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1. Introduction

These are the extended lecture notes for a talk given in the UGA Number Theory
Seminar on November 5, 2008. The aim is to explore the connections between an-
alytic number theory and classical probability, and also to give a brief background
to some of the most important probabilistic theorems.

In these notes, Section 2 consists of the number-theoretic discussion, whereas Sec-
tion 3 provides the probabilistic background (with relatively few proofs). First we
draw upon topology and group theory to give some examples of probability spaces.
Perhaps the most interesting is the weighted Bernoulli space Bp which models flip-
ping a – fixed but not necessarily fair – coin infinitely many times. In the sequel,
we develop sufficient background to state Chebyshev’s Inequality, the Law of Large
Numbers, the Central Limit Theorem, and the Khinchin-Kolmogorov Law of the
Iterated Logarithm.

The discussion in Section 2 makes reference to these theorems in Section 3 (in
the talk itself, the aforementioned theorems were written up in advance on the side
board). Therefore from a strictly logical point of view it would make more sense
to read Section 3 first and Section 2 second. But almost surely it will be more
interesting to do it the other way around!

2. Some Glimpses of Probability in Analytic Number Theory

A very basic problem in number theory is that of the distribution of arithmetic func-
tions – which for our purposes here, will just be functions f : Z+ → R. Ideally, if f
is an arithmetic function, we would like to determine the asymptotic order of f .
That is we wish to find a simple arithmetic function g such that limn→∞

f(n)
g(n) = 1,

a condition we abbreviate to f ∼ g.

Remark: We assume here that f and g are nonzero for all sufficiently large n.
In many classical situations this need not be the case, but one can at least identify
an infinite subset of Z+ on which f is not zero, and then we want f(n) 6= 0 =⇒
g(n) 6= 0 and lim f/g = 1, where the limit is taken along the nonzero values of f .
Moreover, if limn→∞ f(n) = 0, then we say that f ∼ 0, even though this is not a
formal consequence of the definition.

Remark: f ∼ g is of course an equivalence relation on the set of all ultimately
nonzero arithmetic functions. A better statement of the problem, perhaps, is: for
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a given function f , find the simplest representative of the asymptotic equivalence
class of f .

The example par excellence is the prime number theorem1: if we define π(x) to
be the number of prime numbers p which are at most x, then we have

π(x) ∼ x

log x
∼ Li(x) :=

∫ x

2

dt

log t
.

Although this is a very deep theorem, in some sense the result is surprisingly sim-
ple: most of the other classical arithmetic functions simply do not have enough
regularity in order to have a simple asymptotic expansion. For instance, consider
any of the following functions:

• d(n), the number of divisors of n.
• ω(n), the number of distinct prime factors of n.
• r2(n) = #{(x, y) ∈ Z2 | n = x2 + y2}.
• µ(n), the Möbius function.

Then:

• lim infn→∞ d(n) = 2, whereas lim supn d(n) = ∞.
• lim infn→∞ ω(n) = 1 ,whereas lim supn ω(n) = ∞.
• lim infn→∞ r2(n) = 0, whereas lim supn r2(n) = ∞.
• lim infn µ(n) = −1, whereas lim supn µ(n) = +1.

Thus for each of these functions (and many others) there is no simple asymptotic.
An old trick in analysis is that if the quantity you are looking at doesn’t have the
nice limiting behavior that you want, try averaging. For an arithmetic function f ,
we will consider instead

f : n 7→ 1
n

(f(1) + . . . + f(n)) .

If g is another function such that f ∼ g, we say that f is the average order of g.
As above, if f → 0, we say that the average order of f is 0.

Remark: This usage is not universal. Tenenbaum’s authoritative text Introduc-
tion to Analytic and Probabilistic Number Theory defines “f has average order g”
to be f ∼ g. To see that these are not the same, under the above definition,
then g(n) = 1

k+1nk is an average order for the function f(n) = nk, whereas for
Tenenbaum’s definition clearly nk is an average order for nk. I believe the point is
that Tenenbaum is primarily interested in functions which grow so slowly that this
difference in definitions does not manifest itself.

Anyway, it is indeed more likely that there is a nice average order:

• The average order of r2(n) is π.

Quick comment: This follows almost immediately from the observation that
∑n

i=1 r2(i)

1Due to J. Hadamard and C. de la Vallée Pousssin, independently, both in 1896.
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counts the lattice points on or inside the closed disk with center (0, 0) and radius
√

n.

• The average order of d(n) is log n.

Quick comment: For any two arithmetic functions f and g we have the elementary
identity

N∑
i=1

(f ∗ g)(i) =
N∑

i=1

∑
a | i

f(a)g(i/a) =
N∑

a=1

f(a)
[ N

a ]∑
j=1

g(j).

Applying this with f = g = 1 (constant function), one gets the above result easily.

• The average order of ω(n) is log log n.

Comment: Although this is easier than PNT, it was proved later, by Hardy and
Ramanujan in the early 20th century. We will return to this later.

• The average order of µ(n) is 0.

Comment: Although anyone would guess this, in fact it is by far the deepest of
the statements. It was proven by Landau in 1909 as a consequence of the prime
number theorem. Conversely, it is (comparatively) easy to deduce the prime num-
ber theorem from this statement. That is, this is one of a family of statements that
is known to be “elementarily equivalent” to PNT.

In this last case our intuition that the average value of the Möbius function should be
zero seems motivated by some very rudimentary ideas about probability. Namely,
the function takes on values +1 at squarefree numbers with an even number of
prime divisors and −1 at squarefree numers with an odd number of prime divisors.
Evidently the set of positive integers having a bounded number of prime divisors is
very sparse (although infinite), so the main contribution comes from integers with
many prime divisors. (Indeed, in some sense the previous result says that most
integers of order about n have about log log n prime divisors, although we have to
be careful about this...) It is tempting to regard the parity of a large number as
essentially a coin flip, and we do believe that if we flip a fair coin a large number
of times, then the number of heads minus the number of tails divided by the total
number of flips approaches zero. So we are alluding to a theorem of probability here!

Of course there are two issues here: first, to make precise this result in classi-
cal probability. Second, to understand the relationship between the classical result
and this arithmetic analogue, because of course there are not literally any random
variables here. This is characteristic of the sort of problems we wish to discuss.

In fact we would like to know more:

Maxim of Hard Analysis: For a given function f , instead of (just) finding
an asymptotic function for f – i.e., a simple function g such that f ∼ g – try to
find an explicit error bound: i.e.,

f = g + E,



4 PETE L. CLARK

where E = o(g).

In the prime number theorem, the classical proof gives such an explicit error func-
tion E, but a quite complicated one. For a long time it has been observed empiri-
cally that (i) while π(x) is asymptotic to both x

log x and Li(x), the error |π(x)−Li(x)|
is much smaller than |π(x)− x

log x | and (ii) indeed it seems to be true that the error
|π(x)− Li(x)| is of order approximately

√
x. A more precise result is:

Theorem 1. The following assertions (all of which are conjectured but unproven!)
are equivalent:
(i) For every ε > 0, |π(x)− Li(x)| = o(x1/2+ε).
(ii) |π(x)− Li(x)| = O(

√
x log x).

(iii) The Riemann hypothesis holds.

We have an instance of “almost square root error”: much more than just f ∼ g we
have almost f = g + O(

√
g). This is a whole philosophy about such error bounds:

Maxim of Almost Squareroot Error: (i) A sum of n “random” real or complex
numbers of absolute value 1 is with high probability not much larger than

√
n.

(ii) Conversely, if such a sum is of order smaller than
√

n, then there is sum deter-
ministic phenomenon behind this extreme cancellation.

In fact our maxim gets tested in some of the other examples above: for instance, it
still follows from elementary geometry that

r2(n) = πn + O(
√

n).

Moreover Sierpinski was able to reduce the error to O(n
1
3 ) and there has been much

further work. Hardy and Landau independently showed that the infimum of all δ
such that the error is O(nδ) is at least 1

4 . Recently Cappell and Shaneson released
a preprint showing that the error is Oε(n

1
4+ε) for all ε > 0.

Why are we doing better than squareroot error? The argument for squareroot
error works for the number of lattice points in dilates of any planar region bounded
by a sufficiently nice (e.g. piecewise C1) curve. However, if instead we took the
square centered at the origin and with side length 2N , we find that its area is 4N2

whereas the number of lattice points is (2N + 1)2 = 4N2 + 4N + 1, so the error is
4N + 1: i.e., no better than square root error. For a general body, there are the-
orems which assert that for a sufficiently general rotation the error terms become
smaller. But a circle is already completely symmetric about rotations, so this extra
symmetry leads to better error boundds.

I don’t have time to talk about the Dirichlet divisor problem, which is somewhat
lucky because the situation there is quite similar to r2(n) – “Gauss’ circle problem”
– and I’m not how to justify the better than squareroot error in this case.

Let’s look back at the average value of r2(n): it is the irrational number π. This
is a refinement of the joke that the typical American family has 2.5 children. Of
course no number n has exactly π representations as sums of squares. In fact if
a2 + b2 = n then also (±a)2 + (±b)2 = n and (±b)2 + (±a)2 = n, so – unless n is
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twice a square, which is a neglible set – then whenever r2(n) > 0 we in fact have
r2(n) ≥ 8. Since the average value is π, it follows that the density of the set of
numbers n which are sums of two squares is less than 1

2 , since 1
2 · 8 = 4 > π.

But in fact the density of the set of n for which r2(n) is positive is 0. This is
something that one can prove from the Two Squares Theorem together with the
prieme number theorem in arithmetic progressions (PNTAP). Moreover, it suggests
that we may be missing something by considering only the average order.

Definition: We say that an arithmetic function f has normal order g if for all
ε > 0, the set of n such that |f(n)−g(n)| > ε|g(n)| has density zero. One can chheck
that the normal order of a function is well-determined up to asymptotic equivalence.

It follows from that r2(n), being a function which is zero on a set of density one,
has normal order zero.

On the other hand, it turns out that the normal order of ω(n) is equal to its
average order: log log n. What is different here? In order to answer the question,
we need some way of measuring the deviation of a function from its mean value.
There is a statistical quantity, the variance, which gives an upper bound for the
deviation from the mean value, via Chebyshev’s Inequality.

Hardy and Ramanujan were the first to show that the normal order of ω(n) is
log log n. Their arguments were improved and made more explicitly probabilis-
tic by Turan and later by Erdös-Kac. The final result is a triumph of both the
hard-analytic spirit and probabilistic ideas:

Theorem 2. (Erdös-Kac) For any real numbers a < b, we have

lim
N→∞

1
N

|
{

n ≤ N | a ≤ ω(n)− log log n√
log log n

≤ b

}
=

1√
2π

∫ b

a

e−t2dt.

This is a remarkable result: it transplants the most hallowed result of statistics –
the Central Limit Theorem – into the area of analytic number theory!

Finally, let us come back to the Mertens function M(n) =
∑n

i=1 µ(n). It has
long been known that:

Theorem 3. The Riemann hypothesis is equivalent to: for all ε > 0,

M(n) = Oε(n
1
2+ε).

An interesting wrinkle here is that in the 1890’s Franz Mertens conjectured an even
stronger statement:

Conjecture 4. For all n M(n) ≤ n.

He tested this based on numerical data which is, by modern standards, amusingly
meager (up to about n = 104). The point here is that why in the world would you
expect such a good bound? In fact this was disproved by te Riele and Odlyzko in
1985:

Theorem 5. There is an explicit constant C1 > 1 such that lim supn
M(n)√

n
> 1.
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Stieltjes claimed in 1895 to prove something only slightly weaker: there exists an
absolute constant C such that M(n) ≤ Cn for all n. His proof was never published,
and again it seems very unlikely (but it is a testament to the difficulty of the prob-
lem that we cannot as yet disprove this!).

The question here is as follows: suppose for the sake of argument that M(n) really
were a sum of independent, identically distributed random variables. What would
we expect its upper order to be? Is this “small enough” to prove the Riemann hy-
pothesis? Is there any reason we should expect the error to be better than random?

The Central Limit Theorem tells us that if we were in a random i.i.d. situation, then
indeed the error would be, with probability 1, O(n

1
2+ε) for any ε > 0 and that it

will not be O(
√

n). How much larger than
√

n would randomness predict? The an-
swer is given by the sensational Khinchin-Kolmogorov law of the iterated logarithm.

The question here is not whether the Mertens function is really a sum of ran-
dom variables: it obviously isn’t. The question is how close to random it is, and
whether we can prove or even believe it is close to random. I have seen a paper
that suggests that the true upper order of M(n) is

√
n log log log n. It would be

amazing to have some good reason to believe such a precise bound.

3. A Probability Cheat Sheet

3.1. Examples of probability spaces.

Let X = (X,A, P ) be a probability space. For simplicity, let us assume that A
contains each singleton subset {x} of X. Thus, if X is at most countable, A = 2X ,
so the σ-algebra plays no essential role.

Example: Let X be a locally compact Hausdorff space, and let B be the Borel
algebra, i.e., the σ-algebra generated by the open subsets. A regular Borel mea-
sure µ on X is a measure – with values in [0,∞] – on (X,B) which satisfies the
following additional properties:
(i) inner regularity: for every measurable set Y , µ(Y ) = supµ(K) as K ranges
over all compact subsets of Y .
(ii) outer regularity: for every measurable set Y , µ(Y ) = inf µ(U) as U ranges
over all open sets containing Y .

A Borel measure is called locally finite if every point has a neighborhood of
finite measure, and a Radon measure is a locally finite regular Borel measure.
Note that local finiteness is considerably weaker than µ(X) = 1, so that any regular
Borel probability measure is necessarily a Radon measure.

Theorem 6. Let G be a locally compact Hausdorff topological group.
a) There exists a Radon measure µL (resp. µR) on G such that for all g ∈ G and
all Borel subsets Y of G, µ(gY ) = µ(Y ) (resp. µ(Y g) = µ(Y )). In other words, µL

(resp. µR) is left-translation invariant) (resp. right-translation invariant).

b) If ν is any left-translation (resp. right-translation invariant) Radon measure
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on X, there exists a positive constant C such that ν = CµL (resp. ν = CµR). Any
such measure is called a left Haar measure (resp. right Haar measure) on G.

c) G is said to be unimodular if there exists a single measure µ which is simul-
taneously a left Haar measure and a right Haar measure. For a unimodular group
we simply write µ and refer to it as the Haar measure. By part b), this holds
iff for any one left Haar measure µL and any one right Haar measure µR, there
exists a constant C such that µL = CµR. Evidently abelian groups are unimodular.
Moreover, so is any compact group.

d) For a left Haar measure µL, µL(G) < ∞ iff G is compact. Thus for a com-
pact group there is a unique normalization of µ with µ(G) = 1.

Application: There are no countably infinite compact Hausdorff topological groups.2

An atom in a probability space X is an element x ∈ X such that P ({x}) > 0.3

Lemma 7. The subset A of atoms in any probability space X is countable.

We can therefore define the atomic mass of a probability space X as

P (A) =
∑
x∈A

P (x).

A probability space is discrete if its atomic mass is 1. Such spaces are completely
described by a function P : X → [0, 1] such that: P (x) = 0 off of a countable set
{xi}, and ∑

i∈I

P (xi) = 1.

A space is continuous, or nonatomic, if it has no atoms.

Example: Let G be any connected Lie group, µ a Haar measure on G, Y ⊂ G
a regular-closed subset – i.e., Y is the closure of its interior – with 0 < µ(Y ) < ∞.
Then P = 1

µ(Y ) · µ is a continuous probability measure on Y . For instance, the
normalized Lebesgue measure on an interval [a, b] is an example of this.

Example: We can put a measure on Z+ by taking µ(n) = 1
2n . The space X

can be viewed as the space of possible outcomes of flipping a fair coin n times until
we get heads.

Example (uniform measure on a finite space): As a simple example, let X be a
finite set of cardinality n. Then we can define the probability of every singleton
subset to be 1

n , thus for any Y ⊂ X, P (Y ) = #Y
#X . Thus we have made a connection

between probability and combinatorics. It is very simple one, but that is one of its
strengths!

Example (Finite Bernoulli space): Let G = {±1}n, so G is a finite abelian group of
order N = 2n. The Haar measure on G corresponds to flipping a fair coin n times

2This also follows from the Baire category theorem.
3In the future we shall write P (x) instead of the correct but tedious P ({x}), trusting that no

confusion will arise.



8 PETE L. CLARK

and recording the sequence of results.

Example (Biased finite Bernoulli space): Fix a number p, 0 ≤ p ≤ 1. Let
X = {±1}n be the same set as before, but this time we wish to model a sequence
of n coin flips of a biased coin, whose probability of heads (say 1 = “heads”) is
p. Thus we do not wish to assign all atoms the same weight. Indeed, if x ∈ X is
a sequence which has k heads, we want P (x) = pk(1 − p)(n − k). (Of course we
appeal the binomial theorem to ensure that this discrete measure has total mass
1.) Note that if p = 0 or 1 the entire mass is concentrated in a single atom.

Example (Bernoulli space): Let B =
∏∞

i=1{±1}. Endowing each factor with the
discrete topology, X carries a natural topology, which is (by Tychonoff) compact,
Hausdorff and totally disconnected. Therefore its Haar measure P is a probability
measure. Note that P is continuous “even though” the topology on X is totally
disconnected.

Suppose wish to construct a biased Bernoulli space Bp with the same underlying
set

∏∞
i=1{±1} as the Bernoulii space, but which is supposed to model the situation

of an infinite sequence of flips of a biased coin which has probability p of heads.
The cleanest way to view this is an an instance of a product of probability spaces,
a construction which can, happily, be made in complete generality:

Let (Xi,Ai, Pi)i∈I be a nonempty family of probability spaces. Let X =
∏

i Xi

be the Cartesian product. By a cylindrical set we mean a subset Y of X which
is of the form

∏
i Yi, with Yi ⊂ Xi for all i and Yi = Xi for all but finitely many

i’s. Let A be the σ-algebra on X generated by the cylindrical sets.

Theorem 8. With notation as above, there exists a unique probability measure P
on (X,A) such that for every cylindrical set Y =

∏
i Yi, P (Y ) =

∏
i Pi(Yi).

An optimal proof of this theorem has been given by S. Saeki in 1996 article in the
American Mathematical Monthly (Vol. 103 (1996), p. 682-683).

Applying this with I = Z+ and each (Xi, Pi) equal to the two point space {pm1}
with P (1) = p, P (−1) = 1−p, we get a construction of the weighted Bernoulli space.

Example: If L/K is any Galois extension of fields, possibly infinite, then the Krull
topology endows G = Aut(L/K) with the structure of a compact, totally discon-
nected topological group, which therefore has a Haar measure. It is only relatively
recently that this measure has been given serious attention, but it is now a major
part of the branch of mathematics known as field arithmetic.

3.2. Random variables and distribution functions.

A (real-valued) random variable on X is a measurable function f : X → R.
Recall that this means that the preimage of every Borel subset of R is an element
of our fixed σ-algebra A.

Example: If A ⊂ X is an event, then its characteristic function 1)A is a ran-
dom variable.
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In particular, for each a ∈ R we have an event

fa := {x ∈ X | f(x) ≤ a}.
We abbreviate this to [f ≤ a].

By taking probabilities, we get a function

F : R → [0, 1], t ∈ R 7→ P (f ≤ t).

F is called the distribution function of F . It is easy to see that it has the fol-
lowing properties:

(DF1) F is nondecreasing: t1 ≤ t2 =⇒ F (t1) ≤ F (t2).
(DF2) F (−∞) := limt→−∞ F (t) = 0, F (∞) := limt→∞ F (t) = 1.
(DF3) F is right-continuous at each point: for all t, limh→0+ F (t + h) = F (t).

Note that as a consequence of (DF1), F is in fact continuous except possibly for
jump discontinuities at a countable set of points and is differentiable except on a
set of measure zero. Conversely:

Theorem 9. Let F : R → R be any function satisfying (DF1), (DF2) and (DF3)
above. Then there is a probability space X and a random variable f : X → R such
that F is the distribution function of f .

Proof: Indeed we can take X = R, A to be the standard Borel σ-algebra, and let
P be the Lebesgue-Stieltjes measure on (X,A) determined by F : i.e.,∫

R
gdP =

∫
R

gdF.

Let f : R → R be the identity function. Then the P -probability that f(x) ≤ x is∫ x

−∞
dF = F (x)− F (−∞) = F (x).

A distribution function F is absolutely continuous if there exsits a Borel mea-
surable f : R → R such that

F (x) =
∫ x

−∞
f(t)dt.

The function F is called the density function for F . By the Radon-Nikodym the-
orem, the function f is uniquely determined as an element of L1(R), i.e., is unique
up to almost everywhere equality. Conversely, if g ∈ L1(R) is a function which
is non-negative and has

∫
R g = 1, then integrating against g yields an absolutely

continuous distribution function G.

Example: (a) X = {±1} with equal probability. Let f : X → R be the iden-
tity function, which is a random variable. Its distribution function is piecewise
constant: it starts at 0, and then jumps to 1

2 at x = −1, and then jumps to 1 at
x = 1.
(b) Let X = {±1}∞ be the unweighted Bernoulli space. Then pn(x) := xn is a
random variable. The distribution functions are the same as in part (a).
(c) Let X = {±1}∞ be the weighted Bernoulli space with probability p. With pn
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defined as above, its distribution function is now the saltatory function with jumps
(−1, p), (1, 1− p).

Example (Gaussian distribution): Let µ and σ2 ≥ 0 be two fixed real constants.
Then we define

f(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 .

3.3. Expected values.

Expectation: Let f : X → R be a random variable. Its expectation, or expected
value, is simply

E(f) :=
∫

X

fdP,

provided this integral exists and is finite (which it will if f is, e.g., bounded).

Example: The expected value of any of the functions pn on the p-weighted Bernoulli
space is

E(pn) = 1 · p + (−1) · (1− p) = 2p− 1.

Lemma 10. If B ⊂ R is a Borel set, and f is a random variable with distribution
function F , then

P (f ∈ B) =
∫

B

dF.

Theorem 11. Let g be a Borel measurable function on R, and f : X → R a random
variable on the probability space X. Then the expectation of the composite function
g ◦ f exists iff ∫

R
|g(x)|dFx(x) < ∞,

in which case we have

E(g ◦ f) =
∫

R
g(x)dFX(x).

Corollary 12. If in Theorem 11 g is continuous, then E(f ◦ g) exists iff the im-
proper Stieltjes integral ∫

R
|g(x)|dFX(x) < ∞,

in which case

E(g ◦ f) =
∫

R
g(x)dFX(x).

Corollary 13. If f is a random variable with distribution function F , then Ef
exists iff the two improper Stieltjes integrals∫ ∞

0

xdF (x),
∫ 0

−∞
xdF (x)

are both finite, in which case

E(f) =
∫

R
xdF (x).
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So the expected value of f can be computed from its distribution function.

We say a random variable f is discrete if there exists an infinite sequence of
real numbers {xn} such that with pn := P (f = xn) = pn, then

∑
n pn = 1. The

distribution function of a discrete random variable is locally constant, with a jump
of pn at each point xn.

Corollary 14. If f is a discrete random variable with finite expectation, then

E(f) =
∞∑

n=1

xnpn.

Corollary 15. If f is a random variable with an absolutely continuous distribution
function F with density dF = g, then

E(f) =
∫

R
xg(x)dx.

Example: Take g(x) = G(µ, σ2), the Gaussian. Then the random variable variable
f(x) = x has expected value µ.

The nth moment of a random variable f with distribution function F is

Efn =
∫ ∞

−∞
xndF (x),

provided its exists. The nth central moment of f is

E(f − E(f))n =
∫ ∞

−∞
(x− Ef)ndF (x).

In particular, the variance of f is

Var(f) = E(f − E(f))2.

3.4. Chebyshev Inequalities.

Theorem 16. (Generalized Chebyshev Inequality) Let f be a random variable on
X and g : R → R be a non-negative measurable function which is non-decreasing
on the range of f . Then for any real number t we have

P (f ≥ t) ≤ 1
g(t)

∫
X

(g ◦ f)(x)dP (x).

Proof: Let At := {x ∈ X | f(x) ≥ t} and 1At
be the characteristic function of At.

Then for all t ∈ R, x ∈ X we have

0 ≤ g(t)1At
≤ g(f(x))1At

≤ g(f(x)).

Integrating these inequalities we get

0 ≤ g(t)P (f ≥ t) ≤
∫

X

g(f(x))dP (x).

If P (f ≥ t) = 0, fantastic. Otherwise, dividing by it, we get the conclusion.

Applying this result with the function

g(t) =
{
t2, t ≥ 0

}
, {0, t ≤ 0} .



12 PETE L. CLARK

and f 7→ |f |, we get:

P (|f | ≥ t) ≤ 1
t2

Ef2.

Replacing |f | with |f − Ef | and t with ε, we get

Corollary 17. (Chebyshev’s Inequality) Let f : X → R be a random variable with
finite expectation µ = Ef . Then, for any ε > 0,

P (|f − µ| ≥ ε) ≤ Var(f)
ε2

.

Among other things, this justifies the name “variance”: it provides an upper bonud
for the deviation of a random variable from its expected value.

Taking g(t) = {t, t ≥ 0}, {0, t < 0} and replacing f by |f |, t by ε, we get

Corollary 18. (Markov’s Inequality) For any ε > 0, we have

P (|f | ≥ ε) ≤ 1
ε
E|f |.

3.5. Independence.

Two events A,B ∈ A are said to be independent if

P (A ∩B) = P (A)P (B).

An equivalent but somehow more psychologically striking formulation is as follows:
for any event B with P (B) > 0, we define P (A|B), the conditional probability of
A given B, as

P (A|B) =
P (A)
P (B)

.

Then independence of A and B is equivalent to either of the following statements:

P (A|B) = P (A),

P (B|A) = P (B).
Given a set {Ai}i∈I of events, we say they are (mutually) independent if for every
finite subset J ⊂ I,

P (∩j∈JAj) =
∏
j∈J

P (Aj).

Moreover, if we have an indexed collection {Bα} of families of events, we say that
the families of events are independent if for every choice of one event from each
family, the set of events is independent.

Now suppose given a collection {fi}i∈I of random variables on the space X. We say
they are independent if for every finite subset {1, . . . , n} ⊂ I and real numbers
r1, . . . , rn, then

P (f1 ≤ r1, . . . , fn ≤ rn) =
n∏

i=1

P (fi ≤ ri).

An equivalent condition is that if B1, . . . , Bn ⊂ R are Borel sets, then

P (f1 ∈ B1, . . . , fn ∈ Bn) =
n∏

i=1

P (fi ≤ Bi).
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Proposition 19. Let f1, . . . , fn be a set of random variables on X. Let g1, . . . , gn :
R → R be Borel measurable functions. Then g1◦f1, . . . , gn◦fn are also independent
random variables.

Theorem 20. Let f1, . . . , fn be independent random variables, g1, . . . , gn are Borel
measurable functions such that E(gi ◦ fi) exists for all i. Then E(

∏n
i=1(gi ◦ fi))

exists and

E(
n∏

i=1

gi ◦ fi) =
n∏

i=1

E(gi ◦ fi).

Corollary 21. If f1, . . . , fn are independent random variables on X with finite
second moments, then

Var(
n∑

i=1

fi) =
n∑

i=1

Var(fi).

Proof:

Var(
n∑

i=1

fi) = E(
n∑

i=1

fi − E(
n∑

i=1

fi)2 = E(
n∑

i=1

fi − Efi)2

=
n∑

i=1

E(fi−E(fi))2+
∑
j 6=k

E((fi−E(fi))(fj−E(fj)) =
n∑

i=1

Var(fi)+0 =
n∑

i=1

Var(fi).

Proposition 22. Let {Xi}i∈I be a nonempty family of probability spaces, and
{fi : Xi → R}i∈I be a family of random variables. Let X =

∏
i Xi be the product

probability space and denote by πi the canonical projection X → Xi. For all i, let
Fi = fi ◦ πi : X → R. Then the random variables Fi are independent.

This is essentially a tautological consequence of the defining property of the prod-
uct probability space.

As a special case, if we take all Xi’s to be the same space S, we get X = SI . Then,
for any family of random variables fi : S → R, the pullback family Fi : SI → R is
independent. As an even more special case, we can take one fixed random variable
f : S → R and take each fi = f .

This is the case for the random variables pn on the weighted Bernoulli space
Bp. In particular, the sequence {pn} is an instance of a family of variables which is
independent and identically distributed: henceforth i.i.d..

4. Laws of Large Numbers

Let {fn}∞n=1 be a sequence of random variables on a probability space X. Let f be
a random variable. There are several different senses in which we may have fn → f .
For simplicity, we consider only two.

We say that fn converges to f in probability if for all ε > 0,

lim
n→∞

P (|fn − f | ≥ ε) = 0.

(This concept may be familiar to the student of measure theory, under the name
“convergence in measure.”) We abbreviate convergence in measure as

fn
P→ f.
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It can be shown that if fn
P→ f and also fn

P→ g, then f = g P-a.e.

Another form of convergence is almost everywhere pointwise convergence. This
just means that there exists a null set4 Y ⊂ X such that for all x ∈ X \ Y ,
fn(x) → f(x). One also describes this as almost sure convergence.

Basic results of measure theory apply to give that almost sure convergence im-
plies convergence in probability, whereas convergence in probability implies that
there is a subsequence which converges almost surely. In contrast, by virtue of its
hypothesis of independence, the following belongs to the theory of probability:

Theorem 23. (Kolmogorov) For an independent sequence of random variables
{fn}, converges in probability and almost everywhere convergence are independent.

Theorem 24. (Law of Large Numbers) Let {fn}∞n=1 be a sequence of random vari-
ables, which are independent and identically distributed (i.i.d.). We assume more-
over that Ef1 exists, in which case all the Efi’s exist and have a common value,
say µ. Define

Xn :=
1
n

n∑
i=1

fi.

Then Xn → µ.

Important remark: The point of the statement of the theorem is that we have
defined precisely two versions of convergence: convergence in probability and al-
most everywhere convergence, and according to Kolmogorov’s theorem, under the
hypothesis of independence they are equivalent. To be more precise, the version
of Theorem 24 in which the conclusion is convergence in probability is called the
weak law of large numbers, whereas the version in which the conclusion is al-
most everywhere convergence is called the strong law of large numbers, and is
due to Kolmogorov.

This applies in particular to the random variables πn on the weighted Bernoulli
space Bp. Define Sn =

∑n
i=1 πn: this is the running total of the number of heads

minus the number of tails after flipping coins. Then the strong law of large numbers
says that, with probability 1, we have

Xn =
Sn

n
∼ (2p− 1)n.

But now remember our First Maxim: when given an aymptotic formula, ask instead
for a formula with an explicit error term. For instance, suppose we have a coin and
are trying to test out the assumption that it is fair – i.e., that p = 1

2 . Clearly just
a statement that Sn → 0 is not helpful here.

The following theorem is the epicenter of the philosophy of square-root error:

Theorem 25. (Central Limit Theorem) Let {fn}∞n=1 be a sequence of i.i.d. random
variables, with common expectation µ and variance σ2. Then, for any z ∈ R, we

4Let us say a null set of a measure space is a set which is a subset of a set of measure zero. If

the measure is complete, then null sets are themselves measurable, but in general we work with
Borel measures rather than their completions.
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have

lim
n→∞

P

(
Sn − nµ

σ
√

n
≤ z

)
=

∫ z

−∞

1√
2πσ2

e
−(x−µ)2

2σ2 dx.

In particular the central limit theorem asserts that with probability one, for any
ε > 0 we have

Sn = µ · n + o(n
1
2+ε),

and also that the probability that |Sn−µ ·n| is as large as C
√

n is positive for any
C > 0.

The following theorem – one of the real jewels in the theory – does even better.

Theorem 26. (Khinchin-Kolmogorov’s Law of the Iterated Logarithm) Let fn be
a sequence of i.i.d. random variables on a space X with common variance σ2 and
common expected value µ = 0, and put Sn =

∑n
i=1 fi. Then:

P

(
lim sup

n→∞

Sn

σ
√

2n log log n
= 1

)
= 1.

Similarly

P

(
lim inf

n→∞

Sn

σ
√

2n log log n
= −1

)
= 1.


