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Nilpotent Numbers

Jonathan Pakianathan and Krishnan Shankar

Introduction. One of the first things we learn in abstract algebra is the notion of a
cyclic group. For every positive integer n, we have Z,, the group of integers
modulo . When r is prime, a simple application of Lagrange’s theorem yields that
this is the only group of order n. We may ask ourselves: what other positive
integers have this property? In this spirit we call a positive integer n a cyclic
number if every group of order n is cyclic. We define abelian and nilpotent
numbers analogously. Recall that a group is nilpotent if and only if it is the
(internal) direct product of its Sylow subgroups; see [7, 126].

This is not a new problem; the cyclic case is attributed to Burnside and has
appeared in numerous articles, [9], [4], [1], [2]. The abelian case appears as a
problem in an old edition of Robinson’s book in group theory; see also [6] and the
nilpotent case was also done quite some time ago (see [5], [6]). In this article we
give an arithmetic characterization of the cyclic, abelian, and nilpotent numbers
from a single perspective. Throughout this paper Z, denotes the cyclic group of
order n.

Nilpotent numbers. The smallest non-prime cyclic number is 15. This follows from
[3, Proposition 6.1, p. 98] where it is shown that for primes p and g, if p > g, then
pq is a cyclic number if and only if ¢ + (p — 1). Motivated by this arithmetic
criterion we make the following definition.

Definition. A positive integer n = p{t --- pf, p, distinct primes, is said to have
nilpotent factorization if and only if p¥ # 1 mod p; for all integers i, j and k with
l<k<a,.

Examples of numbers with nilpotent factorization are all powers of prime
numbers and pg where p > g are prime and g + (p — 1). For example, the
number 21 = 3 - 7 does not have nilpotent factorization since 7 = 1 mod 3. It turns
out that this rather strange looking property characterizes nilpotent numbers.

Theorem 1. A positive integer n is a nilpotent number if and only if it has nilpotent
factorization.

Proof: Suppose n = p{' --- pf* is a positive integer without nilpotent factorization.
Then there exist i, j, and k with 1 < k < a; such that p; = 1 mod p,. Note that p;
and p; are necessarily distinct so after relabelling we may assume p¥=1mod p,
for some 1 <k <a,. Let E be the elementary abelian group consisting of the
direct product of k copies of Zpl ie., E = Z’Ijl. E can also be viewed as a
k-dimensional vector space over [, , the finite field with p, elements (isomorphic
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as a group). Then the group of vector space automorphisms of E is
Aut (pE ) = GL,(F, ). The latter is the group of k X k matrices with entrles 1n F,,
and non-zero determmant modulo Pr- The order of GL(F,) is (pf — 1(pf —
py) - (p¥ — pk=1). By assumption p¥ =1 mod p,, so pzl(p1 —1) and hence p,
divides |GL, (IF »)- Then Aut(E) has a subgroup isomorphic to Z, by Cauchy’s
theorem and we may form a non-trivial semi-direct product, E X Z,. Now
consider the group

G=(EX sz) X Zgrk X Z;;‘l X 75 X X T3

By construction, G is a group of order #. In a nilpotent group, elements in Sylow
subgroups corresponding to distinct primes commute with each other. The ele-
ments of E all have order p; and they don’t commute with the elements of Z, in
the semi-direct product E X Z, , by construction. Hence G is not nilpotent and
consequently # is not a nilpotent number.

For the converse, we wish to show that if # has nilpotent factorization, then it is
a nilpotent number. Suppose this is not true. Let n be the smallest positive integer
with nilpotent factorization that is not a nilpotent number. Then there exists a
group G of order n that is not nilpotent. If H is any proper subgroup of G, then
|H| has nilpotent factorization also. H must be nilpotent, since we assumed # to be
the smallest non-nilpotent integer with nilpotent factorization. So G is a non-
nilpotent group with every proper subgroup nilpotent. By a theorem of O. J.
Schmidt [9, 9.1.9. p. 251], such groups are rather special and we must have
n = |G| = p°q®, where p, q are distinct primes and a, b > 1.

Let n, and n, denote the number of Sylow p-subgroups and Sylow g-sub-
groups, respectively, of G. By Sylow’s theorem, n, = 1 mod p, but it is also equal
to the index of the normalizer, N;(S,), of some Sylow p-subgroup S, in G. Now
S, CNG(S ) € G. So the order of NG(S ) is pg* for some 1nteger k, and has
1ndex q* 7 = n,=1mod p in G. By assumption |G| = p°q® has nllpotent
factorization, which forces b — k = 0. This implies N;(S,) = G and hence S,
unique and normal in G. The same argument applied to g shows that the Sylow
g-subgroup, Sy is also unique and normal. Hence, G = S, X §,, which contradicts
our assumption that G was not nilpotent. So if » has good factorization, then it
must be a nilpotent number. |

We will see that this also characterizes cyclic and abelian numbers since we
have the containments

cyclic groups C abelian groups C nilpotent groups.

Recall that a positive integer n = p§t -+ p/ is said to be cube—free if a; < 2 for
all i. It is said to be square—free if a; = 1 for all i.

Abelian numbers. Given a prime p, there is always a non-abelian group of order

p>. For example,
1 a b
I,={10 1 ¢ :a,b,ceZp,
0 0 1

where addition and multiplication of entries is performed modulo p, is one such
group for every prime p. So an abelian number is necessarily cube—free. We claim
that » is an abelian number if and only if it is a cube—free number with nilpotent
factorization.

Suppose #n is a cube—free nilpotent number and let G be a group of order n.
Then G is nilpotent and G = §, X --- X §,, i.e., G is isomorphic to the product
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of its Sylow subgroups Since n was assumed to be cube-free, each S, has order
p; or p? and is hence, abelian. G is then abelian, being a product of abelian
groups, and # is an abelian number.

Conversely, if n is an abelian number, then it must be a nilpotent number and
hence it has nilpotent factorization. We noted that » is necessarily cube—free; if
not, then there exists a prime p such that p*|n. Then T,X1Z,,, is a non-abelian
group of order n, contradicting the assumption that » is an abelian number. This

completes the argument and establishes our claim.

Cyclic numbers. We now claim that » is a cyclic number if and only if it is a
square—free number with nilpotent factorization. The argument here is along the
same lines as for the abelian case once we note that Z, X Z,, is a non-cyclic group
of order p.

This characterization is equivalent to another well known characterization of
cyclic numbers. Let ¢(n) be the Euler totient function of n. It counts the number
of positive integers less than or equal to n that are relatively prime to n. For n
=pi by

o(n) = (P (py = 1) (P (P — 1))
Note that if n is square—free, then ¢(n) = (p; — 1)+ (p, — 1). Our claim says
that »n is a cyclic number if and only if it has nilpotent factorization and it is
square—free. This is equivalent to saying p, + (p; — 1) for all i,j, which is
equivalent to saying gcd(n, ¢(n)) = 1. This yields the elegant result: A positive
integer n is a cyclic number if and only if ged(n, ¢(n)) = 1.

Remark. The only even numbers with nilpotent factorization are powers of 2. Let
f(n) denote the number of groups of order n. If n = p§ --- p* is an abelian
number, then f(n) = 2%, The problem of determining f(n) is quite hard in
general and beyond reach even for the nilpotent numbers. This is because
estimating f(p*) for all primes p and all integers k, is too difficult a problem at
this time.

Remark. Using a deep result of J. Thompson’s on minimal simple groups [10]
which ultimately relies on the celebrated Feit—Thompson theorem, it is possible to
characterize the solvable numbers as well. We can show that a positive integer # is
a solvable number if and only if it is not a multiple of any of the following
numbers:

(a) 27(2%P — 1), p any prime.

(b) 3P(32P —1)/2, p an odd prime.

(© p(p?> - 1)/2, p any prlme greater than 3 such that p? + 1 = 0 mod 5.
(d) 2%-33-13,

(e) 22P(2?7 + 1)2° — 1), p an odd prime.

As a corollary we see that an integer not divisible by 4 must be a solvable number.
In particular, every odd number is a solvable number, as expected.
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Triangular Triples from Ceilings to Floors

Tom Jenkyns and Eric Muller

1. Introduction. A triangular triple is a sequence of non-negative integers (i, j, k)
that gives the lengths of the sides of a triangle. Then each integer is at most the
sum of the other two. We restrict our attention to incongruent triangles and
therefore to triples where i <j < k and k <i +j, since any two triangles with
these side-lengths are congruent. The associated triangle has perimeter, p =i + j
+ k. When one of p or k or j is fixed, just how many triangular triples are there?

In fact we shall count four types of triples. Let 4 denote the set of all
triangular triples, let B denote the set of all non-degenerate triangular triples, let C
denote the set of all scalene triangular triples, and let D denote the set of all
triangular triples that are both scalene and non-degenerate. For each of these sets
&, let /(p) denote the subset of triples in & with sum equal p, and let T,(p)
denote the cardinality of #(p). The first few values of these functions appear
somewhat chaotic:

Table 1
P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T, 1 0 1 1 2 1 3 2 4 3 5 4 7 5 8 7 10 8
T, 0 0 0 1 0 1 1 2 1 3 2 4 3 5 4 7 5 8
- T, 0O O 0 0 0 o0 1 0 1 1 2 1 3 2 4 3 5 4
790 o o0 0 0 O O O O 1 0 1 1 2 1 3 2 4

The main purpose of this note is to provide formulas for the four functions
T, (p). Past attention has focused on non-degenerate triangles [1]-[5], though [2]
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