SELECTIONS FROM THE ARITHMETIC GEOMETRY OF
SHIMURA CURVES I: MODULAR CURVES

PETE L. CLARK

These are notes accompanying a sequence of three lectures given in the UGA num-
ber theory seminar in August and September of 2006. I originally planned to give
a single lecture on some Diophantine problems involving Atkin-Lehner twists of
modular curves, but have been persuaded by Dino Lorenzini to expand it into
three lectures and include Shimura curves as well.

This first lecture is on (classical) modular curves. It is a rather “straight up”
expository account of the subject, suitable for people who have heard about mod-
ular curves before but seen little about them. After reviewing some truly classical®
results about modular curves over the complex numbers, we will discuss rational
and integral canonical models, focusing in on the case of Xo(N) for squarefree N.
We hope to end this first lecture by revealing a (presumably) surprising connection
between the geometry of modular curves and the arithmetic of quaternion algebras.

1. UNIFORMIZATION OF RIEMANN SURFACES

I will for the most part be making a bunch of interrelated statements of fact. Most
of them are nontrivial and the reader should not be alarmed by their inability to
supply a proof. Sometimes when some statement follows especially easily from an-
other statement, I rapidly indicate a proof.

Convention: All algebraic varieties we meet will be connected and nonsingular.
In this section, all varieties will be defined over C. The first fact that we will be
taking for granted is that every (nonsingular!) algebaraic variety V)¢ gives rise to
a complex manifold, whose set of points is V(C). Moreover, the connectedness of
V in the algebraic sense — or, if you like, the connectedness of V(C) endowed with
the Zariski topology - is equivalent to the connectedness of the associated complex
manifold — or, if you like, the connectedness of V(C) endowed with the analytic
topology (which is strictly finer than the Zariski topology unless V (C) is finite).?

Now suppose C' is a complex algebraic curve, so that C(C) can be endowed with
the structure of a Riemann surface (i.e., a one-dimensional complex manifold). On
the other hand, not every Riemann surface arises this way. The precise condition
for a Riemann surface to arise in this way — to be algebraic — is that it be the
complement of a finite set in a compact Riemann surface. In this case the com-
pactification is well-determined up to isomorphism — in particular, its genus g(M)

LClassical does not imply trivial, of course, nor even devoid of contemporary research interest.

2Note that this is a special property of the complex numbers C. It does not even hold, e.g., for
varieties over R. In fact the (finite) number of real-analytic components of a (Zariski-)connected
variety Vg is an interesting invariant.
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is well-determined — as is the number p(M) of points required to compactify. (The
corresponding algebraic curve is projective if p(M) = 0 and affine if p(M) > 0.)

To say a bit more: given any connected Riemann surface M, the uniformization
theorem asserts the following: (i) the universal covering M can be endowed with
the structure of a Riemann surface in a unique way so that the covering map
7 : M — M is a local C-analytic isomorphism; and (ii) there are, up to equiva-
lence, precisely three simply connected Riemann surfaces: the Riemann sphere P!;
the Euclidean plane A'; and the upper half-plane H.?

P! covers only itself.* Given an unramified covering A' — M, we can view the
deck transformation group A as a lattice in A! and hence M = A'/A. Aside from
the trivial case of A = 0, we have the case in which A 2 Z and the quotient is
isomorphic to C\ 0, the multiplicative group; otherwise A = Z? and M is an elliptic
curve.

In contrast to P! and A', the upper halfplane  is not itself algebraic, which makes
it a much richer source of Riemann surfaces: indeed, by the process of elimination,
every Riemann surface which is not P!, A!, G,, or an elliptic curve is uniformized
by H: in particular every compact Riemann surface of genus at least 2.

2. FUCHSIAN GROUPS

In real life, most group actions have fixed points; in particular, it is important
to expand our notation of “uniformized Riemann surface” to include (finite) ram-
ification. This goes as follows: first, the group of biholomorphic automorphisms

of H is PSLy(R) = SL2(R)/ + 1 acting by usual linear fractional transformations:
az+b

Z = cz+d*

(Remarks: More generally we have GLy(C) acting on P(C) = C U oo, GL2(R)
acting on H* = P*(C)\P!(R), and G Ly(R)*, the matrices of positive determinant,
acting on H. However, scalar matrices give rise to the trivial linear transformation,
and GLo(R)™ /scalars = PSLy(R).)

By definition, a Fuchsian group T is a discrete subgroup of PSLy(R), so every
Fuchsian group acts on H, and we may consider the map

mr:H—T\H=Y().

It turns out that Y(I') can be given the structure of a Riemann surface, uniquely
specified by the condition that 7 be a quotient map — that is, for any Riemann
surface M, a function f: Y(T') — M is holomorphic iff its pullback f o 7 to H is
holomorphic.® Note well that this map is in general ramified (over a discrete but

3The Riemann mapping theorem asserts that any simply connected proper domain in C is
biholomorphic to H, so can be used in place of H. Occasionally it is also useful to work with the
open unit disk.

4Exercise: Give as many different proofs as you can, using (for instance) Euler characteristic,
the Riemann-Hurwitz theorem, the Lefschetz Fixed point theorem, Luroth’s Theorem. ..

5This “categorical” perspective on quotients of manifolds with extra structure seems to be
better known among European mathematicians, since it is used systematically in the Bourbaki
books.
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at the moment possibly infinite set of points).

Remark: In some sense this is a “lucky fact,” turning on the especially simple
local structure of ramified finite-to-one maps of Riemann surfaces (up to local bi-
holomorphism, there are only the maps z — 2™). If I am not mistaken, given
a locally compact group G acting properly discontinuously on a locally compact
space X, the only general assertion that can be made about the quotient G\ X is
that it is a Hausdorff space. In particular, the quotient of even a finite group G of
biholomorphic automorphisms of a higher-dimensional complex manifold can have
singularities (“orbifold points”).

What is the condition on I" such that Y (I') be an algebraic Riemann surface? It is
most easily phrased as follows: there exists on H a very nice hyperbolic® metric
_ dxdy

y:
in particular it is PSLo(R)-invariant. (After remarking that conformal automor-
phisms of planar regions preserve angles and ds?, being a rescaling of the Euclidean
metric, measures angles in the same way, what remains to be checked is that linear
fractional transformations preserve hyperbolic length, which, if you like, is the ex-
planation for why the factor of y? has been inserted in the denominator.) We have
the notion of a fundamental domain D for I" — this is the closure D of a connected
open subset of H such that the I-translates of D tile ® (i.e., H = U, cp 7D, and
distinct translates intersect only along dD) and of its volume v with respect to the
hyperbolic metric.”

ds?

Theorem 1. For a Fuchsian group T, the quotient surface Y (T') = T\'H is algebraic
iff T has finite hyperbolic volume.

The special case in which Y (T") is compact — i.e., I has a compact fundamental
domain — will be especially important in what follows. In older terminology, these
are said to be Fuchsian groups of the first kind.

Example: Take I'(1) = PSLy(Z). Then, as is well-known, a fundamental domain
for ' can be obtained by taking [R(z)| < 3, |2| > 1, and the identifications along
the boundary are such that I'(1)\'H is, as a topological space, homeomorphic to Al.
Moreover, the volume is % < 0o, so it is isomorphic to A' as a Riemann surface
(and not to the other, nonalgebraic Riemann surface to which it is homeomorphic,
namely H).  Note that the uniformization map = : H — Y'(1) is ramified over
two points of Y(1) (it is also, in a sense in which we are trying to avoid discussing
in detail, infinitely ramified over the missing point at co), namely the distinguished
points €27/* and €27/¢ of the fundamental region. These are, respectively, the
unique fixed points in H of the elements S = ... and T'=.... S and T are, up
to conjugacy, the only nontrivial elements of I'(1) of finite order. It follows that
if ' ¢ I'(1) is any subgroup containing no conjugacy class of S or T' — and in

OWe will ignore the temptation — quite strong in August 2006 — to digress on the general topic
of geometric structures on manifolds.

7Since there are many different fundamental domains for a given I, it formally speaking must
be checked that the volume is independent of the chosen domain, but this is in fact rather easy.
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particular if I" is normal and contains neither S nor 7' — then the map
mr:H — Y (T)

is the universal covering map.

For any N > 1, we define the subgroup I'(N) C PSL2(Z) as the projectivization
of the kernel of the (surjective) homomorphism SLs(Z) — SLo(Z/NZ), Y(N) =
Y(I'(N)), and X(N) the compactification of Y(N). For N > 2, I'(N) has no ele-
ments of finite order.

Example: X(2) is the projective line and Y (2) is the projective line with three
points removed. It follows that T'(2) is the fundamental group of the complex pro-
jective line with three points removed, i.e., a free group on 2 generators.

Now a remarkable theorem of Belyi states that every (compact, connected, non-
singular) algebraic curve C' defined over some number field — i.e., over Q — admits
a map to P! branched over 3 points. Removing the branch points, we get an un-
ramified cover from C minus its branch points to Y (2). This means that there is a
finite index subgroup I' of I'(2) such that the compactification of Y (I") is isomor-
phic to C! In other words, if we allow a modular curve to be the compactification
of some finite-index subgroup of the modular group I'(1), then every algebraic al-
gebraic curve is a modular curve (and conversely, because the ramification is over
only three points, one can see that every modular curve can be defined over some

number field).

Although on the face of it this result says that all algebraic curves over Q have
a “hidden modular structure,” in practice it is not clear how to exploit this “extra
structure” and it seems that we should read this result in the other direction: i.e.,
to get interesting results we should restrict the class of finite index subgroups of
I'(1). This brings us to the definition of a congruence subgroup I' C I'(1), which
is a subgroup containing I'(N) for some N.

Exercise 1: Use the above reasoning to explain why there must be many non-
congruence finite-index subgroups of I'(1). (One can in fact show that the probabil-
ity that an index d subgroup of T'(1) is a congruence subgroup goes to 0 as d — c0.)

Exercise 2: Show that there are infinitely many finite-index subgroups I' C T'(1)
such that Y(T') has genus 0.

Remark: Henceforth we will only discuss noncongruence subgroups as a source
of counterexamples, and by a modular curve we shall mean a curve of the form
Y (I') for a congruence subgroup I' Co (Z).

Particular congruence subgroups of interest are I'o(IN) and I'; (IN); the correspond-
ing curves are denoted Yp(N) and Y7 (V) and their compactified versions as Xq(N)
and X7 (V). We thus have, for any N, finite covering maps

X(N) — X1(N) — Xo(N) — X1 (1) = P!
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as well as, for any M | N, natural maps Xo(N) — Xo(M).

Cusps: Since Y5(1) has genus zero and needs precisely one point in order to be
compact, there exists a coordinate function J on Xy(1) — i.e., an isomorphism
Xo(1) = P! which carries the unique point of Xy(1) \ Y5(1) to the point at oo,
which carries e2™/* to 1728 and €>™/6 to 0 (since the automorphism group of P! is
triply transitive, we can send any three points anywhere we like). Indeed, the clas-
sical theory tells us that the function 7 — j(F.) descends to give such a coordinate
function which has especially nice arithmetic properties: in particular, the field of
moduli of ; is Q(j(E,). We are avoiding mentioning this (important!) classical
construction in the interest of saving time.

Having fixed such a coordinate, we speak of the point at co of X((1) and call
it the cusp of X¢(1). Moreover, for any I' C I'(1), the cusps on X (T') are precisely
the preimages of the single cusp oo on X(1). In other words, the cusps are precisely
the points we must add in order to compactify Y (T'). The theory of Fuchsian groups
describes the cusps explicitly in terms fixed points of certain “parabolic” elements
of T' on the boundary RP! = S of H, another important and useful construction
we will omit for lack of time.

We will be most interested in the family of curves Xo(IN) for squarefree N. In
this case it can be shown that the number of cusps is precisely equal to the number
of positive divisors of N, i.e., 2" if N = [[:_, p;. (This would follow quite easily if
only we described cusps in the usual way. Later we will deduce it as a consequence
of the structure of the modular automorphism group of Xo(V).)

It is not especially hard to compute the genus of Xo(N). The degree of the covering
Xo(N) = X1(N) is (N) = [];(pi +1), so by Riemann-Hurwitz it suffices to figure
out the ramification over J = 0, 1728 and oo. This can be done in an elementary
way, although it is probably more enlightening to do the calculation after one has
the moduli interpretation in mind. Anyway, here is the well-known answer: put

@)= TLa+ (),

p| N
-3
es(N) = 1+ —)).
=Tl (3)
Then
9(Xo(N)) =1+ w(lév) _ 62(4N) 3 63(3N) Y

In other words the genus is roughly %, and is indeed asymptotic to it when we
bound the number of prime divisors of N. In particular it tends to co with N. The
(squarefree) values of N for which Xo(NN) has genus 0 (i.e., is itself isomorphic to
P1) are:

N=1,23,56,7,10,13
and the values for which it has genus 1 are

N = 11,14, 15,17, 19, 21.
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Remark: For any N, there are known formulas for the genera of Xo(N), X;(N),
X(N) and other similarly related curves. In the case of Xy(N) for non-squarefree
N, the formulas become a bit more complicated (and especially so when N is divis-
ible by 4 or 9). As we shall see later, this is indicative of the fact that the integral
geometry of Xo(N) is completely understood when N is squarefree, whereas the
case of general N is a topic of contemporary research interest.

Exercise 3:

a) Suppose p is prime. Show that the PSLo(F,)-Galois cover X(p) — X(1) is
ramified over J = 1728 with ramification index 2, over J = 0 with r. index 3, and
over J = oo with index p.

b) Using the Riemann-Hurwitz formula, show that

(P> —1)(p— 6)

g(X(p) =1+ 24

In particular, X (p) has genus zero <= p <5.
¢) (Not so easy) Show® that the genus 3 curve X (7) is nothing else than Klein’s
quartic curve, defined e.g. by the equation

X3Y +Y3Z+ 273X =0.

3. STUDYING THE MODULAR CURVES OVER C

Complex geometers tend to study properties of “the generic curve” of genus g rather
than specific curves of genus g. Although as arithmetic geometers we care most
about the additional arithmetic structure on modular curves to be discussed in the
next section, it is worth pointing out that modular curves are already of deep inter-
est as compact Riemann surfaces. Here are some sample results and conjectures:

Definition: The gonality of a complex (projective, nonsingular, connected) al-
gebraic curve is the least degree of a morphism to P'. It is easy to see, using the
canonical divisor, that (if g(C') > 1), the gonality is at most 2g(C) — 2.°

Theorem 2. (Abramovich) Let T' C PSL2(Z) be a congruence subgroup. Then the

gonality of X (T') is at least ﬁ[PSLQ(Z) :T.

Remark: Note that by Exercise 2 (and the fact that there are only finitely many
subgroups of I'(1) of any given finite index) this result is false without the “con-
gruence” hypothesis.

It is remarkable that the proof, although rather short, uses deep results from dif-
ferential geometry (due to Li and Yau) and spectral theory (Selberg’s celebrated
bound A; > % on the smallest positive eigenvalue of the hyperbolic Laplacian).

In the case of X((N), this gives an linear lower bound on the gonality in terms

8For a solution, see Noam Elkies’s beautiful survey article on the arithmetic geometry of the
Klein quartic.

9Actually this holds for the k-gonality for curves over any field k; in the special case k = C,
one can (I am told) use Brill-Noether theory to save a factor of 4.
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of the genus. If one is content with a g%—type lower bound, then there is an argu-
ment due to Ogg which stays within the realm of arithmetic geometry.*°

Since the generic curve of genus g will have gonality approximately equal to g,
this shows that modular curves are “typical” in this geometric sense.

However, there is another sense in which they are not typical. Given a (discrete)
family C; of compact Riemann surfaces, one can ask which elliptic curves E are
covered by this family, i.e., for which there exists for some ¢ a finite map C; — FE.
Note that this is equivalent to E occurring up to isogeny as a direct factor of the
Jacobian J(C;). In particular, for any fixed C;, only countably many isomorphism
classes of elliptic curves are covered by C;, so assuming our family is itself countable,
in all only countably many elliptic curves could be covered by the family (whereas
there are uncountably many elliptic curves in all, as we shall shortly see). We might
as well assume that each C; has genus at least 2; then, it seems reasonable to expect
that generically they do not cover any elliptic curves at all. (As far as I know this
is purely geometric problem — concerning how certain loci of principally polarized
abelian varieties with extra endomorphisms intersect the Torelli, or Jacobian, locus
— is open.)

On the other hand the elliptic modularity theorem (Wiles-Breuil-Conrad-Diamond-
Taylor) asserts that at least every elliptic curve which can be defined over Q is cov-
ered by some Xo(N). Are there other elliptic curves covered by Xo(N) (for suitable
N)? Yes indeed: there is a conjectural characterization due to Ribet, which would
follow from Serre’s conjecture (i.e., it looks to be pretty close to a theorem).

Finally, here is another interesting question with a “classical” geometric flavor:
Question 1. Where are the Weierstrass points on Xo(N)?

In the 1960’s, Oliver Atkin asked whether, for any squarefree IV, a cusp can be a
Weierstrass point of Xo(NV).!! Atkin showed that this does not happen when X (N)
has genus 0 and Ogg extended this to the case of Xo(pN) where (p, N) = 1 and
Xo(N) has genus zero (i.e., infinitely many cases), as well as the case of Xy(11p).
(To make things even more intriguing, Atkin showed that when N is sufficiently far
from being squarefree, there are cuspidal Weierstrass points on Xo(/N).) There are
closely related recent results of Ahlgren-Ono and El-Guindy about mod p reductions
of Weierstrass points. But if they are not cusps, then (as we shall see presently) the
Weierstrass points correspond to specific elliptic curves. Which ones? What are
their fields of moduli? There are, as far as I know, only two papers addressing these
questions, by Silverman and Burnol. Notwithstanding the interesting mathematics
that these two papers contain, the subject remains essentially wide open.

10Note mostly to myself: I have a paper in which I use this result for X1 (N) as well as Xo (V)
— or, in fact for the Shimura curve analogues thereof — and cited Abramovich’s result rather than
Ogg’s for this reason. A while ago, Matt Baker indicated to me that Ogg’s arguments can be
made to work for X1 (N) (and possibly all congruence subgroups?) as well; at some point I should
try to write this up.

11Computations of W.A. Stein confirm that for squarefree N at most 2000 or so cusps are never
Weierstrass points, so it seems reasonable to upgrade “Atkin’s Question” to “Atkin’s Conjecture.”
A proof seems to be totally out of current reach.
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4. CONNECTIONS WITH ELLIPTIC CURVES

In fact Y(1) = PSLy(Z)\'H naturally parameterizes isomorphism classes of elliptic
curves and congruence coverings parameterize isomorphism classes of elliptic curves
together with some extra torsion structure.

Let us at least explain the first statement. Fix 7 € H. Then we can define an
elliptic curve E, which is the quotient of C by the lattice A, = Z1 & Zr. We
don’t get all lattices in this way, but that’s okay, because two lattices A1, Ao will
uniformize isomorphic elliptic curves iff they are homothetic, i.e., if there exists
a € C such that aA; = As. Given any basis 71, taus for a lattice A in C — i.e., 7y
and 75 are two elements of C which are R-linearly independent — we can uniquely
rescale to make 7; = 1 (i.e., divide by 7!) and then 7 := mo/7 € C\ R. 7 is then
not necessarily in H; the extra (necessary and sufficient) condition here is that the
original basis 71, 7 be positively oriented, a notion which homothety does not dis-
turb. Of course any lattice has a positively oriented basis: if the given basis is not
positively oriented, interchange the basis elements.

This shows that the map 7 +— FE. is surjective onto all elliptic curves. More pre-
cisely, it gives an isomorphism between H and the set of all homothety classes of
positively oriented lattice bases. The right hand side has “too much structure” — we
would rather just have each homothety class appearing once. But we have natural
SLy(Z) actions on both sides: on the left by linear fractional transformations and
on the right since SLy(Z) acts simply transitively on the set of positively oriented
bases for a given lattice. Working this out a bit, one deduces:

Proposition 3. The assignment 7 +— A, descends to an isomorphism fromY (1) =
PSLy(Z)\H to the set of all isomorphism classes of complex elliptic curves.

Thus Y (1) is, at least in some naive sense, a moduli space of elliptic curves.'? If
we mod out by some subgroup of I'(1), we are then obtaining some structure which
is intermediate between the choice of a positively oriented basis for A, and just
the homothety class of A, (i.e., the elliptic curve itself). When T" is one of the
congruence subgroups, this extra structure can be nicely interpreted. We will just
give the answers:

I. Y(N) = I'(N)\'H parameterizes elliptic curves E together with an isomorphism

N _ 1/NZ1®1/NZr
EINI= ANl = — 577

Such an isomorphism is called a full level N structure on E.

IL. Y1(N) = I't(N)\'H parameterizes isomorphisms (E, P) — (A;, % - 1), or, in-
formally, elliptic curves together with a distinguished point of exact order NN.

II. Y5(N) = To(N)\H parameterizes isomorphisms (E,Cy) — (A, (% - 1)), or,
informally, elliptic curves together with a distinguished order N cyclic subgroup.

121t is not within the scope of these lectures to carefully define a (coarse) moduli space. Indeed,
in a department rife with algebraic geometers, there are plenty of people better qualified than I
to explain these ideas.
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One can consider intermediate and composite level structures.

In fact, there is nothing formally to stop us from making the following general-
ization: given any subgroup I' C SLs(Z), Y (') parameterizes I'-orbits of isomor-
phisms from a positively oriented basis of a uniformizing lattice for E to A.. Thus,
as described earlier, from Belyi’s theorem it follows that every algebraic curve over
Q is technically a moduli space of elliptic curves.!?

5. CANONICAL MODELS

We would like to study the modular curves arithmetically; in particular, at least for
Xo(N) and X;(N) we would like to know them as algebraic curves over Q (rather

than over C, or, by “the obvious direction of Belyi’s theorem,” over Q).

There are many ways of defining canonical Q-models on X,(N) and X;(N) (all
compatible with each other). The most classical methods exploit one or both of
the following properties of the modular curves Y,(N): (i) they are non-compact,
i.e., there are always cusps; (ii) they all cover the affine line, namely Y (1). Let us
briefly recall some of these methods:

1) (g-expansion principle): For a Fuchsian group T, define a I'-modular function
f:H — C to be a function which is invariant under I'" — so they descend to Y (T") —
and are meromorphic at the cusps — so they extend to functions X (T') — P!. Thus
we get a complex-analytic description of the field of functions C(Y(I")) (which, re-
call, is enough to determine the compactified curve up to isomorphism). If T' is
a congruence subgroup of PSLy(Z) then it contains z — z + N for some N, and
this periodicicity leads to a Fourier series expansion relative to each of the cusps.
Consider the subfield Qr of modular functions whose Fourier series expansions at
each cusp have Q-coefficients, i.e., are elements of Q((g)). Then, if I' = T'4(N) or
I'1(N), one can show that Qr, which is evidently a subfield of C(X (T")), is a regular
extension of Q of transcendence degree 1, so defines a QQ-rational model.

Advantages: This generalizes nicely to Hilbert and Siegel modular forms, and is an
important part of the theory of p-adic modular forms.

Disadvantages: If I' has no cusps, the rationality condition is vacuous and thus
Qr = C(X(I')): no good.

2) (explicit functions approach): Recall that we chose a special function J on
X (1) = C(t) by normalizing its value at the three ramification points of the uni-
formization map H — Y'(1). Thus we can certainly put a rational model on Y (1)
corresponding to the function field Q(J).

Begin digression of David Foster Wallacian proportions We could have
taken any nonconstant function on Y (1). Why was the J-function well-chosen?
Because for 7 € H, J(7) = J(E;) = j(E;) generates the field of moduli of the

13Again, when I' is a non-congruence subgroup it seems unlikely that this is of any use, but I
don’t guarantee the uselessness of this approach (whatever that might mean!).
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elliptic curve E.. Note that this is true for J iff it is true for any function J which
we normalize to take values in P*(Q) at the three ramification points. Why did we
make the specific choices J(eP™/*) = 1728, J(e27"/6) = 0? (O, if you like, why not
3J or %7) Because then the J function not only has good rationality properties,
it has good integrality properties: (e.g. if j(E) € Q, then E has potentially good
reduction at p iff j(E) € Z,), so is thus the correct choice for an integral canonical
model of X(1).

The importance of finding the “integrally correct” normalization of the coordinate
function on a genus zero modular curve is a topic that the late 19th century number
theorists (notably Weber, Fricke, Klein) were well aware of (probably better aware
of than most present-day number theorists), a favorable consequence of the more
down-to-earth approach to mathematical objects that was the spirit of the day. As
far as I know, the classical theorists did indeed find such a distinguished genera-
tor of all genus zero modular function fields: such a thing is called a Hauptmodul.
In some sense, the modern “explanation” for what a Hauptmodul is — namely, a
choice of integral canonical model well before the notions of mod p reduction of
curves were considered.'® — is anachronistic and limited. Rather, if you actually
work explicitly with modular curves, then certain nice functions naturally present
themselves to you, and working with the “naturally nice” functions will turn out
to have advantages beyond any particular axiomatic framework. For instance, the
Moonshine phenomenon began when John Thompson noticed a simple arithmetic
relationship between the Fourier coefficients of the J-function and the dimensions
of the irreducible representations of the Monster (i.e., the largest sporadic simple
group). One of the truly puzzling things about Moonshine is that it is a remarkable,
but finite, coincidence: there are, of course, only finitely many irreducible represen-
tations of the monster which we are comparing to the first finitely many coefficients
of J: how do you tell if it is all just some ridiculous concidence? What you can
do is look for similar structure among Fourier coefficients of other Hauptmoduls,
as did Conway, Norton and McKay, and they found them!'® In some sense, then,
although as far as rational canonical models are concerned, }L_é is as good as J,
the Monster prefers J, and similarly for finitely many other genus zero modular
function fields. It is all a bit spooky, and (as I have heard Conway himself remark,
in paraphrase) although Borcherds’ work is spectacular mathematics, it leaves most
of the spookiness of the situation intact.

End D.F.W.-style digression.

Anyway, if J(7) is the j-invariant of E,, then J(NT7) is the j-invariant of E,.,
which is canonically cyclically N-isogenous to E. (Check for yourself.) Thinking
about this a bit, it is not too hard to see that the function Jy : 7 — J(N7) is a
I'o(N)-modular function, and that C(J, Jy) = C(Yo(N)), hence it makes sense to
define Qp,(n) as Q(J, Jy) and not so hard to show that this gives a Q-model of

141 am no historian, but I would be shocked if Weber, Fricke and Klein were, in any reasonable
sense, interested in characteristic p.

151t was left to Richard Borcherds to actually find the mathematics linking these objects, using
the intermediary of vertex operator algebras (which I will not pretend to understand).



SELECTIONS FROM THE ARITHMETIC GEOMETRY OF SHIMURA CURVES I: MODULAR CURVES$

C(Yp(N)). This is a sort of maximally explicit approach: there is an actual poly-
nomial ®x[X,Y] € Z[X,Y] out there which gives the algebraic relation between J
and Jy, and

Dy[X,Y] =0

is an explicit equation for Xo(N).

Advantages: This is a maximally elementary approach, understandable if you know
only the definitions of elliptic curve, j-invariant and modular function. We have
not really used (i) (the existence of cusps): replacing J by any element of Q(J)
would not change the function field generated by the modular polynomial.

Disadvantages: We did, of course use (ii), the existence of a mapping down to
a genus zero curve. Moreover actually computing the modular polynomial is in-
credibly time-consuming (I don’t have precise references here, but unless you are a
professional computational number theorist showing off your clever new approach,
even something like N = 101 is hopeless), and the model given by ®x[X,Y] =0
will have horrible singularities.'®

(3) Galois Theory approach: take E to be an elliptic curve over Q(J) with j-
invariant J, i.e., a so-called generic elliptic curve. Let Ky /Q(J) be the field ex-
tension cut out by trivializing the N-torsion on E. One can show that Ky /Q(J)
is Galois with group GLy(Z/NZ). Now let us work with congruence subgroups

Ky C G C GLy(Z)

where Ky is the kernel of the reduction map GL3(Z) — GL2(Z/NZ). Such
subgroup G clearly correspond to subgroups G C GL2(Z/NZ). We can define
Q(G) = Ky

Advantages: this approach shows us why we have been staying away from the
Q-canonical model of X (N): namely, the full extension Kx/Q(J) contains the
constant extension Q(Cy). (In general, the theory of the Weil pairing implies that
to trivialize the N-torsion on an elliptic curve in characteristic 0, one necessarily
also trivializes the N-torsion in the multiplicative group, i.e., all N-torsion fields
contain a primitive Nth root of unity, say {n.) Thus we get a canonical model
for X(N) over Q({n). (In general, we say that a modular curve I" has level N if
N is the least positive integer M for which I' C T'(IV). Then the argument shows
that any modular curve of level N is defined over Q((x).) Looking more carefully,
one can see that the constant extension of Q contained in K§(I') is cut out by
the image of the determinant map det : GL2(Z/NZ) — (Z/NZ)* restricted to G,
and this map is surjective for G = Go(N) (defined in the same way as [o(N), i.e.,
matrices which are upper triangular modulo N) and I'1 (V) (defined as matrices in
[ Ccl Z ] with @ 21 (mod N),c =0 (mod N)).

Overall this is a quite enlightening approach, and I recommend reading Rohrlich’s
article, which takes this tack to develop much of the basic theory of modular curves.

160n the other hand, there is enough literature on computing modular polynomials that there
must be some other advantage that I am not aware of.
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Disadvantages: We are still assuming (ii), that we have a P! at the bottom of
our tower.

(4) Moduli space approach: We have been working complex-analytically with el-
liptic curves over C but there is a perfectly well-defined moduli problem of elliptic
curves over Q, whose coarse moduli space gives rise to the canonical model Y (1)q,
which is indeed just the affine line over Q. Moreover, the moduli problem of isomor-
phism classes of elliptic curves over Q-schemes together with a distinguished point
of order N (i.e., an isomorphism (E, P) — (E’, P') is an isomorphism of elliptic
curves (over some base Q-scheme) which carries the point P — P’) gives rise to
the curves Y1(N) and X;(N)/g. (Having exact order N is a condition that, by
definition if you like, we check on geometric fibers.) Finally, the moduli problem of
an elliptic curve together with a cyclic, order N subgroup scheme (i.e., a finite flat
subgroup scheme each of whose geometric fibers yields a cyclic order N subgroup)
gives rise to Yo(IN) and Xo(N) over Q.

Advantages: This will work for Shimura curves over Q, once we define the anal-
ogous moduli problem. Moreover it works nicely for Hilbert moduli space, Siegel
moduli space (and in general for PEL-type Shimura varieties), and is in general
such an important technique in arithmetic and algebraic geometry that one needs
to know about it no matter what. Perhaps most importantly, it points the way to
a similar approach to integral canonical models.

Advantage/Disadvantage?: The uniqueness of the model is solved immediately;
it is then tempting to slough over the existence problem as being relatively ab-
stract nonsense. The latter cannot really be the case: consider, for instance that
the moduli problem makes perfect sense even for non-congruence subgroups, so at
some point in the proof of the existence of a coarse moduli scheme over Q, we must
be making nontrivial use of the congruence subgroup property. (It is not especially
mysterious how this goes — the strategy will be (i) to show that X(N) for N > 3
is a fine moduli space and then (ii) use descent theory to solve the corresponding
relative moduli problem — but I don’t want to enter into the details here.) But in
fact this may be an advantage: if, as a student of modular curves, you are looking
for corners to cut in order to learn the material, then wondering about the details of
the existence of an object guaranteed to be unique by general principles and which
has been studied by many people over the years, then perhaps the proof that such
canonically defined objects do indeed exist is a relatively safe corner to cut!

Disadvantage: The method still does not work for the most general quaternionic
Shimura curves, which are in fact not moduli spaces, at least not over their ground
field. The truly satisfactory theory of rational canonical models of Shimura vari-
eties — as laid down by Shimura himself and clarified and extended by Deligne —
uses a yet more complicated approach, essentially using the explicit reciprocity law
of Shimura-Taniyama for abelian varieties with complex multiplication to predict
what the field of definition of each of a certain Zariski-dense countable subset of
“special points” should be and then showing that there exists a unique model over
an appropriate number field giving the correct field of moduli at each of the special
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points.

How important is this special point construction, both technically in the defin-
ition of Shimura varieties (including, to be sure, certain Shimura curves that are
rather closely related to the ones we shall discuss) and philosophically in under-
standing what’s going on in things like the André-Oort Conjecture, Heegner point
constructions on elliptic curves, work of Mazur, Wiles, Rubin, Bertolini, Darmon,
Vatsal, Cornut, Dasgupta......?7 It is of the highest level of importance. But it is
technically demanding enough to be ever so far beyond the scope of these notes.

6. SOME ENORMOUS THEOREMS

We are now well entitled to consider Xo(N) and X;(N) as curves defined over Q. Tt
would be silly to spend so many pages describing the rational canonical models of
these curves without reviewing at least some of the spectacular results concerning
these models.

First, a (relatively elementary) key observation:

Fact 1. For any N, there is at least one Q-rational cusp on X1 (N), and hence also
on Xo(N).

We have not said enough about the cusps in order to get into the proof. But
morally, a theme in algebraic geometry is that most naturally occurring moduli
spaces are not compact, and in order to compactify them we have to enlarge our
moduli problem by considering degenerate, or (hopefully mildly) singular objects.
This is possible in our case: we can consider the cuspidal points of X;(N) as para-
meterizing “Néron N-gons” and from this moduli interpretation it is easy to find
that there is a distinguished cusp (still called co) which is Q-rational.'”

Now for the pyrotechnics:

Theorem 4. (Mazur) For any positive integer N, the following are equivalent:
a) X1(N) =P

d') X1(N) has genus zero.

b) N <10 or N = 12.

¢) Y1(N)(Q) is nonempty.

Remark: The equivalence of a) and a’) follows from the existence of Q-rational
cusps; the equivalence of these conditions with b) follows from known genus formu-
las for X;(N).'® That these conditions imply c) is obvious, so the meat (and there
is about a hundred pages worth of meat) is in ¢) = b).

Remark: Mazur proved this theorem in 1974. It had long been part of the folklore
(for a while it was called Ogg’s conjecture, but it was later pointed out that it went
back at least as far as Beppo-Levi).

"More elementary proofs are certainly possible.
18Although we did not these write down explicitly, they are not too hard to derive; easier still
is to see that g(X1(NN)) is approximately quadratic in N and to give an effective lower bound.
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Theorem 4 leads rather easily to a characterization of all possible torsion sub-
groups of rational elliptic curves: namely, cyclic of order IV for the above permitted
values of N or Z/2Z x Z/2vZ for 1 < v < 4.

Remark: One can seek to generalize this result by studying points on X;(N) over
number fields of higher degree. Work of Kamienny, Abramovich, Merel and Parent
culminated in a proof of the uniform boundedness conjecture: there exists a func-
tion F(d) such that if K/Q is any number field of degree d, then the order of the
torsion subgroup of any elliptic curve £,k is at most F'(d).

Exercise XX: Show that the uniform boundedness of the size of the entire tor-
sion subgroup in [K : Q] is equivalent to the finiteness of the set of all N such that
Y1(N)(K) # 0 for all number fields Kof any given degree.

The bounds of Merel and Parent are exponential in d, which is presumably far
from the truth, so the problem of finding the optimal bound F(d) remains wide

open.?

Yet more impressive is the following:

Theorem 5. (Mazur) Suppose that N > 163 is prime. Then Yy(N)(Q) = 0. More
precisely, Yo(N)(Q) # 0 iff any one of the following holds:

a) Yo(N) has genus 0.

b) Q(v/—N) has class number 1.

¢) N =17 (genus one) or N = 37 (genus two).

Remark: To discuss the “easy” half of Mazur’s theorem: if a) holds, then Xy(N) has
genus 0 and a rational cusp so is P! and hence has infinitely many rational points,
only finitely many of which are cusps. Part b) follows easily from the theory of
complex multiplication. The case of N = 17 is not too surprising, since Xo(17) is
an elliptic curve, and current beliefs are that the “chance” that an elliptic curve
has infinitely many rational points is %, whereas rational points on curves of higher
genus are thought to be significantly more rare. (On the other hand, the Mordell-
Weil group of the elliptic curve Xo(17)/q is not infinite; it is Z/4Z, which means
there are precisely two noncuspidal rational points.) The case of N = 37 is a famous
anomaly which had earlier been studied in a paper of Mazur and Swinnerton-Dyer.

Theorem 6. (Elliptic Modularity Theorem) For every elliptic curve E,q, there
exists, for some N, a finite morphism Xo(N) — E.

Remark: This is a somewhat more precise form of the result alluded to in §X. One
can be even more precise: there exists a finite morhpism Xo(N) — E iff N is a
multiple of the conductor N(E) of E, an integer which is (almost) characterized by
the following: for any prime p > 5, N(E) is exactly divisible by p® if E has good
reduction at p, by p if F has semistable (aka multiplicative) bad reduction at p,
and by p? if E has nonsemistable (aka additive) bad reduction at p. (Things are
more complicated at 2 and 3.)

Following a complaint/suggestion of Dino Lorenzini, let us discuss a bit of the

1990me remarks on this are made in [?] and [?].
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history of this all-important theorem. To every elliptic curve E,qg one can associate
its L-series L(E, s), a certain meromorphic function. In the first half of the twenti-
eth century Hecke was able to identify the L-series of an elliptic curve with complex
multiplication as the L-series obtained from a character of the maximal abelian ex-
tension of the CM field K (a “Grossencharacter”). This showed in particular that
L(E,s), a priori defined for s > 1 by an Euler product, had much nicer analytic
properties: in particular, it extends to an entire function on the complex plane and
satisfies a certain functional equation.

In the 1950’s Eichler and Shimura made the following construction: given a weight
two modular (new)form f on T'g(N) with Q-rational Fourier coefficients, they de-
fined an elliptic curve E(f),q in such a way that L(E(f),s) = L(f,s), where
the latter is the natural Dirichlet series > ", %2 associated to the modular form
fo:l anq™. This elliptic curve is constructed a priori as a quotient of the Jacobian
of Xo(NNV), so it admits a finite morphism from Xo(NV). (This construction general-
izes Hecke’s construction in a way that we will not attempt to discuss.) Conversely,
it is not so hard to see that any elliptic curve E which is the target of a morphism
Xo(N) — E is obtained via the Eichler-Shimura construction.

It is therefore natural to ask for the image of the Eichler-Shimura construction,
i.e., which rational elliptic curves arise in this way? Apparently the bold suggestion
that all rational elliptic curves should arise in this way is due to Yutaka Taniyama.
Taniyama’s original thoughts in this direction were vaguer (and the first precision
of them turned out to be incorrect), and the precise form of the conjecture was, I
believe, developed in collaboration with Shimura. In its early days the conjecture
met with great skepticism, which seems a little odd from our modern eyes. (Given
Eq, to disprove the strong form of the conjecture, namely that for any E/q there
exists a weight 2 newform f on I'o(N(E)) such that L(f,s) = L(E, s), would be a
matter of finite computation. Similarly, given any E/q, one can compute N (£) and
show that there is at most one newform f of level N(E) whose coefficients match
the L-series coefficients of F. One cannot prove the modularity this way, but one
can match the a,’s for as many primes p as one likes, so where are the grounds for
disbelief? Of course, such computations were far from routine back then.)

One of the controversies in this subject is whether and/or to what extent Weil’s
name should be associated with this conjecture. I was not around at the time so
it’s not for me to try to sort out the history of this, but let me instead point out
a very important theorem of Weil’s. Remember that one of the reasons that the
modularity conjecture is so exciting is that it implies that the L-function L(E, s)
has desirable analytic properties. What Weil showed is that if you instead postu-
late the L(E, s), together with all (or sufficiently many) of its twists by Dirichlet
characters, has these properties — namely analytic continuation and a precise func-
tional equation — then one can deduce the modularity of E. This theorem (“Weil’s
converse theorem”) is important enough in the subject (and in particular, gives
strong philosophical evidence for the conjecture, whether Weil thought so or not!)
that I find it appropriate to speak of the Taniyama-Shimura- Weil Conjecture.
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Of course the T-S-W conjecture was proved in the semistable case (squarefree con-
ductor) by Andrew Wiles with the assistance of Richard Taylor in 1995, and the
full theorem was proven by Christophe Breuil, Brian Conrad, Fred Diamond and
Taylor in 1999. Wiles’ work was undoubtedly un des plus grand tours de force in
mathematical history, but like any modern mathematician his work relies on that
of many others, in particular that of Mazur and Langlands-Tunnell.

7. TRANSITION TO SHIMURA CURVES

Why is the modularity theorem so important for the study of the arithmetic (rather
than merely than analytic number theory) of rational elliptic curves? Given any
elliptic curve E/q, there is a map

Xo(N) = E

defined over Q, so that we can do something remarkable: study a fixed elliptic
curve using a family of all elliptic curves. At first it might seem that Theorem XX
limits the usefulness of this: if N > 163, there are no-noncuspidal rational points
on X((N), and moreover one can show that cusps always map to torsion points on
E.

However, using the fact that F is an algebraic group, we can employ the fol-
lowing trick: let P € Xo(N)(L) be a point defined over any number field L.
Then p(P) € E(L). However, if o; : L — Q are all the embeddings, then
> 0i(P) € E(Q). In other words, even irrational points on Xo(/N) produce ratio-
nal points on E!

This is however a bewildering array of riches: if we take a breath and remem-
ber that F(Q) is finitely generated, then it must be that for most L and points
P € E(L), we are getting the same points on E, or multiples thereof. Where to
look for “special points”? I wish I could remember the reference, but there is an
old paper of Birch in which this question occurs non-rhetorically. He mentions
the family of points on curves which algebraic geometers regard as special, namely
Weierstrass points. Indeed, one can certainly ask the following

Question 2. Let ¢ : Xo(N(E)) — E be an (optimal) modular parameterization of
a rational elliptic curve. Let W C E(Q) be the subgroup generated by the images of
the traces of Weierstrass points on Xo(N(FE)). What can be said about W ¢

This is a perfectly interesting question. It is however one that we seem not to be
ready to answer, because as mentioned earlier we don’t really know “where the
Weierstrass points are” on Xo(NV), nor anything about their arithmetic properties.

Better would be a supply of points whose arithmetic we understand. Now comes
what is (to my mind) the single most beautiful idea in modern elliptic curve the-
ory: in so many ways elliptic curves with complex multiplication are much easier to
understand. Let us then, via modular parameterizations, study all rational elliptic
curves using these easiest elliptic curves.2’

20T make a Langlands-style slogan out of it, let us study GLa-type arithmetic objects using
GL1 = Gp,-type arithmetic objects.
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It turns out that the particular class of CM points on Xo(N) we want to study
is the following: we want pairs £ — E’ of cyclically N-isogenous elliptic curves so
that End(E) and End(E’) have CM by the same order in an imaginary quadratic
field K. Without getting too bogged down into the particulars of CM theory, sup-
pose we want both to have CM by the maximal order: then E’ = E/Z, where 7
is an ideal of ox of norm N. The condition then is that every prime dividing NV
should split in K, the so-called Heegner condition. For any such K, we can consider
the images of Heegner points on E(K). The details are of course beyond the scope
of this survey, but suffice it to say that, thanks to beautiful work of Gross-Zagier
and Kolyvagin, we get a highly interesting and useful supply of rational points on
E(K) in this way.

But what about E(Q)? Well, given any quadratic field, we get modulo 2-torsion, a
decomposition of E(K) into the direct sum of E(Q) and EX*(Q), so the arithmetic
over K and over Q is closely related. The original perspective on this was that K
and E(K) were auxiliary data to study E(Q). The main theorem that comes out
of all this is that if the analytic rank of F/q is at most 1, then the rank is equal to
the analytic rank, and to prove this one can always choose a suitable K satisfying
the Heegner hypothesis.

On the other hand we would also like to understand the arithmetic of £ not just
over Q but over all number fields and in particular over all imaginary quadratic
fields. What if we are interested in an imaginary quadratic field K such that some
primes of bad reduction do not split in K7 The modern answer is that, at least when
N(E) is squarefree, we consider not just the parameterization Xo(N(E)) — E, but
for all factorizations N(E) = N - D, the Shimura curve parameterization

XP(N)— E.
This is the “mainstream” motivation for studying Shimura curves.

However, just as one can be interested in modular curves in their own right and
not just as a supply of rational points on elliptic curves, one can be interested in
intrinsic the Diophantine geometry of Shimura curves. In fact, as we shall see, there
is one respect in which the Shimura curves are more interesting than the classical
modular curves: their lack of cusps leads to to the possibility that they may fail to
have points rational over some given number field K and/or over all completions
K, of K.

8. INTRODUCTION TO SHIMURA CURVES

Let us go back to Fuchsian groups. In some naive sense, the subgroups of the mod-
ular group PSLy(Z) are the easiest Fuchsian groups (of the first kind) to construct.
There are evidently many more, because every compact Riemann surface of genus
at least 2 is uniformized by a Fuchsian group of hyperbolic type (i.e., with a compact
fundamental domain and without elements of finite order). Nevertheless it is not
so easy to get our hands on them, e.g. to write down generators. For instance, if
you give me a hyperelliptic curve y? = P(z) for P € Q[z] a polynomial of degree at
least 5, then the corresponding algebraic curve is uniformized by some unique (up to
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PSLsy(R)-conjugacy) Fuchsian group of hyperbolic type. Can we write down gen-
erators? I don’t know how to do it, and especially there is no easy correspondence
between the arithmetic properties of the curve and of the uniformizing Fuchsian
group.

8.1. An interesting family of Fuchsian groups. There is one class of examples
of Fuchsian groups which one can write down explicitly, which generalizes P.SLy(Z):
namely, choose any elements a, b, ¢ in Z™ U co such that é + % + % < 1 (here our
convention is that é = 0, of course). Then, through the magic of hyperbolic geom-
etry, there is up to isometry a unique hyperbolic triangle with angles =, 7, =. Here
if any of a, b, c are zero then we are getting an “ideal” triangle, namely with angle 0
and with vertex on the boundary of the hyperbolic plane (this is an instance where
the unit disc model of the hyperbolic plane is easier to visualize). For instance, if
we take (a,b,c) = (2,3,00) then the corresponding hyperbolic triangle bounds the
region in H which is the right half of the standard fundamental region for P.SLy(Z).

Consider the group A of isometries of H generated by reflections 7y, 7, 73 through
these three sides. Reflections are orientation-reversing, so these are not elements of
PSLs(R). However, there is an index 2 subgroup of orientation-preserving isome-
tries which is a Fuchsian group: it is generated by x = 13073, y = 1073, 2 = 70Ty
and these are respectively, rotations through the three vertices of the triangle of
angles 27/a, 27 /b,2w/c. We get a very explicit and interesting Fuchsian group
A(a, b, c) with presentation

Aa,b,c) = (x,y,2 | 2% = y° = 2° = xyz = 1).

In particular A(2,3,00) = PSLy(Z) (up to conjugacy) and A(a,b, c) is cocompact
iff a,b, c are all finite.

It is not hard to write down explicit generators for A(a,b,c) whose entries lie in
R = Ry, = Z[2cos(m/a),2cos(m/b),2 cos(m/c)]. One can then define congruence
subgroups with respect to ideals of R: in particular for every ideal N one can define

Lo(N), T1(N), T(N).

The corresponding family of algebraic curves is, I believe, a very interesting one,
but it is not the family that we are meant to be talking about: this is a general-
ization of modular curves which is in general different from the Shimura curves:
there are precisely 85 triples (a, b, ¢) such that the curves uniformized by A(a, b, ¢)
are Shimura curves. In particular there is, as far as I know, no good theory of
Heegner points on a general such curve, so for elliptic curve applications this is the
wrong generalization. On the other hand, they are much easier to compute with
than arbitrary Shimura curves; in fact, in the burgeoning theory of Shimura curve
computations, the vast majority of work concerns those 85 “Shimura” triples. It is
an interesting question how much of the arithmetic theory of modular curves and
Shimura curves can be generalized to this family of curves. (In fact I have been
working on this on and off for several years.)

8.2. Shimura curves (over Q). To get the real thing, then, we need to take a
somewhat more abstract perspective. Here is one way to motivate the construction:
consider the class of Fuchsian groups whose matrix entries are as close as possible
to being integral, without actually being in Z. What could this mean? Well, the
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characteristic polynomial of any element of SLo(Z) clearly has integral coefficients,
so let us (just for the sake of exposition) define a Z-group to be a Fuchsian group
I' C SLy(Z) of the first kind such that for all yinI', the characteristic polynomial
of I' has Z-entries. Since the determinant is always 1, this means precisely that we
want integral trace. Now the rational canonical form tells us that any particular
element  of a Z-group can up to to conjugacy be expressed as a matrix with Z-
entries. However, we may not be able to simultaneously conjugate all elements of
T' into Z. Indeed, here is what we can say about a Z-group:

Proposition 7. Let T’ be a Z-group. Put Q[['] to be the Q-subalgebra of My (R)
generated by the entries of T' and similarly put R[] to be the R-subalgebra. Then
R[[] = M3(R).

Since R[I'] = Q[I'] ®g R, this tells us precisely that Q[I'] is an indefinite rational
quaternion algebra. That is, it is a four-dimensional Q-algebra, which is simple (no
two-sided ideals), whose center is precisely Q.

Example: T' = SLy(Z) and Q[I'] = M2(Q). This is called the split quaternion
algebra. Any other rational quaternion algebra is a division algebra.

It is of course, not yet clear that any Z-groups other than SLs(Z) and its subgroups
of finite index exist. But notice that we can express the construction of a Fuchsian
group SLs(Z) from M5(Q) in a way which generalizes to arbitrary indefinite ratio-
nal quaternion algebras: namely, to say that a rational quaternion algebra B/q is
indefinite is to say that there exists an isomorphism B®gR = M2 (R) (equality here
means we pick one such isomorphism, and since all such are SLs(R)-conjugate, it
doesn’t matter which one we pick), and in particular an injection

B < My(R).

Now select a maximal Z-order O of B — that is a sub-Z-algebra of B such that the
canonical map O x QQ — B is an isomorphism, and which is not properly contained
in any other such order — and take I'(1) to be the units of @ which, under the
embedding into GL2(R), have determinant 1 (as in the case of SLy(Z), they would
have to have determinant, or “reduced norm” +1), modulo £1. Now the basic fact
is:

Proposition 8. a) I'(1) C PSLy(R) is a Fuchsian group, i.c., is discrete.

b) Up to PSLy(R)-conjugacy, I'(1) is independent of the choices made.

¢) Except in the case where B = M3(Q), T'(1) is cocompact.

For any quaternion algebra B q, we define its discriminant to be the product of the
primes p such that B ® Q,, is a division algebra. Then it is a basic (but nontrivial;
it is closely related to classfield theory) fact that there is a unique quaternion alge-
bra of any given squarefree discriminant which is indefinite if the number of finite
ramified primes is even and definite (i.e., B ® R is the unique (Hamilton) division
quaternion algebra over R). Let us rename I'(1) T'P(1) where D is the discriminant
of the quaternion algebra B. So, for any squarefree D which is divisible by an even
number of primes, we get a well-determined complex algebraic curve Y (I'P(1)); if
D =1 this is just Y(1) as before, but for D > 1 it is cocompact.

We can again define the notion of a congruence subgroup of ' (1). Namely, for any
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positive integer N, NO is a 2-sided O-ideal, so we may define I'” (V) to be those
elements of I'P (1) which are congruent to 1 modulo NO. Although this definition
makes sense for arbitrary N, it is both more transparent and more useful in the
case when N is prime to the discriminant D, which we will assume from now on.
We then find that I'P(1)/TP(N) = PSLy(Z/NZ) as in the classical case, which
means that we can also define I'}(N) — i.e., matrices which modulo N become
upper triangular — and T'P (V) — i.e., matrices which modulo N become unipotent.
Therefore we may define
Y2 (N) = T2(N)\H

and XP(N) to be the compactification of Y,P(N) (which, in every case but the
classical D = 1 case, is the same as Y,P(IN)). These are the Shimura curves.

Here is a genus formula for XP(N), for squarefree N, generalizing the case of
D=1

o) =1+ o) - AN DN D),
where ¢ is the Euler ¢ function, as before (N) =[], | y(p+1), eco is the number
of cusps on X (N) — namely, the number of positive divisors of N if D =1 and 0
if D > 1 — and finally, for m =1 or m = 3,

em(D,N) = ][ 1—(_‘2()7”)) ll_[N1+(_d;m)>.

p|D

It is again easy to see that the genus tends to infinity with max(N,D); and in
fact, Abramovich’s result holds verbatim here and gives a linear lower bound on
the gonality in terms of the genus. An important difference is that there is usually
not a projective line on the bottom. Indeed,

g(XOD(N)) =0 < (DaN) - (671)7 (677)a (10, 1)7 (22’1);
IJXF(N) =1 =
(D,N) = (6, 13), (10, 7), (14,1), (15,1), (21,1), (3371)7 (3471), (46,1).

9. MODULI INTERPRETATION, CANONICAL MODELS

We would now like to provide a moduli interpretation for the Shimura curves
XP(N). Perhaps surprisingly, we will show that these curves are moduli of cer-
tain abelian surfaces; in fact our interpretation will hold even for D = 1, so that
we will get a new moduli interpretation of the classical modular curves! (On the
other hand, we will be able to see almost immediately how the new interpretation
is related to the old interpetation.) Time constraints will cause us to restrict to the
case of no level structure — XP. To understand the moduli interpretation of the
level structure for N prime to D, one needs to exploit the O-module structure on
A[N] and use (to put a fancy label on a relatively simple piece of linear algebra)
“Morita equivalence.” These ideas figure prominently in my PhD thesis, which I
can give you if you really are interested in the details.

Okay, here goes: recall we have chosen an isomorphism B ® R with M3(R) (unique
up to conjugacy). Earlier we exploited the fact that this yields an embedding of a
maximal order (also unique up to conjugacy) into Ms(R). Carrying this one step
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further, we also get an embedding of O into M2(C). In particular, for any 7 € H,
one can consider the column vector v, = [r1]* in C2, and then also the set Ov,. A
(not completely trivial) computation reveals that this is a full lattice in C2, so we
get a two-dimensional complex torus

A, = C?/Ov,.

Now recall that unlike elliptic curves, the generic complex torus of dimension at
least 2 is mot an abelian variety. The necessary and sufficient condition is the ex-
istence of a Riemann form. On the other hand, an important general principle is
that one can build a Riemann form out of a sufficiently large ring of endomorphisms
(“real multiplication” is enough; here we have more than that). To write down the
Riemann form is not so difficult by requires an extra bit of data: indeed, once we
define a Riemann form we will get a corresponding positive (“Rosati”) involution
on the endomorphism algebra, so it turns out that the right thing to do is to specify
this involution in advance, which requires a little bit of quaternion arithmetic. (See
§0.3.2 of my thesis for a discussion.)

In any case, things are chosen so that A, has O as an endomorphism ring, and
moreover positive norm units of O are just going to change the basis of the lattice.
Therefore we get that
YP(1) =TP(1)\H
parameterizes certain abelian surfaces with quaternionic multiplication, i.e., an in-
jection
t: O — End(A).

We remark that the choice of ¢ — called a “QM structure” on A — determines a
canonical principal polarization but gives (unless D = 1) a finite amount of ad-
ditional information: there will in general be more than one QM structure on a
pp abelian surface (assuming it has at least one QM structure). Thus a point on
YP(1) includes a choice of QM structure.

What happens when D = 17 Then B = M5(Q) so we are talking about abelian
surfaces which are isogenous to the square of an elliptic curve then. This is in
fact what we do: given any elliptic curve, E, E? is an abelian surface whose endo-
morphism ring contains Ms(Z). The lattice in this case is just the square of the
corresponding two-dimensional lattice.

In summary (and with some technical details omitted): Y? (1) parameterizes iso-
morphism classes of QM abelian surfaces.

As above, this leads to a canonical Q-model, since it makes sense to consider QM-
abelian schemes over S (where S is a Q-scheme). This gives the uniqueness of
the Q-rational model, and the existence follows as for elliptic curves (for instance
XP(N) is a fine moduli scheme iff X;(N) is).

Note that because we, in general, neither cusps to give Fourier expansions nor
an obvious map to P!, none of the more elementary descriptions of the canonical
rational model will work here.
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What is the analogue of Mazur’s theorem for modular curves? Things are quite
different for Shimura curves:

Theorem 9. (Shimura) For all D > 1, XP(R) = (.

Morally speaking, this is true for the same reason that a CM elliptic curve, together
with all its endomorphisms, cannot be defined over R: it is in fact easy to show
the same for a QM surface. Unfortunately a nasty subtlety intervenes to make this
not literally correct: unlike modular curves, a point on a Shimura curve defined
over some field K does not necessarily correspond to a QM surface defined over K.
Otherwise put, there is a generally nontrivial obtruction to the field of moduli of
a QM surface being a field of definition.?! The most natural proof uses the idea
that an R-model on a complex algebraic curve is given by an antiholomorphic in-
volution, and in our setting such a thing is provided by taking an element of O* of
determinant —1.

What about Q,-rational points? For primes p dividing D, there is a very nice
necessary and sufficient condition for X’ (N)(Q,) to be nonempty, due in special
cases to Jordan-Livné and Ogg. In particular there is always at least one p dividing
D such that XP(N)(Q,) = 0. For other primes there are answers, but they are
less satisfactory: for instance, for primes p prime to DN, the Eichler-Selberg trace
formula says that there is a Q,-rational point if and only if a certain finite sum is
positive. This sum is elementary enough to be easily computable in any particular
case, but there is no known “closed” expression, and there is presumably nothing
so simple as a congruence condition that determines the answer. Presumably what
one should do is explore the behavior of this sum on average, which is the sort of
thing that analytic number theorists are quite good at, although to the best of my
knowledge such a computation has never been done in this particular context (so
might serve as a thesis problem).

All of these results rely on facts concerning the minimal regular model of X’ (V). It
turns out that these curves have smooth reduction at primes p not dividing DN (es-
sentially a result of Igusa), have semistable bad reduction at primes dividing D, and
have bad reduction at primes dividing N which is semistable iff p exactly divides N.
One can do better: if N is squarefree, then the work of Igusa, Deligne-Rapoport,
Cerednik-Drinfeld, and Buzzard (and to a lesser extent, of David Helm and myself)
gives an explicit description of an integral canonical model of X’ (N). The explicit
description of the model at primes dividing D requires p-adic uniformization so lies
outside the scope of these lectures. The model at p when p exactly divides N will
make an appearance in the third lecture.

21This makes the theory of QM surfaces significantly more technically challenging than the
theory of elliptic curves. There is, for instance, a mistake along these lines in the PhD thesis of
Bruce Jordan, and a different, but similar mistake in my thesis.



