
MUMFORD-TATE GROUPS AND ABELIAN VARIETIES

PETE L. CLARK

1. Introduction

These are notes for a lecture in Elham Izadi’s 2006 VIGRE seminar on the Hodge
Conjecture.

Let us recall what we have done so far:

1. We have developed an algebraic formalism of Q-Hodge structures. I like to
think first of an R-Hodge structure as simply being a finite-dimensional R-vector
space V/R together with a representation h of the real algebraic group C× (or
equivalently, an “abstract Hodge decomposition” V/C =

⊕
(p,q)∈Z+ V p,q with the

additional property that V (q,p) = V p,q); and second that a Q-Hodge structure is
just a finite-dimensional Q-vector space V together with an R-Hodge structure on
V ⊗Q R = V/R.

We gave a complete description of the category of R-Hodge structures: an R-Hodge
structure is completely determined by the dimensions vp,q of the (p, q)-subspaces
V (p,q), and the only constraint is the obvious symmetry condition v(q,p) = v(p,q).

2. We justified our consideration of Q-Hodge structures in the sense that geom-
etry gives us a verge large class of them – the cohomology groups Hk(X,Q) of a
compact Kähler manifold, and especially the case of a projective variety. In this
case one can produce Hodge classes from algebraic cycles, and the main problem is
to understand whether or not the image of this cycle class map spans, over Q, all
Hodge classes.

Maybe I should point out that it has not yet been made completely clear that
the study of (abstract) Q-Hodge structures is itself so useful in proving the Hodge
conjecture. But the philosophy seems to be to take a maximally functorial per-
spective – i.e., to study the Hodge conjecture not just on one variety at a time but
to exploit maps between varieties – and to do this one wants to put the Hodge
structures themselves into a nice algebraic category.

In today’s lecture I will first introduce the Mumford-Tate group MT (V ) of a Q-
Hodge structure. This is our first nontrivial invariant of V , and it is already enough
to show that Q-Hodge structures are much richer objects than R-Hodge structures.
The point is that the Hodge classes arise as invariants of the Mumford-Tate group,
so when MT (V ) is a large group, there are relatively few Hodge classes, and the
Hodge conjecture is easy to prove. This points out an important feature of the
Hodge conjecture: morally speaking it does hold generically – even for compact
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Kähler manifolds – because generically there are not enough Hodge classes to make
the conjecture interesting. Thus, if we are interested in exploring new cases of the
Hodge conjecture, an excellent start is constructing Hodge structures with inter-
esting Mumford-Tate groups. This is, as I understand it, one of the main merits
of the Kuga-Satake construction: it takes as input a weight two Hodge structure
V of a certain type, but with no restrictions on MT (V ), and returns a weight one
Hodge structure KS(V ) whose Mumford-Tate group is contained in an interesting
subgroup of the largest possible group.

In fact Mumford-Tate groups seem to be most useful by far in the case of Hodge
structures of type (1, 0) + (0, 1), namely abelian varieties. Thus a major goal of
this lecture is to introduce abelian varieties from the Hodge-theoretic point of view.
The study of abelian varieties is certainly one of the oldest and richest branches of
algebraic geometry (and is especially popular here at UGA), but in Hodge theory
abelian varieties have a distinguished role to play – in some sense Hodge theory is
a formal algebraic generalization of the theory of abelian varieties, and the miracle
is that this “formal” generalization itself carries a lot of geometric content.

2. The Mumford-Tate Group of a Polarized Q-Hodge Structure

To every polarized Q-Hodge structure V we will associate a nontrivial “invariant,”
the Mumford-Tate group, which is, in some sense, measuring the number of Hodge
classes in V together with all of its tensor powers.

Let (V, h) be a Q-Hodge structure, of weight k, with a polarization Ψ. In par-
ticular Ψ gives a bilinear form on the underlying Q-vector space V , so defines a
linear group

G(Ψ) = {g ∈ GL(V ) | Ψ(gv, gw) = ν(g)Ψ(v, w)};
here ν(g) ∈ Gm is a scalar which is allowed to depend upon g (but not, of course,
on v and w). G(Ψ) is a Q-linear algebraic group. If k is even, then Ψ is a quadratic
form and G(Ψ) = GO(Ψ) is (by definition) the associated general orthogonal group
of Ψ – note that this group does in general depend upon the choice of Ψ. However,
k is odd, Ψ is a symplectic form, and G(Ψ) = GSp(V ).

Definition: Let G1 be the algebraic subgroup of G(Ψ) consisting of elements g which
act as follows on Hodge classes t ∈ B(V ⊗m): g · t = ω(g)mt for some ω(g) ∈ Gm.

Remark: It follows immediately from the definitions that Gm ⊂ G1 ⊂ G(Ψ).

Let G2 be the smallest algebraic subgroup of GL(V ) which is defined over Q and
satisfies h(C×) ⊂ G2(R).1

Theorem 1. Let (V, h,Ψ) be a weight k polarized Q-Hodge structure. Then
a) G1 = G2.
(b) MT(V ) is a reductive linear group.

1We remark that this definition makes no mention of the polarization, so could be used to
define Mumford-Tate groups for nonpolarizable Hodge structures. But while the existence of a
polarization is not required to define G2, it has important implications for its structure.
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(c) The Hodge classes in V ⊗m are the (twisted) MT(V )-invariants:

B(V ⊗m) = {w ∈ V ⊗m | gw = ω(g)mw ∀g ∈ MT(V )}.
(Here ω(g) is an element of Gm which is allowed to depend on G.) We write
MT (V ) for G1 = G2 and call it the Mumford-Tate group of (V, h).

For the proof, see [DMOS].

Remark: For a field K of characteristic 0, a reductive algebraic K-group is a linear
algebraic K-group – i.e., a Zariski-closed subgroup of GLn(K) for some n – for
which every finite-dimensional K-linear representation of G is semisimple (a.k.a.
completely reducible – i.e., decomposes as a direct sum of irreducible representa-
tions).2

Better perhaps than trying to understand what MT (V ) “really is” is to consider
what it means for MT (V ) to be larger or smaller as a linear algebraic group. The
largest that MT (V ) could be is G(Ψ), the generalized orthogonal group of the po-
larization. It is important to observe that with regard to the Hodge conjecture –
i.e., if V = Hk(X,Q) – this is essentially the trivial case: one can check that in this
case the only nontrivial Hodge classes are the ones coming from the polarization –
so, roughly, are all derived from the one codimension one cycle we must have on
X in order to be able to embed it into projective space.3 So the interesting case is
when MT (V ) is a proper subgroup of G(Ψ). Morally, the smaller MT (V ) is, the
more Hodge classes we have, and the more interesting (and difficult) it is to verify
the Hodge conjecture.4

If V is a finite-dimensional Q-vector space and G ⊂ GL(V ) is any subgroup (in
other words, G is some group acting effectively on V by linear automorphisms),
then by EndG(V ) we mean the set of endomorphisms α of V which commute with
every element of g: formally, it is the set of all α such that for g ∈ G and v ∈ V ,
αgv = gαv. EndG(V ) is easily seen to be a subalgebra, and the relationship between
G and EndG(V ) is of basic importance in representation theory.

Corollary 2. We have EndH(V ) ∼= EndMT(V ).

Proof: Using Ψ to identify V and V ∨, we have End(V ) = V ∨ ⊗ V ∼= V ⊗ V , so
EndH(V ) ∼= B(V ⊗2), whereas EndMT(V ) is the space of MT(V )-invariants in V ⊗2.

Already we come to the end of the general theory of Mumford-Tate groups. To say
more we would like to specialize to the case of V = H1(A,Q) for A/C an abelian
variety. But to do this we should first say something about abelian varieties!

2More formally this is a nice characterization of reductive groups in characteristic 0; it fails in
positive characteristic, and the correct definition in all characteristics is that G ⊂ GL(V ) admits
no nontrivial, normal, connected subgroup of unipotent matrices (matrices having all eigenvalues
equal to 1).

3I confess that I have in fact not checked this, although it seems to me that it must be true. I
hope to get some confirmation from Elham.

4This philosophy is perhaps not quite correct in the case when the Hodge group is commutative;
one says (with good reason!) that the Hodge structure is of CM-type. The Hodge Conjecture
remains open even in this case, but it is presumably easier than the general case.
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3. Hodge-Theoretic Introduction to Abelian Varieties

3.1. Z-Hodge structures. To see abelian varieties as a special case of Hodge
structures, let us introduce the notion of a Z-Hodge structure. So:

Definition: A weight k Z-Hodge structure is a finitely generated free Z-module
Λ together with a weight k representation of C× on VR := Λ ⊗Z R. Note that we
may naturally view Λ as a subgroup of VR; it is a full lattice (meaning e.g. that it
is a discrete, cocompact subgroup).

For example, we get a Z-Hodge structure by taking the integral cohomology group
Hk(X,Z) of a compact Kähler manifold modulo torsion.

A polarization on an Z-Hodge structure is a morphism of Z-Hodge structures
Ψ : Λ× Λ → Z(−k), i.e., a homomorphism of abelian groups satisfying

Ψ(h(z)v, h(z)w) = (zz)kΨ(v, w)

such that the bilinear form (v, w) 7→ Ψ(v, h(i)w) on Λ⊗R is symmetric and positive
definite. We will say that a Hodge structure (integral or rational) is polarizable if
it admits some polarization.

Proposition 3. (Poincaré Complete Reducibility) The polarizable Q-Hodge struc-
tures form a semisimple Q-linear category.

Explanation: The Q-linear category just means that we have an underlying Q-
vector space structure, which we most certainly do. The semisimplicity means that
every object in the category is a direct sum of simple (or irreducible) objects. As
usual, this means that every sub-Hodge structure W ⊂ V is a direct summand.

Sktech proof: The idea is a standard one: assuming the existence of a polariza-
tion Ψ on V allows us to take “perps” – i.e., taking W⊥ to be the set of all v ∈ V
such that Ψ(v, w) = 0 for all w ∈ W . Then one shows that V = W ⊕ W⊥ as
Q-Hodge structures.

Remark: Although we shall not digress to give an explicit example, the category
of not-necessarily polarizable Q-Hodge structures is not semisimple. This is one of
many reasons to include polarizations.

Remark: Moreover, even the category of polarizable Z-Hodge structures is not
semisimple. Indeed, the special case of weight 0 is just the category of finite free
Z-modules, and it is an elementary observation that submodules of free abelian
groups need not be direct summands: consider for instance 2Z ⊂ Z!

3.2. Complex tori and abelian varieties. Let us define a Hodge structure (in-
tegral or rational) to be of abelian type V p,q = 0 unless (p, q) = (1, 0) or (0, 1), and
to be of generalized K3 type if V p,q = 0 unless (p, q) = (2, 0), (1, 1), or (0, 2), and
dim V 0,2 = dim V 2,0 = 1.5

5I literally just made these definitions up, although they are reasonable enough so that I would
not be surprised if they appeared elsewhere. In case you are wondering, I would define K3 type
to be generalized K3 type together with dimV 1,1 = 20: these are the Hodge numbers of a K3
surface.
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Proposition 4. We have natural equivalences of categories between:
a) Z-Hodge structures of abelian type and complex tori.
b) Polarizable Z-Hodge structures of abelian type and abelian varieties.

The first statement is straightforward: recall that a complex torus is of the form
Cg/Λ where Λ ∼= Z2g. An Z-Hodge structure of abelian type, on the other hand, is
a finite free Z-module Λ – say of rank r – together with a certain homomorphism
h : C× → Aut(Λ ⊗ R) = GL(V/R). Restricting h to R× we get the usual scalar
multiplication – since the weight is equal to 1 – so that h is R-linear and is nothing
else than a complex structure on VR, so endows V/R with the structure of a C-vector
space, say of dimension g (so r = 2g). So there exists an isomorphism ρ : V ∼= C2g,
and under the ismorphism Λ goes to some full rank lattice in C2g, so that C2g/ρ(Λ)
is a complex torus. And clearly the construction can be reversed.

What is more challenging is part b): this is a rather unlikely looking definition
of an abelian variety. (One might imagine that we have ordered our abelian variety
over the internet, and it has arived via next-day shipping, but some assembly is
required!) A more natural-looking definition of an abelian variety is:

(AV1) A connected, projective algebraic group A/C.

In fact, if we are given such an algebraic group, its C-valued points A(C) form
a compact, complex manifold, which is moreover a group, and whose group law is
given by holomorphic maps: that is:

(AV2) An abelian variety is a connected, compact complex Lie group which may
be holomorphically embedded in PN (C) for some N .6

Already in entertaining a connected, compact, complex Lie group we have accu-
mulated quite a long list of nice properties, so it should not be too surprising that
such a guy is necessarily a complex torus Cg/Λ (the proof of this is nontrivial).
The real subtlety begins when we ask which complex tori can be holomorphically
embedded in projective space. Note that when g = 1 the answer is all of them –
recall that every compact Riemann surface can be embedded in projective space
(Riemann’s theorem). However, for g > 1 there are nontrivial compatability rela-
tions between the lattice Λ and the complex structure h in order for the torus to
embed in projective space (Riemann’s bilinear relations). The real miracle is that
this embeddability condition is precisely equivalent to the existence of a polariza-
tion. This is quite a deep result, and I shall not say anything about it here.

One can in fact show that there is a natural topological space parameterizing iso-
morphism classes of g-dimensional complex tori, it has (real) dimension 2g2. On
the other hand, there is another space parameterizing isomorphism classes of g-
dimensional complex abelian varieties, and it has (real) dimension g2 + g. So in
dimension greater than one, most complex tori are not abelian varieties.

6Here we have snuck in the fact that a closed holomorphic submanifold of PN (C) is necessarily
the solution set of finitely many polynomial equations: Chow’s Theorem.
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3.3. Endomorphism rings and endomorphism algebras. For a complex torus
T = Cg/Λ, an endomorphism α : T → T will necessarily lift to give a C-linear map
L(α) on the universal cover Cg, and the condition that such a linear map descend
to T is just that it preserve the lattice: L(α)Λ ⊂ Λ. On the other hand, by linearity
α is determined by its action on Λ, so the endomorphism ring is a priori a subring
of End(Λ) ∼= M2g(Z). In particular, the underlying abelian group is a finite-free
Z-module, always containing at least the subring Z (in which n ∈ Z acts as multi-
plication by n, as it does on any abelian group.)

It turns out to make life much easier to work not with End(T ) but with the en-
domorphism algebra End0(T ) := End(T ) ⊗ Q), which by the above is some finite-
dimensional Q-algebra. In terms of Hodge theory, this means relaxing things to
look only at the Q-Hodge structures, and this means that we shall regard as equiv-
alent two abelian varieties Cg/Λ1 and Cg/Λ2 where Λ1 and Λ2 are commensurate
lattices – i.e., there is some lattice Λ3 containing both Λ1 and Λ2 with finite index.
This equivalence relation between abelian varieties is known as isogeny.

So abelian varieties up to isogeny correspond to polarizable Q-Hodge structures
of abelian type.

Now the endomorphism algebra End0(T ) is an invariant of the Q-rational Hodge
structure whereas End(T ) depends upon the integral structure, and is for many
purposes is unnecessarily subtle.7 As above the combination of working “over Q”
and using a polarization makes things much nicer:

Proposition 5. a) Every complex abelian variety A is isogenous to a product of
simple abelian varieties

∏n
i=1 Bi, the Bi’s being unique up to isogeny.

b) The endomorphism algebra End0(A) is a semisimple Q-algebra.
c) In contrast, any finite-dimensional Q-algebra is the endomorphism algebra of
some complex torus.

Proof: Part a) is the Poincaré Complete Reducibility Thoerem: we are just decom-
posing our Hodge structure into a direct sum of simple guys. (Just to be sure, a
simple complex torus is one without nonzero, proper subtori.) A basic algebraic
fact – Schur’s Lemma – is that the endomorphism algebra of a simple module is
a division algebra, and from this it follows rather easily that the endomorphism
algebra of a general abelian variety is a direct sum of matrix algebras over divi-
sion algebras over Q, that is, a semisimple Q-algebra. Part c) is given only to
make you glad we are working with abelian varieties and not with arbitrary com-
plex tori; a proof can be found in the book Complex Tori by Birkenhake and Lange.

From now on we will work only with Q-Hodge structures.

Proposition 6. For a Q-Hodge structure V of abelian type, with corresponding
abelian variety (up to isogeny) A, we have End0(A) = EndH(V ).

Proof: In other words, the endomorphism algebra of the abelian variety is pre-
cisely the Q-algebra of endomorphisms of V preserving the Hodge structure. But

7As someone who has worked with abelian varieties with interesting endomorphism algebras
before, let me say that the structure of the endomorphism ring is quite complicated and scary,
and in practice one tries to avoid dealing with it directly.
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preserving the Hodge structure here means equivariant with respect to the C×-
representation, i.e., preserving the complex structure on V/R, and we have seen
above that this is exactly what the endomorphism algebra is.

4. Mumford-Tate groups of abelian varieties

For A an abelian variety, we abbreviate MT (A) for the Mumford-Tate group of the
associated weight 1 Hodge structure.

Corollary 7. For an abelian variety A,

End0(A) ∼= EndMT(A)(H1(A,Q)).

Proof: Indeed, this follows immediately from Corollary 2 and Proposition 6.

Again, the significance of this result is that the endomorphism algebra of A controls
MT (A) and thus also the Hodge classes on A to a large extent. In particular, a very
general abelian variety will have End0(A) = Q, so that EndMT (A) H1(A,Q)) = Q,
meaning that the Mumford-Tate group is quite large. For example, suppose that
A is an elliptic curve with End(A) = Z (one says that E is without complex multi-
plication). Then MT (A) is some subgroup G of GL2(Q) such that EndG(Q2) = Q.
It is not too hard to see that in this case the only two such (connected) groups are
G = SL2 and G = GL2. Since scalar matrices are always in the Mumford-Tate
group, we conclude that MT (A) = GL2(Q) = G(Ψ). Thus it is not surprising that
we will often be considering abelian varieties with larger endomorphism algebras.

In the case of abelian varieties, we can then use the endomorphism algebra to
refine our upper bound on MT (V ), namely MT (V ) is always contained in G(Ψ)∩
Z(End0(A)). Let me denote this possibly larger group by Lf(A). An important
fact is the following:

Theorem 8. Suppose End0(A) is a field and MT (A) = Lf(A). Then the Hodge
conjecture holds for the abelian variety A in a particularly simple way: namely,
every Hodge class in Bp(A) = H2p(A,Q)∩Hp,p(A,C) is the image of an intersection
of p− 1 divisors.

In particular, in order to derive new cases of the Hodge conjecture for abelian
varieties, one needs to look at cases in which the endomorphism algebra is not a
field or the Mumford-Tate group is strictly smaller than Lf(A). In the case of the
Kuga-Satake construction, one starts with a weight 2 Hodge structure V in which
we may well have MT (V ) = G(Ψ) – so that the polarization gives a quadratic form
– and we will produce a Hodge structure KS(V ) of type (0, 1)∪(1, 0) and such that
MT (KS(V )) is contained in a proper subgroup, CSpin(Ψ) of G(Ψ).


