector in the plane. We have the notion
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of the derivative of z = f(x, y) at (x0, y0) in the direction û, as follows: it is the
z-component of the velocity vector of the curve

R(t) = (x(t), y(t), f(x(t), y(t))),

where r(t) = (x(t), y(t)) is any plane curve with r(0) = (x0, y0), r′(0) = û. A
calculation using the chain rule shows that

Dû(f)(x0, y0) = (
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)) · û.

In particular

D(1,0)f =
∂f

∂x
, D(0,1)f =

∂f

∂y
.

The gradient: if f = f(x, y), then ∇(f) = (∂f
∂x , ∂f

∂y ). Similarly, if F = F (x, y, z),
∇(F ) = (∂F

∂x , ∂F
∂y , ∂F

∂z ).

Using the dot product formula,

Dûf(x0, y0) = ∇(f)(x0, y0) · û = ||∇f(x0, y0)|||û|| cos θ = ||∇(f)(x0, y0)|| cos θ.

This expression is maximized when θ = 0 and minimized when θ = π. That is,
the largest possible value of a directional derivative at (x0, y0) is attained in the
direction of ∇(f): the gradient gives the path of steepest ascent. Similarly, −∇(f)
gives the path of steepest descent.

Tangent plane to z = f(x, y) at (x0, y0): it is the unique plane passing through
(x0, y0, z0) and containing all tangent vectors R′(t0) to curves R(t) = (x(t), y(t), R(x(t), y(t))
on S passing through (x0, y0, z0 = f(x0, y0)). Explicitly, the equation is

z = f(x0, y0) = (x− x0)
∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0).

Tangent plane to a level surface F (x, y, z) = C at (x0, y0, z0): a normal vector n is
given by ∇(F )(x0, y0, z0) = (∂F

∂x , ∂F
∂y , ∂F

∂z ), so the equation of the plane is

∂F

∂x
(x0, y0, z0)(x− x0) +

∂F

∂y
(x0, y0, z0)(y − y0) +

∂F

∂z
(x0, y0, z0)(z − z0) = 0.

Note that if z = f(x, y) is a surface of type 1), we can view it as a level surface by
defining

F (x, y, z) = z − f(x, y) = 0.

Then ∇(F ) = (−∂f
∂x ,−∂f

∂y , 1), and the equation of the tangent plane becomes

−∂f

∂x
(x− x0)−

∂f

∂y
(y − y0) + (z − z0) = 0,

or

z = z0 +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0);

since z0 = f(x0, y0), this is the same as the previous equation.



REVIEW NOTES FOR EMAT 233 5

4. Vector fields

Let

F (x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)) = Pdx + Qdy + Rdz

be a vector field in space. (To get a vector field in the plane, take R ≡ 0 and P
and Q to be only functions of x and y.)

Divergence: Div(F ) = ∇·F = ∂P
∂x + ∂Q

∂y + ∂R
∂z . The physical interpretation of diver-

gence is as flux density: let B be a small box containing the point P0 = (x0, y0, z0).
The flux density is the limit of the flux of F through the surface of B divided by
the volume of B as the length of each side of B approaches zero. We showed that
this limit equals Div(F )(P0).

A vector field is said to be incompressible if Div(F ) ≡ 0 on its entire domain.

Curl: curl(F ) = ∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ = (∂R
∂y −

∂Q
∂z ,−(∂R

∂x −
∂P
∂z ), ∂Q

∂x −
∂P
∂y ).

Special case: if F is a vector field in the plane – R ≡ 0 and P = P (x, y), Q = Q(x, y),
then curl(F ) = (0, 0, ∂Q

∂x −
∂P
∂y ). Indeed, we often write curl(F ) = ∂Q

∂x −
∂P
∂y for pla-

nar vector fields, with the understanding that this is a convenient abbrevation for
the precise statement:

curl(F ) · k̂ =
∂Q

∂x
− ∂P

∂y
.

Physical interpretation: the curl measures the infinitesimal rotation of F at a point
P : if we nail down a paddlewheel at P and orient it so that its axis aligns with
curl(P ), then it will turn, in the direction consistent with the righthand rule. In
particular, if curl(P ) 6= 0 at P , we can buiold a device which extracts “energy” at
P , so F , viewed as a field of forces, is not “conservative.”

A vector field is said to be irrotational if curl(F ) = 0 on its entire domain.

Two identities: if f(x, y, z) is a scalar-valued function, then ∇(f) is a vector field,
called a gradient field.

curl(∇(f)) ≡ 0̂.

Similarly,
Div(curl(F )) ≡ 0.

That is, gradient vector fields are irrotational, and “curl vector fields” are incom-
pressible.

Singularities: many naturally occuring vector fields have singularities, i.e., they
are not defined (and could not be defined in a continuous manner) on all of R3.

Example: The Newton/Coulomb field F (x, y, z) = K r
||r||3 . This is defined ev-

erywhere except the origin.
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Example: F (x, y, z) = ( −y
x2+y2 , x

x2+y2 , z). This is defined except where x = y = 0,
i.e., everywhere except the z-axis.

5. Multiple integrals

Using Riemann sums we can define the integral of a scalar function over a region
R of the plane or a region V in space. But, just as for single integrals, we do not
dare to evaluate any but the simplest of functions using this definition. Instead, we
write the double integral as an iterated integral and use the fundamental theorem
of calculus.

Simplest case R is a rectangle xm ≤ x ≤ xM , ym ≤ y ≤ yM . Then∫ ∫
R

f(x, y)dA =
∫ y=yM

y=ym

∫ x=xM

x=xm

f(x, y)dxdy =
∫ x=xM

x=xm

∫ y=yM

y=ym

f(x, y)dydx.

That is, the nested single integrals in each order are equal and both are equal to
the double integral as defined using Riemann sums.

In three variables: if V is box: xm ≤ x ≤ xM , ym ≤ y ≤ yM , zm ≤ z ≤ zM .∫ ∫ ∫
V

f(x, y, z)dV =
∫ zM

zm

∫ yM

ym

∫ xM

xm

f(x, y, z)dxdydz,

and similarly for the five other possible orders: dxdzdy, dydxdz, dydzdx, dzdydx.

The plot thickens when we want to integrate over regions with curved boundaries.
For instance, to integrate over the unit circle, imagine integrating first with respect
to x: ∫ y=1

y=−1

∫ x=??

x=?

f(x, y)dxdy.

The point is that how far to the left and to the right the region extends depends
on the y-coordinate: e.g. at y = ±1 we have just x = 0; when y = 0, x needs
to go from −1 to 1. So the inner limits must be functions of y: indeed xM =
CR(y), xm = CL(y), where CL(y) and CR(y) are functions of y giving the left and
right boundaries of the region R. In our case the curve is defined by x2 + y2 = 1,
so CR =

√
1− y2, CL = −

√
1− y2, and the integral is∫ y=1

y=−1

∫ x=
√

1−y2

x=−
√

1−y2
f(x, y)dxdy.

Formally speaking the outer limits – which are always constants – are given by the
projection of the region R into the y-axis (in the dxdy case) into the x-axis (in the
dydx case).

Also, an assumption has implicitly been made about the shape of the region R:
to integrate

∫ yM

ym

∫ x=CR(y)

x=CL(y)
fdxdy, we need R to have the property that if (x1, y)

and (x2, y) are both in R, then so is the entire (horizontal) line segment connect-
ing them. We call this property of a region x-convex. Similarly, integrating with
respect to dydx in the way we did assumes that the region is y-convex: if (x, y1)
and (x, y2) are in R, then so is the entire (vertical) line segment connecting them.
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As an example of a region that is neither x-convex nor y-convex, consider the
region R between the two circles x2 + y2 = 1 and x2 + y2 = 4. What do we do
to evalute

∫ ∫
R

f(x, y)dA? There are two possibilities: fist, we could split R into
finitely many subregions, each of which is either x-convex or y-convex. Indeed, any
region can be divided into finite many subregions each of which is both x-convex
and y-conex by “cutting” along horiztonal and vertical lines.2 In the present ex-
ample, the x- and y-axes do the trick, cutting R into four arch-shaped sectors.

If f(x, y) is defined not just on R but on all of x2 + y2 ≤ 4, we may write
R = D2 −D1, where D2 and D1 are the larger disk (of radius 2) and the smaller
disk (of radius 1) respectively. Then∫ ∫

R

f(x, y)dA =
∫ ∫

D2

f(x, y)dA−
∫ ∫

D1

f(x, y)dA.

A similar, albeit more geometrically challenging, discussion holds for triple integrals.
For instance, supposing that V is a space region, to set up

∫ ∫ ∫
V

f(x, y, z)dzdydx,
the linner limits are zm = CB(x, y), zM = CT (x, y), the equations of the surfaces
which bound V above and below. (This assumes that V is z-convex: if (x, y, z1)
and (x, y, z2) are both in V , then so is the entire line segment joining them.) To
get the remaining limits we consider the projection R of V into the xy-plane, and
parameterize R as above.

Example: Let V be the region bounded by the sphere of radius r. Then z =
±

√
r2 − x2 − y2, so zm = −

√
r2 − x2 − y2, zM =

√
r2 − x2 − y2. The projection

R of V into the xy-plane is the disk of radius r, so similarly to the above example
is parameterized as ym = −

√
r2 − x2, yM =

√
r2 − x2, xm = −r, xM = r. Thus∫ ∫ ∫

V

f(x, y, z)dV =
∫ xM=r

xm=−r

∫ yM=
√

r2−x2

ym=−
√

r2−x2

∫ zM=
√

r2−x2−y2

zm=−
√

r2−x2−y2
f(x, y, z)dzdydx.

Other coordinate systems: on the exam you will certainly be asked to do at least
one integral by changing to either polar, cylindrical or spherical coordinates. The
formulas you need to remember are listed below. You should make sure to practice
parameterizing regions in polar and spherical coordinates.

Polar coordinates:
r =

√
x2 + y2, θ = tan−1(y/x).

x = r cos θ, y = r sin θ.

dA = rdrdθ.

Cylindrical coordinates: r and θ are related to x and y as above.

dV = rdrdθdz.

Spherical coordinates:

ρ =
√

x2 + y2 + z2, θ = tan−1(y/x), ϕ = cos−1(
z√

x2 + y2 + z2
).

x = ρ cos θ sinϕ, y = ρ sinϕ sin θ, z = ρcosϕ.

dV = ρ2 sinϕ dρ dθ dϕ.

2At least, this is true for all regions we will ever meet in this course.
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6. Line integrals

Line integral of a scalar function: Let r(t) = (x(t), y(t), z(t)) be a parameterized
curve, defined for tm ≤ t ≤ tM . Let g(z, y, z) be a scalar function defined along the
curve. We define∫

C

gds :=
∫ tM

tm

f(x(t), y(t), z(t))
ds

dt
dt =

∫ tM

tm

f(x(t), y(t), z(t))

√
(
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2dt.

This is indepednent of the chosen parameterization of C, and even of the orientation.

Line integral of a vector field along a curve: let F = (P,Q,R) be a vector field
defined along the parameterized curve r(t).∫

C

F · dr =
∫ tM

tm

F (x(t), y(t), z(t)) · r′(t)dt =∫ tM

tm

P (x(t), y(t), z(t))x′(t) + Q(x(t), y(t), z(t))y′(t) + R(x(t), y(t), z(t))z′(t)dt.

Notice that we are integrating the tangential component of F along the curve: that
is, the line integral may interpreted as the work done in moving a particle through
a field of forces F along the path C.

The line integral of a vector field is independent of the parameterization except
that it depends upon the orientation of C: if we traverse C in the opposite direc-
tion, r′(t) changes sign, and the line integral would change by a factor of −1. Thus
we now write C meaning an oriented curve – i.e., traversed in a fixed direction
(this is equivalent to specifying a choice of unit vector on the tangent line to C at
each point). If we wish to traverse the same curve but in the opposite direction,
we use the notation −C. In particular, we have∫

−C

F · dr = −
∫

C

F · dr.

If r(tm) = r(tM ) – i.e., if the initial and terminal points coincide – C is said to
be closed (there are, of course, still two orientations!), and one sometimes writes∮

C
F ·dr for line integrals around closed curves. This notation is really ornamental:

nothing would change if we didn’t include it. (A similar comment holds for ∂f
∂x : if

we wrote instead df
dx , what else could possibly be meant?)

7. Conservative vector fields and the Fundamental Theorem

A vector field F is conservative if for any closed curve C in the domain of F ,∮
C

F · dr = 0.3

A vector field F is path-independent if for any two oriented curves C1 and C2 in
the domain of F with common initial point P and terminal point Q,

∫
C1

F · dr =∫
C2

F · dr. For a path-independent vector field, it makes sense to write
∫ Q

P
F · dr

for the line integral of F from any initial point P to any terminal point Q.

3It suffices for the line integral to be zero for all simple closed curves, i.e., without self-
intersection. We will usually work with simple curves without further comment.
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A vector field F is a gradient field if there exists a scalar-valued function f(x, y, z)
defined on the entire domain of F such that ∇f = F .

Theorem 1. (Fundamental Theorem of Calculus for Line Integrals) The properties
of being conservative, path-independent and a gradient field are all equivalent: when
any one holds, so do both of the others. Moreover, when they do hold, we can use
the function f to evaluate the line integrals as in one-variable calculus:∫ Q

P

F · dr = f(Q)− f(P ).

From the section on vector fields, we saw that curl(∇(f)) = 0; that is, conservative
vector fields are irrotational. (Recall that we argued for this physically, in terms of
“energy” being gained or lost.)

This provides a way to show that a vector field F is not conservative: namely,
show that its curl is nonzero.

Warning: If F has singularities, it is NOT necessarily true that curl(F ) = 0
implies F is conservative.

Example: Let F (x, y, z) = ( −y
x2+y2 , x

x2+y2 , z). We remarked in Section 5 that F

has singularities along the z-axis. Moreover, you should check that curl(F ) ≡ 0 for
all points at which F is defined (i.e., except when x = y = 0). On the other hand,
let C be the unit circle in the xy-plane (z = 0) oriented counterclockwise. Drawing
a picture of the vector field indicates that for every point on the circle F points in
the same direction as the tangent vector, which means that the line integral must
be positive. A calculation shows

∮
C

F · dr = 2π, which is not zero. Therefore F
is an irrotational vector field which is not conservative.

Advice: If you are asked, “Show that F is conservative,” the best way to go is
to explicitly find the function f such that ∇f = F : there is a procedure for this
involving repeated integration and differentiation: see page 500 of your text. Check-
ing that curl(F ) = 0 may not be sufficient, as the previous example shows; more
practically, it is likely that the next part of the question will be to compute the line
integral of F along any curve from P to Q, and for this you will probably want to
use the fundamental theorem anyway.

8. Green’s Theorem

In this section everything takes place in the plane.

Normal line integrals in the plane: if C is a simple closed curve in the plane,
it has a natural orientation in which we keep the bounded region R which it en-
closes on our left. Accordingly, we can define on any point of C an outward unit
normal n̂, which is always 90 degrees to the right of the tangent vector to C in
the natural (counterclockwise) orientation. Usually we have been integrating F ·v,
the tangential component of the vector field. But nothing stops us from integrating
the normal component instead: indeed the normal line integral∮

C

F · n̂ds
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is precisely giving the flux of F through C, the boundary of the region R. Since
we saw that the divergence equals the flux density, and in general the integral of
“something density” should be “something” (this is what density means), this (at
least) suggests the following result.

Theorem 2. (Green’s Theorem in Divergence Form) Let R be a region in the plane
whose boundary is C. Then, with orientations as discussed above,∫ ∫

R

Div(F )dA =
∮

C

F · n̂dS.

By formal manipulations (involving turning of vector fields), this version of
Green’s Theorem can be shown to be equivalent to the following version:

Theorem 3. (Green’s Theorem, Curl Form) Let R be a plane region bounded by a
simple closed curve C. Then∫ ∫

R

curl(F ) · k̂dA =
∫ ∫

R

∂Q

∂x
− ∂P

∂y
dA =

∮
C

F · dr.

A generalization: Green’s Theorem continues to hold for planar regions R which
have several boundary components, provided they are oriented appropriately – we
traverse each boundary component so that the interior of R is on our left. We write
∂R for the boundary of R. Then∫ ∫

R

∂Q

∂x
− ∂P

∂y
dA =

∮
∂R

F · dr.

This general version is useful in dealing with singularities of vector fields: suppose
that F has a singularity at P (and, for simplicity, nowhere else). Let C1 and C2

be two simple closed curves oriented counterclockwise, each enclosing P , and such
that C1 is in the interior of C2. Both C1 and C2 bound regions of the plane, but
Green’s Theorem cannot be applied directly to either of these regions, since F has a
singularity at P which is contained in both. However, let R be the annular (= ring-
shaped; think Seigneur d’anneaux ) region between C1 and C2. Here ∂R = C2−C1,
by which we mean that in order to get the boundary of R on our left we traverse
C2 counterclockwise but C1 clockwise. Then Green’s Theorem applies on R, and
says ∫ ∫

R

curl(F )dA =
∫

C2−C1

F · dr =
∮

C2

F · dr−
∮

C1

F · dr.

For example: suppose that F is irrotational: curl(F ) ≡ 0. Then the left-hand side
is zero, and we are getting that

∮
C1

F · dr =
∮

C2
F · dr. That is, all line integrals

of F along simple closed curves winding counterclockwise around P have the same
value, so in order to evaluate any one of them we can choose whichever closed curve
makes the computation easiest. This was the key to Problem 3d) on the second
midterm, which was taken from #26 in Section 9.12.

The Area Formula: Let F = 1
2 (−ydx + xdy). Note curl(F ) = 1. Let R be a

plane region bounded by a simple closed curve C. By Green’s Theorem we get a
formula for the area of R, namely

area(R) =
∫ ∫

R

1dA =
∫ ∫

R

curl(F )dA =
∮

C

1
2
(−ydx + xdy).
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9. Surface integrals, Stokes’ Theorem, the Divergence Theorem

Let S be the graph of z = f(x, y) over some planar region R. We computed the
surface area element dS; it is

dS =

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2dA.

Thus the surface area of S is∫ ∫
S

1dS =
∫ ∫

R

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2dA.

This allows us to integrate scalar-valued functions g(x, y, z) defined on the surface
S: ∫ ∫

S

gdS =
∫ ∫

R

g(x, y, f(x, y))

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2dA.

We are more interested in integrating vector fields: if F = (P,Q,R) is a vector field
defined on a surface S, we want a notion of a surface integral – which should be
compared to the normal line integral along a curve rather than the more conven-
tional tangential line integral. In particular, if S is a closed surface, then we want
the surface integral of F over S to compute the flux of F through S.

We need an orientation of S, which is a consistent (continuous) choice of unit
normal vector n̂ at each point of S. (For some surfaces – such as the Mobius strip
– no such consistent choice of normal vector is possible. However, since we want to
do surface integrals we do not meet such surfaces in this course.)

If (S, n̂) is a surface together with a choice of normal vector, then the surface
integral of F along S is by definition∫ ∫

S

F · n̂dS =
∫ ∫

R

F · n̂

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2dA.

The case of interest to us is when S is given as the graph of z = f(x, y) over R,
there is a preferred choice of normal, the upward normal. Define N = (1, 0, ∂f

∂x )×
(0, 1, ∂f

∂y ) = (−∂f
∂x ,−∂f

∂y , 1). (Compare with the discussion on page 4: this really
does give a normal vector to the surface: since the z-component is always one, it
points in an upward direction rather than a downward direction.) As a bonus, we

have ||N|| =
√

1 + (∂f
∂x )2 + (∂f

∂y )2 = dS
dA , so that n̂ = N/||N||, but N is actually

more useful than n:∫ ∫
S

F ·n̂dS =
∫ ∫

S

F ·N/||N||||N||dA =
∫ ∫

R

F (x, y, f(x, y))·(−∂f

∂x
,−∂f

∂y
, 1)dA.

As with line integrals, if we switched the orientation by changing n̂ to −n̂, the
surface integral would be multiplied by a factor of −1.

Theorem 4. (Stokes’ Theorem) Let (S, n̂) be an oriented surface in R3 with bound-
ary curve(s) ∂S. We orient each boundary component so that as we walk along the
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top of the surface S – as specified by n̂ – the interior of S is on our left. Then∫ ∫
S

curl(F ) · n̂dS =
∫

∂S

F · dr.

Notice that if S = R is a planar region, then dS = dA, n̂ = k̂, and we recover
Green’s Theorem. (Conversely, one way to establish Stokes’ Theorem is to divide
the surface into very small pieces, argue that each piece is approximately planar,
and apply Green’s Theorem.)

Theorem 5. (Gauss’ Theorem aka The Divergence Theorem) Let V be a region in
space with boundary surface(s) ∂V , each oriented via outward normals. Then∫ ∫ ∫

V

Div(F )dV =
∫ ∫

∂V

F · n̂dS.

An application of Stokes’ theorem: let F be a vector field defined on a region V of
R3 enjoying the following property: every simple closed curve C contained in V is
the boundary of at least one surface S contained entirely in V . We claim that on
such a V , every irrotational vector field is conservative.

Indeed, let C be the simple closed curve, let S be a surface such that C = ∂S,
and apply Stokes’ Theorem to S: we get∮

C

F · dr =
∫ ∫

S

curl(F ) · n̂dS =
∫ ∫

S

0 · n̂dS =
∫ ∫

0dS = 0.

The condition that every simple closed curve in V bounds a surface is true when V
is all of three-dimensional space, i.e., for vector fields with no singularities. More
generally, it is satisfied when the domain V of F is simply connected: that is,
when any lasso in V can be contracted to a point without leaving V . This is not
exactly the same as saying that V has “no holes”: indeed, if F has only finitely
many singularities, then this will not stop us from contracting our lasso: we can
bring it over or under any isolated points. On the other hand, consider again the
vector field

F (x, y, z) = (
−y

x2 + y2
,

x

x2 + y2
, z).

This F is not defined when x = y = 0, i.e., along the entire z-axis. The unit circle
C in the xy-plane gives an example of a lasso which cannot be contracted to a point
in V : it “gets caught” on the z-axis. Thus the domain of F is not simply connected.
Moreover, we saw that

∮
C

F · dr = 2π 6= 0, so that F is NOT conservative: this
shows that the unit circle C is not the boundary of any surface S which does not
meet the z-axis.4

In summary, depending upon the “shape” of the domain V , it may or may not
be the case that every irrotational vector field defined on all of V is conservative:
it is safest to actually find an explicit function f such that ∇f = F .

4In fact this gives a very strange proof that no such surface exists: we deduce this very

geometric fact from a certain integral being 2π and not zero! The idea of turning this argument
around and studying the “topological” properties of a region V via integrals of vector fields on

this region was pursued and vastly generalized in the twentieth century by Gustave de Rham;

the resulting field, known now as de Rham cohomology, is a major branch of contemporary
mathematics.


