

Nilpotent Numbers Author(s): Jonathan Pakianathan and Krishnan Shankar Source: *The American Mathematical Monthly*, Vol. 107, No. 7 (Aug. - Sep., 2000), pp. 631-634 Published by: Mathematical Association of America Stable URL: <u>http://www.jstor.org/stable/2589118</u> Accessed: 06/01/2010 22:34

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at <a href="http://www.jstor.org/page/info/about/policies/terms.jsp">http://www.jstor.org/page/info/about/policies/terms.jsp</a>. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.



Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

### **NOTES**

### Edited by Jimmie D. Lawson and William Adkins

## **Nilpotent Numbers**

#### Jonathan Pakianathan and Krishnan Shankar

**Introduction.** One of the first things we learn in abstract algebra is the notion of a cyclic group. For every positive integer n, we have  $\mathbb{Z}_n$ , the group of integers modulo n. When n is prime, a simple application of Lagrange's theorem yields that this is the *only* group of order n. We may ask ourselves: what other positive integers have this property? In this spirit we call a positive integer n a *cyclic number* if every group of order n is cyclic. We define *abelian* and *nilpotent* numbers analogously. Recall that a group is nilpotent if and only if it is the (internal) direct product of its Sylow subgroups; see [7, 126].

This is not a new problem; the cyclic case is attributed to Burnside and has appeared in numerous articles, [9], [4], [1], [2]. The abelian case appears as a problem in an old edition of Robinson's book in group theory; see also [6] and the nilpotent case was also done quite some time ago (see [5], [6]). In this article we give an arithmetic characterization of the cyclic, abelian, and nilpotent numbers from a single perspective. Throughout this paper  $\mathbb{Z}_n$  denotes the cyclic group of order n.

**Nilpotent numbers.** The smallest non-prime cyclic number is 15. This follows from [3, Proposition 6.1, p. 98] where it is shown that for primes p and q, if p > q, then pq is a cyclic number if and only if  $q \neq (p - 1)$ . Motivated by this arithmetic criterion we make the following definition.

**Definition.** A positive integer  $n = p_1^{a_1} \cdots p_i^{a_i}$ ,  $p_i$  distinct primes, is said to have *nilpotent factorization* if and only if  $p_i^k \neq 1 \mod p_j$  for all integers i, j and k with  $1 \le k \le a_i$ .

Examples of numbers with nilpotent factorization are all powers of prime numbers and pq where p > q are prime and  $q \nmid (p - 1)$ . For example, the number  $21 = 3 \cdot 7$  does not have nilpotent factorization since  $7 \equiv 1 \mod 3$ . It turns out that this rather strange looking property characterizes nilpotent numbers.

**Theorem 1.** A positive integer *n* is a nilpotent number if and only if it has nilpotent factorization.

*Proof:* Suppose  $n = p_1^{a_1} \cdots p_i^{a_i}$  is a positive integer without nilpotent factorization. Then there exist *i*, *j*, and *k* with  $1 \le k \le a_i$  such that  $p_i^k \equiv 1 \mod p_j$ . Note that  $p_i$  and  $p_j$  are necessarily distinct so after relabelling we may assume  $p_1^k \equiv 1 \mod p_2$  for some  $1 \le k \le a_1$ . Let *E* be the elementary abelian group consisting of the direct product of *k* copies of  $\mathbb{Z}_{p_1}$  i.e.,  $E = \mathbb{Z}_{p_1}^k$ . *E* can also be viewed as a *k*-dimensional vector space over  $\mathbb{F}_{p_1}$ , the finite field with  $p_1$  elements (isomorphic

Aug.-Sept. 2000]

NOTES

to  $\mathbb{Z}_{p_1}$  as a group). Then the group of vector space automorphisms of E is Aut $(E) \cong GL_k(\mathbb{F}_{p_1})$ . The latter is the group of  $k \times k$  matrices with entries in  $\mathbb{F}_{p_1}$  and non-zero determinant modulo  $p_1$ . The order of  $GL_k(\mathbb{F}_{p_1})$  is  $(p_1^k - 1)(p_1^k - p_1) \cdots (p_1^k - p_1^{k-1})$ . By assumption  $p_1^k \equiv 1 \mod p_2$ , so  $p_2|(p_1^k - 1)$  and hence  $p_2$  divides  $|GL_k(\mathbb{F}_{p_1})|$ . Then Aut(E) has a subgroup isomorphic to  $\mathbb{Z}_{p_2}$  by Cauchy's theorem and we may form a non-trivial semi-direct product,  $E \rtimes \mathbb{Z}_{p_2}$ . Now consider the group

$$G = \left( E \rtimes \mathbb{Z}_{p_2} \right) \times \mathbb{Z}_{p_1}^{a_1 - k} \times \mathbb{Z}_{p_2}^{a_2 - 1} \times \mathbb{Z}_{p_3}^{a_3} \times \cdots \times \mathbb{Z}_{p_i}^{a_i}.$$

By construction, G is a group of order n. In a nilpotent group, elements in Sylow subgroups corresponding to distinct primes commute with each other. The elements of E all have order  $p_1$  and they don't commute with the elements of  $\mathbb{Z}_{p_2}$  in the semi-direct product  $E \rtimes \mathbb{Z}_{p_2}$ , by construction. Hence G is not nilpotent and consequently n is not a nilpotent number.

For the converse, we wish to show that if n has nilpotent factorization, then it is a nilpotent number. Suppose this is not true. Let n be the smallest positive integer with nilpotent factorization that is not a nilpotent number. Then there exists a group G of order n that is not nilpotent. If H is any proper subgroup of G, then |H| has nilpotent factorization also. H must be nilpotent, since we assumed n to be the smallest non-nilpotent integer with nilpotent factorization. So G is a nonnilpotent group with every proper subgroup nilpotent. By a theorem of O. J. Schmidt [9, 9.1.9. p. 251], such groups are rather special and we must have  $n = |G| = p^a q^b$ , where p, q are distinct primes and  $a, b \ge 1$ .

Let  $n_p$  and  $n_q$  denote the number of Sylow *p*-subgroups and Sylow *q*-subgroups, respectively, of *G*. By Sylow's theorem,  $n_p \equiv 1 \mod p$ , but it is also equal to the index of the normalizer,  $N_G(S_p)$ , of some Sylow *p*-subgroup  $S_p$  in *G*. Now  $S_p \subset N_G(S_p) \subset G$ . So the order of  $N_G(S_p)$  is  $p^a q^k$  for some integer *k*, and has index  $q^{b-k} = n_p \equiv 1 \mod p$  in *G*. By assumption  $|G| = p^a q^b$  has nilpotent factorization, which forces b - k = 0. This implies  $N_G(S_p) = G$  and hence  $S_p$  is unique and normal in *G*. The same argument applied to *q* shows that the Sylow *q*-subgroup,  $S_q$ , is also unique and normal. Hence,  $G \cong S_p \times S_q$ , which contradicts our assumption that *G* was not nilpotent. So if *n* has good factorization, then it must be a nilpotent number.

We will see that this also characterizes cyclic and abelian numbers since we have the containments

#### *cyclic groups* $\subset$ *abelian groups* $\subset$ *nilpotent groups*.

Recall that a positive integer  $n = p_1^{a_1} \cdots p_t^{a_t}$  is said to be *cube-free* if  $a_i \le 2$  for all *i*. It is said to be *square-free* if  $a_i = 1$  for all *i*.

Abelian numbers. Given a prime p, there is always a non-abelian group of order  $p^3$ . For example,

$$T_p = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_p \right\},$$

where addition and multiplication of entries is performed modulo p, is one such group for every prime p. So an abelian number is necessarily cube-free. We claim that n is an abelian number if and only if it is a cube-free number with nilpotent factorization.

Suppose *n* is a cube-free nilpotent number and let *G* be a group of order *n*. Then *G* is nilpotent and  $G \cong S_{p_1} \times \cdots \times S_{p_r}$ , i.e., *G* is isomorphic to the product

of its Sylow subgroups. Since *n* was assumed to be cube-free, each  $S_{p_i}$  has order  $p_i$  or  $p_i^2$  and is hence, abelian. *G* is then abelian, being a product of abelian groups, and *n* is an abelian number.

Conversely, if *n* is an abelian number, then it must be a nilpotent number and hence it has nilpotent factorization. We noted that *n* is necessarily cube-free; if not, then there exists a prime *p* such that  $p^3|n$ . Then  $T_p \times \mathbb{Z}_{n/p^3}$  is a non-abelian group of order *n*, contradicting the assumption that *n* is an abelian number. This completes the argument and establishes our claim.

**Cyclic numbers.** We now claim that *n* is a cyclic number if and only if it is a square-free number with nilpotent factorization. The argument here is along the same lines as for the abelian case once we note that  $\mathbb{Z}_p \times \mathbb{Z}_p$  is a non-cyclic group of order  $p^2$ .

This characterization is equivalent to another well known characterization of cyclic numbers. Let  $\varphi(n)$  be the Euler totient function of *n*. It counts the number of positive integers less than or equal to *n* that are relatively prime to *n*. For  $n = p_1^{a_1} \cdots p_t^{a_t}$ ,

 $\varphi(n) = (p_1^{a_1-1}(p_1-1)) \cdots (p_t^{a_t-1}(p_t-1))$ 

Note that if *n* is square-free, then  $\varphi(n) = (p_1 - 1) \cdots (p_i - 1)$ . Our claim says that *n* is a cyclic number if and only if it has nilpotent factorization and it is square-free. This is equivalent to saying  $p_i \nmid (p_j - 1)$  for all *i*, *j*, which is equivalent to saying  $gcd(n, \varphi(n)) = 1$ . This yields the elegant result: A positive integer *n* is a cyclic number if and only if  $gcd(n, \varphi(n)) = 1$ .

**Remark.** The only even numbers with nilpotent factorization are powers of 2. Let f(n) denote the number of groups of order n. If  $n = p_1^{a_1} \cdots p_t^{a_t}$  is an abelian number, then  $f(n) = 2^{\sum (a_t-1)}$ . The problem of determining f(n) is quite hard in general and beyond reach even for the nilpotent numbers. This is because estimating  $f(p^k)$  for all primes p and all integers k, is too difficult a problem at this time.

**Remark.** Using a deep result of J. Thompson's on minimal simple groups [10] which ultimately relies on the celebrated Feit-Thompson theorem, it is possible to characterize the solvable numbers as well. We can show that a positive integer n is a solvable number if and only if it is not a multiple of any of the following numbers:

- (a)  $2^{p}(2^{2p} 1)$ , p any prime.
- (b)  $3^{p}(3^{2p} 1)/2$ , p an odd prime.
- (c)  $p(p^2 1)/2$ , p any prime greater than 3 such that  $p^2 + 1 \equiv 0 \mod 5$ .
- (d)  $2^4 \cdot 3^3 \cdot 13$ .
- (e)  $2^{2p}(2^{2p} + 1)(2^p 1)$ , p an odd prime.

As a corollary we see that an integer not divisible by 4 must be a solvable number. In particular, every odd number is a solvable number, as expected.

**ACKNOWLEDGMENTS.** We thank Jørgen Tornehave for useful discussions and we thank the mathematics department of Aarhus University, Denmark for their hospitality.

REFERENCES

- 1. L. E. Dickson, Definitions of a group and a field by independent postulates, *Trans. Amer. Math. Soc.* 6 (1905) 198-204.
- 2. J. A. Gallian and D. Moulton, When is  $\mathbb{Z}_n$  the only group of order *n*?, *Elem. Math.* **48** (1993) 117–119.

- 3. T. Hungerford, Algebra, Graduate Texts in Math. 73, Springer, New York, 1974.
- 4. D. Jungnickel, On the uniqueness of the cyclic group of order *n*, *Amer. Math. Monthly* **99** (1992) 545–547.
- 5. G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Arch. Math. 10 (1959) 331–343.
- L. Rédei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen göheren, *Comm. Math. Helv.* 20 (1947) 225-264.
- 7. D. Robinson, A course in the theory of groups, Graduate Texts in Math. 80, Springer, New York, 1993.
- 8. T. Szele, Über die endlichen Ordnungszahlen, zu denen nur eine Gruppe gehört, *Comm. Math. Helv.* **20** (1947) 265–267.
- 9. J. Szép, On finite groups which are necessarily commutative, Comm. Math. Helv. 20 (1947) 223-224.
- J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968) 383–437.

University of Wisconsin, Madison, WI 53706 pakianat@math.wisc.edu

University of Michigan, Ann Arbor, MI 48109 shankar@umich.edu

# **Triangular Triples from Ceilings to Floors**

#### **Tom Jenkyns and Eric Muller**

**1. Introduction.** A *triangular triple* is a sequence of non-negative integers (i, j, k) that gives the lengths of the sides of a triangle. Then each integer is at most the sum of the other two. We restrict our attention to incongruent triangles and therefore to triples where  $i \le j \le k$  and  $k \le i + j$ , since any two triangles with these side-lengths are congruent. The associated triangle has perimeter, p = i + j + k. When one of p or k or j is fixed, just how many triangular triples are there?

In fact we shall count four types of triples. Let A denote the set of all triangular triples, let B denote the set of all *non-degenerate* triangular triples, let C denote the set of all *scalene* triangular triples, and let D denote the set of all triangular triples that are *both* scalene and non-degenerate. For each of these sets  $\mathcal{A}$ , let  $\mathcal{A}(p)$  denote the subset of triples in  $\mathcal{A}$  with sum equal p, and let  $T_{\alpha}(p)$  denote the cardinality of  $\mathcal{A}(p)$ . The first few values of these functions appear somewhat chaotic:

| p     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16. | 17 |
|-------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|-----|----|
| $T_a$ | 1 | 0 | 1 | 1 | 2 | 1 | 3 | 2 | 4 | 3 | 5  | 4  | 7  | 5  | 8  | 7  | 10  | 8  |
| $T_b$ | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 3 | 2  | 4  | 3  | 5  | 4  | 7  | 5   | 8  |
| $T_c$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2  | 1  | 3  | 2  | 4  | 3  | 5   | 4  |
| $T_d$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 1  | 1  | 2  | 1  | 3  | 2   | 4  |

Table 1

The main purpose of this note is to provide formulas for the four functions  $T_{\alpha}(p)$ . Past attention has focused on non-degenerate triangles [1]–[5], though [2]