
LECTURES ON PERIOD-INDEX PROBLEMS

PETE L. CLARK

These are the notes for an April XX, 2006 lecture given (by me) at the Mathemat-
ical Sciences Research Institute on the subject of period-index problems. There is,
however, significantly more detail and ancillary material – I imagine the notes for
the lecture itself as being written on paper with very ample margins, and these notes
contain the marginalia. But these are still much more lectures notes than mono-
graph: maintaining the above metaphor, we often we make recourse to “Fermat’s
excuse” (including for material that does not yet exist in written form!).

Some history

Period-index problems have been around for a long time: at least since the 1930’s
in the case of division algebras, and at least since the 1950’s in the case of torsors
under a commutative algebraic group. It is remarkable to note how tightly bound
period-index problems once were to the mathematical mainstream: the work on
division algebras of (e.g.) Nakayama, Albert, Brauer, Hasse and Noether is clearly
one of the mathematical highlights of the early 20th century, and their work on
Brauer groups of local and global fields cuts to the heart of classfield theory. And
again, period-index problems for torsors were studied in the same papers which
developed the foundations of Galois cohomology of abelian varieties: papers of
Shafarevich, Ogg, Cassels, Lang and Tate. By the 1960’s the focus had shifted, as
locally trivial torsors over global fields became of most interest. In the late 1960’s
Lichtenbaum wrote two beautiful papers on the case of curves over p-adic fields,
which however seemed to bring the study to a close.

It seems that almost 30 years passed without much work on either aspect of
the problem. Then in 1997 Saltman published a paper on division algebras over
function fields of p-adic curves. In 2002, de Jong showed that period equals index
in the function field of a surface over an algebraically closed field (with some char-
acteristic restrictions that have recently been removed). There is now what might
be called (not too unfairly, I hope) a “de Jong school” which approaches period-
index problems in the Brauer group of function fields using highly sophisticated
algebro-geometric methods (deformation theory, stacks, moduli of vector bundles
and twisted sheaves. . .), and thanks to work of de Jong, Graber, Mazur, Star and
Lieblich, this is becoming one of the hot areas of algebraic geometry.

In 1999, the period-index problem in curves of higher genus returned triumphantly
in the paper of Poonen and Stoll, who ultimately found the possible discrepancy
between period and index among the various completions of a curve over a global
to be responsible for the phenomenon that the order of the Shafarevich-Tate group
of a Jacobian need not be a perfect square, not withstanding the fact that it ad-
mits a perfect skew-symmetric (but not necessarily alternating!) pairing. Quite
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recently, Liu, Lorenzini and Raynaud used the work of Poonen and Stoll, among
other things, to show that the Brauer group of a surface over a finite field, if finite,
is always a perfect square. The proof is amazing: they bring in the local factors of
Poonen and Stoll whose parity determines whether or not the Shafarevich group of
the Jacobian of a certain relative curve, and they find another set of local factors
of the same parity as those of Poonen and Stoll. (Ironically, one can find in the
literature claims that the X of the Jacobian is always a square and that the X

of a surface is not.) This is all rather curious and surely deserves some sort of
explanation.

In the late 90’s, H. Lenstra assigned his student William Stein the problem of
answering the question of Lang and Tate: do there exist genus one curves over Q

of every index? Using Kolyvagin’s Euler system, Stein was able to give an affirma-
tive answer as long as the index was not divisible by 8. Stein, of course, went on
to write a thesis concerned with explicit approaches to modular forms and modu-
lar abelian varieties, and among his interests is the prospect of “visualizing X in
abelian varieties” (a notion due to Barry Mazur). Around the same time, Catherine
O’Neil wrote her Harvard thesis (under the direction of Mazur) on matters related
to explicit higher descents on elliptic curves, a topic which in the last ten years
has become a flourishing branch of number theory.1 In particular, O’Neil wrote a
paper introducing the period-index obstruction map, which opened up a new
approach.

I had the good fortune to be at Harvard2 at the same time as Stein and O’Neil
(who was later at MIT). When I heard Stein lecture about visibility dimension of
abelian varieties, he mentioned that a theorem of Cassels gives the best general
bound on the visibility dimension of a locally trivial curve of genus one (and in
particular better than the bound one gets for an arbitrary curve of genus one).
O’Neil’s work gives an especially perspicuous proof of Cassels’ theorem, and it oc-
curred to me that if only one had an abelian variety version of O’Neil’s obstruction
map, one could get a bound for the visibility dimension of locally trivial torsors of
higher-dimensional abelian varieties which is better than the bound of Agashe-Stein
for not-necessarily locally trivial torsors.

From such inauspicious beginnings (it is not clear that anyone, myself included,
really cares about this improved bound on the visibility dimension) I became in-
terested in this sort of problem. Not long after, Stein remarked to me that given
a genus one curve over a number field K of period p and index p2, one can pro-
duce a locally trivial class of exact order p in a degree p extension field L of K.
By producing such “period-index violations” in a systematic way when E has full
p-torsion, I was able to show that there exist elliptic curves defined over number
fields of degree at most 2p3 whose Shafarevich-Tate groups have arbitrarily large

1Among other things, Cathy first taught me not to say “elliptic curve” when you mean “curve
of genus one.”

2Indeed, Barry Mazur was also my thesis advisor; my thesis, however, was on Shimura curves.

In the one conversation I remember having with Barry about curves of genus one, he mentioned
that he believed that every genus one curve over Q should have a point over a metabelian extension,
for reasons having to do with Kolyvagin systems. This was, I think, in late 2002, so probably he
was describing Mirela Ciperiani’s thesis work!
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p-torsion. This improved upon a recently posted preprint of R. Kloosterman.

I have spent the last few years thinking about the period-index problem in
higher-dimensional abelian varieties. My work builds upon the classical work of
Lang-Tate and Cassels, and especially on the duality theory due originally to Tate
and recast in terms of the period-index problem by Lichtenbaum, van Hamel and
myself. It seems that van Hamel and I are the only ones currently working on the
period-index problem for torsors under higher-dimensional abelian varieties. The
primary goal of these lectures is to situate the period-index problem for torsors
under abelian varieties relative to the period-index problems on curves and the
period-index problem in the Brauer group, and to explain especially what new fea-
tures and difficulties the higher-dimensional case brings. I am interested but not
expert in period-index problems for curves of higher genus and in Brauer groups,
so my hope is that by explaining the part of the picture that I best understand,
experts in these other areas may be able to perceive more clearly the connections.

Let K be a field of characteristic char(K), with separable algebraic closure K and
absolute Galois group gK . We assume that all varieties over K are nonsingular,
quasiprojective and geometrically integral.

1. The two kinds of period-index problems

1.1. Cohomological period-index problems. Let G be a gK-module (i.e., a
commutative group endowed with an action of gK continuous for the discrete topol-
ogy on G and the profinite topology on gK), i a positive integer, and η ∈ Hi(K,G)
a Galois cohomology class. Define respectively the period and index

P (η) = #〈η〉.
I(η) = gcd{[L : K] | η|L = 0}.

Fact 1.

a) P | I.
b) I | P∞ (i.e., ∃ α such that I | Pα.)

Proof: This is classical; see e.g. [?, Prop. 11].

The period-index problem is then: what can be said about the α (for fixed η,
as η varies in a fixed group Hi(K,G), or as G varies in some family)? Especially,
when can we take α = 1?

Variant: define

M(η) = min{[L : K] | η|L = 0}.
Evidently I | M , but there is no reason to expect I = M in general.

Problem 1*: Find an explicit example of a class η with I 6= M .

Nevertheless we have

(1) M = 1 ⇐⇒ I = 1 ⇐⇒ P = 1 ⇐⇒ η = 0.

Fact 2. Suppose G is finite, and η ∈ H1(K,M). Then M(η) ≤ #G and I(η) | #G.
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Proof: This is due to Lenstra; see [?, Prop. 12].

So far so good, so general, and so unmotivated (si francais?). To come back down
to earth, take G to be a commutative algebraic group.

Example 1.1.1: The group H1(K,G) parameterizes torsors X under G in the
category of varieties. We will revisit this example in the next section; the case
of G = A an abelian variety will be our primary focus in these lectures. Note
that unipotent groups are acyclic for Galois cohomology, so the most general con-
nected commutative group that we would need to consider is a semi-abelian variety.

Example 1.1.2: H2(K,Gm) = Br(K), the Brauer group of K. Here I(η) = M(η) is

interpreted as
√

[D : K], where D is the unique division algebra representative of
η, and P is the least n such that D⊗n is a matrix algebra.

Definition: For a non-negative integer α, we say that a field K has property Br(α)
if for any finite extensions L/K and any η ∈ Br(L)[P ], I(η) | Pα. (We will say that
a field has property Br(−1) if it is separably closed.)

Remark X.X.X: The property Br(α) is preserved upon passage to algebraic field
extensions.

Remark X.X.X: The property Br(0) \ Br(−1) is equivalent to “dimension one”
in the sense of Serre.

Fact 3. The following fields have the property Br(0):
a) Fp.

b) k(t).
c) A complete discretely valued field (CDVF) with algebraically closed residue field.
d) A pseudoalgebraically closed (PAC) field.

In fact it is known that each of these fields has the property C1, except possibly for
a PAC field of positive characteristic.

Fact 4. The following fields have the property Br(1):
a) R.
b) A CDVF whose residue field is Br(0) (e.g. Qp, Fp((t))).
c) Q, Fp(t).

d) k(t1, t2).

Conjecture 1. If k is Br(α) and K/k has transcendence degree 1, then K is
Br(α+ 1).

Remark: For a finitely generated field K, let dim(K) denote its Kronecker dimen-
sion: one more than the absolute transcendence degree in characteristic zero, and
precisely the absolute transcendence degree in positive characteristic). Thus the
problem asks whether K is Br(dim(K)). It has been known since Nakayama that
K is not Br(dim(K) − 1).

Remark: A special case of the conjecture predicts that a field with property Cα−1
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has property Br(α) (cf. Lieblich).

Remark: The conjecture is known when k = Fp(t) (a C2 field) by work of Lieblich
and when k = Qp (which is not Cα for any α) by work of Saltman. The most
notable outstanding case is k = Q (and I would be interested to hear whether the
experts believe the conjecture in this case).

Remark: Merkurjev has constructed fields of cohomological dimension 2 which
are not Br(α) for any α, but they are of infinite absolute transcendence degree.

Summary: For any Galois cohomology class, we have a well-defined period and
index. The former quantity seems more natural, and the latter seems more myste-
rious.

1.2. Geometric period-index problems.

Let V/K be a variety. We define its index I(V ) to be the least positive degree of
a K-rational 0-cycle. Equivalently, it is the cardinality of the cokernel of the map
deg : CH0(X) → Z, and also the gcd of [L : K] such that V (L) 6= ∅.

To define the period, we need to recall that there exists a variety Alb1(V ) which

is a torsor under a semiabelian variety Alb0(V ), and a morphism V → Alb1(V )

which is universal for morphisms into semiabelian torsors. In particular, Alb1(V )
corresponds to a class ηV ∈ H1(K,Alb0(V )), and we define the period of P (V )
to be the period of P (ηV ).

For the remainder of these notes we will content ourselves with the case of a pro-
jective variety V , so that Alb1(V ) is a torsor under the abelian variety Alb0(V ).

Example 1.2.1: Let V be a Severi-Brauer variety, so [V ] ∈ Br(K). Then I(V ) =

I([V ]), but since V is simply connected, Alb0(V ) = 0 and P (V ) = 1 (so is usually
not equal to P ([V ])).

Example 1.2.2: Let V be a curve, so Alb = Pic. Then the index of V is the
least positive degree of a K-rational divisor and the period is the least positive de-
gree of a K-rational divisor class (a significantly more enlightening definition than
in the general case). We have that the period of V is the period of Pic1(V ). Since

we have a morphism V → Pic1(V ), we clearly have

I(Pic
1(V )) | I(V ).

A very important open problem is to understand the discrepancy between these
two indices.

Consider the intersection of these two examples, namely genus zero curves V/K .

If V (K) = ∅, I(V ) = 2, whereas P (V ) = 1 implies I(Pic1(V )) = 1, i.e., the
two indices differ by a factor of 2. A result of Harase gives an upper bound on

I ′(V ) = I(V )
I(Pic1(V ))

.

Open Problem 1. What are the possible values of I ′(C) for a curve of genus g?
Can we have I ′(C) > 2?
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Example 1.2.3: For a quadric surface V over a field of characteristic different from
2, P (V ) = 1 and I(V ) = 2 ⇐⇒ V (K) 6= ∅ (as follows from a theorem of Springer).

Moral: the geometric and cohomological period-index problems are distinct but
closely related, and it would be of interest to understand the relationships between
them more clearly.

In what remains, we will consider the case in which the two problems are the
same, namely:

Example 1.2.4: Suppose that X 7→ Alb1(X) is an isomorphism, i.e., X is a torsor

under the abelian variety Alb0(X).

In light of all of this, the best case scenario is when X simultaneously a torsor
under an abelian variety and a curve, i.e., is a curve of genus one.

2. Curves of genus one

2.1. Generalities.

Let C/K be a genus one curve, with Jacobian elliptic curve E.

Proposition 2. For all curves of genus one, I | P 2.

The proof we will give requires K to be perfect or P to be indivisible by char(K).
For a proof avoiding these assumptions, see [?].

Proof: Because of the Kummer sequence

(2) 0 → E(K)/PE(K) → H1(K,E[P ]) → H1(K,E)[P ] → 0

we can lift η to a class ξ ∈ H1(K,E[P ]), which splits over an extension of degree
dividing P 2 by Fact X.

Remark X.X.X: Note that when K is perfect of characteristic p > 0, the proof
shows that I = P when P is a power of p. that P is not divisible by the character-
istic of K.

The Kummer sequence shows that the period-index problem in the WC-group of
an elliptic curve depends upon the Galois cohomology of the finite modules E[P ] as
well as on the structure of the weak Mordell-Weil groups E(L)/PE(L) as L ranges
over the finite extensions of K.

Theorem 3. (Lang-Tate)
a) Suppose that E/K is such that

(i) #E(K)[P ] = P 2.
(ii) For all finite L/K, E(L) = PE(L).
(iii) There exists a surjection gK → (Z/PZ)2.
Then for P | I | P 2, there exists η ∈ H1(K,E) with period P and index I.
b) For K = C((t1))((t2)), (E0)/C any elliptic curve and E = E0×CK, the hypothe-

ses of a) are satisfied for all P ∈ Z+.

Exercise X: Prove it. Show also that with C replaced by any algebraically closed
field k, the result remains valid provided char(k) does not divide P .
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In some sense, this gives an answer to the period-index problem for genus one
curves. To say more, we need to make some assumptions on the field.

2.2. Some fields with P = I.

Example 2.1: Suppose that H1(K,E) = 0. Then I | P 0. This obviously holds
when: K is algebraically closed, K is PAC, K is weakly PAC in the sense of Jar-
den.3

It also holds when K is finite, as a special case of a theorem of Lang. A proof
was discussed in a previous talk. Here is another proof, more relevant to present
considerations: the Weil bounds for curves over finite fields imply that every V/Fq

has I(V ) = 1. Now if V is a torsor under an algebraic group, I(V ) = 1 implies
V (K) 6= ∅ (1).

Theorem 4. (Ogg, Shafarevich) Let K be a one variable function field over an
algebraically closed field, or discretely valued Henselian with algebraically closed
residue field. Then I = P for all genus one curves C/K of period indivisible by
char(K).

Remark 2.1.X: Note that all the fields of Theorem 4 have trivial Brauer group.

Theorem 5. (Lichtenbaum) Suppose Br(K) = 0. Then I = P for all curves C/K .

Proof: To show that I = P on a curve, we must show that if D is a rational divisor
class on C, there is some other rational divisor class of the same degree that is
represented by a rational divisor. In fact, if Br(K) = 0 we have that every rational
divisor class is represented by a rational divisor. For this, we use the following
fundamental sequence

(3) 0 → Pic(V ) → Pic(V )(K)
δ→ Br(K)

γ→ Br(V ).

Thus given a rational divisor class D, there is a well-defined element δ(D) ∈ Br(K)
whose nontriviality is precisely the obstruction to D being represented by a divisor.
The result is now clear.

The following result exploits a similar idea.

Theorem 6. (C—) Let K be a global field, and C/K a curve which has points
everywhere locally except possibly at one place of K. Then P (C) = I(C).

Exercise X.X: Prove Theorem 6. (Hint: what can be said about an element of
Br(K) which is locally trivial except possibly at one place?)

Theorem 7. (Lichtenbaum) Let K be a locally compact field. Then I = P for
genus one curves C/K .

It would hardly be overstating things to say that all subsequent work on geometric
period-index problems builds on the ideas behind this theorem in some way. We
will postpone a discussion of the proof until the next section, where we will explain
generalizations to higher-dimensional abelian varieties.

3In fact it seems conceivable that the condition H1(K, A) = 0 for all abelian varieties is
equivalent to weakly PAC, which by definition requires also that geometrically rational varieties
have K-points.
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Exercise X.X.X: Let K be a locally compact ultrametric field.
a) Suppose that P is not divisible by char(K) and E has good reduction. Let
η ∈ H1(K,E) be a class of period P . Show that a finite L/K splits η if and only
if P | e(L/K) (the relative ramification index).
b) Let K be any complete DVF, assume E has split multiplicative reduction, and
let η ∈ H1(K,E)[P ]. Show: there exists a finite extension Lη/K such that
(i) Lη/K is cyclic of degree dividing P .
(ii) L/K splits η iff Lη ⊂ L.

Keeping in mind that I | P 0 for genus one curves over finite fields, one can view
Theorem 7 as a sort of“transition theorem” for the period-index problem. This has
recently led me to ask the following

Question 8. Suppose that K is a CDVF k, with perfect residue field k, and suppose
that every torsor under an k-abelian variety has a k-rational point. Does it follow
that I = P for genus one curves C/K?

Theorem 9. Under the hypotheses of Question 8, I | 48P for all C/K .

At the time of writing, it seems to me that stronger results should be true, but that
on the other hand the existence of a biquadratic extension of k should lead to an
example with I = 2P .

Theorem 10. (C—, ’04)
a) Let K be a number field, and E/K an elliptic curve with E(K) = 0. Then for

all n ∈ Z+, there exists η ∈ H1(K,E) with P (η) = I(η) = n.
b) If moreover X(K,E) = 0, then for any finite L/K and any n ∈ Z+, there exists
η ∈ H1(K,E) such that η|L has period equals index equals n.

Remark X.X.X: There do exist elliptic curves E/Q with E(Q) = X(Q, E) = 0, as
was shown by Kolyvagin. Admittedly this “fact” lies deeper than all of the results
discussed so far.

Remark X.X.X: Earlier W. Stein had shown that over any number field there exists
a curve of any given index which is not divisible by 8. The proof of Theorem 10 does
not rely on Stein’s work, but a posteriori one can see some connections between
them. See [?, §4] for a discusson.

Let us sketch the proof of part a). If E(K) = 0, one can produce for all n a
class η ∈ H1(K,E) which is locally trivial except at a single place of K and has
local period n at that place. One reduces to the case n = pa, and the key observa-
tion is that either X(K,E) is p-divisible – in which case Theorem 6 implies there
exist elements of P = I = pa for all a – or X(K,E)[p∞] is finite, in which case one
can apply the duality theory of Poitou-Tate to construct such a class. By Theorem
6, every multiple of η has period equals index, and clearly some multiple of η has
period n.

Presumably one should be able to make do with part a) alone:

Open Problem 2. Show that for every number field K, there exists an elliptic
curve E/K with E(K) = 0.
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2.3. P < I over Global Fields.

Cassels produced an example of a genus one curve C/Q with P = 2, I = 4. In his

example, E(Q) ∼= (Z/2Z)2. The following is therefore a generalization:

Theorem 11. (C— ’03, Sharif ’06) Let K be a global field, and p a prime such
that E(K)[P ] ∼= (Z/PZ)2. For any P | I | P 2, there exist infinitely many classes
of period P and index I.

Remarks: The case of prime P was established in [?], whereas the general case ap-
pears in Sharif’s 2006 Berkeley thesis. It seems to me that the methods of [?] could
also be used to establish the general case. This would, however, require replacing a
messy Hilbert symbol calculation by a messier Hilbert symbol calculation, whereas
Sharif’s approach exploits work of Lichtenbaum to proceed in a much more elegant
way. For instance, his construction produces classes which are nontrivial at exactly
two places of K, which serves as a sort of converse to Theorem 6.

Theorem 12. (Sharif ’06) For any odd P , there exist genus one curves C/Q with

period P and index P 2.

It seems to me that, building on the ideas of this theorem, one should be able to
prove the following stronger result:

Theorem? 13. Let K be a global field, P a positive integer not divisible by char(K)
and E/K an elliptic curve. Then there are infinitely many classes in H1(K,E) of

period P and index P 2.

Ideally, one would like to establish the following result:

Conjecture 14. Let K be an infinite, finitely generated field and E/K an elliptic

curve. Then for all P | I | P 2, there exist infinitely many classes η ∈ H1(K,E) of
period P and index I.

In light of the previous results, the conjecture appears to be within reasonable
striking distance, except possibly for the case in which P is a power of char(K).
In this case, it seems that the present Galois-cohomological methods should be
replaced by “flat-cohomological analogues.” (To be sure, to say exactly what these
analogues may be, let alone construct them, would be a worthy project.)

2.4. Sketches of some proofs.

At this point we have accrued quite a debt of results stated with no indication of
proofs given. While we could wait and discuss everything in the context of abelian
varieties, it seems better to me to sketch out some broad ideas in the (simpler)
one-dimensional case, and then return in more detailed fashion. (Also the talk is
designed this way, so that one can attend the first hour only and still get some
sense of what’s going on.)

Suppose first that C/K is an algebraic curve of any genus, so that the period
P is the least positive a such that Pic

a(C)(K) 6= ∅ and the index I is the least
positive degree of an element of Pic(C). As above, the exact sequence ?? will be
of fundamental importance. Let us also define, for any variety V/K , the Brauer

kernel

κ(V/K) = Im(δ) = Ker(γ),
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i.e., the image in the Brauer group of obstructions of K-rational divisor classes.
Let us also define

κ0(V/K) = δ(Pic
0(V )(K)),

the obstructions of rational divisor classes which are algebraically equivalent to zero
(for a curve, this just means degree zero).

Proposition 15. The quotient κ(C/K)/κ0(C/K) is cyclic of order I/P .

For a proof in the general case (which involves nothing more than applying the
snake lemma to a certain commutative diagram), see [?, ]. However, the following
seems more enlightening.

Proof: Let us define, for each integer n, κnP (C/K) = δ(PicnP (C)(K)). Note

that in other degrees d, Picd(C)(K) = ∅, so

δ(Pic(C)(K)) = δ(
⋃

n

PicnP (C)(K)) =
⋃

n

δ(PicnP (C)(K)) =
⋃

n

κnP (C/K).

Choose a rational divisor classD of degree P ; this choice induces a choice of rational
divisor class of each degree nP , namelyDnP = nD. Put α = δ(D), so δ(DnP ) = nα.

Note that addition of DnP induces an isomorphism Pic0(C)(K) ∼= PicnP (C), and
exhibits

κnP (C/K) = nα+ κ0(C/K)

as a coset of the subgroup κ0(C/K) ⊂ Br(K). This shows that κ(C/K) is the
subgroup generated by α and κ0(C/K). Moreover, C admits a rational divisor
class of degree nP iff nα ∈ κ0(C/K). The quantity I/P is the least such value of
n , i.e., the order of

〈α+ κ0(C/K)〉/κ0(C/K) = κ(C/K)/κ0(C/K).

It is also the case that κ0(C/K) is the set of differences of degree n divisor classes,
so the quantity P/I depends upon (i) the orders of the Brauer classes δ(Di) as
Di ranges over the degree n divisor classes on C, and (ii) how “spread out” these
classes are in the above sense.

We now return to consideration of genus one curves. For an elliptic curve E/K

and a positive integer P , there is a natural equivalence relation on pairs (C,D),
where C is a torsor under E and D is a degree P divisor class on C: namely,
(C,D) ∼ (C′, D′) if there exists an isomorphism of torsors f : C → C′ such that
f∗(D′) = D.

Proposition 16.

a) The group H1(K,E[P ]) parameterizes equivalence classes of pairs (C,D) as
above.
b) The forgetful map (C,D) 7→ C corresponds to the map H1(K,E[P ]) → H1(K,E)[P ]
in Galois cohomology, and the kernel, namely equivalence classes of degree P divi-
sors on E itself, is identified with E(K)/PE(K).

Exercise X.X.X: Prove it.

Corollary 17. (Sharif) Suppose that E(K)/PE(K) = 0. Then for all C ∈
H1(K,E), let D be any rational divisor class of order P = P (C). Then

I(C) = P (C) · #δ(D).
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Proof: The preceding proposition shows that κP (C/K) consists of a single element,
so

κ0(C/K) = κP (C/K) − κP (C/K) = 0.

In particular, if we take an elliptic curve over a field with trivial Mordell-Weil group
E(K), then unless ∆ is identically zero on H1(K,E[P ]), there will be a torsor C
under E with period P and index exceeding P .

The proposition allows to define a map

∆ : H1(K,E[P ]) → Br(K),

by (C,D) 7→ δ(D).

The following is a key point:

Proposition 18. ∆(H1(K,E[P ])) ⊂ Br(K)[P ].

Proof: To any ample divisor class on a variety V , one can associate a Severi-Brauer
variety V [D] by Galois descent from the complete linear system associated to the
line bundle DK . In particular, the dimension of V [D] is equal to one less than the
dimension of the space of global sections of D. One can check that the Brauer class
associated to the Severi-Brauer variety V (D) coincides with the obstruction δ(D).
In the case of a class of degree P on a curve of genus one, Riemann-Roch gives that
V (D) has dimension P −1, so that V (D) corresponds to a central simple algebra of
dimension P 2, and hence the index of δ(D) divides P , which is, of course, stronger
than the claimed statement.

Note that it would have been easier to show that the image of ∆ is P 2-torsion.
Indeed:

Exercise X.X.X: Let V/K be any variety. Show that

κ(V/K) ⊂ Br(K)[I(V )].

Let {Qj}j∈J be a set of representatives for E(K)/PE(K) in E. Recall that this
“weak Mordell-Weil group” is finite in almost every reasonable case: e.g., if K is fi-
nitely generated over Q or any field in whichK×/K×P is finite (e.g. K algebraically
closed or locally compact). Let (C,D) = ξ ∈ H1(K,E[P ]). Then

κP (C) = {∆(ι(Qj) + ξ)}j∈J .

Note that ∆(ι(Qj)) = 0, since these represent divisor classes on E itself, however
the term ι(Qj) cannot be omitted because ∆ is not a homomorphism of groups;
rather it is a quadratic map. This means that the associated thingie (first moment?)

L(ξ, ψ) := ∆(ξ + ψ) − ∆(ξ) − ∆(ψ)

is bilinear; this was shown by O’Neil by reduction to the work of Zarhin. In fact,
in our present situation we are naturally led to consider this bilinear form, since we
are interested in the difference group κ0 = κP − κP , which consists of elements

{∆(ξ + ι(Qj)) − ∆(ξ)}jinJ ,

because, since ∆(ι(Qj)) = 0, this is precisely the set of elements {L(ξ,Qj)}j∈J .
Moreover, for exactly the same reason, this expression depends only on the image
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of ξ in H1(K,E), i.e., on η = ηC . Thus we have defined a bilinear pairing

L : H1(K,E)[P ] → E(K)/PE(K) → Br(K)[P ],

and now a miracle occurs:

Theorem 19. (Lichtenbaum) The pairing L is nothing else than Tate’s duality
pairing T .

This beautifully succinct statement is the heart of Lichtenbaum’s paper on curves
of genus one. Its usefulness in the case of locally compact fields is immediate: then
Br(K)[P ] ∼= Z/PZ and (as was shown by Tate when P is indivisible by char(K)
and by Shatz and Milne in general) L = T gives a perfect pairing between these
two finite abelian groups. It follows immediately that for any genus one curve over
a locally compact field (R and C included!),

κ(C) ⊂ Br(K)[P (C)] = κ0(C),

and hence κ(C) = κ0(C) so P (C) = I(C).

What is interesting about this proof is that it shows that P = I over locally
compact fields for “the opposite reason” that P = I for locally trivial curves over
number fields: κ(C/K) is always nontrivial if C is. It is just that Br(K) is so small
that it is not possible for the elements of κP (K) to be “spread out.”

Over any infinite, finitely generated field, however, G = ι(E(K)/PE(K)) is finite,
say of order N , and Br(K)[P ] is infinite, and most N -tuples of order P elements are
spread out in the above sense. The more serious issue is to construct obstruction
classes of all possible orders dividing P . Indeed:

Proposition 20. Fix R | P . Suppose (C,D) = ξ ∈ H1(K,E[P ]) is such that for
all gi ∈ G, #∆(giξ) = R. Then I(C) = RP .

But really, how do we compute ∆? We use the following

Theorem 21. Suppose that E/K has full level P structure if P is odd and full level
2P structure if P is even. Then

H1(K,E[P ]) ∼= H1(K,Z/PZ)2 ∼= H1(K,µP )2 ∼= (K×/K×P )2,

and ∆(a, b) may be identified with the order P norm residue symbol 〈a, b〉.
Remark: This is due to O’Neil when P is odd and Sharif when P is even (in fact
he claims a more precise result). In [?] and [?] I give a different proof for odd
P which generalizes nicely to the higher-dimensional case, and also prove a result
which says, essentially, that if we assume only that E has full level P structure in
all cases, ∆ is “close enough” to the norm residue symbol for applications.

It ought to be clear that the last two results, together with the weak Mordell-
Weil theorem, reduce the proof of Theorem 11 to a fact about Hilbert symbols over
global fields which is not especially difficult to prove (but neither is it very much
fun). This “unfun calculation” appears in [?] (in the case of prime P ). Sharif’s
proof, however, uses the identity ∆(giξ) = ∆(ξ) + L(Qi, η) to simplify the calcula-
tion.

In the case that E does not have full level P structure, one can try to reduce to this
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case using the following “extended inflation-restriction sequence”: let L = K(E[P ]);
then

0 → H1(L/K,E[P ]) → H1(K,E[P ]) → H1(L,E[P ])gL/K → H2(L/K,E[P ])

is exact. It is a well-known consequence of Serre’s work on torsion points that for
a given non-CM elliptic curve over a number field, there exists a positive integer
N such that the first and last terms will be 0 whenever (P,N) = 1. Sharif works
with an elliptic curve E/Q whose Galois representation is “maximal” and is thus
able to take N = 2. He also constructs a large family of gL/K-invariant classes

in H1(L,E[P ]). He is therefore able to construct classes in H1(K,E[P ]) whose
obstructions have maximal order P even upon restriction to L; a fortiori they have
maximal order over K. When E(K) = 0, this suffices to prove the result.

It seems to me that one should be able to construct, for every elliptic curve over a
number field and any P , an arbitrarily large number of Galois-invariant classes in
H1(L,E[P ]) which are spread out enough – by virtue of being supported at differ-
ent primes – so that their pairwise differences (and their modifications by elements
of G = ι(E(L)/PE(L)) still have obstruction order P ), and since H2(L/K,E[P ])
is finite, some of these differences will come from H1(K,E[P ]).

The really difficult case is constructing classes with I < P 2 when the Galois module
structure on E[P ] is maximal (as it ususally is). In the case of an elliptic curve E
over a number field K with E(K) = 0, it seems that we can produce, for all P ,
classes with I = P and also classes with I = P 2, but I do not yet see how to get
the intermediate cases.

3. Curves of higher genus

A proper treatment is beyond the scope of these notes; we will concentrate on
Lichtenbaum’s theorems and their converses.

Theorem 22. (Lichtenbaum) Let C/K be a curve of genus g.
a) I | 2g − 2.
b) P | I | 2P 2.

c) If 2P (g−1)
I is even, I | P 2.

Remark: Of course 0 is even, so this recovers the fact that I | P 2 for curves of genus
one as a special case.

Theorem 23. (Lichtenbaum) Suppose that K is locally compact, and C/K has
genus g.
a) P | g − 1.
b) P | I | 2P .

c) If I = 2P , then g−1
P is odd.

Following Sharif, we define a triple (g, P, I) as admissible if it satisfies the condi-
tions of Theorem 22 and locally admissible if it satisfies the conditions of Theorem
23.

Theorem 24. (Sharif) a) Let (g, P, I) be admissible with 4 6 | I. Then there is a
number field K and a genus g curve C/K with P (C) = P, I(C) = I.



14 PETE L. CLARK

b) Let (g, P, I) be a locally admissible triple. Then for every locally compact ultra-
metric field K with char(K) 6= 2, there is a genus g curve C/K with P (C) = P ,
I(C) = I.

Remark X.X.X: Note that Theorem 11 gives a stronger result than part a) in the
case that g = 1.

Remark: Obviously the theorem does not hold for K = C, where the problem
is trivial, nor for K = R, where I | 2 for all g. See Gross-Harris for more informa-
tion about this latter case.

Recently I have proven the following result, which applies for instance to locally
compact fields of characteristic 2 (but says nothing about the period).

Theorem 25. (C—) Fix a non-negative integer g and a positive integer n | 2g−2.
Suppose that K is a complete DVF whose residue field k admits a degree n cyclic
extension (e.g. k is finite). Then there exists a curve C/K of genus g and index n.

4. Torsors under abelian varieties

Let A/K be a g-dimensional abelian variety.

Proposition 26. Suppose that K is perfect or P is indivisible by char(K). Then
for all classes η ∈ H1(K,A), I | P 2g.

Exercise X.X.X: Prove it.

Open Problem 3. Does I | P 2g for all torsors under a g-dimensional abelian
variety?

Exercise X.X.X: Let Kg = C((t1)) · · · ((t2g)). Show that for all P | I | P 2g, there
exists a g-dimensional abelian variety A/Kg

and a class η ∈ H1(Kg, A) of period P
and index I.

Note that Kg is quite a complicated field. In the case of g = 1, we saw that
such esoterica was unnecessary, in that all possible values of P and I arise over
suitable number fields. In higher dimensions, this is not at all the case.

In all the remaining results of the section, we assume that A possesses a prin-

cipal bundle, i.e., an ample line bundle λ such that the induced map

ΦL : A→ A∨, x 7→ τ∗xL⊗ L−1,

is an isomorphism.4

Theorem 27. If K has property Br(α), then for X ∈ H1(K,A)[P ],

M(X) ≤ 2αg!P g+α.

Theorem 28. Let K be a locally compact field. For P indivisible by char(K) and
X ∈ H1(K,A)[P ]. Then

M(X) ≤ 2g!P g.

4This is subtly stronger than saying “Let (A, λ)/K be a principally polarized abelian variety.”

We will not pause to discuss the difference, rather referring the reader to [?] for the full story.
However, when K is locally compact, there is no distinction.
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Supplement: In the setting of Theorems 27 and 28, assume any of the following
additional hypotheses:
a) g = 1.
b) P is odd.
c) A[P ] is isomorphic as a gK-module to H ⊕ Hom(H,Gm).
d) K is locally compact and A has split semistable reduction.
Then we may replace 2g! by g!.

Remark: On the other hand it is known that for K a sufficiently large p-adic
field (depending on g), there exist g-dimensional torsors of period p and index pg.

Open Problem 4. Can the factor 2g! be replaced by g!? By 1?

Remark: Without the assumption that A admits a principal bundle, the proof goes
through with g! replaced by 2g · g! multiplied by the type of any polarization.

Theorem 29. Suppose that K is p-adic, NS(A) is cyclic, X ∈ H1(K,A) of period
P , and that at least one of the hypotheses a)-c) is satisfied. Then the Brauer kernel

κ(X) = Ker(Br(K) → Br(X))

is cyclic of order P .

Remark: This is to be contrasted with the case of curves over p-adic fields, where
the Brauer kernel has equal order to the index of C. (Recall that the period and
index need not coincide in either case.)

Example X.X.X: LetX be a quadric surface over a p-adic fieldK which is anisotropic
with nonsquare discriminant d. Then I(X) = 2 but κ(X) = 0: [?]. In this case, it

turns out that after basechanging to L = K(
√
d) we get I = 2 = #κ(X/L).

Definition: For a variety V/K the Picard index IPic(V ) is the exponent of the
cokernel of the natural map Pic(V )(K) → NS(V )(K).

Then, under the hypotheses of Theorem 29, we are showing that the period is
equal to the Picard index. Note that in case of example X.X.X, the Picard index
is equal to #κ(V ), both over K (where they are both 1) and over K(

√
d) (where

they are both 2). Thus, it seems natural to ask:

Open Problem 5. Let V/K be a variety over a p-adic field. Is it the case that

IPic(V ) = #κ(V/K)?

What if we assume moreover that NS(V )(K) is cyclic?

In asking this question we are also motivated by a result of van Hamel that we will
discuss shortly.

4.1. Some proofs. In what follows, we fix L = Pλ, where λ is our principal line
bundle on A. Associated to the finite morphism ΦL : A → A∨, we get a Kummer
sequence

A∨(K)/PA(K) → H1(K,A[P ]) → H1(K,A)[P ] → 0.

Let X ∈ H1(K,A)[P ]. It is not hard to show that NS(X) is canonically isomor-

phic, as a gK-module to NS(A). We can thus speak of Pic
λ(X), the set of rational



16 PETE L. CLARK

divisor classes on X which are algebraically equivalent to λ.

We now have the following result, which directly generalizes the one-dimensional
case:

Proposition 30.

a) The group H1(K,E[P ]) parameterizes equivalence classes of pairs (X,D), where

X ∈ H1(K,A) and D ∈ Picλ(X)(K).
b) The forgetful map (C,D) 7→ C corresponds to the map H(K,A[P ]) → H1(K,A)[P ]
in Galois cohomology, and its kernel, namely the equivalence classes of such lines
bundles on A itself, is identified with A∨(K)/PA∨(K).

Thus as before we may define the period-index obstruction map

∆ = ∆L : H1(K,A[P ]) → Br(K),

by

(X,D) 7→ δ(D).

Notice, however, that in contrast to the one-dimensional case, it is not immediately
clear what this divisorial construction has to do with the index of V , a quantity
defined in terms of zero-cycles. (Of course it is not so farfetched that on a prin-
ciplally polarized abelian variety, there should be some connection. . ..) To see the
relevance, we need another interpretation of H1(K,A[P ]):

Proposition 31. The group H1(K,A[P ]) classifies equivalence classes of “dia-
grams” X → V which are twisted forms of ϕL : A → PP g

−1. Two diagrams are
regarded as equivalent if they fit into a commutative square

INSERT.

We can pass directly from the first interpretation to the second by noticing that V
is the Severi-Brauer variety associated to the ample, basepointfree divisor class D
on X . The key point is thus that, whereas on a variety over an algebraically closed
field, an ample basepointfree divisor class corresponds to a (projective equivalence
class of) morphisms into projective space, on an arbitrary variety, such a class cor-
responds to a morphism into a Severi-Brauer variety.

But this is an important distinction: given an embedding into projective space,
we can take a hyperplane section to recover the divisor class. On the other hand,
we can intersect with a lower-dimensional linear subspace to get a K-rational ef-
fective zero-cycle on X . The order of this zero-cycle is precisely the degree of the
morphism. The degree of a morphism is of course a geometric property (“numerical
properties are geometric”), so the degree is equal to the degree of the morphism
ϕL : A → PP g

−1, which is well-known (Riemann-Roch) to be g!P g. Thus we get
the following:

Theorem 32. Let ηX ∈ H1(K,E)[P ]. Suppose there exists a Kummer lift ξ of η
with ∆(ξ) = 0. Then M(η) ≤ g!P g.

The next step is an analogue of Proposition 18. We begin with the following:

Proposition 33. Assume that P is odd. Then Im(∆) ⊂ Br(K)[P ].
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Notice that the proof given in the one-dimensional case does not work: the Severi-
Brauer varieties which intervene are now of dimension P g −1, so that the bound on
the index of the Brauer classes that we get is P g: no good. (In fact, in [?] I showed
that this bound is sharp for certain fields, namely those for which the period-index
discrepancy in Br(K) is sufficiently large.)

On the other hand, O’Neil’s interpretation of ∆ in terms of nonabelian Galois
cohomology of theta groups immediately gives, using a general theorem of Zarhin,
the statement that ∆ is a quadratic map, i.e.,

L(ξ, ψ) := ∆(ξ + ψ) − ∆(ξ) − ∆(ψ).

Unfortunately quadratic maps between abelian groups need not preserve orders of
elements: you can check that the map from Z/2Z to Z/4Z which sends 0 to 0 and
1 (mod 2) to 2 (mod 4) is quadratic! But in fact this is essentially “as bad as it
gets”:

Proposition 34. Let f : X → Y be a quadratic map between abelian groups, with
f(0) = 0. Then:
a) f(X [P ]) ⊂ Y [2P ].
b) For odd P , f(X [P ]) ⊂ Y [P ].

In fact there is another way of seeing the quadraticity of ∆ which avoids Galois
cohomology of theta groups (which we do not consider in these notes). Namely, as
before, L(ξ, ψ) descends to a map

L : A∨(K)/PA∨(K) ×H1(K,A)[P ] → Br(K)

and now a miracle recurs:

Theorem 35. The map L is nothing else than Tate’s duality map applied to the
dual variety A∨. (In particular it is bilinear!)

As yet the proof of this theorem has not been written down. Rather, as a conse-
quence of his more elaborate pseudo-motivic homology, he derives:

Corollary 36. For any locally compact field K, and X ∈ H1(K,A) of period P ,

κ0(V/K) = δ(Pic0(V )(K)) = Br(K)[P ].

Quite recently, van Hamel was kind enough to sketch a proof of the theorem itself.
His proof is too “high tech” (in particular, it takes place in the derived category)
to be included here.5

Anyway, as in the one-dimensional case, the corollary is exactly what we need,
together with the inclusion κ(V/K) ⊂ Br(K)[P ], to conclude that we can modify
any given Kummer lift of V by a divisor class algebraically equivalent to zero to
get one with vanishing obstruction.

What about when P is even (and g > 1)? In fact, we are able to prove that
the image of the obstruction is still contained in Br(K)[P ] provided we have the
existence of a Lagrangian decomposition A[P ] ∼= H⊕H∗, so in particular when
we have full level structure. The proof of this requires more work – namely, an

5I would be very happy to receive a writeup for a later edition of these notes. . .
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investigation into the Galois cohomology of Heisenberg-type group schemes – so we
shall say nothing about it here.

Finally, if we assume that the Néron-Severi group is generated by λ, then κ(V/K) is
generated by κ0(V/K) together with ∆(ξ) for any Kummer lift ξ of η, so combining
with Tate-Lichtenbaum-van Hamel duality, we get that

κ(V/K) = Br(K)[P ].
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