
INTRODUCTION TO THE REAL SPECTRUM

PETE L. CLARK

1. Introduction

About eighteen months ago I was trying to learn a little bit about model theory
for a student conference (the 2003 Arizona Winter School) explaining the connec-
tions between model theory and arithmetic geometry. There are indeed deep and
important connections here, and I was quickly convinced that model theory is an
area of mathematics that it is good for everyone to know at least a little bit about,
but that is not my point here.

Rather, while reading a basic text, they cited as examples of basic algebraic struc-
tures: group, ring, module, field, ordered field, . . . , and here I stopped: ordered
field?!? Not since the tedious axiomatic description of R in my first undergraduate
analysis class had I even encountered the term; what kind of loon would regard an
ordered field as an object as basic as the others in the list?

This talk (given in 12/04 at Colorado College) is a meditation on how wrong I was.1

After a brief review of the notion of an ordered field (it’s what you think it is!), we
will aim to engage – and to some extent, to answer – the following questions:

• Which fields can be ordered?
• If a field can be ordered, in how many different ways can it be ordered?
• What information about a field is encoded in the set of all of its orderings?
• Can we regard the set of orderings of a field as some kind of space?
• When the field is the field of functions of an algebraic variety over a real-closed
field R, how is this space related to the set of R-points of the variety?

2. Ordered fields and formally real fields

By an ordering < on a field F we mean a total ordering on the field which is
compatible with the field axioms in the following sense:

(1) x1 < x2, y1 < y2 =⇒ x1 + y1 < x2 + y2.

(2) x > 0, y > 0 =⇒ xy > 0.

Let us repackage these axioms slightly in a more convenient form. Namely, for any
ordering, define the positive cone P := {x ∈ F | x ≥ 0}2. Then P satisfies the

1§3 was omitted in the talk itself. As of late December 2006, I have made some minor changes
and additions. In the last two years I have not made any serious attempts to deepen my un-
derstanding of this material or incorporate it into my own research, but I still find the subject
striking and elegant, and I hope the reader will learn enough to feel the same way.

2Note that, unfortunately, zero is in the positive cone. The more pedantic terminology “non-
negative cone” has not caught on.
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following properties (here we use that for a subset S ⊂ F , −S = {−s | s ∈ S}):

(a) P + P ⊂ P .
(b) P · P ⊂ P .
(c) P ∪ (−P ) = F .
(d) P ∩ (−P ) = 0.

Remark: In the presence of (a) and (b), (d) is equivalent to P ∩ (−P ) 6= F and also
to −1 6 ∈P ∩ (−P ).

Conversely, it is immediate to check that starting with a subset P ⊂ F satisfy-
ing the given properties, one gets an ordering by decreeing x < y iff y − x ∈ P . In
the sequel, we will allow ourselves to do something that the analytic philosophers
would not like, namely we will call P itself an ordering.

Note that 1 ∈ P : indeed exactly one of 1 and −1 is in P , and if −1 were in P
then (−1) · (−1) = 1 would be in P , so it’s definitely 1 that’s in P . Similarly, for
any a ∈ F , either a ∈ P or −a ∈ P , so either way (±a)2 = a2 ∈ P . From this it fol-
lows that any element of the form a2

1+· · ·+a2
n lies in P . Denoting the set of all sums

of squares in F by Σ¤, we get that elements of Σ¤ must be positive in any ordering.

Example 0: Of course the real numbers R with the usual < forms an ordered
field. In fact, since for any nonzero real number a, exactly one of a and −a is a
sum of squares, Σ¤ itself forms an ordering in R, so the usual ordering on R is the
unique ordering.

Example 1: If F0 ⊂ (F, P ) is a subfield of an ordered field, then P0 := P ∩ F0

gives an ordering, i.e., a subfield of an ordered field gets an induced ordering. Since
R has plenty of subfields, this gives lots of examples of ordered fields. For in-
stance, the rational field Q ⊂ (R, <) gets a canonical ordering. Using the platitude
1
a = 1

a2 · a, one checks that if a ∈ ∑
¤, so is 1

a . Thus, since every positive integer is
a sum of squares,3 also in Q one has the property that either x or −x is a sum of
squares, so the usual ordering on Q is again the unique one.

Example 2: F = Q(
√

2). There are two embeddings F ↪→ R which differ from
each other by the nontrivial automorphism of F , which carries

√
2 7→ −√2. (Alge-

braically speaking,
√

2 just denotes one of the two roots of the polynomial X2 − 2;
except by choosing an embedding into R, there is no preference given to one or the
other root.) In one of these embeddings,

√
2 goes to the positive real number whose

square is 2, and in the other one it goes to the negative real number whose square
is 2. Thus the two embeddings give distinct orderings, and it is easy to check that
these are the only two orderings of F . In general, the orderings on any number
field correspond K correspond bijectively to the embeddings from K into R (“the
real places”); in particular, they are finite in number.

Non-example 1: F = Q(
√−1). Since −1 = (

√−1)2 ∈ ∑
¤, any ordering on F

3It is a famous theorem of Lagrange that every positive integer is a sum of at most four squares,
but here it suffices to note that the positive integer n can be represented as 12 + . . .+12 (n times).
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would have −1 in its positive cone, a contradiction.

Definition: A field F is formally real if −1 is not a sum of squares of elements
of F . Now, we may apply the same reasoning as in Non-example 1:

Observation: A field F which admits an ordering is necessarily formally real.

Non-example 2: No field of characteristic p > 0 is formally real, since −1 = 1+. . .+1
((p− 1) times). So only fields of characteristic zero can admit orderings.

Non-example 3: No p-adic field is formally real. Indeed, it suffices to look at
the fields Qp. If p ≡ 1 (mod 4) then −1 is a square in Qp. If p is an odd prime,
then it is well-known that X2 + Y 2 = −1 has a solution over Fp, and Hensel’s
Lemma lifts it to a solution in Zp, so −1 is a sum of two squares in Qp. A slightly
more elaborate application of Hensel’s Lemma shows that −1 is a sum of 4 squares
over Q2.

Remarkably, the converse of the above observation holds.

Theorem 1. (Artin-Schreier) Any formally real field admits at least one ordering.

We will sketch the proof, if only to emphasize that it does not in any sense construct
an ordering on a formally real field. Rather, given a formally real field, what we
can produce is a canonical preordering. A preordering is a subset T ⊂ F satisfying
axioms (a), (b) and (d) for orderings, but in place of (c) the weaker:

(c′)
∑

¤ ⊂ T .

Now what is clear is that a field is formally real iff
∑

¤ is a preordering on F .
Moreover, this is the unique minimal preordering in any formally real field. The
union of a chain of preorderings is itself a preordering, so Zorn’s Lemma4 entitles
us to a preordering which is not properly contained in any other preordering, and
the point is to show that any maximal preordering does in fact satisfy the property
T ∪ (−T ) = F , so gives an ordering. For this we need:

Lemma 2. For a preordering T ⊂ F and an element a ∈ F , the following are
equivalent:
(i) the set T [a] = {x + ya | x, y ∈ T} is a preordering;
(ii) a is not in −T .

Proof: Since no preordering can contain both a and −a, (i) =⇒ (ii) is clear.
Convsersely, suppose a is not in −T . We claim that −1 is not in T [a], which is
enough, since if T [−a] contained any nonzero element t and its additive inverse −t,
it would contain −t · t · 1

t2 = −1. Now, if −1 = x + ya, then −ya = 1 + x is a
nonzero element of T , so a = −y−2(1 + x) ∈ −T , a contradiction.

Thus a maximal preordering T ⊂ F must satisfy T ∪ −T = F , i.e., T is an or-
dering. This completes the proof of the Artin-Schreier theorem. In fact, we showed
more:

4Added on 12/30/06: I presume that the Artin Schreier theorem requires the Axiom of Choice
in the formal sense but have not been able to track down a reference.
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Corollary 3. Let F be a formally real field and x be any element of F which is
not a sum of squares. Then there exists an ordering on F in which x is negative.

Using Corollary 3 and a dollop of model theory, one gets an especially short and
perspicuous affirmative solution to Hilbert’s 17th Problem: a positive semidefinite
polynomial f ∈ R[t1, . . . , tn] is a sum of squares of rational functions.5

We give some examples of using the Artin-Schreier theorem to deduce that or-
derings must exist.

Proposition 4. F can be ordered iff the rational function field F (t) can be ordered.

Proof: If F (t) is formally real, so, of course, is its subfield F . Inversely, suppose
F (t) is not formally real:

−1 =
(

p1(t)
q1(t)

)2

+ . . . +
(

pn(t)
qn(t)

)2

.

Now, seeking a contradiction, suppose F is formally real. Then F has characteristic
zero, so in particular is infinite; hence there is an element a of F which is not a
root of any of the finitely many polynomials qi(t). Plugging in t = a, we get that
−1 is a sum of squares in F , so F is not formally real.

Exercise 1: Prove that F can be ordered if and only if F ((t)) can be ordered.

Exercise 2: Let F =
⋃

α∈I Fα be an arbitrary union of subfields Fα. Show that F
can be ordered if and only if each Fα can be ordered. Conclude that there exist
orderable fields of all cardinalities, e.g., rational function fields over Q in lots of
indeterminates.

Remark: Lang proved a vast generalization of Proposition 4: if V/R is a (geo-
metrically irreducible) algebraic variety and F = R(V ) is its function field, then
F is formally real iff V has a nonsingular real point. For instance, for a ∈ R, the
quotient field Fa of the ring R[x, y]/(x2 + y2 − a) is formally real iff a > 0.

3. Orderings on rational function fields

We now know that for any formally real field F , F (t) admits orderings – but
what are they? We can strengthen Proposition 4 by showing that for any ordered
field (F, P ), there are orderings on F (t) which extend the ordering P on F .

There is one ordering P∞ in which we decree a polynomial antn + . . . + a0 to be
positive iff its leading coefficient an is a positive rational number.6 This ordering
has the property that for any rational number a, t−a > 0, i.e., t > Q: t is said to be
“infinitely large.” An ordered field for which there exists an element which is larger
than every rational number (or equivalently, than any positive integer) is called
non-Archimedean. In fact P∞ is the unique ordering on Q(t) in which t is infinitely
large. There is also a unique ordering P−∞ in which −t is infinitely large (we leave
it as an exercise to describe it). Similarly there is a unique ordering P0+ in which

5Thus you see that model theory has its uses, and formally real fields are especially interesting
to model theorists.

6Since in any ordered field, a nonzero element a is positive iff a−1 is positive, an ordering on
an integral domain always extends uniquely to its quotient field.
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1
t is infinitely large: a polynomial is said to be positive if its smallest degree term
is positive; similarly there exists an ordering P0− for which −1

t is infinitely large.
There are lots more orderings: indeed if F is any field, the image ϕ(P ) of P under
an automorphism ϕ of F is another ordering. The group of automorphisms of F (t)
inducing the identity on F is the group of Mobius transformations t 7→ at+b

ct+d , where
ad − bc 6= 0. Let x be any element of F . Under the automorphism t 7→ 1

t−a P∞
maps to an ordering Pa+ in which 1

t−a is infinitely large: here t is bigger than a
but is smaller than any element b < a: we think of t is being infinitely close to but
to the right of a. And there is a similar ordering Pa− in which t is infinitely close
but to the left of any given element a of F .

Does P∞+ ∪P∞− ∪{Pa+ ∪Pa− |a ∈ F} give all orderings on F (t) extending the
ordering P on F? This is a surprisingly intricate question in general. Later we will
come back to this point and see one choice of F for which the answer is “yes” and
one for which the answer is “no.”

Exercise 3: Show that a field admits an Archimedean ordering if and only if it
can be embedded in R. Deduce from Exercise 2 that “most” formally real fields
have cardinality too large to admit Archimedean orders. (There are also countable
fields admitting only non-Archimedean orders.)

Exercise 4: Let (F, P ) be an ordered field. Show that there are precisely two
orderings on F ((t)) extending the ordering P on F .

4. Pfister’s theorem

We now know that the collection of all orderings of a formally real field can be quite
complicated. Is there a good reason to try figure out what they all are?

To show you that the answer is “yes,” I want to present a result due to Pfis-
ter. This is a result about quadratic forms, so let me give a brief review. A rank n
quadratic form f(x1, . . . , xn) over a field F – whose characteristic is not 2! – is just
a homogeneous polynomial in which every term has degree two. Such a polynomial
can be given by a matrix product f(x1, . . . , xn) = vAvT , where v = [x1 . . . xn] and
A is symmetric. Two quadratic forms are isomorphic if we can get from one to
the other by making an invertible linear change of variables – in terms of matrices,
this means we pass from A to PAPT , where P is invertible. Every quadratic form
is isomorphic to a diagonal quadratic form a1x

2
1 + . . . + anx2

n, which we denote by
〈a1, . . . , an〉. We also assume that our form is nondegenerate, which amounts to
saying that none of the ai’s are zero.

J.J. Sylvester defined an invariant of a nondegenerate quadratic form f = 〈a1, . . . , an〉
over R: its signature, which is the number of positive entries minus the number of
negative entries. (One must show that this difference is well-defined independent
of the choice of diagonalization – this is Sylvester’s Law of Inertia.) It is easy to
see that a nondegenerate rank n quadratic form is determined up to isomorphism
by its signature.

This can be generalized as follows: if P is any ordering on F , the P -signature
σP (f) is the number of P -positive entries (ai ∈ P ) minus the number of P -negative
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entries (−ai ∈ P ) – again, this turns out to be well-defined. So for any field F (still
not of characteristic 2), one can assemble a total signature invariant: let X(F ) be
the set of all orderings on F (it will be empty iff F is not formally real, but this
case is not excluded); for any quadratic form f = 〈a1, . . . , an〉, σ(f) is the function
X(F ) 7→ Z carrying P 7→ σP (f).

It is too much to ask that quadratic forms over an arbitrary field F are deter-
mined up to isomorphism by its rank and total signature (for instance this would
say that all conics aX2 + bY 2 + cZ2 over Q with a, b, c > 0 are isomorphic, and this
is certainly false). But it is amazingly close to being true: there is a natural addi-
tion law on quadratic forms: 〈a1, . . . , an〉 ⊕ 〈b1 . . . , bm〉 := 〈a1, . . . , an, b1, . . . , bm〉.
In particular we have for any positive integer k, k · f = f ⊕ f ⊕ . . .⊕ f , k times.

Theorem 5. (Pfister’s local-global theorem) Suppose f and g are two nondegenerate
quadratic forms of the same rank over a field F .
a) If σ(f) = σ(g), then there exists a positive integer ` such that 2` · f ∼= 2` · g.
b) If S : X(F ) → Z is any function, there exists a positive integer m such that
2mS = σ(f) for some quadratic form f .

In other words, the problem of classifying all quadratic forms over any field F is
solved by the total signature invariant “up to 2-primary torsion.” One amazing
thing about Pfister’s result is that it is nontrivial even when F is not formally real:
in this case X(F ) is empty, and since there is exactly one function from the empty
set to Z, we get that any two quadratic forms f and g of the same rank are such
that 2`f ∼= 2`g for sufficiently large `.

5. A topology on X(F )

There is a natural topology on X(F ): namely the open sets are given by finite
intersections of (subbasic) open sets of the form

H(a) = {P ∈ X(F ) | a ∈ P}
as a ranges through nonzero elements of F : that is, H(a) is the set of orderings
which regard a as positive. Note that H(−a) = X(F ) \ H(a), so that the H(a)
and (and hence also all the basis elements) are closed as well open: this implies
that X(F ) is totally disconnected and Hausdorff. It is also compact. To see this,
note that an ordering P of F gives rise to an element of Y = {±1}F× , namely for
each nonzero element a, we assign +1 if a ∈ P and −1 if −a ∈ P . Giving {±1}
the discrete topology and Y the product topology, by Tychonoff’s theorem it is
a profinite – i.e., compact Hausdorff totally disconnected – space. It remains to
be shown first that the topology on X(F ) defined above is the same as the topol-
ogy it gets as a subspace of Y ,7 and second that X(F ) is closed as a subspace of
Y . Neither of these is especially difficult and we leave them to the interested reader.

If F1 ↪→ F2 is a field embedding, then the aforementioned process of restricting
orders on F2 to orders on F1 gives a map X(F2) → X(F1) which is easily seen to
be continuous. So X is a functor from fields to profinite topological spaces. Our
second “converse theorem” identifies its image:

7One might wonder why we didn’t save ourselves the trouble and define the topology on X(F )
in this latter way. It turns out that the sets H(a), called the Harrison subbasis, are important in
their own right.
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Theorem 6. (Craven) Any profinite space X is homeomorphic to X(F ) for some
field F .

In full generality the proof is rather involved. However, the following exercises out-
line a (new?) proof in case X has a countable basis (or equivalently, by Urysohn’s
theorem, is metrizable).

Exercise 5: Let F = lim
−→α

Fα be a direct limit (i.e., directed union) of fields. Show

X(F ) = lim
←−α

X(Fα) as topological spaces.

Exercise 6: Let F/Q be a (possibly infinite) formally real Galois extension. Show
that Aut(F ) = Gal(F/Q) acts continuously and simply transitively on X(F ), and
conclude that in this case X(F ) is homeomorphic to the underlying topological
space of a profinite group. In particular, if F/Q is infinite, X(F ) is an infinite
profinite space without isolated points and with a countable basis, so is homeomor-
phic to the Cantor set. (A good example is F = Q({√p}) as p ranges over all the
prime numbers: here Aut(F ) ∼= (Z/2Z)ℵ0 really looks like the Cantor set.)

Exercise 7*: Use weak approximation of valuations to show that any inverse system

. . . → Sn+1 → Sn → . . . → S1

of finite sets can be realized as the system of X(Fn)’s where

F1 . . . ↪→ Fn ↪→ Fn+1 ↪→ . . .

is a tower of number fields. Conclude that any profinite space with a countable
basis arises as the space of orderings of an algebraic field extension of Q.

6. Orderings on rational function fields, again

Let us revisit the case of the orderings on F (T ) extending a given ordering P on
F . Recall that we found infinitely many orderings: indeed two for each point on
the projective line P1/F .

Suppose that F = Q (with its unique ordering); have we found all the orderings? It
cannot be so – the subspace P1(Q) ⊂ X(Q(t)) with its natural topology is without
isolated points. But there is no such thing as a countably infinite compact Haus-
dorff space without isolated points – this contradicts the Baire category theorem.
There must therefore be more orderings. They arise as follows: if α ∈ R is any real
number (rational or not), the two orderings Pα+, Pα− on R(t) restrict to order-
ings on Q(t), and it is easy to see that all these orderings are distinct. Moreover,
if α ∈ R is transcendental, then we get an Archimedean ordering by embedding
Q(t) ↪→ R as t 7→ α. We claim that these are all the orderings on Q(t) and give the
main idea the proof: an ordering P on F (t) for any t determines a gap in F , i.e.,
a partition of F into two subsets L and R (it is permissible for one of them to be
empty) such that every element of L is less than every element of R. Indeed, we
put L := {x ∈ F | x < t} and R := {x ∈ F | x > t}. We leave it to the reader
to figure out how to recover the ordering from the gap (except that in the case of
orderings corresponding to irrational algebraic numbers, each gap corresponds to
two orderings).
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Now if F = R, things are simpler: when L and R are nonempty, then either L
contains its least upper bound α, in which case the ordering is Pα+, or R contains
its greatest lower bound α, in which case the ordering is Pα−. Thus:

Proposition 7. Let F = R(t). Then X(F ) = {P+, P− | P ∈ P1(R)}.
Here is a topological description of X(R(t)): P1(R) itself would just be the one-
point compactification of R, i.e., a circle S1. A good way to picture X(R(t)) is as
the set of “oriented points” on the circle: i.e., we get a point of P1(R) together with
a local orientation. It is in fact the case that the quotient space X(R(t))/ ∼ where
P+ ∼ P− is just the usual circle S1. In fact, if F = R(C) is the function field of
any (geometrically irreducible) curve C/R, then one can show that X(F ) is again
the set of oriented real points of C. To be sure, this is a bit strange: X(R(C)) is
a totally disconnected space, but it has as a continuous image via a very simple
quotient map the honest space of real points C(R). It thus seems clear that the
algebraic notion of a space of orderings “knows about” the topological space C(R).

Question 8. Is there some more direct order-theoretic construction that will give
us the topological space C(R), and that can be generalized to higher dimensional
varieties and other fields?

Lang’s Theorem (end of §2) provides some reason to suspect an affirmative answer:
using the correspondence between one variable function fields and smooth algebraic
curves, we get at least that C(R) 6= ∅ ⇐⇒ X(R(C)) 6= ∅. For d > 1, there is
no unique way to go from a function field F of transcendence degree d over R to a
d-dimensional algebraic variety V/R: the function field is only a birational invariant.
It is interesting to note that Lang’s theorem implies that having a smooth rational
point is a birational invariant of a real algebraic variety. Indeed this is true for
varieties over any field and is due, independently, to Nishimura and Lang himself.8

So those with experience with conventional algebraic geometry and the connections
to valuation theory (especially, the “Zariski Riemann surface”) might suspect that
we should rather be looking at orderings on rings rather than just fields.

7. The real spectrum of a commutative ring, of an R-variety, of a
scheme

The answer to Question 8 is yes, and as hinted at just above, the key idea is to
“cross-breed” the notions of space of orderings and the prime spectrum of a commu-
tative ring. We can only outline it briefly, hoping that its appeal will nevertheless
be evident.

Let A be any commutative ring. We will define the notion of an ordering on
A. The set of all orderings on A, endowed with a topology as above, will be the
real spectrum of A, denoted Specr(A).

An ordering on A can be given by a “cone” T ⊂ A which is now required to
satisfy the following properties: T +T ⊂ T , T ·T ⊂ T , T ∪−T = A, and: lastly but
most importantly, the axiom P ∩−P = 0 for fields is replaced by: T ∩−T = p is a
prime ideal, called the support of T . Here a >T 0 means that a is in T and is not
in −T . Note the essential difference: elements in p = supp T are neither T -positive

8I wonder whether Lang was motivated by his work on the real case; it may well be so.
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nor T -negative; thus, if p is not the zero ideal, T is not a total ordering.

Another way of saying the same thing is that an ordering on A is given by a
choice of prime ideal p of A together with an ordering P on the quotient field Fp

of the integral domain A/p. (We recover T as the subset of elements a of A such
that the image of a in A/p ⊂ Fp is non-negative with respect to the ordering P .)

The set of all orderings, Specr(A), is topologized as follows: a subbasis of open
sets is given by the sets

H(a) = {T ∈ Specr(A) | a >T 0}
for all a ∈ A. With this topology, Specr(A) becomes quasi-compact but not nec-
essarily Hausdorff. Because orderings need not be total orderings, we will have
H(−a) 6= Specr(A) \H(a) in general. Indeed, Specr(A) is usually not totally dis-
connected. This is good news: the topology on Specr(A) is not just some formal
thing but contains honest geometric information about A.

The second definition of orderings gives us a canonical ”forgetful” map f from
Specr(A) to the usual prime spectrum Spec A: (p, P ∈ X(Fp)) 7→ p). This map
is continuous, and its image is precisely the set of primes whose quotient fields
Fp are formally real (“real primes”). In fact the fibre f−1(p) over a real prime is
homeomorphic to X(Fp).

On the other hand, Specr(A) itself has the structure of a partially ordered set:
we write T1 ≤ T2 if T1 ⊂ T2. The closed points of Specr(A) are precisely the
orderings which are maximal elements of this poset. Because T1 ⊂ T2 implies
supp T1 ⊂ supp T2 and distinct orderings with the same support are incomparable,
an ordering whose support is a maximal ideal is necessarily maximal. However the
converse is not true, and we will soon see an example. Denote by MaxSpecr(A)
the subset of maximal orderings with the induced (subspace) topology. This is a
compact Hausdorff space (but not totally disconnected!).

If you are familiar with the topology of SpecA, you know that there is a simi-
lar but simpler partial ordering (just inclusion of ideals) and that all the above
statements are true for Spec A. However, the following fact is true for Specr A and
almost never for Spec A: namely, the collection of orderings T ∈ Specr A containing
a given ordering T0 is linearly ordered. It follows that every ordering is contained
in a unique maximal ordering, which gives us a retraction map

r : Specr(A) → MaxSpecr(A)

sending T to the unique maximal ordering containing it. This map is continuous
and is in fact a quotient map. In other words, this construction is just what we
need in order to “depointilize” the space X(R(t)).

Example: A = R[t]. A is a principal ideal domain, and Spec A consists of the
zero ideal (0) – the “generic point” – whose quotient field is F := R(t) that we
studied above – and whose closed points correspond to maximal ideals, i.e., either
to polynomials of the form t − a for a in R or to irreducible quadratic polynomi-
als. The quotient field of A/(t − a) is R, which admits a unique ordering, so to
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each a ∈ R we get a unique ordering whose prime ideal is (t − a); in the case of
a closed point corresponding to an irreducible quadratic, the quotient field is the
complex numbers, which is not orderable, so these are the points of SpecA which
are not in the image of Specr(A). But don’t forget the generic point (0), each
of whose orderings gives an ordering of A. In other words, we get an embedding
X(R(t)) ↪→ Specr(A). In this context, our above “quotient map” X(R(t)) → S1

is an instance of the above retraction map: the closed point x − a is the unique
maximal point lying over both Pa− and Pa+.

Now in the setting of algebraic geometry, the ring A determines an affine vari-
ety V (as does any finitely generated R-algebra), whose corresponding set of “real
point” V (R) are precisely the maximal ideals whose quotient field is R (rather than
C). For A = R[t], V (R) ∼= R is “the affine line.” The real spectrum “knows all of
this” and more: we find V (R) as a subspace of Specr(A), since each maximal ideal
admits a unique ordering. You can check that the topology V (R) gets as a subspace
is the right one – it really is homeomorphic to the real line. The full space Specr(A)
is an enriched version of V (R). We have also MaxSpecr(A) and the retraction map.
Consider the composite:

V (R) ⊂ Specr(A) r→ MaxSpecr(A).

MaxSpecr(A) consists of all the points on the real line together with two orderings,
±∞, which are maximal despite the fact that their support is not a maximal ideal.
In other words, the embedding gives the two-point compactification of the real line.

This is not quite what we expected (it would have been more reasonable to guess
that the quotient map would have identified ±∞ to get the one-point compactifica-
tion of R, i.e., S1), but it is at least as interesting. This construction can be applied
to any affine R-variety to get a natural compactification, which is very interesting
on purely geometric grounds. If we really wanted to see S1 in the picture, there
are several ways to get it: we could start not with the affine ring R[t] but with
the ring R[x, y]/(x2 + y2 − 1), whose corresponding V (R) is homeomorphic to S1.
(This is a profound difference between algebraic geometry over R and over C: over
the complex numbers, the topological space associated to an affine variety is never
compact, and we must introduce the machinery of projective varieties. But real
projective space RPn is itself the space associated to an affine variety!) Or you can
globalize the construction: to any scheme X (which is a global geometric object
obtained by gluing together different prime spectra Spec A you can associate a real
spectrum Specr X, so in particular one can consider Specr(RP1), whose maximal
spectrum is just S1.

The real power of Specr V comes when V is a variety over a formally real field
which is not R exactly – one can (e.g.) replace R by any real-closed field, a field
which is formally real and for which no algebraic extension is formally real.9 If
V/R is a nonsingular projective variety, then V (R) is a compact manifold: in par-
ticular it has finitely many connected components. If R is replaced by an arbitrary

9In a model-theoretic sense, the real-closed fields are non-standard models of the real numbers,
but they arise naturally in many contexts and indeed are very closely related to the orderings of
a field in a way we have not had time to discuss.
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real-closed field, then one still wants a good notion of the connected components of
V (R) (even though V (R) will, if R is a non-Archimedean field topologized in the
naive way via open intervals, be a totally disconnected space). There are other ways
to get at this – e.g. there is something called “semi-algebraic geometry” in which
polynomial equations are replaced with inequalities – but the point is that Specr V
just as a topological space is exactly the right thing: its connected components in
the usual sense correspond to the semialgebraic connected components (which are
a pain to define).

This is a jumping-off point for some very beautiful (if often difficult) recent re-
search due to, among others, J.-L. Colliot-Thélène and Claus Scheiderer: the usual
(singular) cohomology groups Hi(Specr V,Z/2Z) are closely related to the étale
cohomology groups Hi(Vet,Z/2Z) (which were previously all but ignored because
they can be nonzero for all i) with corresponding implications for the Galois co-
homology of algebraic groups over fields of virtual cohomological dimension one.
In particular, using the real spectrum, Scheiderer proved a local-global principle in
Galois cohomology which is (loosely) analogous to Pfister’s theorem for quadratic
forms.

In summary, the orderings of a field contain vital information – algebraic, geo-
metric, and cohomological – and give rise to algebro-geometric objects which are
themselves quite beautiful and worthy of further study.

Some references: The basic reference for this material – and especially for some
of the omitted proofs on the topology of Specr(A) – is T. Y. Lam’s paper An intro-
duction to real algebra (Rocky Mountain Journal of Mathematics 14 (1984)). There
is much more in this paper that we did not have time to touch upon. The construc-
tion of the real spectrum of a commutative ring is due to M.-F. Coste-Roy (one
person!), and its applications to real algebraic geometry are pursued in the book
Real algebraic geometry by Bochnak, Coste and Coste-Roy. Here the emphasis is
on the topological/analytic side of things. Connections between the cohomology
of the real spectrum of a variety and its étale cohomology have been pursued by
Claus Scheiderer, beginning in his book, Real and étale cohomology. This book is
written at a very high level (familiarity with Grothendieck-style algebraic geometry
is one of the many prerequisites), but it is also written very carefully and there are
some wonderful results. In particular, Scheiderer proves some local-global theorems
in Galois cohomology of algebraic groups (extended in his 1995 Inventiones paper)
that were what piqued my interest in the subject.


