
LECTURES ON MODULAR CURVES

PETE L. CLARK

1. Some topology of group actions on spaces

Let G be a group and (X, τX) a topological space. An action of G on (X, τ) is a
group action ρ : G×X → X on the underlying set X such that for all g ∈ G, the
map g• : X → X, x 7→ gx is continuous (equivalently, is a homeomorphism).1

Note that this definition applies to an “abstract group” G, i.e., G is not itself
endowed with a topology. In contrast, if (G, ·, τG) is a topological group – set G
endowed with a group law · : G × G → G and a topology G such that the multi-
plication map · and the inversion map x 7→ x−1 are both continuous – then by an
action of (G, τG) on (X, τX) we mean a continuous group action ρ : G×X → X.

Exercise: a) Let G be a topological group. Show that an action of G on X in
the second sense implies an action of the abstract group G on X in the first sense.
b) Let G be an abstract group, and let ρ : G × X → X be an action on the un-
derlying set of a topological space (X, τ). Show that ρ is a group action on the
topological space X iff ρ is an action of the topological group (G, τdiscrete) on X.

As for any group action on a set X, we have the orbit space G\X and a sur-
jective map π : X → G\X. If G acts on a topological space X, it is very natural
to give G\X the quotient topology for the surjective map π.

There is one nice thing to say about this quotient map in full generality.

Lemma 1. For any topological group G acting on a topological space X, the map
π : X → X/G is open.

Proof. By definition of the quotient topology, we must show that U ⊂ X open
implies π−1πU open. But π−1πU = GU =

∪
g∈G gU . �

Question 1. Suppose X is a “nice” topological space – e.g. Hausdorff, locally
compact, a manifold, a manifold with extra structure, and so forth. What properties
of the group G and the action ρ will ensure that the quotient space G\X retains the
nice properties of X?

This is really the key question for us, because recall our first main goal in the
course: to show that for any congruence subgroup Γ ⊂ PSL2(Z), the quotient
space Y (Γ) = Γ\H can be endowed with the (unique) structure of a C-manifold
such that the quotient map π : H → Y (Γ) is a holomorphic map. In particular, as
a topological space, we want Y (Γ) = Γ\H to have the structure of a real surface.

1n practice we never write (X, τ) but instead speak – abusively, but to everyone’s taste – of
“the topological space X”.

1



2 PETE L. CLARK

At least half of the real work towards this was done by Robert Varley in his
second week lectures. Most – but not all – of what remains is of a rather general
nature. It is to my taste to present that which can be done in general in suitable
generality, so I will take that approach here.

Here is one important class of examples of an action of a topological group on
a topological space: let G be any topological group, and let H be any subgroup of
G. Then, the restriction of the group law to H endows it with the structure of a
topological group, and we may certainly consider the action of H on G given by
ρ : H ×G → G, (h, x) 7→ hx. What can we say about the coset space H\G?

Lemma 2. Let H be a subgroup of the topological group G, and consider the coset
space G/H, endowed with the quotient topology.
a) The space G/H is Hausdorff iff H is closed.
b) The space G/H is discrete iff H is open.
c) If H is normal in G, then G/H is a topological group.

Exercise: Prove it.

Now there are places in mathematics where non-Hausdorff spaces come up nat-
urally, but we are not currently in one of those places: when working with the
kind of topological spaces that come up in differential geometry and its relatives,
non-Hausdorffness is a pathology to be avoided.

As a first step towards this let us agree to consider only Hausdorff topological
groups. This is not a serious restriction, in view of the following result.

Lemma 3. Let G be a topological group with identity element {e}, and let H = {e}.
Then H is a closed normal subgroup of G, so G/H is a Hausdorff group. Moreoover
the quotient map G → G/H is universal for homomorphisms of G into a Hausdorff
topological group.

So given a non-Hausdorff topological group we can in a canonical way “smush it
down” to a Hausdorff group. The second point is that we probably do not want to
mess with nonclosed subgroups because taking quotients by them is especially liabl
to lead to non-Hausdorff spaces. But maybe it is not so clear when a subgroup will
be closed? In fact for us it will be:

To be sure, I follow Bourbaki: a quasi-compact space is a topological space such
that every open cover admits a finite subcover. A compact space is a space which
is quasi-compact and Hausdorff. A locally compact space is a Hausdorff space
in which each point admits at least one compact neighborhood; equivalently (for
Hausdorff spaces!), at every point P there is a local base of compact neighborhods.

Proposition 4. Let G be a Hausdorff topological group and H a locally compact
subgroup. Then H is closed in G. In particular, every discrete subgroup of a
Hausdorff group is closed.

Proof. Let K be a compact neighborhood of the identity in H. Let U be an open
neighborhhod of the identity in G such that U ∩H ⊂ K. Let x ∈ H. Then there
is a neighborhood V of x such that V −1V ⊂ U , so then

(V ∩H)−1(V ∩H) ⊂ K.



LECTURES ON MODULAR CURVES 3

Since x ∈ H, there exists y ∈ V ∩ H, and then V ∩ H ⊂ yK. Since for every
neighborhood W of x, W ∩V is also a neighborhood of x and thus W ∩V ∩H ̸= ∅,
x ∈ V ∩H. Since yK is compact in the Hausdorff space H, it is closed and thus
x ∈ V ∩H ⊂ yK = yK ⊂ H. So H is closed. �

A very favorable class of examples comes from differential geometry.

First, let us agree that a topological manifold is a second-countable Hausdorff
space X such that each point x admits an open neighborhood U which is home-
omorphic to Rn (the n is allowed to depend on x, although being a continuous
function into a discrete space it is constant on connected components). A Lie
group is a topological group with underlying space a topological manifold.

Let G be a connected Lie group, and let H be a closed subgroup. Then H is
a Lie subgroup (Cartan’s Theorem), G/H is a topological (in fact, real analytic)
manifold and the quotient map π : G → G/H is an H-bundle.

That G/H is a manifold is, I believe, a deep theorem in differential geometry.
There is however a sort of converse which is much easier to prove: if a Lie group
G acts transitively on a manifold X with compact stabilizers, then for x ∈ X, the
natural map G/ StabG(x) → X is a homeomorphism. This enables one to identify
many quotients G/H as manifolds simply by finding the correct action of G in
nature. For instance:

Example: The special orthogonal group SO(n) acts transitively on the unit sphere
Sn−1 in Rn, and the stabilizer of the north pole may be identified with SO(n− 1).
It follows that SO(n)/SO(n− 1) ∼= Sn−1.

Example: SU(2) acts transitively on S2; one of the point stabilizers is U(1). Topo-
logically we have SU(2) ∼= S3 and U(1) ∼= S1, so we realize S3 as an S1-bundle over
S2 – schematically

S1 → S3 → S1,

the Hopf map. Quaternionic and octonionic analogues give bundle maps

S3 → S7 → S4,

S7 → S15 → S8.

In fact these – together with the less interesting

S0 → S1 → S1

given z 7→ z2 on S1 – are the only fiber bundles with spheres as the base, total
space and fiber: i.e., all such things come from quotients of Lie groups by subgroups!

We will now justify the above claim that the natural map G/StabG(x) → X is
a homeomorphism by appealing to the following result.

First a quick general topology refresher: a topological space is Lindelöf if every
open cover admits a countable subcover. This is obviously a significant weakening
of compactness. Further, any σ-compact space is Lindelöf, and among metrizable
spaces, Lindelöf, separable and metrizable are all equivalent.
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A Baire space is a topological space such that the union of any countably in-
finite family of closed subsets with empty interior itself has empty interior. The
Baire Category Theorem asserts that if a space X is completely metrizable (i.e.,
there is a complete metric inducing the topology on X) or locally compact, then X
is a Baire space.

Theorem 5. Let G be a locally compact, Lindelöf topological group – e.g. a Lie
group! – which acts transitively on a locally compact space X, and suppose that for
x ∈ X, H = StabG(x) is locally compact. Then the map

Ψ : G/H → X, g 7→ gx

is a homeomorphism.

Proof. Of course Ψ is a bijection: this is the orbit-stabilizer theorem. Let π : G →
G/H be the orbit map. For any subset Y ⊂ X,

Ψ−1(Y ) = π({g ∈ G | gx ∈ Y });
since π is an open map, it follows that if Y is open, so is Ψ−1(Y ): Ψ is continuous.2

The matter of the proof is to show that Ψ is an open map: for this, it suffices to
take U open in G, g ∈ U and show that gx is an interior point of Ux. Let V be a
compact neighborhood of the identity of G such that V = V −1 and gV 2 ⊂ U . If V x
contains an interior point vx, then gx = gv−1vx is an interior point of Ux. Because
G is Lindelöf and {gV ◦}g∈G is an open covering of G, we may write G =

∪∞
n=1 gnV

for a sequence of elements gn ∈ G. Then X =
∪∞

n=1 gnV x. We have written the
locally compact space X as a countable union of closed subspaces, so by the Baire
Category Theorem at least one of these sets must have nonempty interior and thus
V x has nonempty interior. �
So this is an example where quotients work out very nicely. It is not always this
way! To show you that we unfortunately do have to be somewhat careful, let me
show you a (surprising, to me at least) example of a non-Hausdorff quotient space.

Example: Let X = R2 \ {0} with the usual topology. Let Γ = Z endowed with the
discrete topology, acting on X by n · (x, y) = (2nx, 2−ny). Then the quotient space
Γ\X is connected and locally homeomorphic to R2...but is not Hausdorff! Check
for yourself that the images of (1, 0) and (0, 1) in the quotient do not admit disjoint
open neighborhoods.

This example is disturbing, because in fact the group action has some favorable
properties – just not exactly the right ones.

We say a group action G on a space X is wandering if for every x ∈ X there
exists an open neighborhood U of X such that {g ∈ G | gU ∩ U ̸= ∅} is finite.

Theorem 6. For a group G acting on a Hausdorff space X, TFAE:
(i) The action is free and wandering.
(ii) Every point x admits an open neighborhood U such that for all 1 ̸= g ∈ G,
gU ∩ U = ∅.
(iii) π : X → G\X is a Galois covering map.

2Note that we have not yet used any of our restrictive hypotheses: in general, Ψ is a continuous
bijection.
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When these equivalent conditions hold and X is a topological manifold, X → G is
a locally Euclidean space...which need not be Hausdorff.

Proof. This is standard covering space theory: [M, Thm. 81.5]. (Munkres requires
X to be connected and locally path connected, but I don’t see where this is used.)

�
Thus we need a stronger condition than free and wandering to get a Hausdorff quo-
tient. In fact the right condition is the one that Robert introduced in his lectures.

Recall that a map f : X → Y of topological spaces is proper if the preimage
of every compact subset of Y is compact in X.

Proposition 7. Let H be a compact subgroup of a locally compact group G, and
let X = G/H. Then the quotient map π : G → X is proper.

Proof. Let {Ui}i∈I be an open covering of X such that each Ui has compact closure,
and consider the induced open covering {π(Ui)} of X. If K is a compact subset of
X, then there exists a finite subset J ⊂ I with K ⊂

∪
i∈J π(Ui). Then π−1(K) is

a closed subset of the compact subspace
∪

i∈J UiH, hence is compact. �
Recall that Robert showed this for G = SL2(R), K = SO2(R).

Theorem 8. Let H be a compact subgroup of a locally compact group G, let X =
G/J and π : G → X. Let Γ be a subgroup of G. The following are equivalent:
(i) Γ is discrete.
(ii) For all compact subsets K1,K2 ⊂ X, {g ∈ Γ | gK1 ∩K2 ̸= ∅} is finite.

Proof. (i) =⇒ (ii): Let K1, K2 be compact subsets of X, put Ci = π−1(Ki), and
let g ∈ Γ. If gK1∩K2 ̸= ∅ then gC1∩C2 ̸= ∅, so g ∈ Γ∩ (C2C

−1
1 ). By the previous

result C1 and C2 are compact hence so is C2C
−1
1 . If Γ is discrete, then Γ∩ (C2C

−1
1 )

is compact and discrete, hence finite.
(ii) =⇒ (i): Let V be a compact neighborhood of the identity e ∈ G, and put
x = π(e). Then

Γ ∩ V ⊂ {g ∈ Γ | gx ∈ π(V )}.
Taking K1 = {x} and K2 = π(V ), we get that Γ∩V is finite. Thus Γ is discrete. �
This motivates the following definition: a group action Γ on a locally compact
space X is properly discontinuous if for all compact subsets K1,K2 ⊂ X,
{g ∈ Γ | gK1 ∩K2 ̸= ∅} is finite.

Exercise: Let Γ be a group action on a locally compact space X.
a) Show that the action is properly discontinuous iff for all compact subsets K ⊂ X,
{g ∈ Γ | gK ∩K ̸= ∅} is finite.
b) Show that the action is properly discontinuous iff the orbit map Γ × X →
X ×X, (g, x) 7→ (x, gx) is proper.
c) Show that a properly discontinuous action is wandering.
d) Show that the action of Example X.X is not properly discontinuous.

Theorem 9. Let Γ act properly discontinuously on a locally compact space X.
a) The quotient space Γ\X is Hausdorff.
b) If Γ also acts freely, then X → Γ\X is a Galois covering map.
c) If X is a topological manifold and Γ acts freely and properly discontinuously then
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Γ\X is a topological manifold. If X has extra local structure, then Γ\X canonically
inherits this structure.

Proof. As usual, let π : X → Γ\X be the quotient map.
a) Choose y1 ̸= y2 ∈ Γ\X, let x1, x2 ∈ X be such that π(x1) = y1, π(x2) = y2.
Since π is open, it is enough to find neighborhoods N1, N2 of x1, x2 such that
π(N1) ∩ π(N2) = ∅; or equivalently, for all g ∈ G, N1 ∩ gN2 = ∅. By local
compactness we may choose disjoint compact neighborhoods Ki of xi. Since the
action is properly discontinuous, the set {g ∈ G | gK1 ∩ K2 ̸= ∅} is finite: if it
is empty, we’re done already; if not, let the elements be g1, . . . , gn. For each i,
note that gix2 ̸= x1 (by hypothesis x1 and x2 lie in different G-orbits) so we may
find disjoint compact neighborhods C1,i of x1 and C2,i of gix2. Then we may take

N1 = K1 ∩
∩n

i=1 C1,i and N2 = K2 ∩
∩n

i=1 g
−1
i C2,i.

b) Since a properly discontinuous action is wandering, by assumption that action
is free and wandering, so this follows from Theorem 6.
c) Combining parts a) and b), we get that Γ\X is a Hausdorff locally Euclidean
topological space, i.e., a topological manifold.3 �
Corollary 10. Let Γ ⊂ PSL2(R) be a torsionfree discrete subgroup. Then Y (Γ) =
Γ\H has a unique C-manifold structure such that π : H → Y (Γ) is holomorphic.
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3Perhaps your definition of a topological manifold includes hypotheses of second countability
and/or paracompactness. If so, check that if X has either of these properties, so does Γ\X.


